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Introduction

The intuitive understanding of a process or physical phenomenon
starts with observation, then after we have observed the
phenomenon, we postulate the causal chain of events that made our
observation possible and then after we have a satisfactory causal
model we test our theory trying to replicate the observed
phenomenon.

The rigor necessary to create a satisfactory model, able to express
and integrate all the details and nuances of physical observation led
people to the development of a mathematical apparatus capable of
describing schematically and as completely as possible the studied
physical phenomenon.

Thus, the proposed purpose of this paper is to illustrate the
evolution of a physical phenomenon from observation, to the
application of exotic phenomenological nuances of the process
inside devices, as well as the possibility of a deeper understanding
of the world around us by applying the model observed in -a series
of new parameters in order to highlight some initially hidden
behaviors.

The object of this study evolved from determining topographic
features from MRI images using fractal analysis to extracting
anatomical features from EEG signals using gap analysis.

During the paper, various experimental applications of lacunar
analysis were explored, focusing on the idea that lacunar analysis
can be used to reconstruct morphofunctional / structural features of
the brain.



First experimental Application
FRACTAL ANALYSIS OF NEUROIMAGISTICS.
LACUNARITY DEGREE, A PRECIOUS
INDICATOR IN THE DETECTION OF
ALZHEIMER'S DISEASE

1. Introduction

The healthy human brain contains tens of billions of neurons,
specialized cells that process and transmit information via
electrical/physical and chemical signals. Most neurons have three
basic components: a cell body, multiple dendrites, and an axon,
respectively.
The function and survival of neurons depend on several key
biological processes. Neurons are a major player in the central
nervous system, but other cell types are also key to healthy brain
function. In fact, glial cells are by far the most numerous cells in
the brain, outnumbering neurons by about 10 to 1. These cells,
which come in various forms-such as microglia, astrocytes, and
oligodendrocytes- surround and support the function and health of
neurons [1].
The healthy brain is well studied, with reference works available to
the general public. We will not deal with this in our article. We will
study here a serious problem that arises when the brain gets sick,
one way or another, and the nature of the disease must be
discovered and healed. And last but not least, whether it is a
malign or benign disease, if it is curable with the existing
therapeutic means or not, would also be investigated. A question in
itself refers to the fact whether we can discriminate if the disease
affects only isolated neurons, whole neurons or the brain, in its
assemblage. The answer is obtained by the fractal analysis of the
images taken on the brain, or the so-called neuroimagistics domain
under discussion.



The development of magnetic resonance imaging (MRI)
techniques has defined modern neuroimaging. Thereby, since its
inception, tens of thousands of studies using techniques such as
functional MRI and diffusion weighted imaging have allowed for
the non-invasive study of the brain [2].
Fractal analysis is a way of measuring phenomena when the details
of design are as important as gross morphology. It has been applied
to fields as diverse as music, finance [3], materials technology [4-8
], and search and rescue, in addition to topics such as signal
processing (EEG/ECG), diagnostic imaging, tumor morphology,
vasculature [9, 10] and overall brain structure [11, 12].
In particular, fractal analysis is the method by which we
investigate medical images, respectively the MRI images. In this
effort to obtain the fractal dimension
[13] of the image and the degree of its lacunarity, we can draw firm
conclusions about the disease and its stage of development. The disease that is
the subject of our research is Alzheimer's disease and its manifestation
through the presence of lacunarity, as a measure of its evolution or stagnation
so easily evidenced.

As you can see, Alzheimer's appears in the brain images as a
lacunar formation. This lacunarity in the brain takes time, and as it
grows, leads to the anomalous functioning of the brain, and
obviously of the human body.

2. The voxel and parameters of interest

A voxel analogous to a pixel represents image data values,
depicted in a 3D space. In the case of medical imaging, the
position is represented on the Ox and Oy axes, while on the Oz it
is represented in a gray scale the tissue resistance to the incident
radiation. More precisely, the black color is being practically
transparent to the radiation while the white color represents the
reflectivity level.

The medical imagining is not a continuous process, requiring a
space of a few millimeters in between the scanned areas, in order
to keep the image contrast. The smaller the space in between the



images, the greater the informational density, but there is also the
risk of cross-talk (the tissues previously radiated influence the new
scanning area). Therefore, one of the essential parameters is the
gap between scans, entitled scan density. To optimize the algorithm
we have used the standard voxel size of 512x512x12 (the standard
voxel size for MRI).

3. The box counting technique

Several methods to measure fractal dimensions and lacunarity have
been used. As is well known, the box counting technique
implemented in digital image analysis software is employed with
priority [14]. As expected, box counting is a way of assessing the
distributions of background and non-background pixels in binary
digital images representing extracted patterns from the real context
of the original image.

The differential box-counting (DBC) method is one of the
frequently used techniques to estimate the fractal dimension (FD)
of a 2D gray-level image. Undoubtedly, this is a serious
development of the classical box counting method, which takes
into account the gray scale of the voxels, through the height of the

« boxes » which it computes. The parameters introduced are the
length, width and height of the boxes, respectively, which are being
counted by the algorithm under discussion. Below, we will propose

an improved differential box counting method. In their work from
2014, Y. Liu et al. suggested improved DBC method for computing

FD of grey scale image [15]. For this reason authors took into
account the difference of boxes where the greatest and least intensity
value falls. In this regard they took grey scale image of range M × M
in a three dimensional surface plane, where x and y plane represents
the pixel location and third plane called z indicates grey level of an

image. Then the entire number of pixels has been scaled down to
block of size l × l where M/2 ≥ l ≥ 1 and l is an integer denoting box
size. Afterwards we have to compute r = l/M. For every scaled down
block, there is a pillar of boxes of size s × s × s′, where s′ represents

height of each box, G/s′ = M/s and G is the entire amount of grey
levels. Let the least and greatest grey levels be denoted by Imin and

https://www.sciencedirect.com/science/article/pii/S2213020916301161#bib0090


Imax respectively in the (i, j)th block. Then the total quantity of boxes
essential to cover up in z direction is nrold and after shifting the δ

positions from nrold, nrnew is calculated [16].Maximum of nrold and nrnew

is taken as nr.

The fractal dimension (DIDBC) is calculated with the regression plot
between log(N) versus log(1/r).
In overlapping or “sliding” box counting, the number of pixels per box
is assessed using for each caliber, rather than a fixed grid, a single
element that is systematically moved over the entire image such that
the element may overlap with a previous placement at the next
placement. The distribution is determined from the number of pixels
per box as a function of box size or scale (𝜀𝜀), which is inversely
proportional to the box size. Lacunarity at a particular 𝜀𝜀 is denoted as
𝜆𝗌 calculated as the squared coefficient of variation, CV, for pixel
distribution:

where σ is the standard deviation and μ the mean of the pixels

per box at 𝜀𝜀 [17].

To arrive at a single number, the values for 𝜆𝗌 can be summarized as
the mean 𝜆for the total number of calibers (E) used:

A normal limitation of box counting is that the pixel distribution
depends on how an image is scanned. For some patterns more than
others, placing the non- overlapping box counting grid at different
orientations yields different results.

4. The convolutional neural network

The convolutional neural network (CNN) consists of an input
layer, an output layer and many hidden layers in between.
Convolutional Neural Networks are very similar to ordinary



Neural Networks. They are made up of neurons that have learnable
weights and biases. Each neuron receives some inputs, performs a
dot product and optionally follows it with a non-linearity. The
whole network still expresses a single differentiable score
function: from the raw image pixels on one end to class scores at
the other. In addition, they still have a loss function (e.g.
SVM/Softmax) on the last (fully-connected) layer and all the
tips/tricks developed for learning regular Neural Networks still
apply [18].

· The Convolution passes the images through a set of convolutional
filters which are being activated as function of some image
particularities.
· The Rectified linear unit (ReLU) allows the training of the neural
network in a more rapid and efficient way, by assigning all negative
values to 0 and keeping the positive values. ReLU stands for rectified
linear unit, and is a type of activation function. Mathematically, it is
defined as y=max(0, x). ReLU is the most commonly used activation
function in neural networks, especially in CNNs. If you are unsure
what activation function to use in your network, ReLU is usually a
good first choice. This process is also called activation, for only the
activated characteristics, which are being sent to the next layer.
· Pooling simplifies the output through the reduction of the number
of parameters necessary for the learning of the network, by using a
nonlinear down sampling process. It is common to
periodically insert a Pooling layer in-between successive
Conv layers in a ConvNet architecture. Its function is to
progressively reduce the spatial size of the representation to
reduce the amount of parameters and computation in the
network, and hence to also control overfitting. The Pooling
Layer operates independently on every depth slice of the
input and resizes it spatially, using the MAX operation. The
most common form is a pooling layer with filters of size 2x2
applied with a stride of 2 down samples every depth slice in
the input by 2 along both width and height, discarding 75%
of the activations. Every MAX operation would in this case
be taking a max over 4 numbers (little 2x2 region in some
depth slice).

5. Algorithm   of the   fractal   dimension
and   lacunarity degree determination



The input of the program is a set of medical images taken in 3 mm
slices with a voxel of standard 512x512x12 size. The first step for
diagnostic determination is the image processing through the
differentiable box counting method (determination of the image
fractal dimension as well as the lacunarity degree).
Once we have obtained a value for the image lacunarity, it is
important to also see the diffusion/ clustering degree of the lacunar
structure. Due to the fact that mathematically speaking the
lacunarity is rotation variant, the box counting algorithms to obtain
the image lacunarity as well as the diffusion/clustering degree of
the lacunarity are ran 4 times with a 90 degrees offset between
iterations. The obtained values are averaged to avoid the spikes.
After obtaining the diffusion/clustering degree of the lacunarity,
we will isolate the lacunar structure in order to determine its
self-standing fractal characteristics (we treat the lacunar structure
as a fractal). This step practically allows us for subsequent
refinement of the neural network classification process, the
isolation allowing for a more rigorous comparison between the
lacunar structure and other similar structures sampled from clearly
diagnosed Alzheimer patients.
After the comparison of the lacunar structure to the database and
the determination whether a similar structure has been generated in
a patient carrying Alzheimer’s disease, the data determined from
the isolated lacunar structure is added to the data coming from the
initial image.
With all the imaging data obtained, the lacunarity degree, the
lacunarity diffusion/clustering as well as the fractal characteristics
of the lacunar structure itself, the data is then taken by a
convolutional neural network for final classification.
Functionally the algorithm starts with an MRI image and does a
contour feature extraction. Then using the scale invariant property
of the images fractal dimension, we can easily estimate to a certain
degree the inner structures of the brain, after some more image
processing. This allows us to detect lacunar structures that would
normally be hard to detect by eyesight alone. As you can see even
with contour feature extraction alone, the differences between the
patients and the control subjects are more easily visible.
In Fig. 3 we present the block diagram of the algorithm used to
detect structures associated to Alzheimer's disease, estimating the
fractal dimension and the lacunarity, according to the program
developed below.



Excerpt from the program we have
developed Start
Load image // input the
image M = image.height ,N
= image.width; s = 2; //the
origin size of box While(s
≤ M/2)
If (s < 13||M/s == 0) r = s/M; //define the r , r is
the scale For(i < M/s;j < N/s) nr(i, j) = (CMA ×
pa − CMI × pi)/s × s
Shift block in (x, y) plane with σ pixels nr(i, j) = max(nr old, nr
shift)
En
d
For
En
d If
Nr old =
P(nr); s +
+;
Fit(log Nr, log(1/r)) //the least
square method Obtain FD ;
Lacunarity =( ( Fit(log Nr, log(1/r)))/ (mean(s,g)))^2; //
g is the possile lacunarity
orientations within the box of size s

Plot( Lacunarity)= Lacunarity + 1;

Load Plot(Lacunarity) //
input the image M =
image.height ,N = image.width;

s = 2; //the origin size of box

While(s ≤ M/2)

If (s < 13||M/s == 0) r = s/M; //define the r , r is the scale

For(i < M/s;j < N/s) nr(i, j) = (CMA × pa − CMI × pi)/s × s

Shift block in (x, y) plane with σ pixels nr(i, j) = max(nr old, nr
shift)

En
d



For
En
d If
Nr old =
P(nr); s +
+;
Fit(log Nr, log(1/r)) //the least
square method Obtain FD ;

End;

6. Results and Discussion

Lacunarity is another measurement often used in conjunction with
fractal dimension to describe the texture of a shape or fractal [20,
21]. In this study fractal dimension and lacunarity measurements
were leveraged to differentiate between benign and malignant
tissues and to classify the different brain morphologies exhibited
by formatted cell lines.
For various benign and malignant subtypes, the fractal dimension
(Fig.4) and lacunarity (Fig. 5) of benign, biphasic and lacunarity
tumor samples were calculated using the program described above.
We have considered the normal physiological brain zone as the
benign area, the complete mixed zone as the biphasic area, and the
tumor itself as the lacunarity area respectively, with a small margin
taken from the rest of the tissue.
In the figures below, unique fractal evaluation and connected
implications of brain morphology in malignant tissue are shown.

Due to some missing or damaged samples the resulting number of
images analyzed was 36 with lacunarity, 19 biphasic and 15 benign
controls. As shown in Fig. 4 and Fig. 5, biphasic and lacunarity
tissue samples had significantly higher fractal dimension and
higher lacunarity compared to benign tissue (p < 0.0001).
A low p-value (such as 0.01) is taken as evidence that the null
hypothesis can be ‘rejected’. Statisticians say that a p-value of 0.01

https://www.nature.com/articles/srep24578#f1
https://www.nature.com/articles/srep24578#f1


is ‘highly significant’ or say that ‘the data is significant at the 0.01
level’.
Although the difference between biphasic and lacunarity tissue
was not found to be statistically significant, lacunarity tissue
tended to have a comparable fractal dimension, but it encountered
higher lacunarity of lacunarity tissue than biphasic tissue. These
results suggest that fractal dimension and lacunarity analysis may
be a useful and rapid method to differentiate between benign and
malignant tissues.

7. Conclusions and future work
In this paper, the brain radiographies were analyzed to find out

the fractal dimension and lacunarity of benign, biphasic and
lacunarity tumor samples. For this purpose, the radiographies were
processed in the manner presented in a previous chapter of present
work, to remove the noise and just keep the formatted cell lines.
Then, the neuro-image was transformed into binary format and the
differential box- counting (DBC) method was applied to reach the
results.
The algorithm used to detect structures associated to Alzheimer's
disease, estimating the fractal dimension and the lacunarity, has
been developed by the authors.

Between the biphasic and lacunarity tissues a statistically
significant difference was not found, as lacunarity tissue tended to
have a comparable fractal dimension, but it encountered higher
lacunarity of lacunarity tissue than biphasic tissue. These results
suggest that fractal dimension and lacunarity analysis may be a
useful and rapid method to differentiate between benign and
malignant tissues.

Therefore, both fractal dimension and lacunarity demonstrated
high accuracy as predictors of benign and malignant tumor and to
classify the different brain morphologies.

The software developed in this paper can be fully integrated
into a medical equipment, which can be used in detection and
monitoring of brain diseases or other organs.



Second Experimental Application
Fractal analysis study of the axonal
tracts

MRI IMAGING - HISTOLOGICAL INTERPRETATION

Magnetic resonance imaging (MRI) is an investigation
procedure of the internal structure of the body that has many
applications, especially in the medical field. Through this
method, sections of the human body are obtained in the form
of images, where various anatomical structures are rendered
in different gray shades, depending on the chemical
composition of tissues and the method of obtaining the data.

The MRI imaging protocol involves a series of repetitive
radio pulses with a certain frequency, which differs depending
on the study methods (T1 or T2), followed by the



measurement of the echo resulting from the relaxation of the
nuclei (Figure 1). Differences between tissues in the NMR
signal are due to the density and mobility of hydrogen atoms,
mainly found in water molecules. Thus, in T1 it is observed
that dark areas correspond to water-rich tissues, bone tissue or
cerebrospinal fluid, whereas the luminous areas overlap with
areas where there are mainly fats. With T2 imaging, hydrated
areas and bones will be brighter, while greasy areas will
appear brighter [1].

The main types of tissues that can be seen in a cerebral
MRI scan are nervous tissue, bone tissue, meninges, blood
vessels, and areas filled with cerebrospinal fluid. Nervous
tissue is made up of neurons and auxiliary cells, called glial
cells. The neurons are formed from neuronal bodies and
elongations, dendrites and axons, the latter being very long
and often surrounded by auxiliary cells called Schwann cells,
which secrete a fatty substance called myelin. In the nervous
system, segregation of neuronal bodies and neuronal
elongations in different areas is most often encountered. The
place where the neural bodies are found is called gray matter,
and the place where neuronal elongations are found is called
white matter, because the white matter areas appear lighter in
the open eye view of a tissue section.

White areas appear lighter because the axonal elongations
here are surrounded by the myelin sheath, that maintains
electrical isolation and which is lipidic and white in nature.
For this reason, in T1 MRI scans the white matter appears
lighter than the gray matter due to the presence of lipids,
while in T2 the gray matter is lighter in color than the white
one. In addition, bone tissue appears light in T1 and dark in
T2, and cerebrospinal fluid, due to the water content appears
darker in T1 and luminous in T2 [2].

In order to be able to interpret MRI scans in clinical
contexts, it is necessary to know how the tissues affected by
illnesses are rendered in these images in terms of brightness.
These anomalies can easily be detected when they appear in
images as brighter or darker than the surrounding nervous
tissue. Thus, they may be characterized as hyperintense when
brighter than other infected areas, hypointense, when they are
darker and isointense when they do not have a significant
difference from the rest of the body's nervous tissue. (Figure



2, in affected tissues). For example, in T2, a meningioma
surrounded by edema appears whiter than the surrounding
areas, while a meduloblastoma appears darker in a T1 image
[2]. The conditions that may appear hyperintense in T1
imaging are subarachnoid haemorrhages, tumors and acute
stroke. Areas that appear darker in T1 may be edema,
ischemia, and subacute stroke. However, T2 imaging is more
often used to detect pathological aspects in MRI images
where better contrast of these affected areas is obtained. Both
tumors and cerebral infarction, ischemia and edema appear
brighter in these areas [2]. These aspects are very important
for the present study because a hyperintense or hypointense
region can be completely or partially eliminated from the
processed contour image, and will have other morphological
characteristics (it will present lacunarity) [3], another
symmetry and, implicitly, another fractal dimension. But even
if the affected areas are taken into account, the fractal
dimension can be affected because these areas have structural
abnormalities.

ANATOMICAL CONSIDERATIONS

The anatomical structures subjected to fractal analysis in
this study are the brain cerebral white matter traces extracted
from MRI scans. Due to the limited spatial resolution of MRI
imaging, best suited for this study are the major connections
between cortical or specialized cortical areas, cortex and
subcortical structures, as well as connections involving the
claustral area, which is an important connectivity node.

The main white matter formations that can be highlighted
by MRI scan processing mostly involve connections to the
cerebral cortex. These formations are of three types
depending on the cortical areas with which they are connected
[4]:

● Association fibers - fibers that connect cortical areas in the same brain hemisphere
● Commissural filaments - fibers that connect homologous areas of the

two brain hemispheres, such as those connections that make up the
Corpus Callosum

● Projection fibers - fibers that connect the cortex with subcortical areas.
They have a radial arrangement in the brain, which is why they are called
"Corona Radiata" [4].



Finally, the ventricular system of the brain consists of
empty spaces filled with cerebrospinal fluid. For a correct
interpretation of MRI images by the fractal analysis
algorithm, these empty spaces should not be confused with
other brain structures, but they should be taken into account
because their size may vary in various brain-related disorders
[2].

Purpose of the study

Areas of interest for the present study are the white matter
areas, which represent the axonal prolongations of the
neurons. If at the cellular level these extensions are made
between neurons (connections called synapses),
macroscopically, the white matter areas form connections
between different areas of gray matter through a series of
axonal tracts. MRI imaging does not provide a sufficiently
good spatial resolution to easily delineate these cordons in the
white matter mass, and therefore this paper proposes an
approximation of the major connectivity pathways, starting
from the morphological characteristics of the white matter
using the skeletonisation algorithm. These trajectories thus
extracted will be subjected to fractal analysis to identify
distortions associated with pathologies. To validate the

structure of these major connectivity pathways, the study aims to
make future correlations with diffusion MRI data (DTI or DSI).

Description of the algorithm

To extract the information needed for fractal analysis, it is
necessary to understand the structure of Neuroimaging
Informatics Technology Initiative (NIFTI) files. The internal
structure of this file type (extension ".nii") contains both a
metadata header and the image itself. Also, the file can be
compressed or not with the DEFLATE algorithm. If the file is
compressed, it will have the extension ".gz". Using the header
fields we can extract information about the transformations



used, the size of each voxel, the units of measurement used to
describe the size, the applied image rotation and the beginning
and end index of the slice, to generate a three-dimensional
vector (or quadri-dimensional vector for functional MRI
images where the storage of several images arranged
sequentially, separated by a defined time interval is required)
that can further be processed for fractal analysis.

In order to efficiently process MRI images in fractal
analysis, a pre-processing stage is required. The goals of this
stage are:

● masking the region of interest by filtering the skull
● noise reduction (for functional MRI images)

STRUCTURAL MRI SCANS PROCESSING

The first step in processing this type of MRI images is to
filter the skull to highlight the gray matter area. For this
purpose, it is necessary to overlay the mask pattern for gray
matter, MNI152, over the original image, only voxels
intersecting the mask being retained. The MNI152 model is a
symmetrical brain image formed by applying 6 iterations of
linear and non-linear transformations over 152 T1 anatomical
MRI images. After applying the mask, in some cases, a part of
the skull will remain unfiltered. To eliminate this unwanted
area, due to the discontinuity between the gray matter area of
the brain and the skull part left after applying the first filter,
we apply a filter that only keeps the largest voxel-connected
region.

The processing algorithm is comprised of the following stages:
● Separation of MRI scan in 2D constituent slides, taken on the axial plane
● Binarizing each slice (switching from a monochromatic image to a
binary image) by applying a hysteresis threshold filter. This filter keeps the
pixels that have a value greater than a threshold defined as a parameter of the
filter, called the high threshold. The next criterion is to preserve the areas of
the image connected by the regions in the image that passed the first criterion
and which, at the same time, have a value greater than another threshold,
called the low threshold

● Skeletonization of each slice of the image by successive application of the thinner
operator

● Estimation of the fractal dimension using a box-counting algorithm

Bidimensional skeletonization is a binary image processing
method that largely preserves the connectivity of the



structures present in the original image, eliminating redundant
information by approximating the brain connections with a
series of minimal width segments (Figure 3). These features
make skeletonization a useful process to apply in the fractal
geometry study of an image. The skeleton image is generated
by iteratively applying a thinning operator to the binary image
until convergence is reached, the stage when the operator
application does not change the image [5].

The three-dimensional algorithm retains many of the features of the
two-dimensional one. Differences consist in the use of a three-dimensional
structuring element defined by a 3x3x3 size array and the application of the
algorithm over the entire volume of voxels, unlike the two-dimensional
algorithm that is applied individually to each constituent slice (Figure 4) [6].
Thinning is accomplished by iteratively applying the hit-and-miss
transformation operation from the original image. This transform uses a 3x3
matrix called the structuring element, translating its origins successively over
all the pixels in the original image, and comparing the structuring element with
the matrix of the same size formed by the pixels below it. If the two matrices
are equivalent, the pixel underlying the structuring element will take the value
1, otherwise it will take value 0.

FUNCTIONAL MRI SCANS PROCESSING

The connectome of a functional MRI image (Figure 6)
highlights the dependence (or lack of dependence) in brain
activity between brain regions. It is displayed in a graph form
where the nodes represent regions of the brain and the lines
represent the interactions between them [7]. Due to their
inherent nature, the processing of functional MRI scans
requires a different approach to the preprocessing of
anatomical MRI images. The first step is to generate a mask
that will filter the signals outside the gray area. The mask is
constructed taking the average of the whole series of images,
followed by an approximation of the region of interest by
edge detection. The mask application is then applied to each
image in the series.

Applying a Gaussian filter to each image in the series
results in a noticeable reduction of noise through blurring.
Applying this filter, however, has the disadvantage of
reducing spatial details. Therefore, the filter is applied in a
conservative way, making a compromise between noise
reduction and preservation of spatial detail of the image. One



way to estimate a patient's connectome is to extract the
covariance matrix (Figure 5) to determine the activity
correlation between different regions of the brain. However,
this approach has disadvantages that reduce its viability. First
of all, a simple correlation between two cortical regions is not
enough to determine with certainty their interdependence [8].
Also, there is a high probability that two regions will have at
least a reduced correlation, which leads to overcrowding of
the graph and further difficult processing. A better method of
extracting the functional connectome is by generating the
inverse (precision) covariance matrix. This array highlights
the dependence of each region on the other nodes, which is an
indicator of statistical utility greater than covariance in the
connectivity analysis. For estimating the precision matrix, the
lasso method is used [9].

CONCLUSION

Despite the limited resolution of the MRI images used, the
two-dimensional skeletonization of the axial plane slides as
well as the three-dimensional skeletonization of the entire
MRI imagery satisfactorily approximates the overall
connectivity of the areas of interest. The algorithm used can
be applied later with minor modifications in the analysis of
other structures that lend themselves to this type of approach,
such as the study of blood vessels, lungs, skeleton, etc. The
property of this method of highlighting the morphological
connectivity of a structure can make it useful even in various
engineering applications.



Third experimental application
EXTRACTIONS OF INTRINSIC FEATURES

USING THE LACUNARITY HIGHLIGHTED FROM
FMRI SOURCES

1. Introduction

The human brain is one of the most complex systems
observed in nature, and the phenomenological simultaneity
of physical, chemical and electrical interactions presents a
series of problems in continuous research, starting, without
question, from mapping how our brain interacts with reality.
To solve this problem, multiple software / programs have
been developed on the computer and thousands of
visualizations of brain processes have been implemented,
among which we list EEG (Electroencephalography), MRI
(Magnetic Resonance Imaging) and FMRI (Functional
Magnetic Resonance Imaging) brain scan [1-2].

Among other nicknames used in place of MRI
(Magnetic Resonance Imaging), we can mention that the
most common other names are some of the following
accepted synonyms, such as nuclear magnetic resonance
imaging (NMRI) and magnetic resonance tomography
(MRT).

Magnetic resonance imaging (MRI) is a medical
imaging technique used in radiology to form pictures of the
anatomy and the physiological processes of the body. MRI
scanners use strong magnetic fields, magnetic field gradients,
and radio waves to generate images of the organs in the body.
MRI does not involve X-rays or the use of ionizing radiation,
which distinguishes it from CT and PET scans [3]. MRI is a
medical application of nuclear magnetic resonance (NMR)
which can also be used for imaging in other NMR
applications, such as NMR spectroscopy.

Historically speaking, the prime researcher who has
developed a way to generate the first Magnetic Resonance
Images (MRI), in 2D and 3D, using gradients, was American
chemist Paul Lauterbur, in 1973. More precisely, Lauterbur
described an imaging technique that removed the usual
resolution limits due to the wavelength of the imaging field,
laying the foundations of MRI technique [4].



The purpose of this paper is thus easy to state and
refers to exploring the hypothesis of using the analysis of
lacunarity in order to determine the degree of correlation
with the topological structures (fractals) existing in the brain.

In order not to compare apples to pears (as funny it is
expressed with concern), it is assumed that the lacunarity is a
measure of the discernibility of a structure or signal, i.e.,
more precisely, the larger the lacunarity (more empty space)
the easier to distinguish an object from its background, and
the opposite case, when the lacunarity is low (dense space), it
is even more difficult to distinguish an object or signal from
its established background [5-6]. The results of fractal and
lacunarity analyzes, in the case of FMRI images, are
predictable fixed values, as we expect, by the way.

We will explore the relevance of MRI in the
characterization and diagnosis of pathology and diseases of
the brain, especially in relation to strokes and dementia. We
will also review the imaging sequences and post processing
applications available for exhaustive examinations of the
brain [7].

2. Some of the FRMI procedures
As stated above, we mention it once again, but with

immediate application on the subject of this article. Thus, as
it has become commonplace in the medical world, nuclear
magnetic resonance imaging it is first and foremost a method
of investigating the internal structure of organs that has
applications especially in the medical field.

Through this method, sections are obtained through
the human body in the form of images, where the various
anatomical structures are rendered in various shades of gray,
depending on the chemical composition of the tissues and the
method of obtaining data. Magnetic resonance images can be
obtained by several methods, below are the methods T1 and
T2, of interest for the present study.

A MRI device consists of a series of coils, located in a
cylindrical chamber, thermally and magnetically insulated, in
the center of which the patient will sit. From outside to inside
the main components are the following [8]:

- a superconducting electromagnet, cooled with
liquid helium, which emits a constant and high intensity
magnetic field,



- a series of coils that can emit gradient magnetic
fields, in the 3 spatial directions, important for locating the
NMR signal,

- a coil for transmitting or receiving radio signals.
The high-intensity magnetic field produced by the

superconducting coil orients the hydrogen nuclei in the
patient's body in two directions of spin, which correspond to
different energy levels [8]. Under these conditions, there is a
surplus of nuclei oriented in the direction of the magnetic
field, characterized by its own magnetic field, much weaker.
Under the influence of radio waves, the nuclei aligned with
the magnetic field lines can be excited at the higher energy
level, antiparallel, if the radio frequency corresponds to the
Larmor precession frequency of these nuclei, thus they
resonate [9].

The working protocol in MRI imaging involves a
series of repeated radio pulses with a certain frequency,
which differ depending on the study methods (T1 or T2),
followed by measuring the echo resulting from the relaxation
of the nuclei. The differences between the tissues in the
NMR (Nuclear Magnetic Resonance) signal are due to the
density and mobility of hydrogen atoms, mainly found in
water molecules. Thus, in the T1 method it is observed that
dark areas correspond to tissues with a higher degree of
hydration, bone tissue or cerebrospinal fluid, while light
areas overlap with areas where there is mainly fat. By T2
imaging, hydrated areas and bones will be brighter while
areas with fat will appear brighter [10].

Fig. 1. Calculation graphical method of T1 and T2

In Figure 1 a calculation graphical method of T1 and
T2, (T1 recovery in blue color and T2 decay in black color)
is represented.

2.1 Tissue types observed by medical MR imaging



The main types of tissues that can be observed in brain
MRI are nerve tissue, bone tissue, meninges, some blood
vessels but also areas filled with cerebrospinal fluid. Nerve
tissue is made up of neurons and auxiliary cells, called glial
cells. Neurons are made up of neural bodies and extensions,
dendrites and axons, the latter being very long and often
surrounded by helper cells called Schwann cells, which
secrete a substance called myelin. In the nervous system
there is most often a segregation of neural bodies and
extensions in different areas. The place where neuronal
bodies are found in particular is called gray matter and the
place where extensions are found is called white matter,
because areas with white matter appear lighter in color when
observing a section through tissue with the naked eye. Areas
with white matter appear lighter in color because the axonal
extensions present here are surrounded by the myelin sheath,
which plays a role in electrical insulation and which is lipidic
in nature and whitish in appearance. Also for this reason, in
T1 MRI imaging the white substance appears lighter in color
than the gray matter, due to the presence of lipids, while in
T2 imaging the gray matter is lighter in color than the white
one. In addition, bone tissue appears light in color in T1
imaging and dark in T2 and cerebrospinal fluid, due to its
water content, appears darker in T1 and brighter in T2 [11].

The areas of interest for the present study are the white
matter areas, which as stated above represent the axonal
extensions of the neurons. If through these extensions
connections are made at the cellular level between neurons
(connections called synapses), at the macroscopic level, the
areas of white matter form connections between different
areas of gray matter through a series of axonal cords. MRI
imaging does not provide a good enough spatial resolution to
easily delimit these cords in the mass of white matter and
therefore this paper aims to approximate the major pathways
of connectivity, starting from the morphological
characteristics of the white matter, using the method of
skeletonization. These trajectories thus extracted will be
subjected to fractal analysis in order to identify distortions
associated with certain pathologies. In order to validate the
structure of these major connectivity pathways, the study
aims to correlate in the future with the data obtained by
diffusion imaging (DTI or DSI).



Another type of tissue successfully investigated by
MRI was lung tissue, after the systematic application of the
skeletonization procedure, in what can be called, without
modesty, a new way in fractal analysis of pulmonary medical
images [12]. The work gathered, in two years from the
publication, a record number of citations.

3. Fractal analysis of MR images
Diverse methods have been used successfully to

evaluate the lacunarity [13] and fractal dimensions [14-15].
The ones utilized in this paper engage the box counting
mechanism implemented in digital image analysis software.
We have written about the fractal dimension and how it is
calculated in countless works. We will make a brief report
only about measuring the lacunarity of an MR image,
especially about its mathematical part [16-18].

Lacunarity at a certain value ε indicated as λε, is
considered as the squared quotient of variation, CV, for a real
pixel distribution obtained where σ is the standard deviation
and μ the mean of the pixels per box at 𝜀𝜀. To arrive at a
single number, the values for 𝜆𝗌 can be summarized as the
mean 𝜆 for the total number of calibres (E) used:

Fig. 2 shows the general logical scheme for the Fractal
Analysis Algorithm of FMRI images, designed for this
occasion.

Fig. 2. Logical scheme for the Fractal Analysis
Algorithm of FMRI images

This algorithm begins with box counting to determine
lacunarity factor and often stops with highlighting the
structure associated with Alzheimer's disease.

The algorithm used for the fractal analysis of MRI
images is described below (only the beginning and its end).
The main part of the agenda/mathematical content is missing,
this program being subject to patent action as original
software.

Load image
//input the image
M = image.height ,N = image.width; s = 2;
//the origin size of box
............................................................
……………………………………….



Fit(log Nr, log(1/r))
//the least square method Obtain FD ;
End; .

4. Results and discussion

The BOLD (blood-oxygen-level dependent) contrast
mechanism has a complex relationship with functional brain
activity, oxygen metabolism, and neurovascular factors.
Accurate interpretation of the BOLD signal for neuroscience
and clinical applications necessitates a clear understanding of
the sources of BOLD contrast and its relationship to
underlying physiology.

In general, the physiological components that
contribute to the BOLD signal are known, and the
steady-state BOLD models that enable quantification are
calibrated of functional changes, what is constituted in a
separate challenge paradigm. The principles derived from
these biophysical models are then used to interpret BOLD
measurements in different neurological disorders in the
presence of confounding vascular factors related to disease.

In Figure 3, theoretical BOLD signal response is
represented. Thus we have T2 * on the ordinate (oy axis) and
on the abscissa (ox axis) we have the time, measured in
seconds.

Note. This graphic representation describes the
principal/basic of the BOLD signal in functional Magnetic
Resonance Imaging (FMRI). Today, researchers in the
medical field use modern FMRI to determine which regions
are most active from a neuronal point of view or for
detecting changes in the brain's blood flow, at least.

The BOLD signal is a valuable tool for detecting
changes in neuronal activity in the human brain.



The graph, represented in the Figure 4, is the
histogram of the Bold signals, so on the ox axis it is Raw
signal value, and on the oy axis is found the Signal
frequency. It is mainly used for choosing the real value of
lacunarity threshold.

Observation. Difference between raw value and
physical value. The raw value of a signal is the value as it is
transmitted in the network. The physical value of a signal is
the value of the physical quantity (such as speed,
temperature, etc.).

In Figure 5, a fractal and a lacunarity analysis on the
map generated by the EEG signal, against the background of
the overlapping RMI representation is presented. It can be
noted the appearance varies over time due to the Bold signal
and the subject going through a series of exercises, which
target specific areas of the brain.

In Figure 6, a fractal lacunarity visual analysis on the
cerebral map generated, having the areas of interest of
yellow color, respectively with an intensity of level 1.68e +
4, as interpreted from the attached color band, located in the
range (-1.68e + 4, + 1.68e + 4).

The software program is done through a medical
imagining suite taken in 3 mm slices with a voxel of standard
512x512x12 size. The prime step for diagnostic
determination is the image processing by the instrumentality
of the differentiable package/box counting procedure (for
deduction of lacunarity degree, ultimately)

In Figure 7 a recorded electroencephalogram is
presented. It is about a graphical representation having on the
abscissa (x-axis) the frequency (Hz) and on the ordinate
(y-axis), the logarithm of the energy or power ratio (dB) of
signal received, respectively.

The electroencephalogram (EEG) is a non-invasive
evaluation that detects, potentiates and records the
bioelectrical activity of the brain. The neuronal cells that
make up the cerebral cortex emit post-synaptic potentials
with electrical value that can be taken, recorded and
evaluated using an electroencephalogram. The goal of this



investigation is to provide the doctor with information about
the electrical activity of the brain in the context of clinical
manifestations of a possible brain damage.

The detailed presentation of the designed software was
made within the articles found in the bibliography, in a
complex but more general way than the one in the present
study [19].

5. Conclusions

In the paper, the brain RMI has been analyzed to find
out the fractal dimension and lacunarity of benign tumor
samples. By easy to understand reasons, the RMN images
were processed in the manner presented in an above section
of current study to remove the noise and just keep the
formatted cell lines. After that, the neuro-image was
transformed into binary format and the differential box-
counting (DBC) method was applied to arrive of expected
results.

The software algorithm developed here, to identify
special formations associated to grave Alzheimer's disease,
leads at the estimation of the fractal dimension and the
lacunarity, with great accuracy. In principle, however, the
article develops an algorithm for identifying abnormal
structures in the brain, which has happened. These structures
were chosen, through MRI pictures / recordings used, from
those of patients susceptible to Alzheimer's syndrome. For
these reasons, we said that we estimated the fractal
dimension and the lacunarity to identify serious Alzheimer's
disease. We made a quantitative determination of this disease
and expressed a superior diagnosis, as a level of
confidentiality!

About it, we can say that it is original and has been
detailed in absolute premiere by the authors.

In the end, it can be said that extractions of intrinsic
medical features using fractal lacunarity took place,
highlighted from FMRI sources.


