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1 | Introduction

We aim to define a simple and efficient way of building distributed systems, starting from
a minimal set of features needed, and keeping the design as simple as possible, since much
of the complexity in distributed systems currently operated is accidental, emerging from
the use of multiple paradigms, technologies and approaches.

Our solution is relevant when the sources of data are scattered over a territory, or
when the place where a decision needs to be taken in a system is far from the place where
resulting actions need to be performed (e.g. SCADA, telemetry and IoT) . DOORS is also
a viable alternative when using many machines together for achieving economy of scale,
or resilience through redundancy.

DOORS promotes edge computing. Data storage and computation are brought closer
to the sources of data. Immediate benefits would be the significant decrease of communi-
cation bandwidth needs, and the real opportunity to decrease communication latency. In
addition, as mobile devices become increasingly powerful and numerous, more elaborated
constructs emerge, fostering the same decentralisation tendency, such as Drop Comput-
ing [8], on which carefully designed scheduling solutions promise to fulfil even real-time
constraints [29].

1.1 Main features

The proposed design is a runtime environment. The system implementer would only need
to install the nodes at their desired locations, interconnect them and then execute the
runtime on each. The actual solution to the distributed problem needs then to be described
in terms of both structure and behaviour as a set of objects, hosted and ran on the
instances of the runtime which are operating on each node. These app-specific objects shall
have access to communication, consensus, replication and transactional support primitives,
provided as services by the runtime.

The environment provides a low level of abstraction: single-threaded objects, holding
state, sharing nothing and exchanging messages. DOORS provides no shared-memory
abstraction, or garbage collection. DOORS focuses on offering support for the following
instead:

• deployment and evolution during normal operation;
• management of message streams(in fact event streams);
• measuring system performance in real time;
• migration of objects from one node to another;
• reaching consensus and transactional updates of data.
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1. Introduction 3

1.2 Structure of research

Starting with the characteristics of the targeted problems: geographical distribution and
weak communication channels, we enumerate the desirable set of traits: providing an
abstraction encapsulating both state and behaviour - the object. We "endow" objects with
the abilities to exchange asynchronous messages, to evolve during operation, to move from
one node to another during operation, and to decide this based on out-of-the box real-time
performance metrics.

The research is guided by the following questions:

1. What is the minimal set of primitive mechanisms we need to build into our
design in order to be able to provide the desirable set of traits enumerated
above? (RQ1)

2. What are the system-level capabilities we need to provide in order to be
able to resolve the targeted class of distributed problems? (RQ2)

3. What are the node-level capabilities which need to be present and how
are they being provided by the design? (RQ3)

4. What are the challenges emerging at application level (taking into consid-
eration the distributed nature of the applications) and how does DOORS
address them? (RQ4)

5. How is DOORS achieving its consistency and availability goals by imple-
menting partitioning and replication? (RQ5)

Our objectives map on the research questions,and are listed in Table 1.1.

1.3 Thesis outline

This thesis focuses on the system design, listing the set of required functionality and then
describing how the system fulfils them. Where the case, experiments were performed,
each of them developed on the "reference implementation". Beginning with the present
introductory chapter, the thesis continues as follows:

Chapter 2 gives an outline of the solution, presenting the major components and
allowing to later place details on each.

In the Chapter 3 describes the set of basic distributive capabilities. These include the
nature and types of messages exchanged, with their distinct objectives (i.e. notifications,
versus services calls and the detection of system-level faults), and the two most important
capabilities present at system level, which are replication and partitioning.

In the next section, Chapter 4 we "descend" at node level. All the above-described
system capabilities rely on mechanisms and features present on each node. We start with
the ability of inter-node communication, describing the design choice and continue with
the abstraction provided by DOORS, which is the object. DOORS objects are different
from the traditional OOP approach by executing methods asynchronously as response
to message receipts, by their single-threaded nature, as well as by how their life-cycle is
managed by the system (no garbage collection).

Chapter 5 presents the challenges which appear at application level and how they
are addressed by the design described in the previous chapters. The topics covered here
are: security, application deployment, versioning of structure and behaviour, and how we
model and process events.

Distributed Object Oriented Runtime System (PhD Thesis) - Drd.ing. Dorin PALANCIUC
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1. Introduction 4

Research
question

Research objective Research
methodology

Use case

RQ1 Establishment of the foun-
dation of the system, tak-
ing into consideration the
set of traits considered de-
sirable for efficiently solv-
ing the targeted problems

Prototyping and
evaluation

Identification of alternative ar-
chitectural solutions. Refine-
ment into reusable components

RQ2 Functional definition of
the system. Outline of the
structure present at global
level

Incremental devel-
opment of the de-
sign

Asynchronous communication.
Receipt confirmation. Match-
ing of requests and responses.
Replication of object state.
Partitioning of objects across
the available set of nodes.
Transactional support. Valida-
tion against the targeted set of
system traits

RQ3 Functional definition of
the node. Outline of the
structure and mechanisms
present at local level

Incremental devel-
opment of the de-
sign

Description of object structure
and behaviour. Scheduling of ob-
ject execution. Concurrency con-
trol

RQ4 Identification of the most
common challenges en-
countered in deployment,
operation and mainte-
nance of the distributed
systems implemented
for solving the targeted
problems

Qualitative ap-
proach, based on
the analysis of
publications and
documentation

Updates during normal opera-
tion. Application level secu-
rity. Modelling of events, sourc-
ing and complex event processing

RQ5 Identification and descrip-
tion of the relevant consis-
tency models

Qualitative ap-
proach, based on
analysis of aca-
demic publication
and documenta-
tion of industry-
standard solutions

Object updates during various
integrity scenarios: complete
system, isolated node, segmented
system. Deduction of the achiev-
able consistency model in each
scenario

Table 1.1. Thesis objectives and methodology.

Chapter 6 contains case studies. These are concrete implementation examples,
where we outline how the features of the system solve the specific challenges.

The thesis ends with Chapter 7, which sums up the contributions, outlines the "best-
case scenario" industrial implications of the DOORS proposal, and a brief description of
the future work envisioned on the implementation of DOORS.

Distributed Object Oriented Runtime System (PhD Thesis) - Drd.ing. Dorin PALANCIUC
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2 | Proposed Solution

We propose a set of principles, centred around the following features: object orientation,
event orientation, and distributed architecture.

2.1 Object and event orientation

The unit of modelling is the object, mapping to an entity from the problem space. The
object abstraction shall encapsulate both the state and the behaviour of the modelled
entity or concept. Objects communicate by sending each other asynchronous messages.
The receiver "decides" how to respond to each message.

Messages are used to model events. The system reacts to events received from its
environment and the objects composing the system define their behaviour in terms of
reactions to events. The system shall also provide support for acquisition and processing
of event streams, which are virtually infinite series of events. Objects are "instances" of
classes. Classes and objects are persistent, which relies on the fact that DOORS nodes
run on systems with continuous power. The system runtime offers introspection into all
hosted objects. Even the system objects shall present their interfaces in the same manner.
A properly authorised client shall be able to explore and extend the structure of the system
at runtime.

No ORM (Object-Relational Mapping) and/or relational database systems are em-
ployed in order to provide persistent state for objects. Objects may refer to other objects,
so a class definition may describe its components in terms of other classes. The system
provides no garbage collection. Unless explicitly deleted, an object continues to exist
indefinitely in the system. Objects that are not "used" for a long time shall end up in
storage, as shown in Figure 2.1:

Figure 2.1. Object persistence and eviction to storage.

In the reference implementation there is no inheritance, or polymorphism.
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2. Proposed Solution 6

2.2 Distributed architecture

The system is composed of a set of units with computation and storage capabilities,
named "nodes". Different nodes may have radically different specifications and may be
distributed geographically, but they are all interconnected. DOORS provides moderate
scaling needs, in the range of tens to hundreds of nodes per system instance. Nodes provide
for both replication and partitioning. The system provides services to clients, which also
use network connections. A client may connect to any of the nodes and may send messages
to any object in the system, regardless of its node of residence. The state of any single
object resides on a single node, while its behaviour specification is replicated on each node,
enabling parallel execution and scalable storage.

Figure 2.2. Replicated classes, partitioned objects in a two-node DOORS instance.

Figure 2.2 shows an example of a two-node DOORS instance, containing 3 classes
and 8 objects The arrows depict the fact that each object refers its corresponding class
definition.

Objects may be grouped in collections, which in turn may be spread across the avail-
able nodes. The runtime shall provide services allowing for objects to "migrate" themselves
between nodes.

Failures are assumed to be non-byzantine and total. A failed node becomes totally
inaccessible, and its peers would not be able to determine whether the failure is located
in the node or in its network connection. The system shall detect failures and provide a
configurable consistency model (ranging from strict serializable to read uncommitted).

Minimum node turnover is expected. The system is not meant to be one in which a
great number of peers join and leave frequently.

2.3 The target problems

We adjusted the focus of DOORS to the sub-set of distributed problems with the following
characteristics:

• many, heterogeneous, geographically distributed data sources and data sinks (e.g.
telemetry devices, control equipment);

• the data sources have limited local resources. The communication channels may be
unreliable, have low throughput, or high latency;

• the data contained needs to be processed and aggregated into central repositories;
• some of the processing and outputs need to be elaborated with low latency, man-

dating for processing ”in the field”;
• the system is large enough or mission-critical, such that functional updates need to

be implemented during ”production run-time”.
Figure 2.3 depicts an example, with remote nodes, specialised in data acquisition or

Distributed Object Oriented Runtime System (PhD Thesis) - Drd.ing. Dorin PALANCIUC
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2. Proposed Solution 7

Figure 2.3. Example of geographically distributed DOORS installation.

control, and central nodes, specialised in data aggregation and analytics. The system con-
tains local control loops, a centrally located cluster of computing capacity and unreliable
network connections towards remote nodes.

2.4 Orientation towards edge computing

Edge computing, as well as fog computing are closer to the goals of DOORS, due to their
orientation towards decentralization.

We acknowledge the approach of Drop computing, which is oriented towards ad-hoc
collaboration, and aims for higher levels of scalability [26].

2.5 A minimal system and first measurements

When DOORS development was at the beginning, we outlined and developed its basic
architectural and functional features. We started with a basic system, able to host objects
of a single class, containing two attributes with integer values, a and b, and two methods,
one with side-effects and the other one without.

In this context, the first operation performed by a generic DOORS application is
creation of objects. This involves the actual allocation and initialisation of the object,
as well as the correct initialisation of system structures. Our first experiments test the
capacity and scaling capabilities of the set of data structures chosen to store the Object
Dictionary. We considered two alternative test platforms: a virtual machine running on
Virtual Box, using two CPU cores running at 2.5 GHz and 8GB of RAM, and a physical
machine running on a dual-socket machine, running at 3.06 GHz and 32GB of RAM. Both
machines run the same version of Linux, Manjaro 21.1.2, with kernel version 5.10.

The physical machine had a clear performance advantage (rather similar results in
case of a small number of objects, but approximately 6 times faster in case of larger
number), and a higher consistency in results across the entire set of test rounds. The
standard deviation achieved on the virtual platform for the 64k set was 4900, two orders
of magnitude larger than the one achieved on the physical platform, which was 43.1.

The results recorded on the physical machine are depicted in Figure 2.4.
The final value is extrapolated, based on the recorded series. A duration of 72 seconds

is needed for creating a dictionary of 64000 objects, meaning we need almost 9 minutes for
creating a dictionary of one million objects. Creating the dictionary "from scratch" does
not scale satisfactorily, and DOORS must build the dictionary incrementally and store it,
in order to be usable.

Distributed Object Oriented Runtime System (PhD Thesis) - Drd.ing. Dorin PALANCIUC
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2. Proposed Solution 8

Figure 2.4. Object Dictionary creation time, logarithmic scale.

2.6 Overall architecture

Figure 2.5. System architecture on two levels.

• Local System - several nodes sharing the same local network, with low latency and
a high level of trust;

• Global System - several Local Systems grouped in the same DOORS instance, across
high latency, mainly non-trusted, network connections (i.e. Internet).

A set of k Local Systems is depicted in Figure 2.5, within a single GS instance. The local
networks are labelled ”LAN 1” through ”LAN k” each accessible only from their respective
LS, while the non-trusted, high latency WAN is accessible to each node.

Distributed Object Oriented Runtime System (PhD Thesis) - Drd.ing. Dorin PALANCIUC
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2. Proposed Solution 9

2.7 Nodes and interfaces

We shall identify nodes by their ID, which are positive integers, assigned statically. Each
DOORS node exhibits 3 types of interfaces, based on their purpose: client, node and
administration interfaces.

The Client interface provides DOORS services to external clients. Examples of ser-
vices: creation, updates, and deletions of class definitions, instantiation of classes (creation
of objects), selection of objects, sending messages to objects and receiving responses, delet-
ing objects. A DOORS client should connect to only one node and issue all service requests
to the respective node. If the request targets an object residing on a different node, then
it shall be forwarded ”transparently” by the directly contacted node.

The Inter-node interface connects a DOORS node to all its peers in the same system.
Each node maintains exactly one connection per peer. The relationship is not client-
server, this interface is fully bidirectional and asynchronous. In a system containing N
peers, node X will await connection requests for all peers with id smaller than X and
initiate connections to peers with ids greater than X.

The Admin interface allows an external entity to invoke administrative operations,
and enables privileged access to the system objects: joining/leaving a system, chang-
ing/reloading of node configuration, shut-down/restart, visualisation and configuration of
system-level metrics.

Each node needs to have an up to date status information on its peers. When faults
are detected (such as loss of connection with one of the peers), the system enters the
recovery state and uses object replicas in order to maintain normal operation. We only
consider non-byzantine, hard-stop types of failures. We define the following possible node
states, with regard to its connectivity with "the rest of the system": OFF-LINE - The
node is not accessible from the system, UNSYNC - The node has just became accessible,
RECOVERY - The node is in progress of synchronising with the rest of the system,
therefore not yet operational, and SYNC - The node has successfully synchronised with
the rest of the system and is fully online and operational.

During its lifetime, a node progresses through the above-defined states in increasing
order, up to the SYNC state. In case a new loss of connection occurs, the node state shall
be recorded everywhere as OFF-LINE, from where it shall resume its progression after
turning back on-line.

Each node keeps track of the state of all its peers,by a periodic message exchange, so
that both channel and node failures are being identified quickly (”heartbeat” protocol).
According to measurements performed in a non-perturbed 780Mbps wi-fi network, the
duration of one status inquiry is around 10ms, and involves the transmission of less than
60 bytes (it involves three one-way trips between the nodes). Given the fact that one
message exchange yields status for both involved nodes, the number of messages needed
for a full status update of an N-node system is N*(N-1)/2. The total duration of the
status update as a function of the number of peers is depicted in Figure 2.6:

Distributed Object Oriented Runtime System (PhD Thesis) - Drd.ing. Dorin PALANCIUC
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2. Proposed Solution 10

Figure 2.6. Evolution of the total duration of status requests as a function of the number of
peers in the LS.

A DOORS system of 128 nodes needs 90 seconds to get a full status update. If we
restrict the status inquiry traffic to a maximum of 25% of traffic, we would never be able
to get a status update more often than any 325 seconds. Network congestion is avoided if
the status inquiries are only exchanged in the absence of useful traffic.

2.8 Inter-node communication

We propose a layered approach. DOORS nodes exchange byte streams over TCP sockets,
structured into messages of various (but known) lengths. Messages exchanged on all node
interfaces have the same, straightforward structure, containing a start byte, a length field
and the payload. Even though the completeness and integrity of the transmitted data
is guaranteed by the underlying TCP, we fragment the traffic into messages of known
size so that we can catch timeouts as soon as possible. The implementation will detect
timeout exceptions, as thrown by the communication library, and trigger the needed status
changes in the runtime. As the message length is encoded on two bytes, we cannot transmit
messages longer than 64 kB, but sizes as low as 16kB have proven adequate.

On top of the messaging framework we define two types of messages: notifications
and service requests. Both types shall receive an "immediate" answer (best effort). In the
case of notifications, the answer is just a confirmation receipt, as described in Section 3.1.
In case of service requests, described in Section 3.2, the answer is composite, containing:
a status - success or failure of the invocation, and further data – in case of success, there
will be means to access the result (i.e. ID of objects or even serialized objects). in case of
failure, there will be error messages, line number references, so on.

As services are executed asynchronously, the answer is available later (e.g. longer
than the node status latency timeout), so the system enables the requester to pair-up the
answer with the corresponding request, as described in Section 3.2.

Distributed Object Oriented Runtime System (PhD Thesis) - Drd.ing. Dorin PALANCIUC
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3 | System Level Capabilities

We are presenting the DOORS approach in providing resilience and scalability while main-
taining the highest achievable levels of consistency and availability in the presence of faults.
Even when the physical means of communication between the nodes are uniform (i.e. ev-
erything runs on asynchronous messages sent over TCP sockets), there are several "kinds"
of communication:

• notification: an object on node A informs another object on node B about an event
which occurred, and does not expect any response;

• service call: an object on node A invokes a service exposed by another object on
node B and expects an answer at some point in time;

• replication: the system copies an object residing on node A on a potentially nearby
node B;

• migration: the system moves an object residing on node A on another node B in
order to optimise the use of available resources.

3.1 Notifications

Notifications are messages which do not expect and answer and describe a business-relevant
fact or event. DOORS implements explicit and immediate confirmation of notifications,
with responses, so that it can identify and address communication faults. Depending
on the exact moment of fault occurrence, there might be no confirmation, exactly one
confirmation, or multiple identical confirmations received.

This is depicted in Figure 3.1 below :

Figure 3.1. Notifications.

A connection fault between the client and N1 means that the notification will not
reach N1 and no confirmation is ever received. A fault on the path between N1 and N2
means that the notification will not reach its destination, and again no confirmation is
available. We have two possible alternatives:

• N1 may store the notification locally, as "offline message" and enqueue it for sending
it later, when the connection to N2 is restored. A conservation period may be
defined, after which N1 shall discard the cached notification;

11



3. System Level Capabilities 12

• N1 may detect the loss of connection to N2, and send back to the client an error
message. This case is depicted in Figure 3.2.

Figure 3.2. Notification fault.

DOORS implements idempotency: even when a node receives the same message twice,
it is able to ascertain that the two messages refer to the same event. Both nodes compute
a quasi-unique ID of any message - a simple digest. This ID is used then to determine if
a certain message is received multiple times.

3.2 Service requests

Node A is sending a message to node B and expects an answer in return. As DOORS has
asynchronous behaviour, the response of node B may arrive at a much later moment in
time. We have to address the following:

• pairing up a request with a much later answer (potentially received after several
other requests, maybe even "out-of-order");

• deciding when to "stop waiting" for an answer;
• determining whether a request produced any effects on the destination object;
• de-duplicating multiple responses.

The unique identification of the request (by the receiving node) and the inclusion of the
ID into the response is used for de-duplication and pairing requests with responses. For
the timing related challenges we rely on the conclusion of Fischer and Linch in [16], that
on fully asynchronous systems, consensus is impossible to obtain in the presence of node
crashes. DOORS limits the period in which an object must reply. If this interval expires,
both the sender and the receiver assume that the service request failed and act accordingly
(either abandon or re-attempt the request, cancel the service execution and roll back any
partial changes already performed).

DOORS assimilates service calls to objects invoking methods of other objects. In
addition to the normal confirmation of receipt message, the receiver sends back a second
response, containing the expected result. The ID constructed by the sender shall be used
in a manner similar to the notification case, to pair up the initial request, the receipt
confirmation as well as with the final response, and also to de-duplicate answers. The
process is depicted in Figure 3.3.

The asynchronous semantics for service calls in DOORS mean that:
• if no receipt confirmation is received in the normal message exchange time window,

the client shall assume that the request produced no change of state into the system;
• if the receipt confirmation is received but contains the "DESTINATION OFF-LINE"

flag, the client shall assume that the system will re-attempt transmission and exe-
cution of service request, provided that the service window has not expired;

• if the receipt confirmation is received without the "DESTINATION OFF-LINE" flag

Distributed Object Oriented Runtime System (PhD Thesis) - Drd.ing. Dorin PALANCIUC
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3. System Level Capabilities 13

Figure 3.3. Service request scenario.

set, the client shall assume that the system successfully routed the request to the
intended object and that the service is executing or shall be executed in the future,
during the service window period;

• if the receipt confirmation is received without the "DESTINATION OFF-LINE" flag
set, but no response is received during the service window period, the client shall
assume that the service execution failed and that no side effects occurred;

• if the receipt confirmation is received and the final answer is also received, the client
shall assume that the service executed and that any potential side-effects are durable.

If a fault occurs between the client and N1, or between N1 and N2 before the receipt
confirmation is returned by N2, the system behaviour is similar with the case of notifi-
cations.If the fault between N1 and N2 occurs after receipt confirmation, but before the
transmission of the final service response, N1 performs no further interpretation and does
not create any supplementary message. This is depicted in Figure 3.4, showing that the
client ends up not receiving the final service response.

Figure 3.4. Fault during service request.

3.3 Detecting faults

Communication failure may be detected by the system (sockets and communication li-
brary), but there are also types of failures impossible to detect at socket level, e.g. a
severed Ethernet cable, or a "frozen" peer node, for which we implement a periodic peer
status enquiry mechanism. This ensures an upper boundary on the time elapsed until the
system is aware of communication faults.

Distributed Object Oriented Runtime System (PhD Thesis) - Drd.ing. Dorin PALANCIUC
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3. System Level Capabilities 14

Based on the number of failed communication channels detected, DOORS distin-
guishes between node isolation, when a node lost all its channels, and system segmentation,
in which only some of the peer connections have failed. When the integrity is restored, a
potentially large set of "stale" messages have to be processed.

Besides communication failures, we might also register faults in data access. We
consider the following:

• read-write conflicts - (or unrepeatable reads), occur when two successive reads of the
same data object yield different results for one client, due to the fact that another
client performed a write operation on the object in-between the two reads.

• write-read conflicts - (or dirty reads), occur when the read operation of one client
returns a value which is going to be "immediately" modified by another client;

• write-write conflicts - (or lost updates), occur when the value written in an object
by one client is being overwritten by another client.

3.4 Replication

Replication is the act of keeping multiple copies of the same data in distinct locations. In
DOORS, replication offers protection against node and network failures.

Single-leader replication is the simplest leader-based form. It can also be called
master-slave or active/passive replication and is based on the fact that only one of the
replica plays the role of "leader" (or "primary" or "master"). Clients must send the write
requests to the leader, which is then in charge with first executing it locally and then
propagate it to the other replicas, named "followers", "secondary replicas" or "slaves". The
following must be addressed:

• initial setup (choose the leader and the set of follower nodes for each object) - the
optimal approach is to ensure uniform distribution of object replicas on the available
set of nodes;

• detection of leader failure and election of a new leader;
• detection of follower failure and set-up of a new follower;
• synchronisation of the newly-joined follower node - objects hosted on the newly

"recruited" follower node must be brought to the same state as the master replica.
Multi-leader replication ensures the ability to write on more than one replica at a

time. Complexity rises significantly, as each master must act as a follower to the other
masters, and faults are significantly more difficult to address.

In leader-less replication, any of the replicas accepts writes, and the first product to
use approach is Dynamo [11]. Specific mechanisms, such as Read Repair, Anti-entropy,
or Quorums need to be put in place in order to ensure propagation of changes to all
replicas. Also, the read results must pass through quorum. There are profound differences
in design imposed by the leader-less nature, when compared with single-master, therefore
we consider leader-less replication to be out of scope for DOORS.

The ordering of events is essential in the correct resolution of write conflicts, unless we
find ways making the ordering of writes irrelevant for achieving correctness. Conflict-free
Replicated Data Types (CRDTs) allow this. An old example of CRDT are Vector Clocks,
as defined by [22]. The first formal definition of CRDTs is recorded in [33]. They emerged
in concurrent editing, and were proposed as alternative to Operational Transformations
[13]. The solution proposed by CRDT is “Strong Eventual Consistency”, which makes sure
that conflicts are merged automatically and the resulting value is correct and consistent,
albeit at a later point in time. The main benefit is the ability to merge CRDTs, and this
operation, receiving two CRDTs as input and is commutative, associative, and idempotent.
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These characteristics are mandatory, as the global ordering of events is very difficult to
determine, if at all, and to address the fact that some messages may be received more
than once.

There are two major types of CRDTs: “state-based CRDTs”, also called “convergent
replicated data types”and “operation-based CRDTs”, also called “commutative replicated
data types”. Most of the concrete examples of CRDTs can be found in [34]. We also
mention Sequence CRDTs. These are ordered sets, or sequences or ordered lists, and can
be used to build collaborative online editors. There are quite a few documented sequence
CRDT implementations: Treedoc [24], RGA [31], Woot [30], Logoot [38], LSEQ [28].

We choose DOORS to implement a single-leader replication variant, the so-called
semi-synchronous replication, depicted in Figure 3.5. Only the first replica is synchronous,
regardless of the replication factor, which is configurable, but unique system-wide. A single
replica is master and shall be used for reads, writes, and for executing methods.

Figure 3.5. Semi-synchronous replication.

In case of node failure, the system enters in a "mitigation" state in which an existing
slave replica is promoted to master replica for each object which had the master replica
on the failed node, and a new slave replica is created for each object that had a replica on
the failed node.

All objects having the master replica on the failed node will be temporarily having
one less slave replica. The procedure for election of a new slave replica shall be by random
selection, from the subset of nodes still accessible. The runtime provides a mechanism
ensuring the creation of the copy on the newly recruited slave node. When all channels
are restored, nodes shall first re-synchronise their object dictionaries, and then proceed to
transmit in order, all the messages queued locally.

There are applications for which it is desirable to maintain a node available to its
clients when it has become isolated. There are other applications, in which an isolated
node must completely suspend its operation until the communication is restored. The ref-
erence DOORS implementation implements the former behaviour, by maintaining isolated
nodes in operation and successfully executing any incoming service requests. All outgoing
service requests are queued for an unlimited period of time, and sent to peers as soon as
communication is restored.

When all the nodes return and the system is restored, synchronisation shall start only
after the mitigation operations are completed. We expect therefore some delay between
"physical restoration" of system integrity and "logical restoration" of global system state.
The degraded mode of operation due to cascading failures (another node or set of nodes
become inaccessible while the node is performing mitigation operations), when the node
must abandon current operations and immediately start the mitigation specific to the
newly detected state is not further researched, as DOORS is not expected to continue
running in such conditions.

We measured the cost of replication and its evolution as a function of the replication

Distributed Object Oriented Runtime System (PhD Thesis) - Drd.ing. Dorin PALANCIUC
MAWAS



3. System Level Capabilities 16

factor and of the number of objects. We used a geometric progression in the number of
objects: 1000, 2000, 4000, all the way up to 512 000 objects. We performed 2 sets of
measurements for replication factors of 2 and 3. The results are depicted in Figure 3.6:

Figure 3.6. Election of new master for unavailable objects.

We noticed a quasi-linear increase in duration, as according to the chosen data archi-
tecture, the election of a new master per object should is O(n). The measured cost was
less than 170 ms per election for 512 000 objects.

3.5 Partitioning

Partitioning consists in spreading out the objects over the available nodes, such that
element of system state belongs to a single partition. This achieves horizontal scaling, and
covers both computing capacity and storage space. The efficient distribution of objects
over the available nodes ensures uniform use of resources and the avoids "computing hot-
spots".

Uniform distribution of data over the node space by using hashes and then assigning
equal ranges of the hash-space to each node in the system does not require coordination,
but complicates the problem of finding where the data is hosted. In this case, queries
must be sent to all partitions, and optimisation relies on globally maintained indexes,
which need consensus themselves.

By default in DOORS, objects are allocated on the node on which their construction
is requested. The class definitions are present all nodes. The DOORS runtime contains
mechanisms for explicit partitioning: the client, or even another object, may specify the
node on which an object shall be hosted.

The act of optimally placing objects on available nodes is named "balancing". When
defining the decision criteria for relocating objects, we evaluate three major capacities:
computing (the amount of CPU available), memory, and communication. Each of them
has to be measured continuously at node-level and the decision to move an object, as well
as the choice of destination node shall be based on the global set of capacities, as shared
by all the nodes.

The global problem of balancing is depending on the local problems of deciding how
to schedule method execution on the cores available, deciding which objects to keep in
memory and which to evict to permanent storage, and deciding how to prioritise mes-

Distributed Object Oriented Runtime System (PhD Thesis) - Drd.ing. Dorin PALANCIUC
MAWAS



3. System Level Capabilities 17

sages exchanged by the objects, across the available network interfaces. The dedicated
architectural entities addressing each of these are depicted in Figure 3.7:

Figure 3.7. Scheduler, balancer and persistence manager in the DOORS node architecture.

There is a high degree of interdependence in this design. Changes in scheduling will
impact the persistence management and the amount of needed inter-node communication.
Moving objects around nodes will influence the number and size of objects to be sched-
uled for execution, for communication, and for being stored into memory on each node
involved in object migration. Useful insight on the matter of scheduling in heterogeneous
environments was extracted from [37] and [32], however, for the reference implementation,
we defer the matter of scheduling to the host OS.

In order to emphasise on the relevance of inter-node communication in the context
of balancing, we present the summary analysis described by [18]. Even home-use network
equipment is able to ensure latencies lower than "traditional storage" (at the moment of
this analysis, NVMe storage was not yet mass-market). We draw two partial conclusions:

• if a node is unable to maintain all active objects in its main memory, migration of
some of these active objects to another node is preferable to swapping the object out
to local storage;

• achieving object locality, in which objects communicate mostly (or even only) with
other objects hosted on the same node is the best performance optimisation policy.

An object should be migrated on another node when it is starving for execution time, or
there is no available space in the main memory and the object is runnable, or the object
is communicating mainly with remote entities (i.e. objects residing on other nodes, for
which the latency is relatively large). The balancing algorithm must measure the length
of the scheduling queue, the available memory, the latencies and throughputs experienced
by the current node when communicating with its peers, and how “far” are the objects
targeted by the messages sent by the objects on the current node.

The metrics are structured as series of values. We use of percentiles instead of aver-
ages, due to the fact that averages overlook of the outliers. In practice, outliers matter a
lot more, and under conditions which are less than exceptional (sometimes even periodi-
cally) latency increases or bandwidth drops of more than one order of magnitude. Even
if only a small percentage of the messages experience high latency, if the same object
issues many messages, its operation ends up executing very slowly, due to the so-called
tail latency amplification [10]. These outliers will skew the computed averages, as they
do not represent typical system behaviour [36]. In contrast, percentile values are robust
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against the extreme outliers and represent a reliable decision support for object relocation.
We found efficient computation algorithms for percentiles: forward decay [9], t-digest [12],
and HdrHistogram [35]. The latter appears to be better suited for a real-time application,
needed for DOORS.

The DOORS runtime offers introspection. Object structure and content can be in-
spected at runtime. Elements of the runtime are also exposed as "normal" objects. The
services of the system are in fact accessed by sending messages to system objects and the
conversion into native method invocations is completely handled by the runtime.

We performed concrete measurements of the cost of object migration a wireless envi-
ronment, with a nominal speed of 780 Mbps. We used objects of 3 different sizes: 20, 120,
and 512 bytes respectively. The sets to be migrated were the already usual sizes, starting
from 1000 objects and ending with 128 000 objects. The latencies measured had a mean
value of 2743 us and the durations measured (in milliseconds) are depicted in logarithmic
scale in Figure 3.8.

Figure 3.8. Duration of object migration, on logarithmic scale.

The recorded values stem from 3 ms (for 1000 objects of 20 bytes each) to 1.8 seconds
(for 128000 objects of 512 bytes each). We expect very few scenarios in which sets larger
than a few thousand objects need to be migrated, but we expect to have applications in
which the network will have dramatically lower performance and reliability.

3.6 Routing of messages

Routing messages is making sure that they reach their intended destination, in the context
of partitioning. DOORS allows the clients to connect to any node and send messages to
any object hosted in the system, by having the directly connected node act as a router and
implement an "object address book". We use the name Object Dictionary for this "address
book", as it also contains other important object attributes, relevant to their correct and
efficient management. The structure is outlined in Figure 3.9.

When objects are being migrated from one node to the other, the object dictionary
is updated. DOORS nodes maintain the convention to promote to master the first ele-
ment from the list of the secondary replicas (implicit consensus). Other operations which
produce modifications of the object dictionary are creation and deletion of objects.

Partitioning may be used in conjunction with replication in DOORS, for increased
resilience and capacity.

Figure 3.10 shows an example DOORS instance, containing 4 nodes and using a
replication factor of 3. The system hosts 4 objects, and each of them has 1 master replica
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Figure 3.9. Structure of an Object Dictionary entry.

Figure 3.10. Partitioning and replication in a DOORS instance.

and 2 slave replicas.

3.7 Achievable consistency models. Transactions

Transactions are a convenient mechanism to group multiple operations - reads and writes
- into a single entity and provide the ACID guarantees for them. The industry-standard
relational database products of today do not fully implement serializability, offering in-
stead variants with weaker guarantee, such as snapshot isolation [15], or multi-version
concurrency control [6].

There is a continuum of consistency models offered by real-life implementations of
distributed systems. A systematic, view on the subject is given by [4]. The hierarchy
shows how stronger consistency models rely on having the constraints of weaker ones as
prerequisites.

According to the same paper, the level of availability provided by a system increases
as we "descend" through the tree. There are three levels of availability defined: highly
available - any non-faulty node, even in complete absence of inter-node communication,
"sticky available" - any non-faulty node, as long as the client "stick" to the same node when
sending messages, and low available - not available during failures of the communication
channels. At least some of the nodes must pause their operation in order to ensure
consistency.

The consistency models presented in [4] which provide high availability are:
• monotonic reads - if one process performs reads R1 and R2, then R2 cannot observe
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Figure 3.11. The hierarchy of consistency models, as described in [4].

a state prior to the one available in R1;
• monotonic writes - if one process performs writes W1 and W2, then any other process

shall observe first W1 and only then W2;
• writes follow reads - if one process reads value V, as written by write W1, and then

the same process performs write W2, then W2 shall be visible after W1;
• read uncommitted - everything is possible, except "dirty writes", i.e. if two parallel

transactions attempt to modify the same object before committing, one of them shall
fail;

• read committed - everything is possible except "dirty writes" and "dirty reads". In
addition to the condition above, any write performed by transaction T1 shall not be
visible by any other concurrent transaction prior to the commit of T1;

• monotonic atomic view - if transaction T1 performs a write W and transaction T2
observes the effects of W, then T2 shall observe all writes performed by T1.

Here are the consistency models presented in [4] which provide "sticky" availability:
• read own writes - if one process performs write W and later performs read R, then

R must observe the effects of W;
• pipeline RAM - the cumulation of "read own writes", "monotonic writes", and "mono-

tonic reads";
• causality - causally-related operations shall appear in the same order on all processes.

The consistency models presented in [4] which provide low availability are:
• sequentiality - the "total order" of operations in the system is consistent with the

"partial orders" of the operations on each node;
• snapshot isolation - each transaction T appears to operate on an independent, con-

sistent "snapshot" of the state of the system. This snapshot contains the effects of
all transactions which were committed prior to the initiation of T;

• cursor stability - when transaction T reads an object using a "cursor", the said object
cannot be modified by any other transaction until the cursor is "released";

• repeatable read - when a transaction T reads an object on which it does not perform
any modification, it shall read the same object values throughout its life - even if a
parallel transaction committed a different value for the object in the meantime;

• linearisability - all operations on a single object appear to take place atomically, in
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an order which is consistent with the real-time ordering of the operations;
• serializability - all operations on a set of multiple objects appear to take place atom-

ically, in an order which is the same for all observers, but not necessarily consistent
with the real-time ordering of the operations;

• strict serializability - similar to serializability, but also consistent with the real-time
ordering of the operations.

There are market-relevant systems which offer less than ACID: these are the so-called
BASE systems, which mean "Basically Available, Soft-state, Eventually-consistent". It is
safe to consider BASE any system which does not offer ACID guarantees.

In DOORS, transactions are sequences of messages exchanged by objects and which
may produce state changes. The distributive nature of a transaction depends on the
placing of the objects participating in it. The balancing algorithm becomes an important
actor in the area of transaction optimization, as by choosing the same node of residence
for individual objects, the number of distributed transactions can be reduced.

There is a set of replicated data structures, for which DOORS must offer distributed
transactions: the Node Dictionary, the Class Dictionary, and the Object Dictionary. Up-
dates of the latter are the most frequent case of distributed operation. The three possible
changes are: (i) Adding new objects on any node; (ii) Deleting existing objects on any
node; (iii) Moving existing objects from one node to another. Such changes must propa-
gate on all peers as soon as possible, but not all need to be transactional. Messages sent
to an already deleted object would simply fail. Learning a bit later about a new object
existence would harm performance and not consistency.

Changes of object state is only possible using messages, which in turn cause execution
of object methods. There is only one copy for each DOORS object, therefore single-object
transactions are local only.

The simple algorithm that ensures atomic commitment protocol for a distributed
transaction is the Two-phase Commit [21]. The disadvantage that needs to be addressed
in the concrete implementation is the inherent blocking nature due to the existence of a
”single point of failure”. Transaction coordinator (which, could always be chosen as the
node that originates the first message in the transaction) may fail, effectively stopping
progress. DOORS can solve this, by relying on events and time-outs, both for individual
messages and for entire transactions.

3.8 Concurrency control

Moderation of concurrent control is needed in a system that allows simultaneous read and
write access to a resource from more than one interface. This is needed in DOORS even
when the system is composed of a single node; several clients may connect to the node
and send messages to the same object simultaneously. In the interest of simplicity, we
choose to implement S2PL (Strict Two-Phase Locking) in DOORS, on the basis of [5],
and disregard the impact of performance, at least in this reference implementation.

DOORS uses MVCC in the management of classes. The reason behind is the proven
ability of MVCC to implement snapshot isolation. All reads made during a transaction
shall see a consistent "picture" of the class types involved. Existence of a class instance is
a "transaction" in a very broad sense. As long as that particular instance exists, DOORS
shall maintain the description of its structure unchanged. In accordance with the primary
design goals of the system, and mentioned in Section 2.3, DOORS offers the possibility to
update object structure and behaviour (hence class specification) during normal operation.
This is achievable if classes are managed in a MVCC set-up.
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How should the system behave when two or more external actors attempt to update
a certain object with different end results? Based on the nature of the problem, the
acceptable solution may vary, from immediate, automatic and transparent merging of
results to halting all progress, cancelling many or all the required operations, or triggering
recovery procedures and resuming normal operation only after explicit confirmation. We
consider these questions fit to be answered by the application.

The CAP Theorem was first stated in 2000 at the Symposium on Principles of Dis-
tributed Computing and formally proven in 2002, by Nancy Lynch and Seth Gilbert. It
is a mistake to consider it a trilemma. Further study shows that Consistence, Availability
and Partition Tolerance have asymmetric roles [7]. All three are achieved, as long as par-
titioning of the system does not occur. The system must choose between consistency or
availability only in the presence of segmentation.

PACELC builds on the CAP theorem and shows that even in the absence of network
partitioning, trade-offs need to be made: between consistency and latency. This is formal-
ized in [1], and the reason for this inevitable trade-off is the fact that a distributed system
that ensures availability must always replicate data, and replication needs extra time (la-
tency). PACELC therefore stands for (”Partitioning then Availability or Consistency, Else
Latency or Consistency”).

3.9 How eventual is eventual consistency?

Evaluating the CAP/PACELC theorem, we conclude that latency in propagating state
changes to replicas is inevitable. Whenever replication is in place, there is a time period
in which replicas are not in sync. We also state that “eventual consistency” is in fact
the only form of achievable consistency. Any form of consistency is “eventual”, the dif-
ference is made by the time needed for convergence, and this time is relevant only when
compared to the liveness needs of the problem solved by our DOORS implementation.
Furthermore, the boundary between high latency and connection loss is many times open
to interpretation. It is the receiver’s decision to consider whether the late data is still use-
ful, or relevant. There are business cases in which the systems to be modelled/supported
have hard real-time constraints, and if a certain piece of prerequisite data is not received
in a well-defined window of time, any transaction depending on it becomes obsolete and
therefore has to be aborted. Any latency larger than the said window of time shall be
considered “connection loss”. In order to be useful, DOORS shall make sure to achieve
consistency and disseminate the newly achieved consistent state within the boundaries of
this window (we name itwindow of liveness). The system shall implement measurements
and estimations, in order to determine which is the smallest window of liveness achiev-
able in a particular DOORS implementation. Once obtained, these metrics could be used
by the application developer in deciding the suitability of a particular implementation,
optimisation opportunities, scheduling policies, etc.
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DOORS features presented in the previous section rely on the following capabilities present
at node level:

• sustain real-time, asynchronous, bidirectional communication;
• detect the situation in which messages were not received in timely fashion;
• interpret messages as notifications or as service requests;
• execute computation as response to service requests;
• specify object structure and behaviour (class definitions);
• create individual objects based on a class definition (instantiation);
• create relationships among distinct objects (references);
• detect exceptional conditions and generate corresponding immutable objects

(events);
• define behaviour as reaction to events and execute it accordingly (event handlers);
• expose object structure and behaviour in a uniform way (introspection);
• track and store object state (persistence);
• moderate concurrent access to objects (concurrency control).

We envision dedicated components for each of the above capabilities and depict them
in the DOORS node architecture, in Figure 4.1.

4.1 Node communication

All node interfaces are bidirectional, TCP based, asynchronous, with time-outs. If payload
is not received before the time-out is reached, the interface generates a "time-out" event
returns in IDLE state, and discards the received partial message. The employed state
machine is illustrated in Figure 4.2.

This solution employs event-based processing and uses an existing, portable commu-
nication library, libevent, which provides asynchronous event notification, comes with its
own event loop and runs on all popular operating systems.

4.2 Objects in DOORS

DOORS provides encapsulation, with a basic access scheme: all fields are private and all
methods are public.

Figure 4.3, shows the structure of objects and classes. The keys in the map are the
names of the attributes, while the values in the map are dedicated structures, as depicted
in Figure 4.4. Each attribute contains therefore a description, composed of a name, a
type, and a value.
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Figure 4.1. Reference architecture for a DOORS node.

Figure 4.2. Communication state machine.

4.2.1 Defining structure. The DOORS type system

The definition of class structures in DOORS is based on a simple type system, with
"fundamental types" and "object references". DOORS defines the following fundamental
types: boolean, character, integer, and double. Method parameters, as well as object
attributes use composite structures, containing the type designator and the value (stored
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Figure 4.3. Structures of objects and classes in DOORS.

Figure 4.4. Definitions for attributes, methods and parameters.

in an union), as described in Figure 4.4.
DOORS adheres to the Smalltalk [20] philosophy: when two objects exchange one

message, the receiving object is the sole responsible of how it responds to it. This process
is called either dispatch or binding. We chose not to include polymorphism in the reference
implementation. When parameters are passed in a message, they are being passed “by
reference”, even when they refer objects of primitive types. Methods that receive the
message parameters may therefore have side-effects. Return values are the responses to
the service requests, and have two parts: the status - either success or failure - and the
actual result. References to objects are their respective GUID, and therefore may pass
unchanged from machine to machine.

For efficiency reasons, returning references to objects is preferable, and this is the only
way objects exchange other objects between them, within the boundaries of the DOORS
instance. However, at the system boundary, a client entity must be able to retrieve the
actual object "by value", in serialised form, based on its reference. In order to be able
to transfer objects "by-value", the DOORS runtime provides a serialisation service, which
"flattens" the maps contained by the serialized entity.

There is no garbage collection in DOORS. Even when there are no variables referring
to it, any object will continue existing in DOORS. Visibility of objects is dictated by the
scope of the variables referring to them. Local variables will offer local visibility to the
referred object.

4.3 DOORS system services

The DOORS runtime operates at node level by providing services, which are primarily
made available to external clients via the Client Interface, but they are equally available
to the objects hosted within the system. Objects can therefore create other objects and
send messages to them. The most important services offered by the DOORS runtime are:

• enumeration of already defined classes;
• retrieval of class specification;
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• enumeration of class instances;
• retrieval of the current state of an object;
• serialization and de-serialization of objects;
• sending of messages to objects;
• creation, update and deletion of classes;
• creation, update and deletion of objects.

4.4 Administration Services

Administration of DOORS is performed by properly authorised external entities, which
connect to the admin interface of any node in a DOORS instance. The following services
are available:

• visualization of node status: size of storage areas, number of objects, clients con-
nected, node ID, number of peers, connection status to each peer, latest throughput
and latencies on all open interfaces;

• visualisation of logs;
• node joining/leaving a DOORS system;
• changing/reloading of node configuration;
• node shut-down/restart.

In the spirit of uniform access to all components of the system, administration services
are exposed as methods or attributes of system objects.

4.5 Introspection

The ability to inspect the contents of objects and the interfaces in a simple, unified way is
essential in DOORS. It allows for efficient investigation of potential problems, and prepares
the environment for fully reflective behaviour, in which the system may be modified while
running. The entire runtime is exposed over the Admin Interface as normal DOORS
objects, simplifying the implementation of any DOORS management tool.

The most important features of DOORS which allow for the implementation of in-
trospection are:

• class modelling: the class dictionary available in each runtime instance contains
class specifications for all components relevant to the developer. There are attributes
defined for each of them, made accessible in a manner similar with the classes created
by the "normal" users;

• object wrapping: in addition to modelling the structure and state of these runtime
components, they are also implemented as normal DOORS objects and inserted
into the object dictionary on each node. The object querying services defined in
Section 4.3 may be used upon them;

• transparent access: the getter methods for the attributes of the wrapping objects
have implementations which provide access to the underlying data fields of the run-
time component.

4.6 Object Persistence, tracking and threading

Objects are being saved to "disk" or other form of persistent storage, in a manner trans-
parent to the client. As not all hosted objects fit into memory, DOORS employs swapping
and only keeps in memory the most recently used objects. We shall implement the naive
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version of the LRU algorithm for the page replacement policy and we consider its perfor-
mance to be of lesser relevance.

Class descriptions are replicated on each node in a DOORS instance, while objects are
partitioned among the available nodes. DOORS uses dedicated data structures in order
to keep track of both classes and their instances: the Class Dictionary - the unique IDs
and names of classes, as well as their definitions, and the Object Dictionary - the unique
IDs and locations for all objects in the system.

Each DOORS object contains a thread. The allocation of each executed method to
a core, and the scheduling of the object thread to execution is left at the discretion of the
host OS.

4.7 Concurrency control at node level

A single node may receive simultaneous requests from two or more connected clients,
which target the same object and may also perform conflicting operations. The following
concurrency control approaches are being considered:

• locking algorithms and their variants (e.g. 2PL, 3PL and variants);
• time-stamp ordering (more in the sense of vector clocks and less as real-time labels);
• multi-version concurrency control (a current favourite, and already considered for

the management of classes);
• lock-free approaches: compare-and-set/ compare-and-swap and their use in lock free

deques.
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In this chapter we discuss the challenges present in distributed systems at application level.
Distinct applications running on the same system may still interact with one-another and
they also need to share access to common resources present on the hosting node, such as
hardware devices.

5.1 Deployment and versioning of behaviour and structure

The traditional way of addressing application updates is to decommission the current
version of a component, run database scripts in order to update the data structure and then
start up the new version of the said component. These are usually performed manually,
with checks and smoke tests being performed after each step. At best, a deployment
orchestration tool may be used, such as Ansible, which has all deployment and migration
operations scripted. DOORS aims to incorporate these capabilities inside the objects
themselves as much as possible. Update of an object structure shall be a method of the
said object.

As defined by [3], deployment is a process of organisation of a set of activities in order
to make an up-to-date software application available. The major events in the lifecycle
of an application are installation, update and retirement. We must therefore address the
following challenges:

• definition of application boundaries - one application is defined as a set of compo-
nents, which must be hosted by the environment;

• management of changes - a new version of an application entails changes to most, if
not all, deployed components. Deployment of a new version may be seen as a large
update transaction;

• management of dependencies among components. Updating the interface of one
dependency requires the update of all components depending on it, so on;

• coordination between deployment and use of the application - "hot updates" are
seldom possible. The system must provide mechanisms for taking components offline,
update and then return them into operation, in the context of component inter-
dependencies;

• content delivery - After addressing the coordination issue and providing application
components with special running states allowing for updates, the final matter to be
solved is that of the delivery of the new specification, in the presence of slow or
unreliable communication channels.

Taking inspiration from [14], which presents a self-deployment protocol, we resort to
the introspective nature of DOORS. Applications are objects themselves. A DOORS ap-
plication shall be a class which implements a set of methods, which we collectively refer to
as the App protocol. An instance of App shall be a "singleton" and shall provide implemen-
tations for all methods mentioned into the protocol, which are descriptions of behaviour
in case of the major lifecycle events described above: packaging, (inter)dependencies, in-
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stallation, activation/deactivation, update and deinstallation.
It shall be noted that, as a direct consequence of the fact that DOORS applications

are objects themselves, the principles and mechanisms for the balancing of objects apply
to them as well. However, in the case of applications, additional criteria for optimisation
may emerge. There are application-specific constraints which need to be considered when
solving the problem of optimal application deployment. A generic, quantitative approach,
where the results are modelled as QoS figures, is described in [25].

In DOORS, we choose to implement a feature which we trust is going to simplify
deployment, as well as address the issues emerging during updates: allow co-existence
of multiple versions of the same class. Implementation of MVCC at this level ensures
snapshot isolation and allows (at least in theory) the complete update of an application
without taking it completely off-line. When a client performs the update of the definition
of a class, the runtime creates a new version of the class, and distributes this across all
nodes. The old version of the class description is not deleted. It is however marked as
"non-actual" and the new version is appended to the class dictionary, and a reference to
the previous version is created. The DOORS runtime shall always use the latest version
of a class when creating new objects, and the object instances are not implicitly updated
to the new version. This needs to be performed explicitly by the developer, by writing
dedicated methods (thus implementing the required protocol.

5.2 Modelling of events and their processing

Events are immutable. They state that a certain point in time (and space) something
happened. That particular event tells about a change in the state of the universe in that
particular point in space and at that particular moment in time. The most straightforward
way of modelling an event in a system is a tuple. The set of event coordinates are the
individual values stored in the tuple. Successions of events are stored and processed in
ordered form. In many applications, particular sequences of events have special significance
and must be also processed. We therefore get new kinds of events, as results of a class
of operations called Complex Event Processing. An important feature of CEP systems
is that they need to support streams of event arrivals. The system must describe how
secondary data, decisions and insights are derived from these.

In most of these real-life applications, the input is unbounded. A data acquisition
system gathering data from remote industrial processes must be able to acquire, interpret
and store data points "forever". There is no concept of "last data point" or "last process
event". The abstraction which allows us to formalise such a system is the so-called "Stream
Processing". Events become available incrementally, they may be interpreted, in the sense
that partial sequences are being automatically analysed and other data items are being
derived, and they may either be stored or discarded, based on the concrete needs of the
problem solved by the implemented system. An example is depicted in Figure 5.1.

Figure 5.1. Processing of event streams.
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The concepts of producers, consumers and streams maps natively to DOORS. This
is because they map directly to DOORS design entities. Objects communicate with each-
other exchanging messages. One object is the producer, the outgoing messages (as im-
mutable, relatively small pieces of data) may be used directly to model "events", while
the recipient of the message would be the "consumer", receiving and processing them
asynchronously.

Industry standard message queueing systems allow for definition of message manage-
ment policies and their central component is always some form of message broker. Multiple
objects may subscribe to the same topic and consume the same series of messages. Popular
specifications for broker behaviour are available in JMS [19] and AMQP [2], and they allow
for multiple consumers and they exhibit configurable behaviour, allowing for either load
balancing - when each message is delivered to a single consumer, out of potentially many,
sharing work, or "fan-out", when each message is delivered to all consumers - effectively
implementing the "event broadcast" function.

The inherent "one object-one message queue" limitation of DOORS may be avoided,
and broker behaviour may be implemented in DOORS by encapsulating it in a dedicated
object. Such an object shall act as intermediary between the producers and the consumers,
offer internal data structures for storing incoming messages prior to relaying them to the
final consumers, expose an interface allowing for topic creation, publishing into topics an
subscribing to topics, and implement message processing policies for load balancing or
fanning out messages.

At the forefront of Complex Event Processing sits the relatively new domain of
"Stream Analytics", which is a statistical interpretation of CEP. Instead of concentrat-
ing on searching for event patterns, Stream Analytics focuses on aggregating events into
statistical metrics and series of derived data. In addition, while CEP is usually operating
with relatively short sequences of events (few individual, and up to tens of events), Stream
Analytics is geared towards operating with long sequences (sets of hundreds, thousands,
or even millions of events). In the realm of Stream Analytics we encounter probabilistic
algorithms, such as HyperLogLog [17] for cardinality estimation, percentile calculations
(as described in Section 3.5, and Bloom filters applied for determining set membership.

Originating from the world of databases, Change Data Capture is a technique in
which the changes performed to the data are being recorded into log-type structures,
which are then made available to clients, possibly as event stream. If we have the original
state of the system, we can construct the current state of the system by "replaying" all
the changes which occurred over time, effectively replicating the final state of the data in
another data storage. In the world of Domain Driven Design, the CDC has been evolved
into the concept of event sourcing. The primary improvement is orientation towards
business-meaningful transformation. Instead of following elementary modifications to data
articles, event sourcing operates with immutable units (business-specific events) which are
interpreted, transmitted, stored and "played" in order. The event logs are "append-only",
nothing gets deleted, and the system state at a certain moment may be computed by
interpreting the individual events in the order of their arrival.

5.3 Application-level security

DOORS clients shall be authenticated, at connection level, ensuring the authenticity and
non-repudiation of all messages received via the respective connection. For the authori-
sation, the system must keep a record of all users and their level of authority. This is
completely application specific, so the system shall only provide means of enforcing au-
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thorisation. Objects in DOORS inherit the authority level of their creator. If dictated
by the application needs, the objects may explicitly relinquish some of their privileges,
opting for fewer rights. In contrast with external clients, the objects themselves need not
be authenticated. The creation of objects is itself a "privileged operation" and we consider
it sufficient to ensure system integrity, at least in order to fulfil the academic goals of the
DOORS implementation.

We expect that DOORS shall be operated in trusted physical environments. All nodes
joining the network in which DOORS operates are considered "authentic" and by default
allowed to join the DOORS instance. The system may be further secured by encryption
at transport level and use key-pair-based technologies. All nodes are "full-right peers",
therefore no authorisation mechanism for entire nodes shall be implemented in DOORS.

Rights in DOORS are inspired from the rwx bits, as defined in POSIX environments.
In a similar manner, each object shall be endowed with right attributes for: receiving
and processing messages (analogue to "execute"), exposing its specification (analogue to
"read") and allowing for modification of specification (analogue to "write").
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ations

6.1 Case study - Telemetry

There are standards regarding the quality of the power circulated through various points
of the grid, such as EN50160, described in [27] and IEC 61000-4-30, exemplified in [23],
describing which measurements need to be done, how often, and how they need to be
interpreted and aggregated in order to quantify the quality of the delivered energy. There
are specialised devices which are capable of monitoring the power lines (typically in sub-
stations, but they may be installed at consumers sites as well), acquiring and aggregating
the needed parameters and then passing them to central nodes, where this data is being
further aggregated into synthetic and analytic reports, used further in the maintenance
of the grid, and delivered to authorities as part of the normal monitoring processes at
national level.

The power quality parameters are either r.m.s. values, computed over regular intervals
or power quality events, such as voltage interruptions, dips and swells, harmonic distortion
events, etc. Another type of quality data are the fault recordings. These are "snapshots"
of the voltage and/or current recorded in various points of the grid, when certain power
parameters cross predefined thresholds.

In a typical distribution network, there are tens of substations, distributed across
hundreds of kilometres. There are "primary aggregations", performed by the dedicated
acquisition devices or by the nodes hosted in the regional centres, and "secondary aggre-
gations", typically performed at the hub of the system, by powerful nodes, which may
employ redundancy and data replication.

Such a system needs to be maintained up to date and in top shape, via periodic soft-
ware updates, as well as mandated parameter configuration, to be done at each monitored
point.

The design of DOORS fulfils all the requirements of such a telemetry system, and we
chose to implement a power quality monitoring system prototype, in order to assess the
impact of the balancing framework upon the overall performance of the system.

We assessed the bandwidth and storage needs for a system of real-life magnitude,
based on the dimensions of one specific power distributor present in the Romanian elec-
trical grid, which monitors around 580 3-phase systems across its network of over 200
distribution substations. The modelled distribution grid spans over 6 counties and is
structure into 3 regional centres (two counties per centre, yielding roughly 200 monitored
points per centre).

In addition to the flow of acquired data-sets, starting in each acquisition node and
terminating in the central aggregator, we took into consideration the object updates flow,
which is initiated by the central aggregator and propagates to all the other nodes in the
system. The objects implementing acquisition of data, parameterisation and operation of
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Figure 6.1. The modelled system.

the in-field device do not move from the acquisition nodes. The objects performing event
processing, designated in the table as "primary aggregation" and "secondary aggregation",
may be relocated.

One iteration in the event processing loop for the primary aggregation lasts less than
100 ms, and this needs to be ran less than 500 times per day (the usual number of PQ
events received daily). The cost of one migration of the primary aggregator objects from
the acquisition node to the regional node is almost one order of magnitude larger than
the entire communication cost of the primary event processing function. These findings
need to be considered when deciding on which node type to place the primary aggregator
objects. Other important factors to consider are:

• the reliability of the communication channel: in most real-life implementations, the
stability and consistency of the connection between the acquisition nodes and the
regional nodes is rather low, due to geographical and weather conditions influencing
the GPRS link;

• the power constraints that need to be fulfilled by the acquisition nodes. Critical
equipment running in substations need to maintain autonomy in the event of total
power loss, and have a lower priority and relevance than safety-related equipment,
or other operation-critical devices, which are also permanently connected to the site
batteries. The acquisition nodes must be as frugal as possible;

• the bandwidth remaining available, after allocating enough for the "productive" data
exchange. In our case, one acquisition node generates up to 9MB of data per day,
which requires less than 1 hour to be completely transferred into the corresponding
regional node.

The system under analysis allows for several migrations of the primary aggregators
per day but, for efficiency reasons, the number of object migrations could be limited to
one, up to a few per day. A custom-tailored solution, built by the system implementer
based on the concrete constraints present in the deployment environment, is simpler,
more reliable and easier to test/validate than a general-purpose, decision agent built using
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meta-heuristic or probabilistic techniques.

6.2 Case study - Edge Computing

Edge computing is concerned with bringing processing resources closer to the requests.
This improves latency and shortens the communication paths, therefore increasing the
resilience of the entire system. The earliest form of edge computing is represented by
content delivery networks, where static resources are pushed closer to the clients in order
to avoid capacity issues at the centre.

The concept of edge computing remains valid also in the cases where data needs to
flow in both directions in more equal proportions, or when the content to be shared is less
static. In fact it becomes even more relevant, as new challenges emerge in maintaining
consistency and arbitrating modifications. Examples are:

• autonomous vehicles - where compute-intensive tasks such as image processing and
obstacle recognition are being off-loaded by the vehicles to more powerful, sedentary
nodes;

• smart grids - where sensors placed on machinery are used to measure consump-
tion and generated disturbances and dedicated controllers are able to schedule the
running times of high-powered equipment during off-peak periods;

• patient monitoring - in hospitals, where sensors are used to monitor health parame-
ters, and use the local hospital network to notify medical staff in cases of emergency;

• traffic management - even when not considering autonomous vehicles, the traffic
management systems are distributed systems in which edge computing applies, es-
pecially with regard to the zoning of decisions, aggregating the inputs from traffic
detectors and elaborating traffic light schedules according to local conditions;

• smart homes - the myriad of IoT devices running and acquiring data in smart home
deployments benefit from edge computing in implementing local control loops and
also distributing the computing tasks related to event aggregation and data logging.

This case study covers maintenance in railway systems. These wide-area distributed sys-
tems need to fulfil extremely stringent requirements with regard to safety, availability and
capacity and they have a well defined architecture, evolved over more than 100 years.

The central sub-system is the "Inter-locking", which is charged with making sure that
movements of railway vehicles along the tracks, junctions, and crossings are always safe.
Interlocking systems rely on highly redundant hardware and network architectures, and
a comprehensive set of inputs and outputs. Train presence on various track segments is
detected via specialised sensors, and outputs consist in change commands sent to switches
and turnouts, line-side signals, and level crossing barriers.

DOORS has not been designed to operate within the real-time, redundancy and
capacity constraints required by the core operational systems; however, its distributive
nature, along with the ability to reach consensus, encapsulate state and behaviour and
migrate it between the available nodes makes it suitable to implement an edge computing
based solution for predictive maintenance. An example of monitoring scenario is for the
wear of track switches. The electro-mechanical equipment contains sensors and measures
a comprehensive set of parameters during each manoeuvre: voltages, currents, durations,
movement distance, temperatures, etc.and records time-series for each. By analysing these
time-series, a predictive maintenance system may decide the optimum time for performing
replacement or maintenance operations, and even generate work instructions for the field
personnel performing the maintenance.
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As there are hundreds or even thousands of event-generating devices to monitor,
we conclude that such a system must be able to ingest and process series of millions
of individual events. This may be addressed by creating station-level aggregation nodes,
which shall perform the primary processing of the acquired data streams and generation of
derived events, in a manner similar to the first case-study - the power quality monitoring.
In addition, the data sets must follow the lifecycle of the actual assets installed. If a
certain switch machine is being serviced or replaced, the corresponding time series must
be reset accordingly, via dedicated commands, travelling from the centre to the periphery.
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7.1 Summary of contributions

DOORS achieves the goal of being an architectural simplification of the currently available
solutions providing support for edge computing.

Based on the message-passing paradigm, DOORS offers a self contained solution for
a large set of distributed problems, and addresses, in the same package a set of challenges
which are usually deferred for later in the operation: the extensibility of the system and
ability to update while in operation. There is a small set of fundamental features: a simple
and reliable solution of exchange of asynchronous messages, the ability to abstract real-
life events and treat them as "first-class citizens" in the system, manage both state and
behaviour in a uniform way, being able to replicate entities on multiple nodes as well as to
partition them over the entire set of nodes available, and offer a clearly defined consistency
model. In order to guarantee "at least once" delivery, each message comes with its own
confirmation, and the design has a "synchronous" side, using timeouts for liveness.

The traits defined node level are the interface specifications, scheduling mechanisms
and policies, object model and representations, etc. The relevant features at system level
are described in the largest chapter of our work. This includes replication and parti-
tioning and, in the context of both, we analysed the potential for providing distributed
transactions.

At application level we study the ability to version structure and behaviour, the ability
to evolve during normal operation, opportunity for abstracting away events and streams
of events and, last but not least, ensure secure access and operation of the application.

The potential impact of DOORS in concrete applications sums up to:
• significant simplification of application installation and update;
• minimisation of "in-field" activities for application deployment - it is expected that

the need to physically access remote sites in order to perform updates of the software
shall be minimal;

• architectural simplification - there is no longer need for separate database engines,
used in conjunction with messaging middleware and execution containers;

• cost efficiency - obvious savings achieved by a small technological footprint, the
object balancing capabilities, and a more rational use of the available hardware
resources.

7.2 List of publications

The results of our research have been presented in the following publications:

1. Dorin Palanciuc. DOORS: Distributed object oriented runtime system (position pa-
per). In 2017 16th International Symposium on Parallel and Distributed Computing
(ISPDC) - (Conference paper, ISI);
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2. Dorin Palanciuc and Florin Pop. A distributed, object oriented run-time and storage
system, framework proposal for edge computing. In BDA 2018 34-ème Conférence
sur la Gestion de Données – Principes, Technologies et Applications, Bucarest, 22-26
octobre 2018 - (Poster, Short conference paper, indexed by INRIA Digital Library -
https://hal.inria.fr/BDA2018);

3. Dorin Mihai Palanciuc Mawas. Analysis and Design of DOORS, in the Context of
Consistency, Availability, Partitioning and Latency. In 2018 21st IEEE International
Conference on Computational Science and Engineering - (Conference paper, ISI).

4. Dorin Palanciuc and Florin Pop. Balancing objects on DOORS nodes. In 2021
23rd International Conference on Control Systems and Computer Science (CSCS) -
(Conference paper, ISI);

5. Dorin Palanciuc. Implementing replication of objects in DOORS - the object-
oriented runtime for edge computing. Accepted for publication in the Special Issue
"Cyber-Physical Systems - from Perception to Action" of the MDPI Sensors Journal
- ISSN 1424-8220 - (Journal article, ISI, Q1).

7.3 Future work

We consider migration of client connections as an extension of object balancing. If client
connected to node A ends up sending messages mostly to objects hosted on node B, it is
preferable to have it connected directly to node B and therefore relieving node A of the
burden of forwarding messages.

Implementation of lock-free data structures and their incorporation in the Object and
Class Dictionaries is another important performance optimisation. Using trees instead of
linked lists for storing the key sets, or implementing fast sorting algorithms for index
(re)creation are examples in this respect.

Being able to hide diverse implementations under simple and uniform interfaces is
highly desirable in any system. Polymorphism shall be incorporated into the DOORS
design.

The DOORS design relies on the simple but yet to be proven how useful constraint
of one object having a single execution thread. In order to have this scale, fibres would
be a lighter and more scalable alternative, and there are currently enough successful im-
plementations to ensure our success.

Being a thoroughly asynchronous environment, DOORS is difficult to master in a
"traditional" language. We contemplate being able to concisely and intuitively write multi-
threaded code, and such is the case of futures and promises.

The trade-off configurations between consistency and availability are situated on a
continuum, and is very difficult for a system designer to know in advance which exact
trade-off configuration will make his system proposal most relevant, and useful. We in-
vestigate the possibility to provide a form of "consistency a la carte", in which the system
implementer may choose how much off-line availability is provided.

Few of the industry standard distributed solutions have been formally validated,
and yet we trust them, based on the success recorded on the market, maturity and the
abundance of documentation. We shall incorporate into the design all the "test harness"
elements, such that testing and validation of various components can be done "as in pro-
duction". Examples: testing of the consensus mechanism, the resistance to deadlock of
the concurrency control mechanism, the behaviour and performance of the transaction
arbiter, etc.
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