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INTRODUCTION 
 

 

The most important feature of power systems is the continuity of the supply of electricity to the 

instruments of investment reliably. This reliability is primarily provided by the so-called 

protection systems, whose main function is to detect electrical failure as quickly as possible and 

to isolate the faulty device from the power system [35], [62], [92]. 

The protection system does not include the relays only, but it also includes the current 

transformers. Therefore, the correct operation of the protection devices depends on the 

performance of current transformers in transient cases [151], [152]. 

When the current transformer enters saturation during power system disturbances, the 

amplitude of the secondary current will decrease and the waveshape will be distorted [157], 

[158]. 

these distortions can lead to a loss of coordination in the protection system, and inability of the 

protection device to isolate the damaged element as quickly as possible as planned, sometimes 

lead to the wrong operation of the protection unit outside the protected zone or outside its range 

operation, and thus have serious repercussions on the entire electrical system[112], [142],[153]. 

Similarly, the presence of harmonics in the electrical network leads to many problems for the 

elements of the power system in general and for the protection system in particular, which has 

serious implications for the performance of the protection system and its ability to isolate the 

arising faults. All these previous effects fall under the heading of power quality [187]. 

digital relays are multifunction relays, which is replacing the electromechanical and static relays 

due to the advantages of these relays, whether economic cost, performance and size [14], [133]. 

Despite all these advantages, digital relays suffer from many problems resulting from the 

influence of many effects, most notably the effect of poor power quality, which is the subject 

of this research. 

1. BACKGROUND  

Poor power quality is defined as a deviation of voltage, current and frequency from their 

nominal values, this deviation can be seen as a distortion in waveshape and amplitude of the 

signal, [2], [10], [18]. 

There are many resources for poor power quality, these disturbances can be due to current and 

voltage harmonic sources, dynamic operations and faults [5], [13]. 

The quality of input signal plays an important role of the correct behavior of protective relays. 

Digital relays use the digital signal as an input signal to the digital filter, while conventional 

relays use the analog signal as input signals without any converting into another form [37]. 

This input signal is processed by the digital filter and the making-decision is done after 

comparing the values of the resulting calculations with preset values [40], [92], [96], [107]. 

The digital filter can be considered as the decision-making center for protection relays, there 

are many types of digital filter and each filter has its own algorithm and mathematical equations. 

The most popular filters used in protection applications is Fourier filter, as well as some of the 

less commonly used filters such as Cosine filter, IIR filter, Kalman filter and Walsh filter [39], 

accuracy and speed are the most important criteria for testing the performance of these 

filters[42], [82], [84], [85], [88], [89]. 

Some researchers have tried to provide several studies for examining the effects of different 

disturbances on the performance of these filters independently of the power system. In addition, 

their research did not provide a comprehensive idea about the mutual effects of different 
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elements of the power system and its impact on Performance of these filters but their researches 

were the base for the future works [82], [83]. 

Many researches have studied the behavior of different types of digital relays under the effect 

of disturbances by using different simulation programs like EMTP-ATP, MATLAB, ....... etc. 

Some of these programs, such as MATLAB, require the programming of protection’ blocks, 

because they do not contain ready-made blocks. This reduces the possibility of maneuvering 

for many tests and takes more time for making these blocks [84], [86], [90]. 

Some of the new modeling programs such as DigSILENT provide ready-blocks for all 

protection devices for different manufacturers and provide the possibilities to enter the 

protection settings accurately [95]. 

Protection algorithms use measurement algorithms to attenuate non-fundamental components 

and to estimate fundamental frequency component with high accuracy to detect faults. 

The main input signals for estimation algorithms are the current and voltage signals. To ensure 

optimum accuracy and speed of protection functions, the input signals must only contain the 

fundamental frequency component [40], [82], [84], [86], [89], [92], [178]. 

In practice, the input signal is distorted according to the fault conditions, the fault signals 

generally contain non-fundamental frequencies such as harmonics, decaying DC offset and 

noises. 

The measurement algorithm produces errors due to these undesirable signals and these errors 

will be propagate in the used successive algorithms and which may lead to the wrong operation 

of the protection device. 

In this thesis, the effect of nuisance signals has investigated through simulation programs such 

as MATLAP and digSILENT and EMTP-ATP. 

Many researches have used many mathematical methods and algorithms to estimate and correct 

the components of these nuisance signals. In general, the accuracy of these methods is based 

on the comparison between the estimated value of the sample and its actual value [162-178]. 

In this research, a special algorithm was developed to detect distortion and correct it for the 

secondary waves of current transformer based on the Newton’s backward difference method. 

This algorithm proved its effectiveness by applying recorded waves taken from a fault recorder 

of a power generation and distribution station. 

In the applications of protection relays, it is important to verify the performance of the 

protection relays in the steady state to evaluate their performance in the transient state. 

2. OBJECTIVES 
 

The main objective of the research thesis is to provide an assessment of the effects of poor 

power quality on the performance of digital relays and suggest mathematical and practical 

solutions, because of the importance of these protections in maintaining the stability of the 

power system during different disturbances. 

By achieving the main objective, the research achieves a set of secondary objectives which are 

summarized as follows: 

- The effect of different parameters of digital relays on its performance. 

- the effect of poor power quality such as harmonics, frequency deviation and CT 

saturation on the measurement algorithms of digital relays such as Fourier filter and 

Walsh filter have been investigated by using MATLAB. 

- Study the effect of poor power quality on distance, differential and over current relays 

have been investigated by using DigSILENT and EMTP-ATP. 
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The final objective of this thesis is proposing practical solution for the wrong behavior of 

differential relays by adding metal oxide varistor element to secondary circuit of current 

transformers and developing an algorithm for correcting the secondary currents of current 

transformers in saturation cases. 

3. OUTLINE OF THE THESIS 

This thesis is organized into seven chapters. This introduction presents an explanation of the 

contents of the thesis and this explanation is divided into: 

-  A general introduction to the power quality definition from the point of view of research 

and from the point of view of the research that preceded it.  

- A reference study for digital relays. 

- A reference study of the effect of the undesired signals on the performance of the 

different digital filters. 

- An explanation of the measurement algorithms used in the previous research and of the 

developed algorithm used in this thesis. 

- The software package used to study the effect of power quality on protection relays' 

performance was mentioned, in addition to a simplified explanation of the proposed 

solutions. 

Chapter I presents all definitions, classifications and problems related to power quality. 

Finally, a comparison is done between the practical measurements and standards related to 

power quality.   

Chapter II This chapter analyses the characteristics and mathematical formula of some digital 

filters which are used in digital relays, the performance of these filters was investigated by 

applying different current waves to these filters. Furthermore, this chapter includes a 

comparison of responses between these filters. 

Chapter III presents low flow calculations and short circuit calculations for an electrical power 

system which contains all levels of voltage; low, medium and high. 

The resultant values will be used in the next chapter for calculating the settings of over current 

relays and the permissible operation statements. 

Chapter IV presents the setting calculations of over current relays for busbars and distant relays 

for overhead line and cable line and under frequency protections for generators. 

All these calculations are done according to the international standards and the user manuals of 

used relays. 

Chapter V presents the behavior of distance relays under the effect of harmonics in the 

network, also analyses the behavior of over current relays under the effect of magnetization 

curve of power transformers which distort the current and voltage waveshapes. 

Also, this chapter presents a power system consists of a Busbar of three ends which is protected 

by using differential protection. 

This study shows that the differential protection is working when a fault occurs outside the 

protection zone because the saturation of current transformers. 

A practical solution is done by adding a non-linear element (MOV) to the secondary circuit of 

the current transformer. This practical proposed solution is done and investigated by using 

EMTP-ATP program. 

Chapter VI has suggested a new algorithm for detecting and correcting of the distorted 

secondary current due to CT saturation, this algorithm estimates the samples of saturated section 

depending on the samples of unsaturated section of the current signal, the estimation method 

depend on the Newton’s Backward Difference Interpolation method.  
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The m-file for the proposed algorithm was created by using MATLAB and the simulation 

results indicate that the proposed algorithm can efficiently detect and correct each saturation 

period when the secondary current is severely distorted. 

Chapter VII Provides a summary of the results and conclusions obtained during 

accomplishment this study. Also, includes a list of future works which contains a set of 

suggestions for practical suggestions, especially the possibility of developing and using the 

nonlinear elements in conventional and digital relays, as well as developing the measurement 

and correction algorithms used to obtain the optimal performance of protection relays, thus 

maintaining stability of the power system and ensuring continuity of feeding for consumers. 
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CHAPTER 1. POWER QUALITY 

1.1. INTRODUCTION 

Power quality problems can cause processes and equipment to malfunction or shut down, and 

the consequences can range from excessive energy costs to complete work stoppage.  

1.2. DEFINITIONS AND CLASSIFICATION OF POWER QUALITY 

Power Quality is defined as any deviation in voltage, current, and/or frequency value from its 

nominal value, that results in the mal-operation of end user’s equipment.  

Fig. 1.1 shows normal voltage signal and voltage signals with disturbances where: 
(a)nominal, Voltage signal, (b) oscillatory transient, (c) harmonics, (d) notching, (e) Sag, (f) swell, (g) 

spikes and (h) outage. 
 

 
Fig. 1. 1. Examples of voltage signals and disturbances 

1.3. ANALYZING POWER QUALITY DATA BY PC APPLICATIONS SOFTWARE 

(POWER ACCEPTABILITY CURVE) 

 Power Acceptability Curves regulate the minimum PQ level that equipment should have to 

operate properly when the power supplied is within the standards. The most commonly used 

curves are CBEMA curve and ITIC Curve. These curves are divided into two regions as shown 

in figure 1.2 And figure 1.3 [11], [14-21]: 

-permitted zone: any voltage disturbance lie in that area should not cause malfunction at all. 

-prohibited zone: any voltage disturbance lie in that area will cause malfunction. 
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Fig. 1. 2. CBEMA curve for equipment Susceptibility 
 

 

 
Fig. 1. 3. ITI curve for equipment Susceptibility 

1.4. PRACTICAL MEASUREMENTS OF POWER QUALITY 

We execute some measurements at BARAGAN Photovoltaic farm by using FLUKE 

SET for one week; we download the data by using Power Log software version 4.3.1.  

these measurements were recorded during the date from 12/12/2014 2:54:04 PM to 

19/12/2014 9:44:04 AM. 

Case 1. power frequency variations 

    Figure 1.4 shows frequency deviations, the maximum value of frequency is 50.039Hz, the 

minimum value is 49.952 Hz, and these values are within the acceptable limits. 

 
 

 
Fig. 1. 4. Frequency deviations 

Case2. voltage fluctuation  

Figure 1.5 shows voltage fluctuations, the maximum value of voltage for three phases is 

0.330%, the minimum value is 0.125%, and these values are within the acceptable limits. 
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Fig. 1. 5. Voltage fluctuations (flickers) 

Case 3. over voltage 

Figure 1.6 shows recorded voltage waveform of duration 200ms, we note that the maximum 

value of voltage is 20950V and this value is within the accebtable limits. 

 
 

Fig. 1. 6. Over- voltage waveform 

Case 4. Harmonics 

Figure 1.7 shows total harmonic distortion in percent (THD %). we note that the maximum 

value of total harmonic distortion is 3.7% and this value is within the acceptable limits. 
 

 
 

Fig. 1. 7. Total Harmonic Distortion 
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Case 5. Dips and Swells 

Figure 1.8 shows dips points, we note that there are two dips points and that points located 

into permitted zone according to table 1.2, figure 2.3 and figure 1.8. 

 

 
 

Fig. 1. 8. Shows dips points 

1.5. Conclusion  

➢ Analytical tools benefit from the increased level of monitoring and characterization. 

Models should be improved and the tools themselves should become easier to use. 

➢ The quality of electrical power in industrial facilities has become an important area of 

concern due to its impact on the cost of energy and the reliability of feeding and operation 

networks Productivity as a whole.  

➢ It is therefore important that these facilities study Characteristics Electrical feeding of the 

various sections of the establishment by means of measurements and collection Data and 

information on different loads in each section, determine the values of the disturbance on 
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CHAPTER 2. DIGITAL PROTECTIVE RELAYING OF 

POWER SYSTEMS 

2.1. INTRODUCTION 

Protection relays represent a particular importance in electrical power systems, they are 

responsible for the sense of any malfunction or defect may occur in any component of such 

systems starting from generation to transportation to distribution and use, after it sense of 

malfunction and defect so they issuing orders to the circuit breakers to isolate the specific defect 

element selectively. 

2. 2. DIGITAL RELAY STRUCTURE  
Figure 2.1, shows the main structure of the digital relay. 

.  

 

fig. 2. 1. Typical functional block diagram of a digital relay 

2. 3. DIGITAL FILTERS USED IN DIGITAL RELAYS 

This section analyzes the characteristics and mathematical formula of some digital filters which 

are used in numerical relays.  

2. 3.1. Digital filters for one-element relay 

One-element relay uses only a single input signal either current or voltage.  

Many well-known digital filters use a single input signal for its calculation such as Fourier, 

Walsh, and Kalman filters. 

2.3.1.1. Fourier filters 

Fourier Filters are the most used filters in digital relays.  The fundamental component 

can be calculated by the following equations [35], [40], [81], [83], [84], [85], [86], [87], [88]: 
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𝒀
^

𝑺 =
𝟐

𝑲
∑ 𝒚𝒌 𝒔𝒊𝒏(𝒌𝜽)

𝑲

𝑲=𝟏

                (𝟐. 𝟒) 

𝒀
^

𝑪 =
𝟐

𝑲
∑ 𝒚𝒌 𝒄𝒐𝒔(𝒌𝜽)

𝑲

𝑲=𝟏

                  (𝟐. 𝟓) 

𝜃 =
2𝜋

𝑘
= 2𝜋

𝑓0

𝑓𝑠
                                (2.6) 

 

Where:  

SY
^

: the imaginary component of the input signal yk; 

 CY
^

: the real component of the input signal yk; 

θ: the fundamental frequency angle between samples [85]; 

k: samples number per cycle; 

 f0: the frequency of the system (50 or 60 Hz); 

 fs: the sampling frequency. 

The magnitude of Fourier filter is calculated by the equation: 

|𝒀| = √(𝒀
^

𝑺)
𝟐

+ (𝒀
^

𝒄)
𝟐

                               (𝟐. 𝟕) 

To analyze the performance of this filter, we test number of input signals, as in the 

following cases. 

case1: the input signal yi contains the fundamental frequency only. 

𝒚𝒊 = 𝟐𝟐 ∗ 𝒔𝒊𝒏( 𝟐𝝅𝒇𝒕)               (𝟐. 𝟖) 

Figure 2.2 displays the input signal and the output of the Fourier filter (DFT). 

 
Fig. 2. 2. Input signal and its resultant amplitude by means of Fourier filter 

   From the previous figure, the filter half cycle needs less time than full cycle to calculate the 

amplitude of the input signal, but the accuracy is identical for both of them, these calculations 

is done at the fundamental frequency 

Case 2: the input signal contains only odd harmonics as shown in table 2.1 

Table 2. 1 The Harmonics content of the input signal 

Harmonics Order “n” % of true RMS 

1’fundemental’ 22 
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3 11 

5 6 

7 9 

9 8 

11 7 

Figure 2.3 shows the input signal which contains odd harmonics and the amplitude of 

input signal (r.m.s value) after calculating it by half / full-cycle DFT. 

 
Fig. 2. 3. Input signal and its resultant amplitude by means of Fourier filters in case 2 

From the previous figure, it can be noticed that DFT eliminates all odd harmonics, so 

that the amplitude of that signal equals to the amplitude of the fundamental component, and the 

filter performance is not affected by the presence of odd harmonics. 

Case3: Sometimes the occurred slight shift of the fundamental frequency compared with 

the rated frequency (f=50 Hz). 

𝒚𝒊 = 𝟐𝟐 ∗ 𝒔𝒊𝒏( 𝟐𝝅𝒇𝒕)                   (𝟐. 𝟗) 

  f=49.5 Hz 

 

Fig. 2. 4. Input signal and its resultant amplitude by means of Fourier filters 

From figure 2.22, it can be noticed clearly that in the case of the shift of the fundamental 

frequency, slight changes will happen in the output of the DFT (full- cycle &half-cycle), and 

these changes are increased by the increasing of the frequency shift. 

Case 4: Saturation of current transformers 

Figure 2.5 shows current waves downloaded from disturbances recorder in Banias Thermal 

Power Plant; the recorded wave shows severe saturation of current transformer. 
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Fig. 2. 5. Saturated wave current and its amplitude by using DFT 

As  it was shown, the response of DFT full-cycle is better than DFT half-cycle, but the accuracy 

of DFT full-cycle is better than DFT half -cycle. 

Case 5: The input signal contains odd and even harmonics as shown in figure 2.6 All of 

nonlinear loads, power transformer (saturation case) and power electronics elements are 

considered as main sources of harmonics distortion. 

 
Fig. 2. 6. Harmonics analysis of input signal by using Micom S1 Agile 

 

 
Fig. 2. 7. Input signal and its resultant amplitude by means of Fourier filter 

The performance of DFT is unstable in these cases, so that the usage of anti-aliasing 

filter is important to attenuate the effect of harmonics as much as possible. 

2.4. DISCUSSION AND CONCLUSION 

➢ Full-cycle Fourier Filters have a good ability to remove DC Component and all 

harmonics of integer orders. 
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➢ Half-cycle DFT improves the speed of the relay at the expense of accuracy, while full-

cycle DFT improves the accuracy of the relay at the expense of speed.     

➢ It is clear that from the previous comparison between Fourier filters and Walsh filters 

for the same accuracy,  Fourier filters have higher speed than Walsh filters, thus Fourier 

filters are widely used than other filters in computer relaying applications and by 

manufacturers of protection units. 

➢ The choice option of any filters depends on the protection system structures and the 

economic considerations. 
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CHAPTER 3. SHORT CIRCUIT CALCULATIONS FOR 

THE STUDIED POWER SYSTEM 

3.1. INTRODUCTION 

For setting of the protective relays, we need to do short circuit calculations of the studied power 

system. 

In this chapter we will do short circuit calculations at a part of Syrian grid, which contains all 

levels of voltage; low, medium and high. This calculation will be done by using Power Factory 

Software (DigSILENT). 

3.2. ELECTRICAL POWER SYSTEM OF BANIAS REFINERY COMPANY AND 

SYRIAN ELECTRICAL GRID 

Fig. 3.1, displays the single line diagram of the studied power system, DigSILENT or power 

factory software is used to achieve that study. 

 
 

Fig. 3. 1. Single line diagram of Studied power system 

3.3. SHORT CIRCUIT CACULATIONS ACCORDING to IEC60909 

3.3.1. Cable line 66 kV is connected 

Initial status: 

- One 66 kV inlet cable is ON. 

- Coupler 66 kV is on, tow transformers 1BAT10 (35MVA) and 2BAT10 (35MVA) are ON. 

- Reactors are considered between substation and main station. 

- Four generators running parallel, main station couplers are ON. 

- Substation coupler is of. 



21 

 

3.3.1.1. Comparison Between the Maximum Short Circuit Current Values According to 

Its Location in The System 

Table 3.1 contains maximum short circuit values on all bus bars of the power system, where 

one inlet line 66 kV is connected. 
Table 3. 1 Maximum short circuit values comparison 

Name Ik" Sk" ip Ib Sb Ik Ith 

 kA MVA kA kA MVA kA kA 

1BAT  6kV 43.19198 448.86 115.4611 42.26578 439.2389 43.19198 45.0112 

2 BAT 6kV 39.91951 414.85 106.6397 39.00005 405.3004 39.91951 41.58045 

AEA-W11   14.13055 1615.33 33.09405 14.02141 1602.863 14.13055 14.29719 

AEA-W12   14.13055 1615.33 33.09405 14.02141 1602.863 14.13055 14.29719 

BBA-1 30.29613 330.58 81.3857 28.4528 310.4747 30.29613 31.69449 

BBA-2 29.28696 319.57 78.53089 27.44597 299.4882 29.28696 30.59211 

BFT10 7.520071 5.210 20.27686 7.520071 5.210058 7.520071 7.894306 

MS-A1 28.96103 316.02 75.96429 26.84474 292.9276 28.96103 29.86929 

MS-B2 20.93285 228.41 54.83407 16.70357 182.2681 20.93285 21.57774 

MS-C2 28.14387 307.10 73.87409 26.02764 284.0115 28.14387 29.03524 

3.3.1.2. Comparison Between the Minimum Short Circuit Current Values According to 

Its Location in The System 

Table 3.2 contains minimum short circuit values on all bus bars of the power system, where 

one inlet line 66 kV is connected. 
Table 3. 2 Minimum short circuit values comparison 

Name Ik" Sk" ip Ib Sb Ik Ith 

 kA MVA kA kA MVA kA kA 

1BAT  6kV 35.18 365.69 92.91 34.44 357.99 35.189 36.39 

2 BAT 6kV 32.56 338.42 85.90 31.82 330.77 32.561 33.67 

AEA-W11 66kV 8.218 939.50 19.58 8.134 929.84 8.218 8.32 

AEA-W12 66 kV 8.218 939.50 19.58 8.134 929.84 8.218 8.36 

BBA-1 26.15 285.43 69.59 24.63 268.68 26.15 27.17 

BBA-2 25.24 275.52 67.03 23.71 258.79 25.24 26.19 

BFT10 6.794 4.707 18.31 6.794 4.707 6.794 7.131 

MS-A1 25.15 274.51 65.32 23.38 255.15 25.15 25.85 

MS-B2 18.98 207.16 49.69 15.43 168.47 18.98 19.56 

MS-C2 24.41 266.39 63.44 22.63 247.02 24.41 25.09 

                                                                                          

3.4. RESULTS DISCUSSION 

Previous results of simulation are necessary to design the protection relaying system and the 

capacity of circuit breakers for each section of the studied power system. 

From simulation results, it be noticed for the first case (Tow 66 kV inlet lines is ON (PP  Hama 

and PP Banias   are connected)) that most values of short circuit currents are out of limit (40 

kA & 31.5 kA) with a Value equal to twice the maximum value accepted, so that this case is 

impossible in practical applications. 

For the third case (One 66 kV inlet Cable is ON), it be noticed that some values of short circuit 

currents are out of limit (40 kA & 31.5 kA) and others are into limits, so that it is very important 

to study accurately the power system protection to avoid the huge damage of the electrical 

components of electrical power system during different disturbances. 
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These values of minimum short-circuit currents will be used in the next chapter for designing 

and setting of protective relaying system. 

 

 

 

 

 

 

 OF VERIFICATION EVALUATION AND. 4CHAPTER 

SETTINGS RELAY PROTECTION 

FOR THE STUDIED POWER SYSTEM 
 

4.1.  INTRODUCTION 

Protection relays (AFA01, AFA02, AFA03, AFA04, Distance Relay_PPHama and Distance 

Relay_PPBanias)  are designed for the protection of the main parts of lines 66 kV and Bus Bars 

(AEA-W11 and AEA-W12) and primary side of power transformers (1BAT10 and 2BAT10), 

inlets and outlets for lines 6,3 kV are protected by the relays BBA02, BBA03, BBA04 and 

BBA05. figure 4.1 shows the protection relay system used for electrical power system of Banias 

Refinery– Syria. 

 
Fig. 4. 1. Distribution of relays for different elements of the studied power system 
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4.2. VERIFICATION THE PERFORMANCE OF RELAYING SYSTEM IN 

DIFFERENT FAULT CASES 

4.2.1.  Three-Phase Short Circuit on Cable Line 66 kV 

PPHama feeder and four generators are connected, the excitation systems of four generators are 

considered. The fault is executed at the cable line between PPHama and Bus-Bar AEA-W12, 

at the distance 3.23 Km from the Distance Relay_AFA03 location as shown in figure 4.2. 

 

 
Fig. 4. 2. Three-phase fault at the distance 3.32 Km from Distance Relay_PPHama 

The siemens SIPORTEC device model 7SA6125 (numerical distance relay) is used to 

simulate the Distance Relay_PPHama and Distance Relay_AFA03.  

it is noticed from figure 4.3, that the arrow is located in the fourth impedance zone, the 

parameters of the fault are: fault impedance z1=0.271pri.ohm and time delay time =0.94s, this 

response is compatible with Distance_PPHama relay settings. 
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Fig. 4. 3. Characteristic of R-X plot of Distance_PPHama Relay 

 

it is noticed from figure 4.4, that the fault is located in the second impedance zone, the 

parameters of the fault are: fault impedance z1=0.174pri.ohm and time delay time =0.44s, this 

response is compatible with Distance_AFA03 Relay settings 

 
Fig. 4. 4. Characteristic of R-X plot of Distance_AFA03 Relay 

Figure 4.5, shows that over current relay AFA03 will operate at current I=1223 A and time 

delay t=3.289 S. 
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Fig. 4. 5. Time overcurrent Relay_ AFA03 plot 

Figure 4.6, shows that over current relay AFA02 will operate at current I=584 A and time 

delay t=7.265 S. 

 
Fig. 4. 6. Time overcurrent Relay_ AFA02 plot 

Figure 4.7, shows that over current relay BBA03 will operate at current I=6422 A and time 

delay t=5.880 S. 
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Fig. 4. 7. Time overcurrent Relay_ BBA03 plot 

Figure 4.8, shows that over current relay BBA02 will operate at current I=6422 A and time 

delay t=2.930 S. 

 
Fig. 4. 8. Time overcurrent Relay_ BBA02 plot 

In this case, we can see that the distance_AFA03 Relay Siemens 7SA6125 will operate and 

isolate the fault because it has the smallest delay time.  
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4.3. CONCLUSION 

- protection settings have been calculated and tested by performing faults in all parts of the 

electrical power system. 

- After careful knowledge of the performance of the protection relaying system and its behavior 

under the effect of various faults, we can make a careful study of the impact of poor power 

quality on the protection system by comparing the results in both cases. 
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CHAPTER 5. THE EFFECT OF POOR POWER 

QUALITY ON DIGITAL RELAYS 

5.1.  INTRODUCTION 

 

the effect of harmonics and current transformer saturation on distance relays and overcurrent 

relay have been investigated in this chapter. this study will be done by using a computer 

simulation program DigSILENT power factory 15.1 (PF). 

the effect of current transformer saturation on differential relays will be done by using electrical 

power system has three ends. This study will be done by using EMTP-ATP software.  

A practical solution had suggested and tested by using EMTP-ATP, the practical solution is 

done by adding a metal oxide varistor element to the secondary side of the current transformer. 

5. 2. THE EFFECT OF HARMONICS ON DIGITAL RELAYS PERFORMANCE 

To study the effect of harmonics on distance relays of cable line(L2) in figure 5. 1, we will do 

modeling of harmonic sources. 

In DigSILENT, harmonic sources can be either current or voltage sources [95]. To generate 

harmonics, we will use the following sources for this purpose [95]: 

-General loads like SUB 7, SUB 3 and SUB 5 will be modeled as harmonic current sources. 

-Voltage sources. 

-External grid like PPHama or PPBanias will be modeled as harmonic voltage sources, in this 

case the spectral of harmonic injections for the voltage sources are directly entered on the page 

of the element itself via harmonic/power quality/ harmonics voltage table.  
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Fig. 5.  1. Single line diagram of the electrical power system  

After executing harmonic load flow for all frequencies, we see that distance 

Realy_PPHama will act in the first zone and send a trip signal to the circuit breaker to isolate 

the fault as shown in figure 5.2, in fact we do not have any fault but the flow of harmonics in 

the electrical power system causes  this wrong behavior of distance relay.  

 
Fig. 5.  2. Characteristic of R-X plot of Distance_PPHama 

From figure 5.3, it is noticed that the distance relay_ AFA03 of cable line acts as if the fault is 

located in zone 1 and send alarm signal to the circuit breaker, by other words, the figure 5.3 

shows that the relay may report a wrong fault location in the presence of the harmonic 

distortion. It can be noticed that the distance relay acts incorrectly. The presence of harmonics 

leads to incorrect current / voltage measurements and therefore errors in calculating the 

fundamental quantities. 
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Fig. 5.  3. Characteristic of R-X plot of Distance_AFA03 Relay 

5.2.1. The Effect of Harmonic and Saturation of Power Transformer on The Response of 

Overcurrent Relays 

In general, the nonlinearities of the power transformer core are considered as a major source of 

harmonics. For example, this nonlinearity may cause to increase the magnitude of inrush current 

from 10 to 15 times the rated current, thus results in high level of harmonics which damages 

the insulation [149], [150]. 

We will do power flow calculation in DigSILENT and analyze the response of digital relays.  

-figure 5.4 and figure 5.5, display the magnetization curves of power   transformer 1BAT10 and 

2BAT10 after modification of current values versus voltage values, to verify the effect of core 

transformer saturation on the response of digital relays. 

From the two next figures, I can see that we use the same magnetization curve for the both 

transformers 1BAT10 and 2BAT10. 

In general, when the saturation of core transformer happens, the transformer will consume a 

high current to maintain the level of voltage into acceptable limits. 

In the saturation region of magnetization curve, it is seen that a small increase of excitation 

voltage will cause a high increase of current values. 
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Fig. 5.  4. Magnetization curve of 1BAT 10 

 

 
Fig. 5.  5. Magnetization curve of 2BAT 10 

From the simulation results shown in the figure 5.6 and figure 5.7, the time and current tripping 

values have changed as follows: 

- AFA03: I=867A & t= 7.665S. 

-AFA02: I=429.83 A & t= 22.813 S. 
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Fig. 5.  6. Time overcurrent plot _ AFA02 

 
Fig. 5.  7. Time overcurrent plot _ AFA03 

-From figures 5.8, 5.9, 5.10 and 5.11, it can be seen that by increasing the value of knee point 

voltage of magnetization curve of power transformers we will avoid the wrong response of 

overcurrent relays which are located at the high voltage side of this transformers. 

The wrong response of overcurrent relay happens because of saturation of power transformer 

and harmonics sources in power system. 
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Fig. 5.  8. Magnetization curve of 1BAT 10 

 
Fig. 5.  8. Magnetization curve of 2BAT 10 
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Fig. 5.  9. Time overcurrent plot _ AFA02 

 
Fig. 5.  10. Time overcurrent plot _ AFA03 

5.3. IMPROVEMENT OF DIFFERENTIAL PROTECTION PERFORMANCE BY 

EXTERNAL FAULTS ASSOCIATED WITH A CURRENT TRANSFORMER 

SATURATION 

5.3.1. INTRODUCTION 
The addition of a non-linear (MOV) component improves the stability of differential 

protection when the fault occurs outside the protection zone associated with saturation in a 
current transformer. 
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This component (MOV) has a non-linear characteristic between voltage and current, At a 
voltage equal to or greater than the threshold voltage, a large current  passes through the MOV 
element, which improves the stability of the current transformer  and return its  work point from 
the nonlinear region to the linear area on the magnetization curve with a nano-time delay [155], 
[156], Thus avoiding saturation of the current transformer. This solution was verified through 
a computer simulation by using EMTP-ATP. 

The proposed solution is simple and can be used in differential protection systems of 
different generations. 

5.3.2. TEST OF RELAY DIFFERENTIAL PROTECTION PERFORMANCE UNDER THE 

EFFECT OF SATURATION BY USING EMTP-ATP PROGRAM 
Fig. 5.12,   shows a power system which is modeled by using the EMTP-ATP program 

consisting of a Bus Bar of three ends which is protected by using differential protection. 

 
Fig. 5.  11. The power system which is tested in the EMTP-ATP program 

5.3.2.1. One-phase-to-ground short circuit (1l-g) inside the protected zone and the 

presence of MOV element 
Fig. 5.13, shows the representation of the power system in the EMTP-ATP program, while 

Fig. 5.14, Fig. 5.15 and Fig. 5.16, shows the phase currents in the relay. 
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Fig. 5.  12. Representation of the power system in the case of internal fault by using EMTP-ATP 

 
Fig. 5.  13. The differential current, passing in the phase (A) 
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Fig. 5.  14. The differential current, passing in the phase (B) 

 
Fig. 5.  15. The differential current, passing in the phase (C) 

We notice from the previous three figures, that the differential current of phase A of the relay 
is greater than the rated operating threshold value of the differential protection, which leads to 
the work of protection and direct tripping of the fault, i.e., differential protection works correctly 
here. 

5.3.2.2.  A Fault Condition Outside the Protection Zone Without Using the MOV Element 
Fig. 5.17,   shows the representation of the power system without using of the MOV element 

in the EMTP-ATP program, while Fig. 5.18, Fig. 5.19, and Fig. 5.20,   show the phase currents 
in the relay. 
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Fig. 5.  16. Representation of the power system in the case of an external fault  

 
Fig. 5.  17. The differential current, passing in the phase (A) 
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Fig. 5.  18. The differential current, passing in the phase (B) 

 
Fig. 5.  19. The differential current, passing in the phase (C) 

We notice from the previous figures, that in the condition of a fault at the  phase A  of value 
18 kA and outside of the protection zone, leads to saturation of the  current transformers on this 
phase and thus passing a current of value 8.5A in the differential protection relay of the phase 
A  which is greater than the operational value of the differential relay, Which leads to the work 
of this protection wrongly. 

5.3.2.3.  A Fault Condition Outside the Protection Zone with The Use of The MOV 

Element 
Fig. 5.21, shows the representation of the power system using the MOV element in the 

EMTP-ATP program, while Fig. 5.22, Fig. 5.23, and Fig. 5.24,   show the phase currents in the 
relay. 
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Fig. 5.  20. Representation of the power system in the case of an external fault 

 
Fig. 5.  21. The differential current, passing in the phase (A) 
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Fig. 5.  22. The differential current, passing in the phase (B) 

 
Fig. 5.  23. The differential current, passing in the phase (C) 

Fig. 5.22, shows that by using the MOV element, the correction of the performance of current 
transformers on the affected phase is done, thus avoiding the effect of saturation and thus 
keeping the protection device stable. 

5.4. Conclusion 
- The existence harmonics in the grid must be analyzed accurately to find the best 

solutions that avoid these effects on the performance of distance relays and over current 
relays. 

- The magnetization curve of the power transformer must be selected well to take into 
account technical and economic considerations. 

 

- Differential protection performance can be improved, when a fault occurs outside the 
protection zone associated with saturation in the current transformer, by using the non-linear 
element (MOV).  
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- This practical solution was tested and validated using EMTP-ATP. 

    -The suggested solution is simple and can be adopted for all generations of differential relays 

and also for the future generations of relays. 
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CHAPTER 6. ADVANCED ALGORITHM FOR 

DETECTING AND CORRECTING SECONDARY 

CURRENTS OF THE CURRENT RANSFORMER 

6.1. INTRODUCTION 
Protection systems require reproduction of the primary current on the secondary side of the 

current transformer exactly according to the ratio of the transformer. 

We found that the saturation of the current transformer leads to the wrong operation of the 

differential protection in case of faults outside the protection zone. In addition, the saturation 

of the current transformer leads to the failure of overcurrent relays. Saturation also leads to 

errors in the impedance calculation of the distance protection relays [161]. 

The saturation of current transformers may disturb the work of protection systems if an 

appropriate detection and correction algorithm does not apply. This requires the development 

of detection and correction algorithms that can be programmed into modern digital protection 

devices to avoid the effect of saturation. 

6.2. METHOD DESCRIPTION 

The algorithm is carried out according to the following steps: 

- determination saturation’s start points, as shown in figure 6.1. 

- determination saturation’s end points, figure 6.1. 

- calculation the estimated values of samples in the saturated section based on the 

unsaturated section of the secondary current waveform. 

- Calculation of the fundamental and dc components based on the unsaturated section 

of the secondary current waveform. 

- primary current reconstruction. 

 
 

Fig. 6. 1. Real measured values and estimated values s of CT’ secondary currents 
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6.3. FORMATION A MATHEMATICAL MODEL of THE SINUSOIDAL WAVE 

ACCORDING to NEWTON’S BACKWARD DIFFERENCE INTERPOLATION  

The value of the first derivative of two consecutive samples can be considered approximately 

of equal value [164]: 
∇ 𝑖(𝑛)

𝑇𝑆
≈

∇ 𝑖(𝑛 − 1)

𝑇𝑆
                 (6.1) 

 
[𝑖(𝑛) − 𝑖(𝑛 − 1)]

𝑇𝑠
≈

[𝑖(𝑛 − 1) − 𝑖(𝑛 − 2)]

𝑇𝑠
 

TS: sampling period. 
𝑖(𝑛) ≈ 2 ∗ 𝑖(𝑛 − 1) − 𝑖(𝑛 − 2)           (6.2)

 
    

This is the estimated value of the secondary current sample based on two consecutive 

previous samples (the first derivative method). 

- The second derivative method (second difference function):  

The value of the second derivative of two consecutive samples can be considered approximately 

of equal value [164]: 

∇2𝑖(𝑛)

𝑇𝑆
=

∇2𝑖(𝑛 − 1)

𝑇𝑆
                                                  (6.3) 

 

𝑖(𝑛) = 3 ∗ 𝑖(𝑛 − 1) − 3 ∗ 𝑖(𝑛 − 2) + 𝑖(𝑛 − 3)               (6.4) 

- The third derivative method (third difference function): 

The value of the third derivative of two consecutive samples can be considered approximately 

of equal value [164]: 

∇3 𝑖(𝑛)

𝑇𝑆
=

∇3 𝑖(𝑛 − 1)

𝑇𝑆
            (6.5) 

𝑖(𝑛) ≈ 4 ∗ 𝑖(𝑛 − 1) − 6 ∗ 𝑖(𝑛 − 2) + 4 ∗ 𝑖(𝑛 − 3) − 𝑖(𝑛 − 4)                     (6.6) 

- the fourth derivative method (fourth difference function):  

The value of the fourth derivative of two consecutive samples can be considered approximately 

of equal value [164]: 

∇4 𝑖(𝑛)

𝑇𝑆
=

∇4 𝑖(𝑛 − 1)

𝑇𝑆
                (6.7) 

𝑖(𝑛) = 5 ∗ 𝑖(𝑛 − 1) − 10 ∗ 𝑖(𝑛 − 2) + 10 ∗ 𝑖(𝑛 − 3) − 5 ∗ 𝑖(𝑛 − 4) + 𝑖(𝑛 − 5)            (6.8)
 

- The fifth derivative method: 

The value of the fourth derivative of two consecutive samples can be considered approximately 

of equal value [164]: 

∇5 𝑖(𝑛)

𝑇𝑆
=

∇5 𝑖(𝑛 − 1)

𝑇𝑆
                (6.9) 

𝑖(𝑛) = 6 ∗ 𝑖(𝑛 − 1) − 15 ∗ 𝑖(𝑛 − 2) + 20 ∗ 𝑖(𝑛 − 3) − 15 ∗ 𝑖(𝑛 − 4) + 6 ∗ 𝑖(𝑛 − 5) −
𝑖(𝑛 − 6)                                                                                                                            (6.10) 

6.4. ERROR OF THE ESTIMATION METHOD 

the estimation error of the used method is calculated by the following formula [172]: 

𝑒𝑟𝑟𝑜 =
|estimated magnitude − actual magnitude|

actual magnitude
 × 100             (6.11) 
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let us suppose that the sampling period is equal to 1ms (20 samples per cycle), and the primary 

current is given by the equation: 

(6.12)                  𝑖1 = 𝑒−25∗𝑡 + 𝑐𝑜𝑠( 𝜔𝑡) 

Figure 7.2 shows the primary current and the estimated current by using the first derivative and 

the error resulting from the estimation method.  

 
Fig. 6. 2. Estimation by using 1st derivative 

  Figure 6.3 shows the primary current and the estimated current by using the second derivative 

and the error resulting from the estimation method. 

 
Fig. 6. 3.  Estimation by using 2st derivative 

Figure 6.4 shows the primary current and the estimated current by using the third derivative and 

the error resulting from the estimation method. 

 



46 

 

 
 

Fig. 6. 4. Estimation by using 3st derivative 

Figure 6.5 shows the primary current and the estimated current by using the fourth derivative 

and the error resulting from the estimation method. 

 
Fig. 6. 5. Estimation by using 4st derivative 

The estimated current using the fifth derivative is as shown in figure 6.6. 
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Fig. 6. 6. Estimation by using 5st derivative 

By comparing the accuracy of the previous estimation methods, the higher the order of 

estimation, the greater the precision. 

6.5. DETECTION OF CT SATURATION START 

The saturation is detected when the absolute value of the the estimated value of the secondary 

current sample based on the first or second or three or fourth derivative method are larger than 

the threshold value [173], [174], [172], [175], [176], [163].  

 

The Feature of ∇4 𝑖(𝑛) 

The criteria for detecting CT saturation is given by the following equation 

|∇4 𝑖(𝑛)| > 𝑇ℎ                               (6.13) 

The proposed threshold for first derivative is given by the following equation 

𝑇ℎ = 𝑘√2𝐼𝑓𝑚𝑎𝑥 [2 sin (
𝜋

𝑁
)]

4

        (6.14) 

6.6. DETERMINATION of CT SATURATION END 

supposing that the saturation’s start happened midway between the samples (n-1) and (n) 

according to figure 6.1, If equation (6.15) is satisfied, the first sample of the new unsaturated 

part is n + k + 1 [171]: 

𝑠𝑖𝑔𝑛 [
𝑖2(𝑛 − 1)

8
+

𝑖2𝑒(𝑛)

8
+

3 ∗ 𝑖2(𝑛)

4
+ 𝑖2(𝑛 + 1)+. . . . . +𝑖2(𝑛 + 𝑘)]

≠ 𝑠𝑖𝑔𝑛 [
𝑖2(𝑛 − 1)

8
+

𝑖2𝑒(𝑛)

8
+

3 ∗ 𝑖2(𝑛)

4
+ 𝑖2(𝑛 + 1)+. . . . . +𝑖2(𝑛 + 𝑘)

+ 𝑖2(𝑛 + 𝑘 + 1)]                       (6.15) 

6.7. RECONSTRUCTION OF THE CORRECTED CURRENT (PRIMARY CURRENT) 

The general formula of the corrected current is given by the following equation [177], [152], 

[178]: 

𝑖𝐶(𝑛 + ℎ) = (𝐼0 ∗ 𝑒−2∗𝜏) ∗ 𝑒−(ℎ+2)∗𝜏 − 𝐼1 ∗ 𝑐𝑜𝑠[𝛾 + (ℎ + 2) ∗ 𝜀]        (6.16) 

This current is calculated for the changing value h between zero (for the first sample of the 

saturated part) and k (the last sample of the saturated part). 
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Where: 

𝐼0: amplitude of DC component 
τ: DC time constant 
𝐼1: amplitude of fundamental frequency 

The amplitude of the fundemental frequency compononet is given by formula 

 

𝐼1 = √(
𝑖𝑝(𝑛 − 2) − 𝑖𝑝(𝑛 − 3)

2 ∗ 𝑠𝑖𝑛 (
𝜀
2)

)

2

+ (
𝑖𝑝(𝑛 − 2) + 𝑖𝑝(𝑛 − 3)

2 ∗ 𝑐𝑜𝑠 (
𝜀
2)

)

2

      (6.17) 

6.8.  VERIFICATION OF THE PROPOSED ALGORITHM 

By applying the proposed algorithm on a fault wave downloaded from EMTP-ATP program, 

we obtained the corrected current in figure 6.7 which represents the output of Matlab 

program. 

 
Fig. 6. 7. Corrected Current by using the proposed algorithm 

6.9. EFFECTIVENESS OF THE PROPOSED ALGORITHM 

Figures 6.9 and 6.10 show the effectiveness of the algorithm developed in correcting the 

distortion of a secondary current during the saturation period. From MATLAB’s output, we 

have obtained excellent results by applying the proposed algorithm which we have created and 

written m-file using MATLAB. The algorithm is successful and effective in correcting the 

secondary wave distortion of the current transformer due to its magnetic saturation. 

This method depends on the fixed value of the fourth derivative and gives good accuracy by 

using five samples of the unsaturated part. after testing of this method in correcting many 

recorded fault waves, we have discovered that This method has a good performance of different 

protection type. 
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CHAPTER 7. CONCLUCTIONS 

7. 1. ORIGINAL CONTRIBUTIONS  

Poor power quality can affect the performance of digital relays in stable and transient 

conditions. This can cause damage to some elements of the power system and sometimes lead 

to general blackout. 

Measurement algorithms can be considered as a critical element in the performance of digital 

protection relays. Their main task is to estimate the fundamental frequency component of the 

input signals (current and voltage). 

The speed and accuracy of the measurement algorithms have an important role in achieving the 

protection relays their functions. 

The digital Fourier filter is considered as the most widely used among measurement algorithms 

in the field of protection applications.  

In faults conditions, its performance changes according to the presence of unwanted signals in 

the input signal. These unwanted signals mix with the fundamental frequency component to 

give distorted input signals. 

This research work analysis the impact of power quality problems on digital relays' performance 

in networks of different voltage levels; low, medium and high. 

A well-known phenomenon that has dominated the efforts of many previous, current and future 

research, namely the saturation of current transformers and their impact on the performance of 

protection relays. 

In this research, the effect of secondary waveforms saturation of the current transformer was 

studied on different types of relays. For this reason, an algorithm was developed to detect and 

correct the secondary current of the current transformer and thus correct the performance of the 

relays that receive the input signals from these current transformers. 

the main contributions for the thesis are summarized below. 

Chapter 1 presents a simple and clear presentation of power quality concept, as well as that it 

lists the various disturbances that occur in electrical networks and what are the causes of their 

occurrence and what their effects on the elements of the power system. 

The theoretical side of the power quality concept was linked to the practical side by executing 

a set of measurements at Baragan Photovoltaic farm by using Fluke Test Set, these 

measurements were compared with the international standards for deciding Whether these 

values within the acceptable limits or no. 

These measurements, which may last up to a few weeks or more, show the importance of the 

display, monitoring and recording systems of the power system, especially in detection of many 

electrical disturbances, in addition to find appropriate solutions to these problems. 

Chapter 2 provides a detailed study of both hardware and software of digital relays. The 

following is a summary of the important study provided by this chapter, which can be used in 

future research: 

1- Reconstruction of the original signal correctly depends on the sampling rate, so that the 

selection of sampling rate fs is very important for the correct decision of digital relays. 

the effect of sampling rate (fs) on the reconstructed signal is tested by using MATLAB. 

simulation results show that whenever the sampling rate is higher, the accuracy will be 

better, but not very high to avoid the high burden for the digital processing.  

2- Many of the components of the relay should be carefully studied during the design 

stages, the components that have been highlighted in this chapter are anti-aliasing filter, 

sample-hold circuit, multiplexer and analog-to-digital converter. 
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3- The performance of many digital filters has investigated in this chapter, this verification 

was based on a new methodology which is the use of various input signals representing 

the various disturbances types from multiple sources. Some of these signals were taken 

from the output of the modeling programs as EMTP-ATP program and others were 

downloaded from fault recorders of the power plant of Banias Refinery. The Fourier 

filter full-cycle had proved a good efficient in dealing with different cases compared 

with the other filters but it was found that there is a need for additional algorithms to 

improve the total performance of the digital relay. 

Chapter 3 represents a part of the Syrian network. This system consists from a set of electrical 

loads of various voltages for a Romanian oil refinery in the Syrian Banias city and these loads 

are feed through four generators operating in parallel and connected through three Bus Bars 

systems and tow feeders coming from the Syrian grid. 

This chapter presents power flow and short circuit calculations for all components of this 

network for different operation scenarios. This study offers a new vision of the importance of 

the operational maneuvers and their impact on minimum and maximum values of short circuit 

currents and thus safety of equipment and personnel. 

Chapter 4 shows the need to test the protection relays in normal fault cases to verify their 

reliability and readiness to work correctly in the abnormal fault cases. 

abnormal fault cases include cases in which the current and voltage wave contain high ratios of 

harmonics and severe distortions. 

Chapter 5 presents a set of practical and theoretical results that cannot be overridden and can 

be used to design any power system and its protection system, these results can be summarized 

as follows: 

- all sources of current and voltage harmonics must be taken in account during designing 

and investment any power system. 

- The magnetization curve of the iron core of the power transformer must be carefully 

selected, so that the presence of harmonics in the network does not effect on its behavior 

seriously and consequently reflects this effect on the protective relays which may send 

signal trip to CB to isolate this transformer  from the grid, although there is no real fault. 

The disconnecting of this power transformer may be having serious reflections on the 

overall power system. 

This research has presented a clear methodology for selecting the magnetizing curve of 

power transformer accurately that takes into account the designing and economic 

considerations. 

- this chapter has proposed a practical solution to avoid the act of differential protection 

outside the protected zone under the effect of current transformer saturation. 

           This practical proposal leads to many future researches that study the possibility of        

expanding the use of nonlinear elements in the field of protection applications. 

- The research has proposed an advanced algorithm for detecting and correcting the 

distortion of secondary currents of the current transformers due to the magnetic 

saturation of the current transformer. This algorithm characterizes by better accuracy 

compared to many of the algorithms used for the same purpose. 

The performance of this algorithm was verified by applying real current waves 

downloaded from fault recorders and waves taken from the EMTP-ATP program. 
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7.2. FUTURE WORKS 

✓ the effect of poor power quality on digital relays which not investigated in this thesis 

such as flicker and Interruption will be done in the future works. 

✓ To benefit from the research results, especially the use of the non-linear component 

MOV to improve the performance of the differential protection relays in the electrical 

system, I will try to use these results in the future researches to develop the usage of this 

element in other relays types. 

✓ I want to find the various possibilities to limit the effect of the propagation of 

disturbances through the system and from one voltage level to another on the 

performance of protection relays. 

✓ One of the future Work will be on developing the algorithm proposed in this thesis to 

become a more integrated and multi-functional algorithm, for example, with an 

additional algorithm to block harmonics that may affect the performance of the digital 

relay. 
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