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1 Introduction
In telecommunications domain, 5G is the 5th generation of cellular networks tech-

nologies. Multiple antennas [Multiple-Input-Multiple-Output (MIMO)] systems are

used in 5G networks to increase the capacity and coverage of the radio link.

Digital signal processing is at the core of MIMO systems, used for improving the

stability and the capacity of the radio links. Precoding is a digital signal processing

technique applied at transmission. It is used mostly in MIMO systems with multiple

users (MU-MIMO), where the random location of users does not enable the simulta-

neous decoding of the multiple data flows received from the transmit antennas.

MIMO techniques are the digital signal processing schemes used for the transmis-

sion of multiple data flows through the radio channel, using the same frequency and

time resources. The term precoding will be used to describe any of the techniques

above, applied to the transmitted signals in MU-MIMO systems.

1.1 Purpose of the thesis

A first objective of the thesis is the identification of simulation methods for the

MU-MIMO systems. As such, various scenarios and channels models were proposed

to evaluate the precoding algorithms performance. A second objective of the thesis

is the study of the performance for the existing precoding schemes in the literature,

in spatial and temporal correlated channels. This study led to the identification

and the performance optimization of a hybrid precoding scheme. The third and the

main objective of this work is the performance enhancement of a hybrid precoding

scheme through a reduced complexity method that identifies the groups of users that

are spatially separable. This led to the implementation of a statical users grouping

algorithm based of their spatial compatibility. For an accurate performance evaluation

of the precoding scheme and of the users clustering algorithm, another objective of

the thesis is the study of a method for generating realistic traffic distributions, using

measurements collected from call traces, geolocated in three dimensions (3D).

1.2 Content of the thesis

The thesis is organized as follows. In Chapter 2, the main concepts related to

5G communication systems are described. Chapter 3 presents the basic theoretical

knowledge required for understanding the MIMO domain. Channel modeling, as well

as a method for generating a spatial and temporal correlated channel, are introduced.

In Chapter 4, the main precoding techniques are summarized and their performance

in terms of spectral efficiency and computational complexity, is then evaluated. In

Chapter 5, an algorithm for grouping of users based on their spatial correlation is pro-

posed. The performance in terms of computational complexity and spectral efficiency
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of the grouping algorithm and of the hybrid precoding scheme are then evaluated.

Chapter 6 presents a method for generating a realistic distribution of users in space,

which is used in the performance evaluation of the clustering algorithm and of the hy-

brid precoding scheme from Chapter 5. Chapter 7 presents a method of selection and

ordering of users, by defining a fully configurable scheduler, which can be tuned based

of the performance of a real base station implementation. Chapter 8 summarizes the

main results, the original contributions and the future development perspectives.

2 5G communications systems
The 5G standard developed by 3GPP is called New Radio (NR). Before its final

version being published, version 15, the key concepts resulted from the documents of

the 3GPP radio group’s meetings were published in [1].

Scenarios and technologies used in 5G

The deployment scenarios of the services used in 5G communications systems are

classified in three main categories:

• Ultra Reliable and Low Latency Communications (URLLC);

• massive Machine-Type Communications (mMTC);

• enhanced Mobile Broadband (eMBB).

eMBB services are characterized by high bit rate, high user density, high coverage

and mobility.

A different set of requirements for 5G systems are used by the stable connections,

that require low latency and precise locations for ensuring services for public safety,

like controlling and ensuring the safety for the car traffic, or remote medical diagnosis.

The enabling of mMTC communications requires the support for a high density of

connections, with low and variable bit rate.

Ensuring support for the above scenarios translates into a set of technology re-

quirements.

Millimeter Waves

For reaching a Gbps order of bit rates, new frequency bands in the 30 - 300

GHz range (called millimeter waves or mmWaves) are used, where there is enough

unused spectrum. As in these bands the signal attenuation is higher, multiple antenna

systems with a high number of antenna elements are required for beam steering and

beamforming, in order to compensate for the higher pathloss.

In addition to a higher pathloss, in mmWaves bands, another issue is the interfer-

ence between Orthogonal Frequency Division Multiplex (OFDM) sub-carriers, which
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is caused by a higher phase noise in high frequency bands. The solution chosen con-

sists in using additional reference signals like Tracking Reference Signals (TRS) or

increasing the sub-carrier bandwidth, from 15 kHz as in LTE, to 120 or 240 kHz.

Variable numerology

Compared to LTE, NR uses an OFDM modulation with a variable numerology.

The distance between the OFDM sub-carriers is no longer fixed to 15 kHz as in LTE,

but can reach 240 kHz. The different numerologies can be multiplexed in time and

in frequency within the same frame, in order to satisfy various services requirements.

This way, URLLC services will be deployed in low and mid bands using a higher

numerology, such that the symbols used to be narrower and to reduce the network

access time. On the other front, eMBB services will use lower numerologies, having

a longer transmission duration.

Multiple antennas

In addition to the use of wider band channels, the bit date can be enhanced

through spatially multiplexed data flows, transmitted by the multiple antennas of a

base station, over the same time and frequency resources.

To compensate for the higher pathloss of mmWaves through beamforming, in

5G MIMO systems, a hybrid architecture of analog-digital beamforming is proposed.

This way the possibility of doing spatial multiplexing is kept, without increasing too

much the cost of the antenna system.

In MIMO precoding (as will be presented in Chapter 4 of this thesis), the number

of radio chains of a multiple antenna system represents the number of virtual antennas

available for spatial multiplexing, whereas the number of antenna elements of a radio

chain determines the maximum beamforming gain.

Massive MIMO

Massive MIMO multiple antenna systems were proposed to address the massive

capacity increase of the 5G networks. They are MU-MIMO communications systems

of type MU-MIMO, with a larger number of transmit antennas than the number of

users, much larger than the classical MIMO systems, being capable of doing simulta-

neously spatial multiplexing and beamforming [2].

Besides the increase of the received power, according to [3], the advantages of

using Massive MIMO are:

• Radio link capacity increased by ten times, and the radiated energy efficiency

increased by a hundred times;

• Reduced cost of the lower power radio components;

• Drastic reducing of the radio interface latency. Massive MIMO systems are

functioning based on the law of large numbers and on beamforming in order to

avoid strong fading channels and increased latency;
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• Multiple access scheme simplification. With OFDM, each sub-carrier of a Mas-

sive MIMO system could exhibit the same channel gain, as such every user can

use the entire bandwidth and thus, simplify the signaling of the radio physical

channel resources by the network.

The factors that limit the performance of the Massive MIMO systems are:

• Radio chains complexity (made out of 100-200 parallel paths) assuming a fully

digital configuration;

• Size of the digital-analog interface (which should be able to process around

100-200 transmit-receive radio paths);

• Information quantity for channel estimation (information without any use for

the user);

• High complexity of the digital signal processing;

• Time Division Duplex (TDD) only is used to estimate the Downlink (DL) chan-

nel using the estimate of the Uplink (UL) channel;

• Pilot signal contamination.

3 Elements of MIMO theory
This chapter describers the main concepts of the MIMO domain. A method

for channel modeling together with a method for creating spatially and temporally

correlated channels, are introduced. A way of estimating the spatial separability

between users is also presented.

3.1 MIMO channel

The channel matrix of a MIMO antenna system with NR receive antennas and

NT transmit antennas is written as H, H ∈ CNR×NT . MU-MIMO architecture is also

a MIMO system, but in this case the NR antennas are distributed to K users.

Assuming x is the set of symbols being transmitted independently by the NT

antennas, x1, x2, ..., xNT , x ∈ CNT×1, the signal received by the NR antennas is y ∈
CNR×1, and can be obtained as:

y = Hx + n, (3.1)

where n ∼ NC(0NR , N0INR) is the noise received by the NR antennas, having a power

spectral density N0. It is assumed that it follows a complex Gaussian distribution,

circular symmetric1with zero mean.

1An array n is circular symmetric if ejθn has the same distribution as n, for every θ.
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The ideal channel modeling of type Rayleigh (from a MIMO point of view), as-

sumes a perfect decorrelation of the signals received by the K mobile stations, where

all the elements of the matrix H are complex random variables, Gaussian distributed,

hij ∼ NC(0, 1).

3.2 Channel spatial correlation

In the MU-MIMO context, a random array hk is spatially correlated using the

Karhunen-Loeve transformation [4]:

hk = Rkêk = UkD
1
2
kUH

k êk ∼ UkD
1
2
k ek, (3.2)

where êk ∼ NC (0NT , INT ) and ek ∼ NC (0r, Ir). The singular values decomposition

of the matrix Rk ∈ CNT×NT is Rk = UkDkU
H
k , where Dk ∈ Rr×r is a diagonal

matrix containing r = rank(Rk) strictly positive singular values of the matrix Rk,

and Uk ∈ CNT×r contains the corresponding singular vectors. rank(.) is the rank of

a matrix, or the number of non zero singular values. The last part shows that the hk

and UkD
1
2
k ek distributions are the same.

In [4], a spatial channel correlation model is proposed. It assumes that the chan-

nels of the various antenna elements are Gaussian distributed, with zero mean and

defined by a correlation matrix R. The elements rl,m of the matrix R are defined as:

rl,m =
∑Np

n=1 E {|gn|2}E
{
e2πjd(l−1) sin(ϕ̄)e−2πjd(m−1) sin(ϕ̄)

}
= γ

∫
e2πjd(l−m) sin(ϕ̄)f(ϕ̄)dϕ̄.

(3.3)

From here after, it is assumed that the multipath propagation is caused by a

cluster of obstacles located around the users and that the base station is located

above the obstacles, such that the line of sight propagation is not perturbed in an

area around it. We denote ϕ̄ = ϕ + δ, as the angle of each cluster, with ϕ being the

deterministic nominal angle. δ is a random variable having a standard deviation from

the nominal angles, σϕ. When δ is uniformly distributed, δ ∼ U(−
√

3σϕ,
√

3σϕ), the

correlation model is called One Ring.

To reduce the complexity of the simulations, an approximation can be used for

rl,m when σθ is small and δ follows a Gaussian distribution δ ∼ N (0, σ2
ϕ), rl,m(ϕ) =

γe2πjd(l−m) sin(ϕ)e−
σ2ϕ
2

[2πd(l−m) cos(ϕ)]2 .

The shape of R matrices are represented in Figure 3.1a and Figure 3.1b, for the

One Ring and Gaussian correlation models, respectively.

3.3 Spatial compatibility

Two users are spatial compatible when their channels, hk, can be separated in

space through linear precoding techniques. An equation that quantifies the amount
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Figure 3.1: The shape of R matrix

of correlation between the channels of two users is described in [4, 5]. When hi and

hk are the channels of two users, their inter-correlation can be defined as:

cos (∠ (hi,hj)) , V
{

tr [R(θi)R(θk)]

N2
T

}
, (3.4)

where cos (∠ (hi,hk)) ∈ [0, 1].

4 Precoding algorithms
In this chapter, the main precoding schemes used in MU-MIMO system are pre-

sented. The total spectral efficiency and the computational complexity results studied

in this chapter were published in [6], [7] and [8].

Linear precoding

Linear precoding schemes for MU-MIMO work by projecting the useful signal of

the user to an orthogonal sub-space of the other users [9], by inverting the channel

matrix. The block scheme of a linear precoder is represented in Figure 4.1a.

Two of the linear precoding schemes, Zero Forcing (ZF) and Regularized Zero

Forcing (RZF), are represented by the matrices W ∈ CNT×K , WZF = βH−1 and

WRZF = βHH
(
HHH + NTN0

Ex
I
)−1

, where N0 is the noise power spectral density, Ex
is the energy of the transmitted signal and β is used to normalize the precoded signal

in order to meet the total transmit power constraint.

Block diagonalization of the channel matrix (BD) is a linear precoding scheme

used for users with multiple receive antennas.

Non-linear precoding

While linear precoding mechanisms have a relatively low computational complex-

ity, their spectral efficiency is strongly affected in scenarios with a high density of

users that exhibit strongly correlated channels. An alternative of those are the non-

linear precoding schemes like Dirty Paper Coding (DPC) [10], Tomlinson Harashima

Precoding (THP) and Vector Perturbation (VP).
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Figure 4.1: Block schemes

THP precoding scheme is illustrated in Figure 4.1b. The matrix B = [bkl] is a

unitary and lower triangular matrix, obtained through an LQ decomposition of the

channel matrix H in an unitary matrix F ∈ CNT×K and a lower triangular matrix

L ∈ CK×K , H = LFH . The equivalent channel matrix of the THP precoding scheme

can be describer through the lower triangular matrix B = G ·H · F.

To prevent the total power growth during the precoding with B−1, a modulo

function is used. The function ensures that the precoded symbols remain in the

Voronoi region of the original signal constellation. In an M-Quadrature Amplitude

Modulation (QAM) signal constellation, the modulo function extends periodically the

constellation, by adding 2
√
M multiples to the imaginary and real parts of xk.

Hybrid precoding

To reduce the impact of the channel estimation errors and the computational

complexity of the non-linear precoding in multiple antenna systems, a hybrid, linear-

non-linear precoding scheme was proposed in [11, 12, 13, 14]. In a first stage, a

linear precoder is used to eliminate the interference between the groups of user with

uncorrelated channels. In a second stage, a non-linear precoding scheme like THP is

used to eliminate the interference between the users of the same group. Figure 4.1c

illustrates the hybrid precoding scheme Block Diagonalization - Tomlinson Harashima

Precoding (BD-THP).
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4.1 Simulation results

Computational complexity evaluation

The computational complexity can be computed through the number of Floating

Point Operations (FLOPs), required for multiplying and adding complex numbers.

The computational complexity of the precoding schemes mentioned above is sum-

marized in Table 4.1 [6, 12], where for the case of the hybrid precoder, Kg = K/G

represents the number of user in each group.

Table 4.1: Precoding schemes complexity

Precoding scheme Number of FLOPs

RZF 4K3 + 2KNT (4K − 1) +K(4NT − 1)(K + 1)+
2NT (4K − 1) + 8K2 + 7K

THP 16K3/3 + 2K(4KNT −K + 2)+
2T (2K + 2K2 +NT (4K − 1)− 4)

BD-THP 40GK3
g/3− 4GK2

g+
2GKg − 2GKgNT + 16GK2

gNT+
T (4GK2

g + 4GKg + 8KgNT − 8G− 2NT )

Spectral efficiency evaluation

The downlink of a single cell MU-MIMO system is considered. The base station is

equipped with a linear array antenna having NT elements uniformly distributed, that

simultaneously transmit data to K single antenna users. The channel gains between

each user and the NT transmit antennas, follow a spatially correlated distribution.

The spectral efficiency is evaluated as a function of the energy per bit Eb, relative

to the noise power spectral density N0, Eb/N0
∆
= Ex/ [KN0 log2(M)], where M is the

QAM modulation order. For the performance evaluation of the precoding schemes,

Monte Carlo simulations were performed in a MU-MIMO system with NT = 16

transmit antennas, K = 16 users and a M = 16-QAM modulation.

Figure 4.2a evaluates the performance of the precoding schemes when the channel

is perfectly estimated and available at the base station, and Figure 4.2b, when the

channel estimate is erroneous. Similar with [13], the error of the estimation is modeled

as an Additive White Gaussian Noise (AWGN) of 25 dB variance, that corresponds

to an user that moves at an approximate speed of 50 km/h, a carrier frequency of 2

GHz and a processing duration of 10 ms. Compared to Figure 4.2a, it can be noticed
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that BD-THP has lower performance than of the rest of the precoding schemes, as

both BD and THP are impacted by the channel estimation error.
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Figure 4.2: Spectral efficiency vs. Eb/N0

Figure 4.3a shows the spectral efficiency of the RZF and THP precoding schemes,

as a function of the Eb/N0 and of the angle between users, when they are each

separated by a fixed angle θ = θmin. The performance of both schemes decreases as

the users get closer to each other, but the performance of the THP scheme is always

better than that of the RZF precoding scheme, due to the successive interference

cancellation procedure.
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To evaluate the spectral efficiency of a hybrid BD-THP precoding scheme, in

Figure 4.3b it is assumed that the users can be organized in four groups, each located

at an angle θg = [−45◦,−15◦, 15◦, 45◦]. As the minimum angle between any two

groups is 30◦ and between any two users of the same group is 1◦, a linear precoding

scheme will be used between groups and a non-linear one in each group.

5 Users grouping
It was shown in the previous chapter that a hybrid precoding scheme can spatially

multiplex users with correlated channel through non linear precoding techniques and
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the users that can be spatially separated (those with uncorrelated channels), through

linear precoding techniques. In this chapter, an algorithm for users grouping based

on spatial correlation, is proposed. The results were published in [8] and [15].

5.1 K-Means algorithm

In order to optimize the performance of the users grouping method, the statistical

K-means clustering algorithm [16] is proposed, using a distance metric based on the

angles between users. The K-means algorithm groups together users such that each

user to belong to the clusters with the closest center (the angle between the user and

the center of the cluster is minimized).

This method guarantees that the users of the same cluster are close enough such

that they cannot be multiplexed through a linear precoding scheme. In order for

the users of two different clusters to be multiplexed through linear precoding, the

angle between the centers of the clusters needs to be verified. A group of clusters

whose users can be multiplexed through linear precoding should not include any

cluster whose angle with the rest of the clusters in the group, is smaller than ∆θ, the

minimum separation angle required by a linear precoder.

5.2 Simulation results

Evaluation of the clustering algorithm

For a fixed number of clusters and antennas, the proposed algorithm has

a complexity of order O
[
KN+1 ×N

]
[17], that is lower than of the two stage

precoding scheme which uses the cordal distance metric, which is of order

O
[
KN+1 ×N × (N2

T + 2N3
T )
]

[18]. The implementation of the K-means cluster-

ing algorithm through Lloyd’s method can be optimized and exhibits a linear

complexity with the number of users and clusters, of order O(KNI) [19]. It can be

shown that the number of iterations required for convergence decreases a lot when

the users already have a spatial distribution in clusters, which is the case of a realistic

distribution.

In Figure 5.1, the users are distributed in two traffic scenarios, one which includes

the morning and evening traffic (called Busy Hours), and the second, in the rest

of day (called Working Hours). Due the movement of the users, the Busy Hours

traffic is more distributed than at Working Hours, when is focused in hotspots, like

the building offices. Using a minimum required angle between co-scheduled users of

∆θ = 30◦, the users are grouped by the K-means algorithm in 4 clusters at Working

Hours and in 3 clusters at Busy Hours. The two distributions were created in a radio

planning software called Planet [20], using geolocated call traces [21, 22].

In practice, the direction of the users is not always perfectly estimated. For this

reason, Figure 5.2 shows the impact of the estimation error of the directions of users

on the algorithm’s performance.
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(a) Distribution and clustering of the users at
Working Hours

(b) Distribution and clustering of the users
at Busy Hours

Figure 5.1: Clustering results for B2 sector and ∆θ = 30◦
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Figure 5.2: The performance on the clustering algorithm vs. the error standard
deviation

Precoding scheme spectral efficiency evaluation

The scenario evaluated is represented in Figure 5.3a. It can be noticed that the

clustering of the users requires knowing only the directions of the users and not

their entire channel status. This reduces the required information for estimating and

reporting the channel status information. Once the clustered are identified, a group

of users is selected from every cluster in order to be served by a THP precoder. The

groups of users selected and multiplexed through THP are then precoded through

BD linear precoder. In the computation of the precoding weights, the full channel

status information is only required for the selected users, and not for the entire set

of users, making the algorithm compliant for Massive MIMO scenarios.

To evaluate the spectral efficiency (capacity) of a hybrid precoding scheme, in

Figure 5.3b it is assumed that the users are distributed at Busy Hours. Compared

to THP and RZF, the BD-THP hybrid precoding scheme has a similar performance
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Figure 5.3: Performance evaluation for the hybrid precoding scheme

as THP, the offset being caused by a lower performance of the BD linear precoding

scheme. The new results of the hybrid precoding scheme being similar to those in

the previous chapter, where the users were already organized in uncorrelated clusters,

proves that the proposed algorithm organizes users for optimizing the performance of

the precoding scheme.

6 Geolocation and spatial distribution of

mobile network calls
In telecommunication networks, call traces containing information reported by

the mobile equipments during calls, are collected automatically by the base stations

for the purpose of investigating various events which may rise in the network and

improving its performance. In this chapter, a technique for 3D geolocation of the

LTE calls based on signal propagation predictions and a method for generating traffic

spatial distributions, are presented. The results from this chapter were published in

[21] and [22].

6.1 Implementation of the 3D geolocation algorithm

The main contribution of this chapter is the implementation of an enhanced al-

gorithm to locate LTE calls in 3D, for indoor and outdoor environments, using in-

formation of the network configuration and LTE measurements. With Loc being the

set of possible 3D locations, the probability of an LTE call to be located at location

Loci = (Xi, Yi, Zi) when the set of reported measurements is M, is computed as:

P (Loci|M) = P (Loci|S)× P (Loci|CellID)× P (Loci|TA), (6.1)

where S is the set of Reference Signal Received Power (RSRP) measurements reported

for N ≥ 1 cells, TA is the value of the delay measured by the primary cell [Timing

Advance (TA)] and CellID is the unique cell identifier of the primary cell.
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The location probability conditioned by the reported cell P (Loci|CellID), filters

out the locations where the cell cannot be accessed (where its coverage is poor).

P (Loci|TA) filters out the locations too close or too far from the primary cell’s

location, using the value reported for the TA.

In order to locate a call, a filter based on the fingerprint of the measured received

signals power is used, assuming the measured RSRPs are mutually independent and

the error between predictions and measurements has a Gaussian distribution.

P (S|Loci) =

{
e−

1
2σ2

(sM1 −sP1 )
2

[
N∏
j=2

e−
1

2σ2
(∆sMj −∆sPj )

2

]} 1
N

, (6.2)

where sMj , sPj are the measured RSRP values (present in the call traces) and those

estimated using a propagation model, for the j cell, N is the number of reported RSRP

values, and σ is a parameter that models the possible variations of the measured

values compared to the estimated ones, due to fading or the measurement errors and

∆s
M(P )
j = s

M(P )
1 − sM(P )

j .

In order to find the most probable location L̂oc, two alternatives are possible:

• The location that has the maximum probability: L̂oc = arg maxLoci∈Locs P (Loci|M);

• The location that minimizes the average location error: L̂oc =
∑
i Loci×P (Loci|S)∑

i P (Loci|S)
.

6.2 Measurements data base creation

In this section, a method for generating call traces with realistic measurements

having valid 3D coordinates, is described. They are used to validate the performance

of the 3D geolocation algorithm.

The steps required to generate the measurements starting from the predicted radio

signals received power, are summarized as follows:

• Using the RSRP estimated for a number of cells in a random location, a noise

modeling the fading effects is added;

• The fading is correlated between locations and between neighbor cells. The

distances over which the fading is no longer correlated are of 7 meters indoors,

and 30 meters outdoor.

6.3 Generation of the traffic distribution

Another contribution of this chapter is a method for generating traffic spatial

distribution maps, using the probability values of the calls, computed for various

locations by the geolocation algorithm, as well as the quantity of carried traffic by

each call tc:
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TLoci =

∑
c tc × P (Loci|Sc)∑

c P (Loci|Sc)
. (6.3)

Compared to the existing methods, the one proposed does not require a precise

location estimation.

6.4 Simulation results

The performance of the proposed 3D geolocation algorithm is evaluated using LTE

calls generated around Tokyo train station. The Err precision is computed using the

Euclidean distance between the real 3D coordinates (Xc, Yc, Zc) and those estimated,

(X̂c, Ŷc, Ẑc):

Err =

√(
Xc − X̂c

)2

+
(
Yc − Ŷc

)2

+
(
Zc − Ẑc

)2

. (6.4)

In Figure 6.1a, it can be noticed that 95% of the calls are located with a precision

of 140 meters and that the average location error is of 45 meters.
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Figure 6.1: Geolocation algorithm performance

Figure 6.1b shows that the average location error increases with the height of the

call. This is due to the performance of the geolocation algorithm based on fingerprint-

ing, which deteriorates at higher heights because of the similarity of the estimated

RSRP values.

The performance of the method for generating the traffic distribution is evaluated

using the geolocation algorithm on 208203 measurements of 134 cells. A visual anal-

ysis of the two methods indicates a better accuracy of the proposed method because:

• The building footprints are well distinguished in Figure 6.3a and match the

footprints seen from the satellite (Figure 6.2a). In Figure 6.2, the contour of

the buildings cannot be distinguished;

• The extremely busy area around Tokyo train station can be well distinguished,

compared to the traffic distributions in Figure 6.2b, Figure 6.2c and Figure 6.2d,

which indicate just a higher traffic density in that area.
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Figure 6.2: Traffic map generation using the standard method, a Gaussian spreading
of traffic around the estimated locations

(a) Total traffic (b) Indoor and outdoor traffic

Figure 6.3: Traffic map generation using the proposed method

7 Simulation and tunning of the user

scheduling algorithm
In this chapter, an algorithm for user selection and ordering is presented. It is

based on the type of service, the channel quality and the accumulated bit rate. The

users scheduling domain is not standardized and the techniques used are industrial

secrets, as such, the algorithm proposed is conceived to be fully configurable, being

able to be tuned for matching the performance of real base station implementation.

The results presented in this chapter were published in [23] and patented in [24].

A presentation of the scheduling technique is made in [25]. In the category of

those which account for the channel status and the Quality of Service (QoS), we find

the techniques that work in Time Domain (TD) and in Frequency Domain (FD). The
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performance of a two stage precoding algorithm (TD/FD) is also evaluated by the

authors in [26, 27, 28]. More studies like [29], propose various metrics for the TD and

FD algorithm.

7.1 Scheduler model

A technique for modeling different types of traffic was conceived for the simulation

of the scheduler behavior. This estimates the buffer length and the delay of the first

packet, every time a transmission is possible, as a function of the average bit rate

and the period of the packets. The traffic of the users with a Guaranteed Bit Rate

(GBR) is periodic, whereas the traffic of the users with a non Guaranteed Bit Rate

(non-GBR) is bursty.

Channel quality is described by the Signal-to-Interference plus Noise Ratio

(SINR). It is assumed that the interference is proportional with the percentage

of used Physical Resource Blocks (PRBs), or the load of each cell. The fast and

frequency fading values are generated as a function of the channel type and the speed

of the users.

At a specific time, the buffer contains either new packet, or packets that have not

correctly been received by the users. The error probability of a packet is computed

as a function of the SINR and the used Modulation and Coding Scheme (MCS).

The TD-FD scheduler was implemented to ensure the flexibility of the algorithm.

It enables the algorithm to order users firstly in time, then to allocate the resources

in frequency. The block scheme of the algorithm is depicted in Figure 7.1a.

....
Retransmissions

QoS class 1

QoS class 2

QoS class 3

TD GBR

nonGBR

FD

Resources
demand

Traffic classification

Time domain
scheduler

HARQ

Frequency domain
scheduler

(a) Scheduler algorithm

Model calibration

Calibration algorithm

Simulator

LTE Scheduler Model I2

Emulator

I1

I3

Performance indicators

Scenarios configuration

Traces

(b) Calibration algorithm

Figure 7.1: The block scheme of the system

In TD, the scheduling metric is defined to adapt to various QoS models, by or-

dering the users based on the buffer length, minimum guaranteed bit rate, accumu-

lated bit rate, channel quality and service priority. The impact of each parameter

is weighted by different configurable variables, w. In FD, the scheduling algorithm

prioritizes firstly the resource allocation for retransmission, then for the GBR users

and lastly, the available resources are given to non GBR users.
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All the parameters that model the behavior of the scheduler, like the weights

values, the number of resources available for GBR users, the altruistic or selfish

strategy, enable the scheduler to be tuned to various implementations of real base

stations.

7.2 Simulation results

The performance of various scheduling configurations is evaluated as a function of

the total allocated bit rate and of the Rate Fairness Index (RFI), using the equation

from [30].

Procentul de resurse GBR disponibile

15

20

25

30

35

-20 -15 -10 -5 0 5 10 15 20

To
ta

lb
it

ra
te

[M
b

p
s]

10log10(w6 / w7 )[dB]

Altruistic + 400 kbps
Selfish + 400 kbps
Altruistic + full buffer
Selfish + full buffer

(a) Total bit rate

0.2

0.4

0.6

0.8

1.0

-20 -15 -10 -5 0 5 10 15 20

A
ve

ra
ge

 R
FI

10log10(w6 / w7 )[dB]

Altruistic + 400 kbps
Selfish + 400 kbps
Altruistic + full buffer
Selfish + full buffer

(b) Rate Fairness Index

Figure 7.2: non GBR services performance vs. the radio of the channel quality to the
accumulated bit rate, w6/w7

In Figure 7.2a and Figure 7.2b, when 10 log10

(
w6

w7

)
= −20dB, the scheduler serves

firstly the users with the lowest accumulated bit rate, independent of their channel

quality. When 10 log10

(
w6

w7

)
= 20dB, the total bit rate is maximized, but the RFI is

very low.

Given the set of parameters of the scheduler mentioned above, in order to tune

(calibrate) the scheduler algorithm, the architecture from Figure 7.1b is proposed.

The simulation transmits through the I1 interference to the mobile equipment emula-

tor and to the scheduler, the information regarding the number of users, their channel

quality, the length of the scenario, the type of traffic, etc. Based on the preconfigured

test scenarios, the emulator transmits through the I3 interface to the scheduler the

values for the resources available for GBR, the maximum number of non GBR users

fairly served, etc.

The calibration algorithm creates the list I2, by simulating the scheduler for vari-

ous values of the w weights. Their optimal values minimize the difference between the
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simulation and implementation and is found through a method based on the binary

search principle.

8 Conclusions

8.1 Results

In the first chapter an introduction to the multiple antenna MIMO system used

in cellular networks was made, and the purpose of the thesis was presented. In Chap-

ter 2, a presentation of the 5G cellular systems was made, and the multiple antenna

techniques were presented. In Chapter 3, the spatial and temporal channel correlation

model was introduced, along with a way of estimating the spatial separation between

users. In Chapter 4, the main precoding techniques were studies, which were then

classified from a spectral efficiency (capacity) and computational complexity point of

view. In Chapter 5, the users with a realistic distribution were grouped based on their

spatial correlation. In Chapter 6, a method of generating the spatial distribution of

users based on a 3D geolocation algorithm of LTE calls was presented. In Chapter 7,

a method for user ordering and selection was presented, using a configurable radio

resource scheduler.

8.2 Original contributions and publications

This section presents the main original contributions of this work, associated with

the articles where they have been published.

Original contributions

(1) Summarizing the 5G NR specifications based on the initial drafts of the 3GPP

RAN group, before the official publication in the standards.

(2), (3) Developing a performance testing system for the linear, non-linear and

hybrid precoding schemes, a spatially correlated channel model, configurable using

the angles between users and a method for estimating the spatial separation between

users.

(4), (5) Developing a low complexity algorithm for grouping of users based on their

spatial separation and adapting the hybrid precoding scheme based on the algorithm

introduced.

(6), (7) Contributions to the development of a 3D geolocation algorithm of the LTE

calls for testing the grouping algorithm and the precoding schemes, using a realistic

traffic distribution.

(8) Contributions to the development of an adaptive users scheduler and of a method

for evaluation of the measurements made by the mobile stations, in order to identify

the behavior of as from an actual base station.

Publications
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(1) R.-F. Trifan, A.-A. Enescu, and C. Paleologu, Preview on MIMO Systems in

5G New Radio, FABULOUS Proceedings, pp. 32-38, October 2017. [ISI Pro-

ceedings]

(2) R.-F. Trifan and C. Paleologu, MU-MIMO Precoding Performance Conditioned

by Inter-user Angular Separation, ISETC Proceedings, pp. 1-4, November 2018.

[ISI Proceedings]

(3) R.-F. Trifan s, i A.-A. Enescu, Non-Linear Precoding Performance in Spatio-

Temporally Correlated MU-MIMO Channels, COMM Proceedings, pp. 181-186,

May 2018. [ISI Proceedings]

(4) R.-F. Trifan, R. Lerbour, G. Donnard, and Y. L. Helloco, K-Means MU-MIMO

User Clustering for Optimized Precoding Performance, VTC Proceedings, pp.

1-5, June 2019. [ISI Proceedings]

(5) R.-F. Trifan, A.-A. Enescu, and C. Paleologu, Hybrid MU-MIMO Precoding

Based on K-Means User Clustering, Algorithms, vol. 12, pp. 1-18, July 2019.

[ISI-Q3, FI 1,510]

(6) R.-F. Trifan, Hybrid MU-MIMO Precoding Based on K-Means User Clustering,

SAD - ETTI, July 2019.

(7) R.-F. Trifan, R. Lerbour, and Y. L. Helloco, Enhanced 3D Geolocation Algo-

rithm for LTE Call Traces, VTC Proceedings, pp. 1-5, September 2016. [ISI

Proceedings]

(8) R. Lerbour, Y. L. Helloco, and R.-F. Trifan, Hotspot Identification through Call

Trace Analysis, VTC Proceedings, pp. 1-5, September 2016. [ISI Proceedings]

(9) R. Lerbour and R.-F. Trifan, Devices and Method for Simulating a Mobile

Telecommunications Network, European Patent Office, October 2016. [Patent]

(10) R.-F. Trifan, R. Lerbour, and Y. L. Helloco, Mirroring LTE Scheduler Perfor-

mance with an Adaptive Simulation Model, VTC Proceedings, pp. 1-5, May

2015. [ISI Proceedings]

8.3 Perspectives of future development

A first perspective can be the integration of beamforming in the MIMO chan-

nel modeling, in order to accurately test the grouping algorithm and the precoding

performance. Another perspective of development can be the use of the artificial in-

telligence algorithms to create an universal precoding scheme that can optimize some

performance indicators, for various channel conditions and traffic distributions. The

proposed algorithms could finally be embedded on a hardware architecture, in order

to validate their real-time functioning.
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