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Introduction 

This PhD Thesis was a challenge both from a mathematical point of view and from the 

perspective of applied engineering. 

From a mathematical point of view, the Thesis is a study of equilibrium stability in the sense 

of Lyapunov for some systems described by nonlinear differential equations with delayed 

argument having a switching structure based on uncontrolled switching rules. Thus, the 

approached problem becomes a complex one, with a certain character of uniqueness in the 

literature. For some of these systems, the case of critical equilibrium stability is analysed using 

the Lyapunov-Malkin paradigm. Two mathematical models are proposed, both based on the 

use of some Lyapunov-Krasovskii functionals. In one model, the problems raised by the 

nonlinearity of the system: the switching character, the introduction of a state delay, and the 

consideration of a critical case in which one or more eigenvalues of the system are null, are 

studied simultaneously. In the second mathematical model, the case of a nonlinear, switched 

system, with delay on control, is studied. A solution based on the predictive control method is 

given. 

In the literature, there are quite a few papers on the analysis of delayed linear systems using 

Lyapunov-Krasovskii functionals. Delayed nonlinear systems have long time been avoided or 

treated with less interest in engineering studies, maybe due to the high degree of difficulty of 

such a framework. However, recently, the attention of specialists in the field is beginning to 

turn to this type of systems. Concerning switched systems, there is also a growing interest here 

lately, especially due to the frequent applications in the field of technology and 

communications. 

The novelty appears also when the two themes, of the nonlinear systems with delay and of 

the systems with switching, are looked at simultaneously. This direction is the subject of this 

PhD Thesis, the topic being widely developed in the following chapters. 

From an engineering point of view, it is proposed an application to hydraulic 

servomechanisms, especially in the case of the electrohydraulic servomechanism, characterized 

by structural switching with an internal and uncontrolled switching rule.  

The Thesis is structured in four chapters being accompanied by Introduction, List of 

Publications, and Original results preceding the first Chapter, and by Conclusions and 

References after the last Chapter.  

Therefore, in summary, in Chapter 1, an overview of the delay differential equations is given. 

Necessary definitions are stated and the classical definitions of stability in the Lyapunov sense 

are also given. At the same time, the notion of switched system and the ways they are handled 

are introduced. What is interesting about switched systems is that even if the constituent 
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subsystems are stable, the system as a whole may be not guaranteed stable. Moreover, the 

switching rule can stabilize unstable subsystems, or it can destabilize stable subsystems. In the 

case of the Thesis, the difficulty of the analysis also derives from the fact that the switching law 

is a structural, uncontrolled one. 

In Chapter 2, the problem of state delay simultaneously with the issue of the critical case of 

equilibrium stability is addressed. This leads to the application of a Malkin-type mathematical 

apparatus, combined with the use of complete Lyapunov-Krasovskii functionals. Following 

some transformations of variables, the initial system consisting of five nonlinear differential 

equations is rewritten in the form specific to the Lyapunov-Malkin approach which consists of 

some fourth order system and an equation that contains only nonlinear terms. Thus, the stability 

of the nonlinear system with one eigenvalue equal to zero is settled based on some  stability 

conditions on the linear part of the fourth order system brought to the Lyapunov-Malkin form. 

A theorem for the critical case of equilibrium stability for the uncontrolled switched nonlinear 

system with state delay is proved. 

Another type of nonlinear systems with delay and structural switching is studied in 

Chapter 3. This time, the delay is considered on the control variable and the critical case of 

equilibrium stability is eluded by taking into account a mathematical model more appropriate 

of the real world object. A predictive feedback control method is proposed. In this framework, 

a theorem for equilibrium stability for a dynamical nonlinear system with delay on control and 

uncontrolled, structural switching is given.  

Chapter 4 is dedicated to the applications of the theory developed in Chapter 2 and 3 to 

hydraulic servomechanisms, specifically to those used in aviation. In Section 4.1, the general 

description of the hydraulic servomechanism is given. Moreover, some mathematical models 

with switching and delay are proposed. Section 4.2 applies the theory from Chapter 2, and 

Section 4.3 is the application of the theory from Chapter 3. The conservative character given 

by the use of the Lyapunov-Krasovksii functionals is highlighted by numerical applications. In 

fact, it is identified, both analytically and numerically, the maximum value of the delay for 

which the system remains stable, this being relevant on the related graphs. Section 4.3 is 

dedicated to a study in the discrete field within the method of predictive control and the mode 

in which a control law is synthesized when the system has delay on control. 

All the results obtained during the scientific research within this PhD Thesis have been 

published in indexed journals as Web of Science or international databases and presented at 

national and international scientific conferences and seminars. 
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1. Theoretical background. Delay differential equations 

and switched systems 

The topic of delayed differential equations (DDE) appeared as a natural need to describe as 

accurately as possible phenomena that occur in everyday life and whose current action is 

influenced by the history of their evolution. For some phenomena, processes or physical 

systems, a mathematical model is more appropriate to reality as it considers the influence from 

a recent time interval. As expected, this leads to a significant increase in the complexity of the 

issue addressed. 

A notable difference between a system with and without time delay is that a delay introduced 

in a differential equation produces an infinite dimensional system. The characteristic equation 

of a DDE is a transcendental equation and not an algebraic equation, as in the case of linear 

differential equations without delay. 

Consider the following nonlinear differential system with constant delay 

       0, , , const 0x t f x t x t h t t h      (1) 

with : ,nf D D  ,nD   a locally Lipschitz and continuous vector-valued function. 

Also, consider an initial time 0 0t   and an initial function   ,0 , nC h   defined on the 

normed space of continuous vector functions with the standard uniform norm  

 0sup hh       (Kharitonov, 2013). The DDE system considered in the present Thesis 

is nonlinear, deterministic, autonomous, with single constant delay.  

The state 0 0( , )( ) : ( ; , ), [ ,0]tx t x t t h        at a time instant 0t t  along a solution 

0( ; , )x t t  is defined as the restriction of this solution on [ , ].t h t  Usually, the arguments 0t  and 

  can be omitted given us the possibility to write  x t  instead of  0; ,x t t   and tx  instead of 

 0 ,tx t  . With these notations, system (1) is a particular case of the general form  

    ,tx t f x   ,0 , n
tx C h   (2) 

with f  a functional defined on  [ ,0], .nC h  

The initial value problem (the Cauchy problem) consists in finding a solution 0( ; , ),x t t   of 

the system (1) that satisfies the initial condition  

       0 0; , : , ,0 .x t x t h          (3) 

A common method to solve the Cauchy Problem for DDE is the method of steps or the method 

of successive integrations (Kolmanovskii & Myshkis, 1999), (Kálmar-Nagy, 2009). 
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Theorem 1. (existence and uniqueness) ( (Kharitonov, 2013) §1.2. Th. 1.1).  Consider the time-

delay system (2) with the functional   : ,0 , n nf C h   satisfying the following 

conditions:  

a) for any 0   there exists ( ) 0M    such that ( ) ( ),f M      ,0 , nC h   and 

h
    

b) f  is continuous on the set   ,0 , nC h  

c) f satisfy the Lipschitz condition, i.e. for any 0   there exists a Lipschitz constant 

( ) 0L    such that 1 2 1 2( ) ( ) ( ) ,
h

f f L           1 , 0 , ,n
k C h    and 

,k h
   1,2.k   

Then, for a given 0 0t   and an initial condition   ,0 , ,nC h  there exists 0   such 

that the system admits a unique solution ( )x t  of the initial value problem (3), with the solution 

defined on the interval 0 0[ , ].t h t    

Definition 2. The zero equilibrium (or zero solution) of the equation (2) is said to be stable if 

for any  0   there exists   0    such that for every initial condition   , 0 , nC h R 

with   ,
h

    the inequality  0; ,x t t     take place for every 0.t    

A stronger stability is introduced further. 

Definition 3. The zero solution of equation (2) is said to be asymptotically stable if it is stable 

and there exists 0 0   such that if 
0 0 ,tx    for every 0   there exist 

0 0( , , ) 0tT x t    such 

that  
00; , tx t t x    if 0 .t t T   If T does not depend of 

0
,tx  the stability is called equal 

asymptotic stability, if it is dependent only on ,  then it is called uniform asymptotic stability. 

Definition 4. The zero solution of system (2) is said to be exponentially stable if there exist 

0 0, 0,     and 1   such that for every 0 0t   and any initial function   , 0 , ,nC h R 

with 0 ,
h

    the following inequality holds    0

0, , ,
t t

h
x t t e

 
     0.t t  

The exponential stability is even stronger than the asymptotic one, given the fastest decrease 

to zero of the perturbed solution, the exponential decrease. 

These types of stability refer to local stability, they describe the behaviour of solutions that 

start in a limited neighbourhood of the equilibrium point. 
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Switched systems are part of the extensive class of hybrid dynamical systems. Such systems 

are characterized by the interaction between continuous and discrete systems (Liberzon, 2003), 

(Savkin & Evans, 2002). The field of hybrid systems is relatively new and with applicability in 

many real-world problems, so it is of increasing interest to the scientific world.  

A switched system is an ensemble composed of m  subsystems and a piecewise constant 

function ( ),t  called switching rule (or switching signal)  

 

( ) 0 0( ( ), ( )), ( )

: 1,..., .

tx f x t u t x t x

m





 

 
  

The signal   specifies the subsystem ( )t (also called mode in Thesis) operating at each time .t  

The signal is a discontinuous function at certain instants t  in ,  called switching times, and 

is constant on every time interval between two consecutive switching times. Only a finite 

number of switchings occurs on any finite time interval. ( )t  is a continuous function from the 

right everywhere: lim ( ) ( )
t

t t
    for each 0   (Liberzon, 2003), (Sun & Ge, 2005a). By 

( )x t  is noted the system state and by ( )u t  the control input. 

It is noteworthy that if the component subsystems are stable, this does not guarantee the 

stability of the entire switched system (Liberzon, 2003), (Benítez & Pérez, 2011). Based on the 

choice of control law, it can stabilize a switched system that has unstable subsystems (Wang, 

et al., 2019), (Yang, et al., 2014), (Dimirovski, et al., 2018), (Niculescu, 2001), or it can 

destabilize a switched system with stable subsystems (Cao, et al., 2019), (Wang, et al., 2016b), 

(Zhao, et al., 2017). Another specific property of this type of systems is that at a given time 

only one subsystem is active. 

In this Thesis, the case of a hydraulic servomechanism is studied. This, by its nature, has 

structural switching, in other words the law of switching is not established a priori, the 

switching is based on changing the sign of a state which is practically impossible to be 

controlled. So we will talk about switched system with state-dependent and uncontrolled 

switching rule.  



 

 

 

2. Critical case of equilibrium stability of a nonlinear 

dynamical system with structural switching and state delay 

In this Chapter, a nonlinear system with state delay and switching is studied. The system 

presents a critical case for linear stability which makes it difficult to establish whether or not 

the system is stable according to Lyapunov's theory of stability by the first approximation. Thus, 

the problem will be developed in the framework of Malkin’s approach (Malkin, 1966). 

Complete Lyapunov-Krasovskii functionals (Kharitonov, 2013) will be used. 

Consider the general nonlinear switched time-delay system 

 

 

( ) ( ) ( ) ( ), ( ), ( ) , 0

( ) ( ), ( ), ( )

i i i

i

x t A x t B x t h F x t x t h y t t

y t G x t x t h y t

     

 
 (4) 

where 1( , ) ,T n
nx x x   y  and for 1, 2,i   , M ( )i i nA B   ( n n  matrices). iF  and 

iG  contain only powers of ,jx  1, ,j n  of order greater than or equal to two, 

(0,0, ) (0,0, ) 0,i iF y G y  ,y  and for  every 0   there exist 1( )M   and 2 ( )M   with the 

property 1 2
0 0

lim ( ) lim ( ) 0M M
 

     so whenever ( ) ,x t   ( ) ,x t h   ( ) ,y t   the 

following inequalities take place 

   

   
1

2

( ), ( ), ( ) ( ) ( ) ( )

( ), ( ), ( ) ( ) ( ) ( ) .

i

i

F x t x t h y t M x t x t h

G x t x t h y t M x t x t h

    

    
 (5) 

System (4) has a form that anticipates the presence of a critical case for stability given the 

absence of the linear part in the equation for .y  Therefore, a theorem for the critical case of 

equilibrium stability for the nonlinear switched time-delay system (4) will be stated and proved. 

For the beginning, the attention is directed towards the study of the equilibrium stability for 

the first equation from (4) 

 ( ) ( ) ( ) ( ), ( ), ( )i i ix t A x t B x t h F x t x t h y t      (6) 

where ( )y t is supposed to be bounded for all 0.t   Denote by ( ;0, )x t   the solution of the 

system (6) that fulfils the relation      ;0, , ,0 .x h        Define 

     (0, ) : ;0, , ,0 ,tx x t h        for 0.t   Consider  [ ,0], nC h  the normed space 

of continuous functions with the standard uniform norm defined as 0sup ( ) .hh       
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The above system can be rewritten in a compact, general form 

( )i tz f z  (7) 

with if  functionals defined on  [ ,0], .nC h  

Theorem 5. Consider the nonlinear system (7) with f not indexed (i.e., no switching). Suppose 

: nf C   maps every bounded set C  in n and satisfies all the conditions for the existence 

and uniqueness of a local solution for (7). Also (0) 0.f   A necessary and sufficient condition 

for the asymptotic stability of the zero solution of (7) is the existence of a continuous 

differentiable functional :V C   so that , , :m M      continuous increasing 

functions, with (0) (0) (0) 0,m M     such that for the solutions of (7), for each 0,t   

   
 

( ) ( ) ( )

( ) ( ) .

t h

t

m x t V x M x t

V x x t

 

 
 

 

According to some consulted sources (Gu, et al., 2003), (Kharitonov, 2013), (Gu & 

Niculescu, 2003), (Fridman, 2014b), the above Theorem 5, often called Lyapunov-Krasovskii 

Stability Theorem, originated in Krasovskii’s book (Krasovskii, 1959) (Theorems 31.1-31.3). 

The version written here is close to the one from (Kolmanovskii & Nosov, 1981), (Afanasiev, 

et al., 2003), (Gu & Niculescu, 2003) and (Kim, et al., 2008), the latter citing as source (Hale 

& Verduyn Lunel, 1993).   

A functional  tV x  fulfilling the conditions of Theorem 5 is called a Lyapunov-Krasovskii 

functional (Kharitonov, 2013), (Kim, et al., 2008). 

The model is constructed starting from the simple case of asymptotically stable linear 

systems  

( ) ( ) ( ), 1,2.i ix t A x t B x t h i     (8) 

Consider the Lyapunov-Krasovskii functionals ( ),i tV x 1, 2i   (Kharitonov, 2013), 

(Kharitonov & Zhabko, 2003), (Kim, et al., 2008) 

0
2

0,( ) ( ) (1 ) ( )i t i t

h

V x V x h s x t s ds



      (9) 

with 0,iV  defined by 

0

0,

0 0

( ) ( ) (0) ( ) 2 ( ) ( ) ( )

( ) ( ) ( )

T T
i t i i i

h

T T
i i i

h h

V x x t U x t x t U h s B x t s ds

x t B U s B x t s d ds



 

    

 
     

 
 



 

 (10) 

A necessary and sufficient condition for the existence of the Lyapunov-Krasovskii functional 

(9) is that system (8) is asymptotically stable. 
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In the following, the mathematical model for the critical case of stability of the nonlinear 

system with delay and structural switching is constructed within the four properties stated in 

the paper (Kim, et al., 2008). Consider , 1, 2, ,i j i j   the two possible modes the system can 

take.  

Proposition 6. There exist strictly positive numbers ,   so that for every 0,t   the solution 

tx  of (6) verifies 

22
( ) ( ) .i t t h

x t V x x     (11) 

Proposition 7. The derivatives of the Lyapunov-Krasovskii functionals (9) along the solution 

of the nonlinear systems (6) verify 

( ) ( )i t tV x w x   (12) 

with w  positive definite and (0) 0.w   

Proposition 8. There exists 1   such that 

( ) ( )i t j tV x V x   (13) 

for all tx  solutions of the nonlinear systems (6) where , 1, 2,i j   .i j  

Introduce now, following (Kim, et al., 2008), an hypothesis on the behaviour of the 

functionals iV  during consecutive switching times. 

(H) For 1,2,i  there exist constants (0,1)ic   so that, for any pair of consecutive  switching 

times of the ith mode, p qt t  with the ith mode active in pt  and ,qt  one has 

( ) ( ) ( )
q p pi t i t i i tV x V x c V x    (14) 

where tx  is the solution of the system (6). 

Theorem 9. Suppose ( ) , 0.y t t     Then the zero solution of the switched system (6) is 

asymptotically stable. 

Definition 10. The switching rule   is defined as stable if there exists 0  such that if 

matrices ˆ
iA  and ˆ

iB , 1, 2,i   satisfy ˆ ,i iA A   ˆ ,i iB B    ̂ verify ̂      and the 

linear systems (8) are stable, the Lyapunov-Krasovskii functionals (9) verify (H) when tx  is a 

solution of the active system similar to (6) for some ˆ
iF  that verifies (5) for an  ˆM̂   with 

   ˆˆ .M M       

Theorem 11. Suppose that (H) holds and the switching rule   is stable. Then the zero solution 

of the switched system (4) is stable. 



 

 

 

3. Equilibrium stability of a nonlinear feedback system 

with structural switching and delay on control 

The main objective is to propose a solution to the complex problem raised by the stability of 

the equilibrium point of a realistic nonlinear feedback system with input (or control) delay and 

structural switching. The mathematical framework is that of a predictive feedback control based 

on a LQR (Linear Quadratic Regulator) synthesis and of the multiple quadratic type Lyapunov-

Krasovskii functional to decide on stability. The starting point for this study was given by the 

challenges generated by the behaviour of the mathematical model of EHS. Therefore, the theory 

developed in this Chapter is applied to the case of an EHS.  

Consider the following linear time invariant system with delay on control and without 

switching 

     

   

0

0

; (0) 0,

, 0, 0,

cx t Ax t B u t h x x

u t u t h t h

    

    
 

 
(15) 

with ,n nA   
1n

cB   and the pair  , cA B  complete controllable, or at least stabilizable 

(Kwon & Pearson, 1980), (Kwakernaak & Sivan, 1972). The aim is to study the stability of the 

zero point equilibrium of the system (15) for 0,t   with   u x t  the state feedback control 

and the initial conditions given by  0 0. , .u x  A perturbation of the zero equilibrium point will 

be denoted as 0.x Here the control u  is assumed to be a locally integrable function: 

 1 ,locu h    . 

If the system (15) would be without delay, then the feedback control law would be given, 

for example, by a state feedback     1, nu t Kx t K    provided using LQR algorithm. When 

the delay appears on control, the things get more complicated.  One of the classic approaches 

used in this problem is the method of the predictive feedback control which can be briefly 

described as follows: find a predictive control law     ,u t h Kx t   in other words 

   u t Kx t h   to stabilize the system with control delay. Therefore, a prediction of the state 

would be needed.  
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Proposition 12. Consider system (15) with the pair  , cA B  controllable, or at least 

stabilizable.  

a) A state predictor for system (15) is given by  

       
0

: .Ah As
p c

h
x t x t h e x t e B u t s ds


      (16) 

b) Applying state predictive feedback control    u t Kx t h  , system (15) is replaced by 

the compensated system  

       
0

; : .As Ah
d c c d c

h
x t Ax t A x t h B K e B u t s h ds A B Ke


        (17) 

Consider the nonlinear feedback system with structural switching and state delay transferred 

above from the actuator 

         
0

,

: , 1,..., .

i

i

A s
i di c i c i i

h

A h
di c i

x t A x t A x t h B K e B u t s h ds F x t

A B K e i m




         

 

  (18) 

Systems (18) are a nonlinear extension of system (17) in which the switched structure and 

the remainders of order one   iF x t  obtained following the Taylor series development around 

the origin are added. 

Theorem 13. Consider systems (18) with 

a) iA  are Hurwitz matrices, therefore there are symmetric positive definite matrices iP  

satisfying Lyapunov matrix equations 
T
i i i i iA P P A Q    for some symmetric positive definite 

matrices iQ  and  

b) diA  are small enough matrices, specifically  min 2,i d i iP A Q   therefore there are 

0i   such that  min 2i d i i iP A Q    .  

For each 1,...,i m in (18), the following Lyapunov-Krasovskii functional is considered 

       
2

.
tT

i t i i
t h

V x x t Px t x s ds


    (19) 

Then the conditions (11) and (12) are fulfilled for all 1,..., ,i m  as long as the functions 

          
2

min max: 2i i i i i ix t Q P M x N x t          are positive.  

Proposition 14. The Lyapunov-Krasovskii functional (19) fulfils condition (13).   

Theorem 15. A sufficient condition of asymptotic stability of the zero solution of systems (18) 

is that the functionals   ,i tV x  1, ..., ,i m  given by (19) meet conditions (11), (12) and 

Hypothesis (H). 

 



 

 

 

4. Applications to hydraulic servomechanisms. Numerical 

simulations 

In the following, the theory developed in Chapters 2 and 3 is applied to hydraulic 

servomechanisms. Therefore, in Section 4.1 is given a short description of the 

mechanohydraulic and electrohydraulic servomechanisms and the mathematical models that 

characterize them are obtained. Also, mathematical models containing time-delay are proposed. 

In Section 3.2 is given an application of the theorem proved in Chapter 2, namely a theorem for 

a critical case of a nonlinear switched system with state delay. Section 4.3 represents an 

application of the theorem for equilibrium stability of a nonlinear feedback system with 

structural switching and time-delay on control proved in Chapter 3. Moreover, a method of 

obtaining a predictive feedback control law is presented in Section 4.4. 

Mathematical models of mecanohydraulic and electrohydraulic 

servomechanisms 

Current technologies involve working with machines capable of lifting extremely heavy 

weights, thus involving high forces, or performing movements at high speeds and precision. 

For such operations, industrial machines are equipped with hydraulic servomechanisms of a 

mechanical nature, and we are talking about mechanohydraulic servomechanism (MHS), or of 

an electrical nature as is the case with electrohydraulic servomechanisms (EHS). A brief 

description of the mathematical models of MHS and EHS is presented in the thesis. 

The complexity of the hydraulic servomechanisms and their dynamics could be sources of 

time-delays occurrence: inertia of the moving components and of the controlled load, 

constitutional nonlinearities of the servomechanism, as is the overlap in the spool valve, for 

instance, complex dry friction between moving and fixed parts of the hydraulic cylinder (see 

LuGre model (Olsson, et al., 1998)), delays on the command line from the transducer, the delay 

given by the pilot's reaction time (Toader & Ursu, 2014), delay generated by the computing unit 

to synthesise the control law. 

Different mathematical models with time-delay are presented for EHS and MHS: 

mathematical models with structural switching and with time-delay on the servovalve state, on 

control, or introduced on state due to the presence of friction. These models are the starting 

point for the substantiation of the stability analysis and for the understanding of the 

consequences of the time delay presence in the dynamic equations.  
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Proposition 16.  A primary mathematical model with time delay for the EHS is described by 

the following time-delay autonomous, nonhomogeneous, differential equation 

   1 1 0 0( ) ref

T

k
x t kx t h u t h

k
      (20) 

where 0h  is an equivalent time delay containing inertia and viscous load effects in 

hydrocylinder and electrohydraulic servovalve, 0 .eh h h    
 

Proposition 17. The EHS described by the equation with time delay (20) is stable (i.e. has 

roots with negative real parts) if 0 .
2

kh


   

Proposition 18. A primary mathematical model with time delay for the MHS is described by 

the time-delay differential equation 

   1 1 0 0( ) .rx t kx t h kx t h      (21) 

Application to electrohydraulic servomechanisms 

The following mathematical model of EHS represents the splitting of the system EHS into 

two subsystems with respect to the sign of the servovalve sign (Tecuceanu, et al., 2019), 

(Halanay & Ursu, 2009), (Halanay & Ursu, 2010), (Balea, et al., 2010), (Ursu, et al., 2013), 

(Halanay, et al., 2009), (Halanay, et al., 2004), (Ursu, et al., 2006), (Ursu & Ursu, 2007), (Balea, 

et al., 2010) 

 

 

1 2 2 31 2 3 4 5 3 3 2

0 1 1

4 5 4 4 2 5 1 5

0 1 1

ˆ; ; ( )
ˆ

1
ˆ( ) ; ( ).

ˆ

s

SV T

SV SV

y y
k f S S B

y y y y y y Cy t h p y x Sy
m m m m V Sy Sx

k kB
y Cy t h y x Sy y y y t h

V Sy Sx

         
 

        
   

 (22) 

The characteristic equation  1 1det 0shsI A B e    has an eigenvalue zero, meaning that it 

is a critical case of stability and one cannot decide about the stability of this equilibrium using 

the first approximation. Consequently, the system (22) has to be brought to the form where the 

Lyapunov-Malkin type Theorem 11 can be applied. The new system is given by 

 

2

3

1 2 3 4 5

2 3 3 4 4

32 2 35 5 33

4 42 2 45 5 44

5 3 51 3 4 51 4 5

, , , , ( )

( )

( )

1
( )

SV

G t h

f S k k S
a a

m m m m m

a b t h g c

a b t h g c

a a a a t h

 



       

   
          

   

       

        

        


 (23) 

 

 

 



 

15 

 

and has the form specific to the Lyapunov-Malkin type theory 

 

 

( ) ( ) ( ) ( ), ( ), ( )

( ) ( ), ( ), ( ) , 1,2.

i i i

i

t A t B t h F t t h t

t G t t h t i

          

      
 (24) 

Theorem 11 ensures the stability of the solution for system (24), if the linear components 

( ) ( ) ( ),i it A t B t h       1,2i   (25) 

fulfil the stability conditions and the Lyapunov conditions. 

Theorem 19. (Hu & Wang, 2002), (Xu, et al., 2014). The linear delayed system (24) is delay-

independent stable if and only if the following two conditions hold true: 

a) the characteristic polynomial ( ) ( ),P s Q s  corresponding to the case 0,h   has only roots 

with negative real parts; 

b) the polynomial 
2 2

( ) ( ) ( ) 0F P i Q i       has no real roots   other than zero. 

Definition 20. [ (Kharitonov, 2013), Definition 2.6]. The Lyapunov condition for systems (25) 

refers to the interdiction that their characteristic equations have symmetric roots with respect 

to the origin. 

The calculated theoretical value maxh  is remarkably well validated by the numerical 

simulation of the system (22). The critical value for the delay, beyond which the system 

becomes unstable was found at max 0.0116 s.h   

Equilibrium stability of the mathematical model of EHS.  

Numerical simulations 

The mathematical model of the EHS is described by a nonlinear system with five differential 

equations, four of them define the valve-actuator-load system, and the fifth represents a first 

order dynamics of the EHSV. Furthermore, it shows a switching nonlinearity due to 

constructive directional changes in the dynamic of the spool valve ports opening 

  

     

1 2 2 3

5

1 2 3 4 5 3 2 3

0 1

5
4 5 4 2 4 5 1

0 1

;

0 :

; 2

2 ;

s l s

SV
l s

SV SV

x x x x

x

k f S S B
x x x x Cx p x Sx k p x

m m m m V Sx

x kB
x Cx x Sx k p x x u x t h

V Sx

     



    


        
  

 
(26) 

  

     

3

5

1 2 2 1 2 3 4 5 3 2 3

0 1

5
4 5 4 2 4 5 2

0 1

0 :

; ; 2

2 ; ;

2
: .

l s

SV
s l s

SV SV

d

x

x

k f S S B
x x x x x x x Cx x Sx k p x

m m m m V Sx

x kB
x Cx p x Sx k p x x u x t h

V Sx

C c w





         


         
  




 (27) 
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The initial conditions associated with systems (26)-(27) are as follows:   0,0 0,i ix x 

   0, ,i iu t u t 0,h t   0,h  1,2.i   Two types of leakage are introduced, namely, one 

internal in spool valve of EHSV and one external in hydrocylinder. In the absence of any 

leakage, the Jacobian matrices have two critically zeros, while the model as in (Meritt, 1976), 

with both internal and external leakages, has singularity only in the case of 1 0x  .  

Let 1A  and 2A  be the Jacobian matrices calculated in zero for both cases 5 0x   and, 

obvious, 5 0x   

3,15,1

0 1,1 0 1,1 0 1,13,1
1

4,15,1

0 1,1 0 1,1 0 1,14,1

0 1 0 0 0

0

ˆˆ
0 2 0

ˆ ˆ ˆˆ2

ˆˆ
0 0 2

ˆ ˆ ˆˆ2

1
0 0 0 0

s
l

s

l

SV

k f S S

m m m m

BC p xCxBS B
k

V Sx V Sx V Sxp x

BC xCxBS B
k

V Sx V Sx V Sxx

 
 
   
 
 

   
          

 
  
    
     

 
   

A  (28) 

3,25,2

0 1,2 0 1,2 0 1,23,2
2

4,25,2

0 1,2 0 1,2 0 1,24,2

0 1 0 0 0

0

ˆˆ
0 2 0

ˆ ˆ ˆˆ2
.

ˆˆ
0 0 2

ˆ ˆ ˆˆ2

1
0 0 0 0

l

s
l

s

SV

k f S S

m m m m

BC xCxBS B
k

V Sx V Sx V Sxx

BC p xCxBS B
k

V Sx V Sx V Sxp x

 
 
   
 
 

  
         

 
   
   
     

 
   

A  (29) 

The matrix of control influence cB  is a column vector with the first four elements zero and 

with the fifth element equal with /SV SVk  . The pairs  ,i cA B , i =1, 2, are not completely 

controllable, but are stabilizable, including in 0 0x   which is the most vulnerable equilibrium 

point of the EHS system (Guillon, 1972). In fact, the two matrices iA  (28) and (29) are Hurwitz 

matrices. The control law synthesis is made through an LQR procedure and it concerns the pairs 

of matrices  , ,i cA B  1,2.i   

The equilibrium vector point corresponding to the subsystem with the state variable 5 0x   

is obtained by choosing a value for  1,1x̂  and the others are found according to the relations 

2,1
ˆ 0,x  3,1 0,1

ˆ / 2 / (2 ),sx p kx S     4,1 0,1
ˆ / 2 / (2 ),sx p kx S   and 5,1x̂  is found as a solution of 

 5,1 0,1 0,12 0.s lCx p kx S k kx S    Thus, one obtains the following values: 

3
1,1

ˆ 5 10 m,x   2,1
ˆ 0 m/s,x 

5 2
3,1

ˆ 112.5 10 N/m ,x   5 2
4,1

ˆ 97.5 10 N/m ,x  

3
5,1

ˆ 0.0018 10 m,x    with 1 0.0925u  . The eigenvalues of the matrix 1A (28) in open loop, 
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in accordance with the values of the chosen equilibrium point, are: 1,2 97.4 1726.5 ,i     

3 0.3,   4 90,   and 5 131.2   . The closed loop eigenvalues of the matrix 1A (28)  are  

1,2 97.4 1726. 5 ,i     3 10.2,    4 90,   5 130.8.    The LQR control law synthesis 

was obtained choosing the weighting matrices JQ , as zero matrix excepting JQ  (1,1) = 1 and 

0.0025JR  , thus obtaining the feedback gain as K1 = [6.1005  0.0002    0.0008  −0.0006  

3.6293]. The same procedure is followed for the second subsystem characterized by 2.i    

To verify the stability conditions described in Theorem 13, so to fulfil the inequality 

   0,i x t   the following parameters are required: 0 ,ix ,lk ,h ,iM   ,x t   ,iR t ,iN

 min ,iQ  max ,iP .i  Since matrices iQ  and iP  are correlated due to the Lyapunov 

equation, ensuring a positive value of the expression     min max2i i i i iQ P M x N        

is extremely difficult. 

It is highlighted the influence of the delay on the actuator on the evolution of the system. 

Furthermore, a delay threshold nearly 0.1sh  is identified up to which the system remains 

stable. For 0.096 s,h  there is a pole in discrete time at the stability limit, 0.99995.z   For 

* 0.1s,h  the pole becomes unstable 1.0002346.z   

Model discretization and numerical simulations for a linear system with 

actuator delay 

In the following, a numerical-analytic method for the synthesis of a predictive control law is 

proposed. This is applied to the linearized mathematical model (18) of the electrohydraulic 

servomechanism with delay on control and structural switching analysed in the previous 

Subchapter 3.2. In other words, the problem of finding a feedback control law is formulated 

and solved in order to ensure the equilibrium stability of the dynamic system influenced by the 

presence of the delay. 

The mathematical model (18) implies the existence of an integral term that contains the 

history of control. Practically, in order to find the solution of the DDE (18), besides the given 

initial condition, it is necessary to know all the previous control laws and to be included in the 

calculation. This procedure is not very easy to perform and involves a discretization of the 

model to compensate for the effects of delay. Thus, the integration of the system requires the 

replacement of the integral with a sum by dividing the length h of the integration interval into 

a proper number of k sampling periods T. The results of the numerical simulations are presented 

highlighting the maximum delay until the system remains stable. 

Consider the following linear invariant system with delay on control as input  

0( ) ( ) ( ), (0)x t Ax t Bu t h x x     (30) 

and the control law  

( ) ( ).u t h Kx t    (31) 
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The sources of the delay that may occur on the control could be: 

1. an intrinsic characteristic of the plant, or 

2. the necessary time to compute the control law when this is numerically synthesize; in 

this case, the delay is equal with the sampling period. 

The working hypothesis is that the feedback matrix corresponding to law (31) has been 

determined such that the matrix A BK  is stable.  Moreover, the closed loop system without 

delay meets certain performance criteria. If a delay occurs in the system and the control law 

does not take this into account, undesirable effects may occur in the system dynamics such as 

performance degradation or even destabilization. Therefore, two directions of study can be 

approached: 

(D1) determining a maximum value of the delay maxh  beyond which the system (30) is 

unstable using the control law (31) 

(D2) synthesizing a control law so as to counteract the effects of the delay; in other words, for 

t h  the closed loop system behaves like the following system 

0( ) , ( ) .Ahx A BK x x h e x   This condition is fulfilled by the predictive control law in 

the following Proposition. 

Proposition 20. The feedback control law for the linear system (29) which fulfils the objective 

(D2) stated above is given by the following predictive feedback control law 

( )( ) ( ) ( ) ( ) .
tAh A t s

t h
u t Kx t h K e x t K e Bu s ds


        (32) 

Proposition 21. The feedback control law (31) is computed according to the discretised form 

1
1( ) ( ) ( )

n
k n i
D D D

i n k

u n K A x n K A B u i


 

 

     (33) 

: ,t nT 0,1, 2, ,n  ,h kT : ,AT
DA e 1: [ ] .AT

DB A e I B    



 

 

 

Conclusions 

C.1. General conclusions  

The main objective of this PhD Thesis was to study the local stability of the equilibrium 

points of some dynamical systems described by differential equations with delay and structural 

switching. Stability is understood as local stability, so stability for sufficiently small 

disturbances of equilibrium. Moreover, the stability of the servomechanism equilibrium as a 

stabilization system is equivalent to the stability of the servomechanism system as a tracking 

system.  

The secondary objectives were to prepare the mathematical framework and to prove 

Propositions and Theorems on stability and, also, to validate the results through numerical 

simulations and real applications in engineering. The applications are related to the 

mechanohydraulic servomechanism and, especially, to the electrohydraulic servomechanism, 

both used in aviation for the control of the primary flight commands of the aircraft, in this case 

for the control of the ailerons. 

Comparing the approaches in Chapters 2 and 3, some conclusions can be mentioned. The 

two mathematical models used are in fact related, in the sense that the delay on the control can 

be seen as a delay on the state of the servovalve and vice versa. The results in Chapter 2 have 

the advantage of sufficiently less restrictive stability conditions and the disadvantage, in the 

absence of adequate control, of the existence of a stability threshold in the presence of delay. 

The results from Chapter 3 have the advantage of an adequate control, of predictive type, which 

totally compensates the presence of the delay ensuring a stability of the equilibrium for 

sufficiently large disturbances and, also, for sufficiently large delays. The disadvantage is given 

by the high constraints of the stability conditions, conditions that are sufficient, not necessary.  

The numerical simulations validated the analytical calculations in the sense that the 

maximum delay for which the switched system remains stable, calculated analytically, is 

basically the same as that found by numerical simulations, both in continuous time and in 

discrete time, in the presence of a simple LQR control, namely the delay max 0.1s.h  For 

control with predictive feedback, the delayed system behaves practically in the same way as the 

system without delay, both systems supporting sufficiently large disturbances of the 

equilibrium. 
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C.2. Perspectives of further development 
The results obtained in this Thesis could be applied in different fields of engineering where 

the time-delay has an important effect in the dynamics of the system regarding the stability or 

the control law synthesis. Therefore, the mathematical model is improved so that it accurately 

describes the behaviour of the controlled object taking into account the history of its dynamics. 

The current trend in the field of applied mathematics and engineering is to approach and 

study switched systems. Thus, the results from this Thesis follow this direction and offer a 

starting point for the development of new stability studies in which it is important to ensure the 

stability of the entire system composed of stable or unstable subsystems. A necessary and useful 

study is to find less conservative stability conditions taking into account that the Lyapunov-

Krasovskii paradigm impose very constraining conditions. 

Another important development horizon is to propose and realize practical models in the 

laboratory in order to validate the results obtained in the Thesis. In aerospace engineering, one 

meaningful objective is that of setting the flight envelope which ensures a safe flight beyond 

the limit of flutter occurrence. Flutter is a severe aeroelastic dynamic phenomenon consisting 

in self-sustaining unstable oscillations whose amplitude grows strongly in a short time 

accumulating energy in the structure. It affects the primary flight surfaces of an airplane since 

aeroelastic forces are developed at this level. It is a complex and difficult process to study. In 

recent years, various active flutter control methods have been approached using different kinds 

of actuators. An interesting and realistic solution to increase the flight envelope could be given 

by considering the time-delay on the line transducer-implemented control law-actuator.  
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