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1 Introduction
Dictionary Learning for sparse representations (DL) is a class of signal process-
ing techniques that approximate signals by a linear combination of few elements
of a basis, called the dictionary. The learning problem requires that both the
dictionary and the sparse representation are learned from the data. The model
is used for solving general signal reconstruction problems, for classification, vari-
ous image-related tasks and in the field of compressed sensing. When it comes to
2D signals, such as images, however, the model requires that the data is vector-
ized, an operation that potentially breaks the correlations present in the second
dimension. A solution to this drawback is the so called Separable Dictionary
Learning (SDL) model, in which the dictionary is structured as the Kronecker
product of two smaller (therefore more computationally efficient) dictionaries.

The primary focus of the thesis concerns the SDL model and, in particular,
it deals with determining the optimal values of the two underlying heuristics:
the sparsity of the representation and the dictionary size. Signal sparsity is
the main assumption of the DL model and while it is rigorously proven only for
some types of signals, practice has shown the suitability of such a representation
in numerous (other) applications. The question of choosing the target sparsity
of the model therefore remains open: there are limited possibilities of inferring
the real sparsity of the data. The second heuristic is related to the number
of elements in the dictionary (called the atoms), of which few are chosen to
represent each signal. Numerical experiments [1] have shown that while larger
dictionaries produce better signal approximations, this improvement levels out
beyond a point and does not justify the additional computational demand.

In this work, we also adapt the SDL model to the problem of identifying
graph anomalies. We are concerned with detecting abnormal topologies, i.e.
(sub-)graph structures that stand out from the neighboring connectivity pat-
terns. In such a case, the graph signals can be represented by their corresponding
Laplacian matrices and we expect the dictionary atoms to describe elementary
relational configurations. Our contribution also includes two other solutions for
the anomaly detection problem, that take into consideration the requirements
of most applications: the appropriateness of the method for unsupervised and
online scenarios.

The dictionary learning problem is formalized as

Y = DX + V . (1)

where Y ∈ Rm×N are the N signals, D ∈ Rm×n is the dictionary, having n
atoms, X ∈ Rn×N is the representation matrix and V ∈ Rm×N represents the
noise, which in most cases is considered to be Gaussian.

Both the dictionary and the representation are to be learned from the signals,
leading to the following optimization problem
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min
D,X

‖Y −DX‖2F

s.t. ‖xl‖0 ≤ s, l = 1 : N

‖dj‖2 = 1.

(2)

Note that while D can also be designed in advance and kept fixed, we do
not treat this case and instead consider only the case in which the dictionary
is learned. Such an approach has the advantage of producing a better suited
dictionary for approximating the signals. The above problem is usually solved
via an alternate minimization scheme, in which D and X are iteratively refined
until a certain condition is met. The procedure starts by initializing a random
dictionary and computing the representation, a step called sparse coding. In
the next iteration, X is kept fixed and the dictionary is updated. A common
stopping condition is the number of learning iterations, as most algorithms
for updating D are known to achieve good approximation performance after
sufficient iterations.

In separable dictionary learning, the dictionary is formed as D = D2 ⊗D1,
with D1 ∈ Rm1×n1 and D2 ∈ Rm2×n2 . The model becomes

Y = D1XD
>
2 + V (3)

and it is known to be equivalent to (1), since

vec(D1XD
>
2 ) = (D2 ⊗D1)vec(X). (4)

2 Sparsity Bayesian Learning for Separable DL
The first constraint in (2) assumes the target sparsity s is known in advance,
which is rarely the case in practice. Performance is highly dependent on the
choice of sparsity, especially in some classes of applications, such as compressed
sensing. We show that misestimating sparsity leads to either overfitting or
underfitting. The experiment is run on a synthetic dataset generated where the
real sparsity level is known and evaluates several models (i.e. models having
different target sparsity values) by assessing the ratio between train and test
errors. Results show that understimating sparsity leads to similar test and
train errors, suggesting improper model training, while overestimating s leads
to overfitting.

Existing solutions alleviate these problems by either estimating s in a pre-
liminary stage, by using a small set of signals to infer sparsity bounds, or employ
adaptive strategies for inferring optimal sparsity as learning progresses. A third
approach involves casting (2) as a Sparse Bayesian Learning (SBL) problem,
which, in its hierarchical formulation, leads to a sparse solution without the
need for explicitly setting a sparsifying prior. Consider the case where we are
dealing with a single signal y, instead of the entire signal matrix Y , and its
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corresponding representation x. The basic, non-hierarchical, SBL approach
considers the problem of learning x as

x̂ = arg max
x

p(x|y) = arg max
x

p(y|x)p(x). (5)

This formulation leads to the Maximum a Posteriori (MAP) solution, which can
be improved if instead of working directly on the elements of x, a hyperparam-
eter γ controlling the variance of each element is introduced

γ̂ = arg max
γ

p(γ|y, σ2) = arg max
γ

p(y|γ, σ2)p(γ). (6)

As [2] has shown, a non-informative prior p(γ) results in a sparse solution,
therefore knowledge on the real sparsity is no longer required. Optimizing for
γ leads to an estimation of the (Gaussian) posterior p(x|y,γ, σ2), having mean
µ = σ−2ΣxD

>y and variance

Σx =
(
σ2D>D + Γ−1

)−1
. (7)

where Γ is a diagonal matrix containing the hyperparameters. The covariance
matrix above is computationally demanding, because of its dimension. An al-
ternative formulation, in terms of the smaller Σy is given in [3]

Σy = σ2I +DΓD>. (8)

The mean now becomes

µ = ΓD>Σ−1y y. (9)

Estimation of γ can be performed following different approaches [2, 3]. We
use the Expectation-Maximization (EM) formulation (k denotes the current
iteration number):

E step: Ex|y,γ(k) [x2i ] = (Σx)i,i + µ2
i , (10)

M step: γ(k+1)
i = Ex|y,γ(k) [x2i ], (11)

(σ2)(k+1) =
1

m

(
‖y −Dµ‖2+(σ2)(k)

n∑
i=1

(
1−

Σxi,i

γi

))1/2

. (12)

Our contribution (SBL-2D) [4] adapts the SBL framework to the separa-
ble DL problem and proposes a two-stage approach. First, the representation
support is learned in a computationally efficient way, by changing the way the
hyperparameters control the representation elements. Since we are dealing with
two dictionaries, an element of X is influenced by an atom from D1 (namely a
column of the dictionary) and an atom from D2 (a row of D>2 ). We propose
that the variance of the rows and columns of X are controlled independently
by two hyperparameters, β(1) ∈ Rn1 for rows and β(2) ∈ Rn2 for columns.
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To adapt relations (7-8), we note that the matrix Γ is replaced by two
matrices B(d), one for each SBL process. Each B(d) can be expressed as a
Kronecker product, denoted generically B(d) = B

(d)
2 ⊗B

(d)
1 , with the particular

forms

B(1) = In2
⊗ diag(β(1)),

B(2) = diag(β(2))⊗ In1 .
(13)

Here Ind
denotes the identity matrix of size nd; the first above relation simply

says that all elements of row i of X are associated with β(1)
i . We introduce the

notation β(d), d ∈ {1, 2} for referencing both dimensions and extend it to all
other variables that have both row and column values.

Using known Kronecker product properties, adapting (8) for the 2D case
reads

Σ(d)
y = (σ(d))2I + (D2B

(d)
2 D>2 )⊗ (D1B

(d)
1 D>1 ). (14)

Structured covariances arise in several multivariate contexts. Consequently,
computing the inverse of covariances such as (14) is known [5] to be efficiently
obtained using the SVD decomposition, in our case

D1B
(d)
1 D>1 = U

(d)
1 S

(d)
1 U

(d)>
1 ,

D2B
(d)
2 D>2 = U

(d)
2 S

(d)
2 U

(d)>
2 .

(15)

By simply using the orthogonality of the matrices from the above relations, it
results that(

Σ(d)
y

)−1
= (U

(d)
2 ⊗U (d)

1 )
(

(σ(d))2I + S
(d)
2 ⊗ S(d)

1

)−1
(U

(d)
2 ⊗U (d)

1 )>, (16)

where now the matrix to be inverted is diagonal. We denote(
(σ(d))2I + S

(d)
2 ⊗ S(d)

1

)−1
= diag(t(d)),

with t(d) ∈ Rm. Using the above expression and denoting

E
(d)
1 = B

(d)
1 D>1 U

(d)
1 , E

(d)
2 = B

(d)
2 D>2 U

(d)
2 , (17)

the solution estimation (9) becomes

µ(d) = (E
(d)
2 ⊗E(d)

1 ) · diag(t(d)) · (U (d)
2 ⊗U (d)

1 )>y. (18)

The E step is completed by transforming the expression of the posterior covari-
ances (7) into

Σ(d)
x = B

(d)
2 ⊗B(d)

1 − (E
(d)
2 ⊗E(d)

1 ) · diag(t(d)) · (E(d)
2 ⊗E(d)

1 )>. (19)
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Figure 1: Execution time (in seconds) for SBL and SBL-2D. Left: time per
iteration. Right: total time.

Until now, we have presented the ingredients for solving the E step of the
EM algorithm. The M step amounts to updating the hyperparameter values
and noise estimation. We adapt the step to our separable problem as

β
(d)
i ← 1

n3−d

n∑
`=1

cd(`)=i

(
(Σx)

(d)
`,` + (µ

(d)
` )2

)
. (20)

Finally, the noise estimation (12) is performed separately for the row and column
cases with

(σ(d))2(k+1) =
1

m1m2

‖y − (D2 ⊗D1)µ(d)‖2+(σ(d))2(k)

n∑
`=1

1−
(Σx)

(d)
`,`

β
(d)
cd(`)

1/2

.

(21)
With identifying the representation support in this manner, we complete the

first stage of our SBL-2D algorithm. The second step involves using the regular
SBL method on the reduced support in order to estimate the representation.
The approach improves the computational costs, since the problem is now con-
siderably smaller. Figure 1 shows execution times for both algorithms. Testing
is done using a synthetic dataset, where the real sparsity is s = 5 and signals
are corrupted by noise having signal-noise ratio SNR = 40.

Results show that accuracy is comparable to regular SBL and often con-
siderably higher than other sparse representation solutions adapted for the 2D
case. We test performance in a set of experiments on synthetic data as well as
real images. We vary the real sparsity level and noise values and measure the
signal approximation error (RMSE) and representation error (by comparing the
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true representation with the SBL-2D estimate). The contribution also includes
convergence tests - showing the reduction of the representation support at each
iteration, the evolution of the two error metrics, as well as false negative and
false positive counts for the identified support.

3 Dictionary Size Adaptation for Separable DL
When sparsity is unknown and not estimated by one of the strategies mentioned
above, it is usually set with respect to dictionary size. However, while at least
for some types of signals, an informed choice for sparsity is possible, in what the
dimension of the dictionary is concerned, such prior information hardly exists.
In turn, common practice is to set the size ofD with respect to signal dimension.
The alternative is to apply adaptive strategies for determining the optimal size.

Regardless of the optimality criterion used, all strategies involve starting
with either a small dictionary or a large one and adding and/or trimming atoms
as learning progresses, in order to obtain a better suited model (i.e. dictionary).
More precisely, size optimality is evaluated once every few iterations and the
dimension of the dictionary is modified accordingly. However, the size adapta-
tion strategy can interfere with learning, since newly added atoms require some
iterations to align to meaningful directions. In an experiment on synthetic data,
we investigate this effect by evaluating signal approximation error at each model
evaluation step and the corresponding optimal size, which we in turn compare
to the true dictionary size.

One solution for evaluating the model is the Minimum Description Length
(MDL) principle of model selection, which assumes the correlations present in
the signals allow for a parsimonious representation. As such, an optimal model
is one that can compress the data, while not hindering on signal approxima-
tion. The framework includes several Information-theoretic Criteria (ITC) that
seek a compromise between model performance and model complexity. In par-
ticular, the Renormalized Maximum Likelihood (RNML) criterion is known to
permit a formulation (called Extended-RNML) for the problem of determining
the optimal size of the dictionary [6].

Our contribution involves the adaptation of ERNML to the separable model
and corresponding size adjustment scheme [7]. Because of the equivalence of the
original DL model (1) and the separable counterpart (3), the ERNML criterion
does not require any essential reformulation in order to fit the separable case.
The only necessary adaptations concern dimension adjustments and, given we
are working with two dictionaries instead of one, parameter recount. In par-
ticular, signal dimension is T2D = m1m2N and the number of parameters is
NoP2D = sN + (m1 − 1)n1 + (m2 − 1)n2, since we are counting the degrees of
freedom for each dictionary separately. Adapted to the 2D case, the criterion
reads
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ERNML2D = (T2D −NoP2D) log
RMSE2

T2D −NoP2D

+ NoP2D log
‖D1XD

>
2 ‖2F

T2D ·NoP2D

+ log [NoP2D(T2D −NoP2D)] + 2N log

(
n1n2
s

)
.

(22)

Adapting dictionary size via ITC in [6] involves routinely evaluating the
model dimension-performance trade-off for a number ncand of candidate mod-
els, more precisely for different sized dictionaries. Following Occam’s razor, the
strategy is biased towards examining smaller dictionaries, which also has the
benefit of keeping the complexity of computing the criterion in check. It does,
however, account for cases where the optimal size is larger. The idea is, briefly,
to test whether the current dictionary is not over-sized with useless atoms. Ac-
cordingly, every iteradapt iterations, the (current) dictionary atoms are ordered
based on their representation power. The power of an atom j is defined as [1]

Pj = ‖x>j ‖22. (23)

The candidate models are formed by excluding the least powerful atoms, the
smallest candidate having ncurrent−ncand + 1 atoms (where, clearly, ncurrent is
the size of the dictionary at the present iteration). A representation is computed
for each model and the corresponding ERNML criteria are evaluated. The best
dictionary is that for which ERNML is smallest. The case where the current
dictionary is the one yielding the lowest value is interpreted as an indication
that the model is not complex enough and hence atom addition is performed.

When working with separable dictionaries, however, we refer to the repre-
sentation power of an atom combination D1,i and D2,j . More precisely, the
measure now takes the form

P2D =

N∑
k=1

X2
i,j,k. (24)

We therefore sort the atom combinations based on power and produce the
corresponding ranked atom lists for D1 and D2 respectively. There are now
n2cand candidates, since at most ncand atoms can be excluded from each dictio-
nary. The criterion is then computed for every pair combination of dictionary
dimensions. Size adjustment is done separately on the two dictionaries, by per-
forming the necessary atom additions/removals that are indicated by the lowest
ERNML value. The resulting best Dds may have different sizes, which lays
the ground for a well adapted model, since the signal patterns in one dimen-
sion (say the rows of y) may differ in size and complexity from the ones in
the other (columns of y), thus requiring a different number of atoms for their
representation.
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We also propose a solution that minimizes interference of dimension modifi-
cation with learning, which involves relying on ERNML2D only as an indicator
of the change. The actual optimal size is computed by smoothing the optimal
size values provided by the ITC criterion over the last ws iterations, in order
to avoid abrupt size changes that may lead to under-trained atoms. The solu-
tion uses a moving average filter of window ws. The complete size adaptation
scheme is presented in Algorithm 1.

Results show good performance in determining the true dictionary sizes for
several dimension configurations, different sparsity levels and noise values. Most
encouragingly, dictionary size is hardly underestimated, especially when the true
size is small.

4 Anomaly Detection
The anomaly detection (AD) problem can be seen as binary classification, where
one class represents the normal signals, while the second the anomalies. Our
contributions use dictionary learning to solve the AD problem for three appli-
cations: malware identification, financial fraud detection and the more general
problem of graph anomaly detection.

Malware detection is essentially a large scale problem, given the multitude
of software applications. The computational costs involved in learning such a
large set of signals can be alleviated by resorting to online algorithms that can
be successively trained on parts of the original dataset, without significantly
compromising on accuracy. Another aspect concerns the dynamics of the field,
where new types of malware are constantly produced, to evade the advances in
anti-virus solutions. Models must accommodate this adaptability, which trans-
lates into the ability of identifying malware for which no previous example is
available. Unsupervised methods are, thus, preferable.

The majority of the above observations also hold for the problem of detecting
financial frauds, perhaps even more so. Financial fraud poses an additional
problem for machine learning. A transaction is best described as a link between
two nodes - the financial entities. Therefore, a suited data representation is
that of a graph, which has the advantage of the representing inter-dependencies
of transactions. Usually, both nodes and edges are attributed with information
such as concerning identity, transaction amount and currency. Therefore, data
consists in both numeric and relational information. This underlying graph is
especially relevant with money laundering, where individual transactions in the
scheme may in themselves seem legitimate; it is only in the context of the graph
which links them that fraud becomes apparent.

Motivated by the problem of identifying money-laundering schemes and
other financial frauds, our work [8] reviews anomaly detection methods that
are aimed at graph data.

The general DL framework can be extended for the classification task, es-
pecially in the supervised setting. The goal is to learn a dictionary such that
different sets of atoms describe samples from each class. Moreover, it is also
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Algorithm 1: ITC-ADL-2D

Data:
signals, Y ∈ Rm×N

sparsity, s
number of DL iterations, K
iterations step for size adaptation, Kadapt

number of candidate sizes, ncand
minimum number of dictionary atoms nmin

moving average window, ws
Result: optimum-sized dictionaries, D1 and D2

1 Initialize dictionaries D1 and D2 of sizes nd
2 for k = 1 : Kadapt : K do
3 Perform Kadapt iterations of 2D DL and obtain updated dictionary,

D1, D2 and representation, X with s target sparsity
4 Order atoms separately in D1 and D2 according to power
5 Compute ERNML2D criterion for all n2cand candidates using (22)

and return sizes nd,ITC that yield smallest ERNML2D value
6 Compute nd,opt as moving average of nd,ITC over a ws window
7 Apply Dd = AdjustSize(Dd, nd,opt, nd), where d ∈ {1, 2} for both

D1 and D2

8 Perform Kadapt more DL iterations with nd,opt sized dictionaries
Function Dd = AdjustSize(Dd, nd,opt, nd)

9 if nd,opt − nd > 0 then
10 Set current adjusted size nd = nd,opt
11 Add nd,opt − nd atoms to dictionary Dd

else if nd,opt − nd < 0 then
12 Set current adjusted size nd = min(nd,opt, nmin)
13 Trim Dd to its most used nd atoms

else
14 Set current adjusted size nd = nd,opt + 1
15 Add 1 atom to dictionary Dd

beneficial that the representations of the signals in each class differ significantly
from the ones in other classes. These two constitute additional constraints im-
posed on the learning problem and can be achieved by forcing X to represent
class labels and respect class atom allocation, along with the regular signal
approximation objective.

Adding the three objectives together: signal reconstruction, discrimination
(between classes) and label consistency (atom-class allocation), results in the
following optimization problem
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min
D,W ,A,X

‖Y −DX‖2F + α‖H −WX‖2F + β‖Q−AX‖2F . (25)

where H ∈ Rc×N denotes the label matrix, W ∈ Rc×n the classifier matrix,
Q ∈ Rn×N the atom allocation matrix, A ∈ Rn×n is a dictionary that imposes
label consistency on the representation, and c stands for the number of classes.

The solution is called Label Consistent K-SVD (LC-KSVD) [9] since it can
be recast as a regular DL problem and solved by standard algorithms such as
K-SVD. Specifically, (25) is equivalent to

min
D,W ,A,X

∥∥∥∥∥∥
 Y√

αH√
βQ

−
 D√

αW√
βA

X
∥∥∥∥∥∥
2

F

. (26)

Online DL approaches to anomaly detection use several heuristics to control
the confidence of classification. While this has indeed a positive impact on
accuracy, it is not suited for the two applications we described. Both financial
frauds and malware entail a high degree of novelty: it is to be expected that
new fraudulent schemes are developed as old ones are exposed by anti-money
laundering efforts and new types of malware are created as antivirus programs
catch existing ones.

We propose a semi-supervised approach (called Tolerant Online Discrimina-
tive DL with Regularization - TODDLeR), which provides a solution to this
compromise. The setting involves an offline pre-training stage, where a dictio-
nary is learned using a small labeled sample set. Regular classification methods
for DL can be performed for this task, such as LC-KSVD described above. The
dictionary is used to initialize the unsupervised online stage, whereD is updated
by feeding the bulk of the dataset one sample at a time.

The following solution and results constitute our contribution published
in [10]. The method is based on an existing method [11], but in order to
make the solution better suited for malware detection, where unseen malware
types need to inform the model for future use, we aim at using all signals to
train the model. Improper labeling can misguide learning, therefore we wish to
prevent signals from drastically modifying the current model, since there is no
guarantee the change is for the best. The solution is to add regularization terms
for the classifier and label consistency matrix that control their rate of change.
Modified in this way, the label consistent classification problem (26) becomes

min
D,W ,A

‖y −Dx‖22 + α‖h−Wx‖22 + β‖q −Ax‖22

+ λ1 ‖W −W0‖2F + λ2 ‖A−A0‖2F .
(27)

In the formulation above we have also adapted the online approach: instead
of dealing with the entire signal matrix Y , the objective is minimized with every
incoming signal y, that has a corresponding label vector h and an associated
atom allocation vector q. By W0 and A0 we denote the current values of the
dictionaries, learned based on the previous signals.
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The updated values of W and A can be obtained by fixing everything else
in (25) and solving the corresponding minimization objectives

f(W ) = ‖h−Wx‖22 + λ1 ‖W −W0‖2F , (28)

g(A) = ‖q −Ax‖22 + λ2 ‖A−A0‖2F . (29)

Setting the gradients of the above functions to 0 leads to the following least
squares solutions

W = (hxT + λ1W0)(xxT + λ1I)−1, (30)

A = (qxT + λ2A0)(xxT + λ2I)−1. (31)

We test the solution on two malware datasets and a financial fraud dataset.
Results show comparable or improved classification accuracy over other online
DL methods for classification.

Our second contribution to AD is an unsupervised method that progressively
filters out the normal signals [12]. It is based on the assumption that normal
samples, which generally outnumber the anomalies, are better represented by
the model, and we thus used an error criteria to differentiate between the two.
The solution also takes into consideration the fact that, as filtering leaves less
regular signals to train on, this imbalance attenuates. We propose a composite
dictionary structure, in which the new models from each iteration are combined
with existing ones, since overtraining the dictionary on anomalies would corrupt
the error criterion.

We also experiment with using atom properties to inform the class labels.
An atom can be characterized in terms of the number of signals which are
represented using the atom, a property that is called usefulness, Uj = ‖x>j ‖0.
Another approach to progressively filtering signals involves the restriction of the
set A of potential anomalies to signals represented by atoms dj with usefulness
Uj < Na, namely

A = { yk | xj,k 6= 0 ∧ Uj < Na,∀j, k } . (32)

In other words, we expect atoms being used by less than Na signals to represent
the features of anomalies.

Both methods yield good results in lowering the false positive count, while
keeping the false negatives in check and can thus be used for obtaining a smaller
dataset with better class balance, since only normal signals are eliminated by
filtering, if proper stopping conditions are set.

We also employ atom usefulness, together with the atom power measure
in a multiscale dictionary setup to investigate the separability of normal and
abnormal signals. Intermediate results show that using the standard DL formu-
lation, without any added classification constraints, can still be informative on
class labels if we use atom properties in order to characterize the signals. The
experiments show that the distributions of atom usefulness and atom power
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Figure 2: Quantile-Quantile plot of atom power and usefulness distributions in
the normal and anomalies classes

12



differ significantly in anomalies from the normal samples. Figure 2 shows the
quantile-quantile plot illustrating this comparison.

Our last contribution, called Separable Laplacian Classification [13] involves
exploiting the structural information of graphs in order to identify anomalous
patterns. We work directly with the structure of the graphs and adapt the sep-
arable dictionary learning problem, which takes into account vicinity patterns
in 2D data. Our strategy is to exploit the two dimensional structure of a graph
Laplacian in order to learn connectivity patterns that are specific to each class
of graphs. The solution is tested on a synthetic dataset consisting of graph sig-
nals, in which the anomalies are structurally different from the normal samples.
The investigated patterns are rings and cliques, since they are common in fraud-
detection tasks. The training signals from each class are used separately to train
one pair of dictionaries. Classifying a new, test signal, accounts to evaluating
which pair of dictionaries is better at representing the signal. We also perform a
test that investigates the effect of dictionary size on the ability of the Separable
Laplacian Classification method in identifying the circular graph patterns.
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