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Introduction

Metal composite materials have found application in many areas of daily life for quite some
time. Often it is not realized that the application makes use of composite materials. These materials
are produced in situ from the conventional production and processing of metals [1].

Materials like cast iron with graphite or steel with a high carbide content, as well as
tungsten carbides, consisting of carbides and metallic binders, also belong to this group of
composite materials. For many researchers the term metal matrix composites is often equated with
the term light metal matrix composites (MMCs). [1]

Substantial progress in the development of light metal matrix composites has been
achieved in recent decades, so that they could be introduced into the most important applications.
In traffic engineering, especially in the automotive industry, MMCs have been used commercially
in fibre reinforced pistons and aluminium crank cases with strengthened cylinder surfaces as well
as particle-strengthened brake disks. [1]

These innovative materials open up unlimited possibilities for modern material science and
development; the characteristics of MMCs can be designed into the material, custom-made,
dependent on the application. From this potential, metal matrix composites fulfill all the desired
conceptions of the designer. This material group becomes interesting for use as constructional and
functional materials, if the property profile of conventional materials either does not reach the
increased standards of specific demands or is the solution of the problem. However, the technology
of MMCs is in competition with other modern material technologies, for example powder
metallurgy. The advantages of the composite materials are only realized when there is a reasonable
cost — performance relationship in the component production. The use of a composite material is
obligatory if a special property profile can only be achieved by application of these materials. [1]

Titanium, aluminium and magnesium alloys are the most popular matrix metals presently
in vogue, which are particularly suitable for automobile, defence, structural and aircraft
applications [1]. In the last three decades, metal matrix composites (MMCs) have the potential to
replace the conventional materials in several fields of applications like transportation, military,
marine as well as in various advanced engineering industries [2].

Aluminium matrix composites (AMCs) are being considered as a group of advanced
materials for their lightweight, low thermal expansion coefficient, outstanding wear resistance
properties and good mechanical properties [3].

Extensively employed fabrication methods for aluminium matrix composites involve stir
casting, compo casting, vacuum casting, powder metallurgy, centrifugal casting, insitu casting and
squeeze casting [4-5]. Among those available process, in situ method is most economical and is
always preferred. In situ formed particles reveal strong interfacial bonding with the matrix. In situ
method overcomes the limitations of stir casting process such as improper wetting of
reinforcement particles and density dependence of particles and its associated problems like
sinking and floating of particles [6]. In situ ceramic particles, such as Al2Os, TiB2, AIN, TiC, B4C
and ZrB have been widely used as reinforcements in aluminium-based composites [7].

The particular attributes of aluminium composites are a combination of high specific
stiffness, good fatigue properties, and the potential for relatively low-cost conventional processing.
It is also possible to tailor the mechanical and thermal properties of these materials to meet the
requirements of a specific application. To do this there are a number of variables which need to be
considered, which include the type and level of reinforcement, the choice of matrix alloy, and the



composite processing route. All these factors are inter-related and should not be considered in
isolation when developing a new material [8].

Aluminium composites have been under development for many years during which time a

vast number of different types of reinforcement have been attempted with varying degrees of
success [9]. These include continuous fibres, both monofilament and multifilament, short fibres,
whiskers and particulates [10]. Many different matrices have been tried over the years and these
have a bearing on some of the properties that can be achieved in the composite. Corrosion
resistance, strength levels, toughness etc. are all strongly influenced by the matrix alloy [11].
Generally standard engineering alloys are used but in a slightly modified form to accept the
selected reinforcement.
The type of reinforcement also influences the method of manufacture, continuous monofilament
needs to be handled in a different way to particulate or even short fibre reinforcement. The
aluminium composites currently under consideration, by the auto industry, for application in gas
turbine engines that are particulate reinforced [8].

Even with this restriction a number of processing routes may be employed, and secondary
processing may be applied to further tailor the material properties to meet a particular component
requirement. The great advantage of particulate reinforcement, in terms of processing, is that
conventional metal manufacturing methods and machining techniques can be used. This improves
the economics of the case for the use of aluminium metal matrix composites relative to that of
other composites, which have, traditionally, been expensive and very labour intensive [8].



CHAPTER 1. CLASSIFICATION OF METAL MATRIX
COMPOSITES

1.1. Types of metal matrix composites

Metal matrix composites can be classified in various ways. One classification is the
consideration of type and contribution of reinforcement components in particle-, layer-, fiber and
penetration composite materials (see Fig. 1.1) [1]. Fiber composite materials can be further
classified into continuous fiber composite materials (multi and monofilament) and short fibers or,
rather, whisker composite materials, see Fig. 1.2. [1]
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Figure 0.1. Classification of metal matrix composites [1]
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Figure 1.2. Schematic representation of three forms of metal matrix composites [1]



1.2. Reinforcement phases

Reinforcements for metal matrix composites have a manifold demand profile, which is
determined by production and processing and by the matrix system of the composite material. The
following demands are generally applicable [4]: [1]

* low density,

» mechanical compatibility (a thermal expansion coefficient which is low but adapted to the
matrix),

* chemical compatibility,

* thermal stability,

* high Young’s modulus,

* high compression and tensile strength,

* good processability,

* economic efficiency. [1]

1.3. Particles, fibers and short fibers used for reinforcing metallic materials

The availability as well as the demand for reinforcing compounds for metal matrix
composites is very extensive. Their selection depends on the condition of the matrix, the type of
processing of the composite material and the demands on the material (temperature, corrosion,
stress etc.). [1]

These demands can be almost exclusively fulfilled by nonmetal inorganic reinforcement
components. Ceramic particles, or rather fibers or carbon fibers, are used for metal reinforcement.
An application area of metal fibers is that of functional materials (for example for contacts,
conductors and superconductors). However, their application in the structural area mainly fails
because of the high density. Organic fibers cannot be employed because of their low Young’s
modulus, processing problems, poor thermal stability and poor compatibility [12].

Reinforcement materials for metal matrix composites can be produced in the form of
continuous fibers, short fibers, whiskers, or particles. The parameter that allows us to distinguish
between these different forms of reinforcements is called the aspect ratio. Aspect ratio is nothing
but the ratio of length to diameter (or thickness) of the fiber, particle, or whisker [13].

Thus, continuous fibers have an aspect ratio approaching infinity while perfectly equiaxed
particles have an aspect ratio of around one.

Ceramic reinforcements combine high strength and elastic modulus with high temperature
capability [13].

Continuous ceramic fibers are also, however, more expensive than ceramic particulate
reinforcements [13].

Considering economic criteria, the use of discontinuous reinforcement, like particles or
short fibers, appears most favorable [1].



CHAPTER 2. The study of the specialized literature

Numerous studies on the elaboration of aluminum matrix composite materials reinforced
with ZrBa, ZrAls particles or containing both compounds, hybrid composites, are published in the
specialized literature (ZrB> + ZrAls) [33 — 52].

Alloys A356 [33, 43, 46], AA6061 [35, 51, 52], AA2024 [36, 40], AA5052 [38, 39, 48],
AA2618 [41], AA2014 [42] can be used as matrix material, AA6351 [44], AA7075 [47], AAGO61
[47], A380 [50] or metallic aluminum: Al 99.7% powder [34], Al of purity over 98% [37, 45, 53
- 65] .

By reactions between aluminum alloys and Zr-containing elements (eg K2ZrFg) and boron-
containing elements (eg KBF4) [34, 37 - 48] or using Al-B and / or Al-Zr pre-alloys [33, 49],
various concentrations of reinforcing elements were obtained, as final reaction products,
intermediates or combinations thereof.

In addition to aluminothermic reactions, other methods were used such as borothermic and
carbothermic reduction, mechanochemical treatment, CVD, sol-gel, thrombolysis of ZrB.-
containing gas, magnetochemical process, etc. [53 - 65].

The main diagram studied was that of Al - KoZrFe - KBF4, but studies were also presented
on the binary diagrams KF-NaF, KF-KCI, KCI-NaCl [53 - 65], following the melting temperatures
at various concentrations, so that the salts are in the liquid state for the best possible conditions for
the development of the formation reactions of the reinforcing compounds.

A very important parameter when obtaining metal matrix composites reinforced with
AlsZr, ZrB; etc. was the working temperature. Thus, from the study of the literature it results that
we must have temperatures higher than 700°C [5]: 850°C [33, 42, 44, 47, 49], 860°C [39], 870°C
[36, 40], 885°C [38, 48], 900°C [44]. In the study [44], the authors performed the analysis of the
compound ZrAls and its morphology at 850°C, 900°C, 950°C and 1000°C.

Another parameter that has an influence both on the process of obtaining composite
materials and on the quantity and dimensions of the reaction products, is the stirring time of the
mixture formed by the liquid matrix material and the salts used for the addition of B and Zr. Stirring
times varied with values ranging from 10 minutes [49], 20 minutes [42], 30 minutes [44, 48], 40
minutes [47], exceeding one hour or reaching up to 4 hours [34].

As a result of the reactions, reinforcing particles with different morphologies were
obtained, with dimensions starting from 15 nm [36, 39, 40] and reaching 100 um [33, 46, 50, 52].

Samples from the composite materials obtained were analyzed by optical microscopy - MO
[35, 36, 40, 42, 44, 47 - 50] and SEM and TEM electron microscopy [33 - 40, 43 - 52], as well as
X-ray diffraction (XRD), as can be seen in the following figures (2.1 - 2.5).
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Figure 2.1. Optical microscopy of AA2014 (a) alloy, AA2014 / 4% ZrB, (b) composite AA2014
/ 8% ZrB; (c) composite, and XRD for AA2014 / ZrB; (d) composite [42]

Figure 2.2. SEM microstructures of particles extracted from the composite material, obtained at
600°C (a) and 800°C (b), reaction time 2 hours [34]
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Figure 2.3. SEM microstructures of particles extracted from the composite material obtained at
8000C, reaction time 1 hour (a) and 2 hours (b) [34]
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Figure 2.4. SEM microstructures (a, b) and optical microstructure of composite AA6061 / AlzZr
[35]



Figura 2.5. Imagini SEM ale compozitelor Al/AlsZr + ZrB; obtinute la diferite
temperaturi: (a) 1123 K; (b) 1173 K; (¢) 1223 K si (d) 1273 K [45]

Other techniques for highlighting the structures and compounds formed are: XRF [34],
XRD and EDAX [35, 36, 37, 39, 40, 42 - 52], DTA-TG [37], TEM [33, 36, 39, 40], HRTEM [34,
36]. The properties of the obtained materials were subjected to tests to determine the physical-
mechanical properties (hardness, wear resistance, mechanical strength, elongation, expansion) [33,
38, 39, 40, 42 - 50], to determine the corrosion potential, the currents of corrosion, linear
polarization resistance, etc. [41].

Figure 2.6. TEM image for ZrB, compound, obtained at 8000C, reaction time 2 hours [34]
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Figure 2.7. TEM image (s) with highlighting reinforcement elements
and HRTEM image (f) of the shaded area with white square (s) [36]
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Figure 2.8. Thermogravimetric analysis for composite AA5052 / ZrB; [36]
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CHAPTER 3. Studies and research on the thermodynamics of in
situ processes of obtaining Al matrix composites reinforced with
ZrB: particles

Studies and research on the in-situ production of aluminum matrix composites and
reinforcing particles in the form of boron are presented in the literature. However, there is no
unitary view of the thermodynamics of the interaction processes of aluminum alloys introduced
into the melt with KBF4 and K»ZrFe salts at high temperatures. The addition of salts in molten
aluminum, at 890°C, generates the intermetallic compounds AlzZr and AlB: in the first phase and,
after the completion of the reaction, the compound ZrBo. In order to clarify the evolution of the in
situ reaction, thermodynamic calculations of the reactions proposed by different authors were
performed using the HSC Chemistry 6.0 program.

According to the thermodynamic studies of Degang Zhao et al. [66], the total ZrB:
formation reaction by the interaction between pure Al (99.85% wt.) and salts, at 1173K is (3.1),
having the free energy of negative Gibbs formation (AG =-758.73 kJ / mol).

K2ZrFs + 2 KBF4 + 10/3 Al = ZrB; + 10/3 AlF3 + 4 KF (3.1)

For calculations according to the HSC Chemistry 6.0 program, K»ZrFe was considered
dissociated into ZrF4 and 2KF.

ZrFs + 2 KF + 2 KBF4 + 10/3 Al = ZrB2 + 10/3 AlF3 + 4 KF (3.2)

In table 3.1. the results of the thermodynamic calculation for this reaction are presented
again in (Figure 3.1) Ellingham diagram.

Table 3.1. The result of the thermodynamic calculation of the reaction (3.2)

ZrFs + 2 KF + 2 KBF4 + 10/3 Al = ZrB2 + 10/3 AlF; + 4 KF
T,°C | deltaH, kJ | deltaS, J/igrad | deltaG, kJ K Log(K)
700 -917,920 -272,888 -652,359 1,044E+035 35,019
720 -918,961 -273,947 -646,891 1,062E+034 34,026
740 -919,985 -274,967 -641,402 1,178E+033 33,071
760 -920,990 -275,950 -635,892 1,421E+032 32,153
780 -921,978 -276,897 -630,364 1,852E+031 31,268
800 -922,947 -277,809 -624,817 2,600E+030 30,415
820 -923,898 -278,687 -619,252 3,914E+029 29,593
840 -924,831 -279,533 -613,669 6,294E+028 28,799
860 -871,336 -232,198 -608,220 1,095E+028 28,039
880 -872,128 -232,891 -603,569 2,200E+027 27,342
900 -872,916 -233,569 -598,905 4,662E+026 26,669
920 -934,702 -285,798 -593,703 9,858E+025 25,994
940 -935,477 -286,441 -587,981 2,084E+025 25,319
960 -936,233 -287,060 -582,245 4,626E+024 24,665
980 -936,972 -287,654 -576,498 1,077E+024 24,032




K - the equilibrium constant of the reaction
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Figure 3.1. Ellingham diagram AG°r = f(T) for the formation of molten ZrB: (reaction 3.2)

In figure 3.2. the variation of the thermodynamic parameters of the reaction is given 3.2.

§ &8 & &
1

|

|

|

|

J

o

90

y=62.392x - 2.1779
85 R? =0.9995

80

=75

Ln(

70

65

60

55
0.90 1.00 1.10 1.20

1/T*103, [K]

1.30 1.40 1.50

Figure 3.2. Variation of the thermodynamic parameters of the reaction (3.2): a) enthalpy variation; b)
entropy variation; c) variation In K =1 (1/T)

In conclusion, the reaction 3.1. it is thermodynamically possible having a negative AG at 1173K
(900°C).



CHAPTER 4. Development of AA6063 / ZrB, composites by in situ
reactions

The literature presents a series of studies on obtaining aluminum matrix composites of
series AA7075, A356, AA2024, AA5052, AA2014, AA6061, reinforced with zirconium diboride
particles, obtained by aluminothermic reactions at different temperatures (1000 K, 1023 K, 1123
K, 1143 K, 1158 K, 1163 K 1173 K) using different concentrations of KBF4 (for B) and K>ZrFs
(for zirconium) salts.

In Chapter 3 of this doctoral dissertation, determinations were made using the HSC
Chemistry 6.0 program regarding the thermodynamics of in situ reactions in order to obtain ZrB>
particles, for the temperature range 700 - 1000°C.

It was concluded that reaction 3.13 has the highest values in the studied temperature range,
for the free energy of Gibbs formation.

6KF + 3ZrF4 + 6KBF4 + 10Al = 3ZrB> + 9KAIF4 + KsAlFs (3.13)

The aluminothermic reaction for the formation of zirconium diboride can be carried out in
several stages, the first of which being to obtain aluminium diboride, according to reaction 3.7.

6 KBFs + 9 Al =3 AIB, + 2 KzAlFs + 4 AlF3 (3.4)
followed by obtaining the zirconium aluminide (ZrAls) according to reaction (3.4)
6 KoZrFs + 13 Al = 3 AlzZr + 2 KzAlFs + 2 AlF3 (3.7

st ulterior, in urma reactiei dintre AlB2 si ZrAls, cu formarea diborurii de zirconiu, conform reactiei

(3.8).
ZrAls + AIB; = ZrB; + 4Al (3.8)

In the present doctoral thesis we aimed to obtain by aluminothermic reactions, composites
with AA6063 alloy matrix reinforced in situ with zirconium diboride particles.

For the study it was desired to obtain composites with different concentrations of
reinforcing materials (2.5% ZrBz, 5% ZrB>, 7.5% ZrB,, 10% ZrB>) at a temperature of 900°C.



4.1. The technological flow of in situ elaboration of composites and the
experimental procedure

The in situ technological flow of Al / ZrB, composites

Al Matrix (AA6063) Salts (KoZrFs + KBF4 +NasAlFe)
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Figure 4.1. Schematic of the technological process of in situ elaboration of Al / ZrB> composites

4.2. Load calculation
The amounts of K»ZrFs and KBF4 were calculated according to the reactions below, in
order to determine the salt required to obtain boron-containing composites in amounts of 7.5, 15,
22.5, 30 g of ZrB», per 300 g of alloy used according to the general reaction to obtain composite
materials (3.13):
3K2ZrFe+6KBF4+10Al = 3ZrB> + 9KAIF4 + KzAlFe+ (3.13)

The bars were cast in a preheated steel shell at 200°C (Figure 4.2.)



Figure 4.2. AA6063 / ZrB, composite cast bars

Samples were taken from the samples obtained for the characterization from a
compositional point of view and the characterization of the physical-mechanical properties. The
notations of the samples are: A (2.5% ZrB); B (5% ZrBz); C (7.5% ZrB2); D (10% ZrB>).

The samples were processed by metallographic methods (cutting with the DELTA
Abrasimet device, bakelite embedding with the SIMPLIMET 1000 device, polishing and sanding
with the Buehler Beta / 1 Single device) and subsequently analysed by optical microscopy using
the Olympus BX51M Optical Microscope with Olympus U30 camera and Olympus Stream
Essentials software. The samples were attacked with Keller reagent (95 ml H20, 2.5 ml HNO3, 1.5
ml HCI and 1 ml HF).

The presence of the present reinforcement phases was confirmed by electron microscopy
using the SEM FEI Quanta Inspect F field emission microscope and equipped with an energy
dispersion spectrometer (EDS).
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Figure 4.3. The microstructure of composite A attacked and unattacked on different areas and sizes

The SEM micrograph of the AA6063 matrix and the EDS analysis of the AA6063 / ZrB>
composite is shown in Figure 4.4.



AccV Spot'Megn - Def WD
250kV 4.0 200x  BSE 9.8 °

7 —

& - | . - 4
ACCY SpotMagn Det WD F———— 2Qm AccV Spot Magn  Det W 10 pm
25.0%¢, 4.0 1000x BSE 958 \: 2 . 25.0kV 4.042000x BSE 9.8
e 1 L ; ‘

[4

Label A: Particule aciculare

]
Element | Wt% At %
MgK 2,11 26|
AlK 8241 | 9167
FeK 3.05 1.64 |
K 12.43 4.09 |
Total 100 100 |

Zr

™ Lr i FE 2

250 450 6.50 850 10.50 12.50 1450

Figure 4.4. SEM analysis of matrix AA6063 (a), composites AA6063 / ZrB; (b, ¢, d) with 2.5% ZrB; and
EDS analysis with chemical composition of sample A

The microstructure of the matrix alloy is typically dendritic. The completely dendritic
microstructure is absent in the composites, confirming the finishing of the granulation by the fine
particles of ZrB, and TiAls (Figure 4.4.) Which act as granulation finishers. Figure 4.5 shows the
microstructures of the attacked and unattacked sample D. In some areas the formation of ZrB2
clusters is observed.
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Figure 4.5. Microstructure of composite D unattacked and attacked, at different magnifications and in
different areas




In Figure 4.6. the SEM analysis of composite D is presented as well as the EDS analysis
of Zr-containing particles. The 10% increase in ZrBy particles leads, in some areas, to their

agglomeration (Figure 4.6 c).
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Figure 4.6. ME analysis and EDS analysis with the chemical composition of sample D
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XRD analysis of samples at different concentrations of ZrB, was performed with the

PANalytical X’Pert PRO diffractometer (Figure 4.7 - Figure 4.10) but also with the

ADVANCE diffractometer (Figure 4.11).
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It was highlighted that all samples of composite materials contain ZrB2, AlsZr and Al.

The ADVANCE D8 diffractometer is based on the unique platform of the D8 family of
diffractometers and is perfectly designed for all X-ray and dispersion diffraction applications,
including:

- X-ray diffraction (XRD)

- Pair distribution function (PDF analysis)

- Wide and small angle X-ray scattering (SAXS, WAXS)

D8 ADVANCE has the ability to measure all types of samples, from liquids to free
powders, from thin films to solid blocks, on a single instrument [80].
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Figure 4.11. XRD analysis of samples A, B, C, D - for the whole range of values of the angle 26 (a), for
ssa.Al (j) or for the compounds ZrAls (b, h, i) and ZrB; (b, d + k)

For the determinations performed, the databases of the D8 ADVANCE diffractometer were
used, namely sheet 00-048-1385 for AlsZr and sheet 00-04-0423 for ZrBy, in which are specified,
for pure substances, the crystallographic systems in which it crystallizes, the parameters
elementary cell, interatomic distances, densities, molar masses, etc.



00-048-1385 Dec 10. 2018 10:43 AM (ICDD)

Status Primary  Quality Mark: Indexed  Environment: Ambient  Temp: 298.0 K (Assigned by ICDD editor)
Chemical Formula: AI3Zr Empirical Formula: AI3 Zr  Weight %: Al47.02 Zr52.98  Atomic %: Al75.00 Zr25.00
Compound Name: Aluminum Zirconium  Entry Date: 09/01/1998

Radiation: CuKal (1.5405 .&} Internal Standard: Si d-Spacing: Guinier Intensity: Visual

Crystal System: Tetragonal = SPGR: I4/mmm (139)
Author's Cell [ a: 4.009R ¢:17.281 A  Volume: 277.74 83 Z: 400  MolVol: 69.44 cla: 4.311 ]
Calculated Density: 4.117 g/cm3  SS/FOM: F(24) = 25.6(0.022, 43)

Space Group: I4/mmm (139)  Molecular Weight: 172.16 g/mol

Crystal Data [ XtiCell a: 4.009 A  XtiCell b: 4.009 & XtiCell c: 17.281 &  XtiCell a: 90.00°  XtiCell B: 90.00°
XtiCell y: 90.00° XtiCell Vol: 277.74 Rs XtiCell Z: 4.00 cla: 4,311 a/b: 1.000 c/b: 4,311 ]

Reduced Cell [ RedCell a: 40092 RedCell b: 40092 RedCellc: 9.094& RedCell a: 102.73°

RedCell B: 102.73° RedCell y: 90.00° RedCell Vol: 138.87 ,3\3]

Atomic parameters are cross-referenced from PDF entry 04-001-2571
Space Group Symmetry Operators:
Seq Operator Seq Operator Seq Operator Seq Operator Seq Operator Seq Operator

1 XY,z 4 X.Y,-Z 7 XY, Z 10 Y, X,-Z 13 Y. X,Z 16 Y.X,-Z
2 -X,-Y,-Z 5 -X.Y,Z 8 -X,Y,-Z 11 Y, -X,Z 14 -Y,-X,-Z
3 X,"Y,Z 6 X,"Y,"Z 9 -V, X,Z 12 =Y, X,"Z 15 “Y,"X,Z

Atomic Coordinates:

Atom _ Num__Wyckoff Symmetry x Yy z SOF __IDP__AET
Zr 1 de 4mm 00 00 011886 1.0 12-b
Al 2 4e 4mm 0.0 00 037498 1.0 12-b
Al 3 4d -4m2 00 05 025 1.0 12-b
Al 4 4c mmm. 00 05 00 1.0 12-b

Subfiles: Inorganic, Metal & Alloy  Pearson Symbol: 1116.00  Prototype Structure [Formula Order]: Zr A3
Prototype Structure [Alpha Order]: AI3Zr  LPF Prototype Structure [Formula Order]: Zr Al3,t116,139
LPF Prototype Structure [Alpha Order]: Al3 Zr,t116,139

00-002-1093 (Deleted), v 04-001-2571 (Alternate), v 04-001-3330 (Alternate), v 04-001-3351
Cross-Ref PDF #'s: (Alternate), v 04-001-3544 8A|ternatei), v 04-003-4015 8Primaryg, v 04-003-4563 (Alternate), v
4-004-7164 (Alternate), v 04-008-8213 (Alternate), v 04-010-6142 (Alternate)

References:
Type DOI Reference

Clark, N., School of Physical Sciences, The Flinders Univ. of South Australia, Adelaide, Australia.
Private Communication (1996).

Primary Reference

Crystal Structure Crystal Structure Source: LPF.

Powder Data (Additonal References) Clark, N., Wu, E. J. Less-Common Met. 163, 227 (1990).

Structure Ma, Y., Romming, C., Lebech, B., Gjonnes, J., Tafto, J. Acta Crystallogr., Sec. B: Struct. Sci. 48,
11 (1892).

Unit Cell Brauer, G. Z. Anorg. Chem. 242, 15 (1939).

Additional Patterns: To replace 00-002-1093. Sample Preparation: Synthesized from elements in an

Database Comments: argon arc furnace. Warning: Lines with abs(delta 2Theta)>0.06 DEG.

d-Spacings (24) - Al3 Zr - 00-048-1385 (Stick, Fixed Slit Intensity) - Cu Kal 1.54056 A

20(°)  d(A) I h k 1 _* 20() d(A) I__h k 1__*
2054216 4320000 50 O 0 4 5344467 1713000 5 2 1 3
2272346 3.910000 60 1 0 1 57.87355 1592000 10 2 1 5
27.08041 3290000 20 1 0 3 6324989 1469000 60 2 0 8
3151994 25836000 30 1 1 0 65.85797 1417000 50 2 2 0
3422209 2618000 20 1 0 5 69169922 1348000 5 2 2 4
37.93268 2370000 100 1 1 4 7066048 1332000 5 3 0 1
4176420 2161000 50 O 0 8 7203042 1310000 10 2 1 9
4520943 2004000 60 2 O O 7372641 1284000 50 1 1 12
50.10689 1.819000 10 2 0 4 74.81450 1.268000 5 3 1 0
5116005 1784000 10 2 1 1 7523173 1262000 5 1 0 13
5277986 1733000 5 1 0 O 7861082 1216000 60 3 1 4
5321001 1720000 5 1 1 8 81.08702 1.185000 50 2 2 8

© 2018 International Centre for Diffraction Data. All rights reserved. Page 1/1

Figure 4.12. Sheet 00-048-1385 for AlsZr



00-034-0423 Dec 10, 2018 10:30 AM (ICDD)

Status Primary  Quality Mark: Star  Environment: Ambient  Temp: 298.0 K (Assigned by ICDD editor)
Chemical Formula: Zr B2  Empirical Formula: B2 Zr Weight %: B19.16 Zr80.84 Atomic %: B66.67 Zr33.33
Compound Name: Boron Zirconium  Alternate Name: zirconium diboride ~ CAS Number: 12045-64-6

Entry Date: 09/01/1984

Radiation: CuKal (1.5406 &)  Internal Standard: Si d-Spacing: Diffractometer ~ Cutoff: 22.10 &
Intensity: Diffractometer - Peak

Crystal System: Hexagonal SPGR: P6/mmm (191)
Author's Cell [ a: 3.16870(8) A  ¢: 3.53002(10)R  Volume: 30.70 82 Z: 1.00 MolVol: 30.70  cla: 1.114 ]
Calculated Density: 6.104 g/cm®  Color: Dark gray SS/FOM: F(23) = 179.7(0.0056, 23)

Space Group: P6/mmm (191)  Molecular Weight: 112.84 g/mol

Crystal Data [ XtiCell a: 3,169 8  XtiCellb: 3,169 A  XtiCell c: 3,530 A  XtiCell a: 90.00°  XtiCell B: 90.00°
XtiCell y: 120.00° XtiCell Vol: 30.70 R3 XtiCell Z: 1.00 cla: 1.114 a/b: 1.000 c/b: 1.114]

Reduced Cell [ RedCell a: 3.169 A RedCell b: 3.169A RedCellc: 3.530 & RedCell a: 90.00°

RedCell B: 90.00° RedCell y: 120.00° RedCell Vol: 30.70 A3 ]

Atomic parameters are cross-referenced from PDF entry 04-004-2991
Space Group Symmetry Operators:

Seq Operator Seq Operator Seq Operator Seq Operator Seq Operator Seq Operator
1 X.Y,Z 5 -X+Y,=X,Z 9 X, =X+y,Z 13 -X,~Y,Z 17 X=Y,X,Z 21 X, X=Y,Z

2 -X,-Y,-Z 6 X-Y,X,-Z 10 X,X-Y,-Z 14 X.Y,-Z 18 -X+y,-X,-Z 22 -X,-X+Y,-Z
3 Y. X-Y.,Z 7 Y. XZ 11 X-Y,-Y.Z 15 y,-X+y,Z2 19 -y, X.Z 23 -X+y.y.2
4 Y,-X+y,-Z 8 -Y,-X,-Z 12 -X+y,y,-Z 16 Y X-Y,-Z 20 Y. X,-Z 24 X-Y,-Y,-Z

Atomic Coordinates:

Atom Num Wyckoff Symmetry x y z SOF _IDP AET
Zr 1 1a 6/mmm 0.0 0.0 00 1.0 20-a
B 2 2d -6m2 0.33333 066666 05 1.0 3#b

Crystal (Symmetry Allowed): Centrosymmetric

Subfiles: Common Phase, Forensic, Inorganic, Metal & Alloy, NBS Pattern  Pearson Symbol: hP3.00

Prototype Structure [Formula Order]: A| B2  Prototype Structure [Alpha Order]: Al B2

LPF Prototype Structure [Formula Order]: Al B2,hP3,191  LPF Prototype Structure [Alpha Order]: Al B2,hP3,191
ANX: NO2

00-006-0610 (Deleted), v 04-001-1203 (Primaryé),x 04-001-3237 (Alternat%), v 04-002-0014
E)Altemate), v 04-002-1160 Alternatez) v 04-003-5557 gﬁternate v 04-003-6094 Alternat%) v

Cross-Ref PDF #'s: 04-003-6177 (Alternate), v 04-003-6284 (Alternate), -004-2991 (Alternate), v 04-004-5887
SAItemateg, v 04-004-7147 SAlternatez), v 04-004-7151 (Alternate), v 04-006-0200 (Alternate), v
4-006-2031 (Alternate), v 04-006-221

1 (Alternate)
References:
Type DOI _ Reference
Primary Reference Natl. Bur. Stand. (U. S. ) Monogr. 25 20, 113 (1984).
Additional Pattern Kiessling, R. Acta Chem. Scand. 3, 90 (1949).
Additional Reference Norton, J. et al. Metall. Trans. 185, 749 (1949).
Crystal Structure Crystal Structure Source: LPF.

Additional Patterns: To replace 00-006-0610. ANX: NO2. Sample Preparation: The sample was
Database Comments: prepared at NBS, Gaithersburg, Maryland, USA. Structures: Kiessling (1949) and Norton et al. (1949)
studied the structure of "Zr B2". Unit Cell Data Source: Powder Diffraction.

d-Spacings (23) - Zr B2 - 00-034-0423 (Stick, Fixed Slit Intensity) - Cu Kal 1.54056 A

26 (°) d(d) I h k 1 * 20(° d (A) I h k 1 *
2520438 3.530470 30 0 0O 1 90.84991  1.081350 10 1 0 3
3260018 2744450 67 1 0 O 9591463 1037210 7 2 1 0
4165686 2166320 100 1 O 1 10143860 0995125 14 2 1 1
5174466 1765210 9 0 0 2 10926193 0944618 4 1 1 3
5818250 1584280 19 1 1 0 11472865 0914695 3 3 0 0
6251314 1484530 21 1 0 2 118.95322 0.894196 10 2 1 2
64.40219 1445470 16 1 1 1 119.18013 0893155 6 2 0 3
68.29627 1372230 8 2 0 O 12089406 0885481 4 3 0 1
74.06876  1.278910 16 2 0 1 12158804 0882467 2 0 0 4
8158260  1.179050 13 1 1 2 132.93134 0840164 4 1 0 4
8176758 1176850 1 0 0 3 143.03853 0812163 7 3 0 2
90.65145 1.083200 8 2 0 2

© 2018 International Centre for Diffraction Data. All rights reserved. Page 1/1

Figure 4.13. Sheet 00-034-0423 for ZrB>



Extraction of ZrB. particles from the composite materials was performed by dissolving in
35% HCI solution followed by filtration and drying.

SEM analysis of ZrB, powders was performed with the SEM plant (VEGA 1l LMU). The
results are given in Figure 4.14.

SEM MAG: 31.28 kx  SEM HV: 30.00 kV VEGAW TESCAN SEM MAG: 31.28 kx SEM HV: 30.00 kV VEGA\ TESCAN
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Device: VEGA Il LMU u Device: VEGA Il LMU n
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Figure 4.14. SEM analysis of ZrB, powders extracted from composites

B2

ZrB> powders extracted from the samples of cast composites with dimensions between
Sum and 20pm were performed HRTEM analysis of the extracted powders (Figure 4.15).
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Figure 4.15. HRTEM images of ZrB, powders extracted from processed composite materials



CHAPTER 5. Physio-mechanical properties of AA6063 / ZrB:
composites

The mechanical properties followed and determined for the elaborated composites were:

hardness, mechanical resistance to breakage, tensile, mechanical resistance to compression.
Important properties of the reinforcement elements obtained in situ are presented in Table 5.1.

Table 5.1. Physical properties of zirconium diboride (ZrB>) [81]

Crystallographic Specific
Theoretical system, network P Coefficient of
. Thermal thermal .
IUPAC chemical parameters. . . linear thermal
conductivity capacity .
Name formula, Pearson symbol, (kWmK?) (cod kg™ K- expansion (a,
[CASRN] space group, the ' 1 P KO 10° KY)
type of structure, Z
Hexagonal
Zirconium ZrB, [12045- | a=0,3169 nm
diboride 64-6] ¢ =0,3530 nm 57,9 392,54 5,5-8,3
112.846 hP3, P6/mmm, AIB;
type (Z=1)
5.1. Hardness

The hardness was determined using a microdurimeter produced by Leco M-400-G, year of
manufacture 2004.
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Figure 5.1. Determination of the size of the cavities left after the tests for the determination of Vickers
microhardness by measurement using optical microscopy

5.2. Tensile strength




Figure 5.2. Samples used to determine tensile and elongation strengths
Data for tensile and elongation strength were taken from the results obtained using the

Instron Universal Testing Machine 8872 at room temperature using cylindrical samples 15 mm
long and 5 mm in diameter. On average, three samples were used for each test.
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Figure 5.3. Tensile test results for manufactured composite materials

5.3. Compression strength
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Figure 5.4. Compression test results for manufactured composites

5.4. Study of fractography of samples of cast composites

The in-depth study of the fracture surfaces was performed by SEM analysis using the
HITACHI HD-2300 microscope (scanning transmission electron microscope).
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Figure 5.5. SEM in fracture at composite AA03/2,5% ZrB; (Sample A)
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5.5.  The coefficient of expansion and diffusivity of the elaborated
composites

Any property of a material studied in a temperature range can be considered a
thermophysical property. However, traditionally, thermal expansion, thermal conductivity and
thermal diffusivity are considered to be the most common fundamental thermophysical properties.

A. Thermal expansion

The purpose of this method is to determine the coefficient of linear thermal expansion
(CTE) for some materials with coefficients of linear thermal expansion greater than = 1 micron /
° C, using a dilatometer with high purity sintered alumina components.

Thermal expansion coefficient analysis is a thermal method of tracking the dimensional
variability of a sample as a function of temperature and time.
The determination of the thermal expansion coefficient was performed with the help of the thermal
dilatometer model Unitherm 1161V (Fig. 5.9).

4 .
Figure 5.9. Vertical thermal dilatometer, model Unitherm 1161V

The temperature values between which this test is performed are in the range of 20 - 600°C.
This method is not used for materials with coefficients of thermal expansion less than 1x10-6 / °C;
below this value the interferometer or other capacitive measuring techniques are recommended.

The experimental data, respectively the dilatograms, for the four samples, taken from the
composite materials with 2.5%, 5.0%, 7.5% and 10.0% ZrB2, respectively, are presented in Fig.
5.10.
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Figure 5.10. Dilatograms, for the four samples, taken from composite materials with (a) 2.5%, (b) 5.0%,
(c) 7.5% and (d) 10.0% ZrB., respectively

In Figure 5.11. the results are presented in numerical and graphical format, respectively, of
the percentage coefficient of thermal expansion (E%), of the instantaneous coefficient of thermal
expansion (CTE) and respectively of the average coefficient of linear thermal expansion (A-CTE).
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Figure 5.11. The results in graphical and numerical format, respectively, of the percentage coefficient of
thermal expansion (E%), of the instantaneous coefficient of thermal expansion (CTE) and of the average
coefficient of linear thermal expansion (A-CTE), respectively, for: (a) 2.5%ZrB,; (b) 5.0%ZrB,; (c)
7.5%ZrBy; (d) 10.0%ZrB;

B) Thermal diffusivity

Thermal diffusivity is one of the most important transient thermal properties of materials.
Since thermal diffusivity is a measure of the speed with which heat passes through a material, its
importance is indirect but seems linearly related to the speed of things around us.

The experimental diffusivity data, for the four samples, taken from composite materials
with 2.5%, 5.0%, 7.5% and 10.0% ZrB,, respectively, are presented in Tables 5.2, 5.3, 5.4 and 5.5.

Table 5.2 — Thermal diffusivity values for the composite sample with 2.5% ZrB,

Segment | Temperatura | omediu o 02 o3 o o5 as
[°C] [cm?/sec] | [cm?/sec] | [cm?/sec] | [cm?/sec] | [cm?/sec] | [cm?/sec] | [cm?/sec]
A 89 0,6993 0,7062 0,6946 0,7113 0,7357 0,5838 0,7643
B 209 0,7671 0,7629 0,7713 0,7552 0,7773 0,7651 0,7708
C 329 0,7613 0,7616 0,7626 0,7598 0,7615 0,7603 0,7621
D 423 0,7362 eroare eroare 0,7364 eroare eroare 0,7401




E | 529 | 06888 [07106 | 07125 [07242 |eroare | 0,6609 | 0,6359
Table 5.3 — Thermal diffusivity values for the composite sample with 5% ZrB;
Segment | Temperature | Gmediu o1 02 03 o4 o5 as
[°C] [cm?/sec] | [cm?/sec] | [ecm?/sec] | [cm?/sec] | [cm?/sec] | [cm?/sec] | [cm?/sec]
A 89 0,6999 0,6966 0,7033 0,6965 0,6967 0,7033 0,7032
B 239 0.7725 0,7698 0,7767 0,7750 0,7712 0,7715 0,7710
C 369 0,6899 0,6898 0,6899 0,6897 0,6999 0,6900 eroare
D 427 0,6558 0,6490 0,6558 0,6507 0,6609 0,6558 0,6626
E 485 0,5945 0,5943 0,5842 0,5945 0,6008 0,5944 0,5990
Table 5.4 — Thermal diffusivity values for the composite sample with 7.5% ZrB,
Segment | Temperature | @mediu o1 02 o3 v o5 VS
[°C] [cm?/sec] | [cm?/sec] | [cm?/sec] | [cm?/sec] | [cm?/sec] | [cm?/sec] | [cm?/sec]
A 75 0,7776 0,7776 0,7777 0,7778 0,7776 0,7775 0,7778
B 236 0,7509 0,7446 0,7456 0,7539 0,7549 0,7560 0,7508
C 388 0,7063 0,7146 0,6981 0,7063 eroare 0,7062 eroare
D 465 0,6550 0,6649 0,6650 0,6651 0,6650 0,6648 0,6652
E 531 0,5843 eroare 0,5842 0,5844 0,5843 eroare eroare
Table 5.5 — Thermal diffusivity values for the composite sample with 10% ZrB;
Segment | Temperature | omediu a1 a2 a3 a4 as a6
[°C] [cm?/sec] | [cm?/sec] | [cm?/sec] | [cm?/sec] | [cm?/sec] | [cm?/sec] | [cm?/sec]
A 112 0,7342 0,7187 0,7446 eroare 0,7187 0,7446 0,7446
B 254 0.7728 eroare 0,7725 0,7765 0,7765 0,7693 0,7693
C 398 0,7374 0,7374 0,7417 0,7291 eroare 0,7374 0,7417
D 475 0,6570 eroare eroare 0,6273 0,6867 0,6867 0,6273
E 530 0,6476 0,6364 0,6365 0,6589 0,6570 0,6484 0,6485

The graphical representation of the thermal diffusivity as a function of temperature,
corresponding to the values presented in Tables 5.6, 5.7, 5.8 and 5.9, is shown in Fig. 5.12.
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Figure 5.12 - Graphical representation of thermal diffusivity as a function of temperature, corresponding
to the values presented in Tables 5.1 (a), 5.2 (b), 5.3 (¢) and 5.4 (d).



In order to verify the correctness of the obtained results, a reference material, respectively
a composite graphite (Thermal Graphite-TG) was tested; the tabulated values of the thermal
diffusivity, as well as the graphical representation, are presented in Table 5.6, respectively Fig.

5.13.

Table 5.6 - Thermal diffusivity values for the standard composite graphite sample (Thermal
Graphite-TG), measured and compared with the values in the Compliance Bulletin

Segment Temperature | omediu a1 02 o3 v o5 a6
[°C] [cm?/sec] | [cm?/sec] | [cm?/sec] | [cm?/sec] | [cm?/sec] | [cm?/sec] | [cm?/sec]
A 90 04300 |04277 |04212 [04236 04558 |04355 [0,4164
TG(etalon) | 100 0,4440
B 210 03272 03283 [03282 [03222 [0,3306 [0,3250 |0,3286
TG(etalon) | 200 0,3540
C 329 02600 |02664 [0,2604 [0,2604 |0,2600 [0,2553 |0,2573
TG(etalon) | 300 0,2880
D 424 02256 |02321 |02257 [02254 02251 [0,2223 |[0,2229
TG(etalon) | 400 0,2430
E 529 01973 01980 [0,1986 [0,1983 [0,1979 [0,1975 |0,1936
TG(etalon) | 500 0,212
0.469
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CHAPTER 6. Summary of the main scientific and technical
contributions of the author

Increasing demand for high-density, low-density materials in the aerospace and automotive
industries makes aluminium matrix composites (AMCS) a leading candidate for a number of
applications.

Thus, a large number of AMCS composites replace conventional aluminium alloys due to
the combination of properties such as: high wear resistance, low coefficient of thermal expansion
and a high strength / mass ratio. Graphite particles, carbides (SiC), oxides (Al203), nitrides are
mainly used as reinforcement materials.

From different ceramic reinforcement materials, we chose zirconium boride (ZrB>)
because it has high melting temperature, high hardness, high density (2g / cm®), high coefficient
of thermal expansion (6.88x10°K™1), thermal inertia, high electrical conductivity, high chemical
inertia.

AMCS composites can be produced in either solid or liquid state. From the two categories
of processes, we chose the liquid process. This procedure can be "ex-situ™ or "in-situ".

For the production of AA6063 / ZrB, composites we chose the in-situ process. While the
“ex-situ” process involves mixing the particles in the melt, the “in-situ” process consists of
chemical reactions between elements or between elements or compounds to obtain the reinforcing
particles directly in the melt.

The merit of the "in-situ” process of forming ZrB: in the aluminium alloy melt is that it
generates fine ceramic particles of ZrB. and AlsZr, a very good interfacial bond between the matrix
and the particles formed by the reaction between K»ZrFs, KBF4 and Al, and the ZrB; particles
increase the ductility when finishing the granulation of the cast products.



CHAPTER 7. Conclusions and further research directions

The present work led to the realization of new materials with controllable properties in the
radial direction. The following results of the thesis can be considered as original:

* Extensive documentary study on composite materials - their classification according to
the basic matrix and the reinforcing elements.

* Documentary study on the structure and properties of composite materials compared to
the structure and properties of classical metallic materials.

* The study of the thermodynamics of the phenomena that take place in the system AA6063
- KoZrFs - KBF4 - NasAlFg during the aluminothermic reaction, at different concentrations.

* Microstructural characterization of AA6063 / ZrB> composites, by optical and electron
microscopy (SEM, TEM and HRTEM).

* Characterization of composites obtained in-situ by X-ray diffraction (XRD) and energy
dispersive spectroscopy (EDS) for different phases formed.

* TEM analysis of the ZrB> compound to examine the structure, composition, and
properties in detail.

* Vickers microhardness in different areas of composite materials reinforced with ZrB»
ceramic particles.

* The influence of ZrB> on the breaking of composites.

* Analysis of the granulometric distribution as a function of volume for different
concentrations of reinforcing particles, resulting from the reactions in the system AA6063 - KoZrFs
- KBF4 - NasAlFe.

* Vickers microhardness in different areas of functional gradient materials reinforced with
ZrB> ceramic particles.

» Comparative analysis of expansion coefficients according to the concentrations of
reinforcing elements obtained in-situ.

» Comparative analysis of the diffusivity of composite materials AA6063 / ZrB2, depending
on the concentrations of reinforcing elements obtained in-situ.

Future directions of research

1. Analysis of the physical-mechanical behaviour of reinforcing composites with different
borons (ZrBz, TiB2, VB, etc.) and completion of mechanical test tests.

2. Determination and mathematical modelling of other correlations such as tensile strength
or modulus of elasticity and some material constants.

3. Obtaining functional gradient materials using AA6063 / ZrB, composites as starting
materials.
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