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Chapter 1
Introduction

The general goal of this research is to develop strategies, methodologies and tools that
assess the process variation impact on circuit design analysis, by linking the reality of
an existing fabrication to a new IC design, thus enhancing the manufacturer ability to

increase production.

1.1 Process Variation Impact on ICs

The process variation can be regarded as an old issue for the manufacturing industries.
As a consequence, it is not a new topic for the semiconductor industry, since it has been
addressed for nearly 50 years [23] [21]. Process variation is defined as the deviation
of parameters from their nominal specifications [18], while being an entirely random
process. Usually, it occurs in the transistors attributes, such as channel lengths or
gate widths, which in general are easier to control, or in the substrate doping profile
and quantity, tasks that are much harder to be controlled. The process variation can
be classified in systematic variation and random variation [13], both of them being
considered equally important. Moreover, the variation can be spatial or temporal and
may occur lot-to-lot, wafer-to-wafer, inter-die or intra-die. This variation can also be
translated in circuit performance discrepancies, almost always identified as decreases.
Still, the circuit performances are affected differently, depending on a series of factors,
from circuit logic to circuit implementation. Thereupon, in order to reduce the process
variation and limit their undesired effects, the process variation management has been

introduced [18], agglutinating a series of techniques.

1.1.1 Machine Learning in the Semiconductor Industry

The potential of Machine Learning (ML) in the field of semiconductor industry is great
and can tackle all the development and production challenges, starting with the design
and ending with the fabs manufacturing, by helping speeding up product development
times [28], [27].



1.2 Problem Description

The deviation introduced by the process variation in the nominal process of the param-
eters translates into limited IC performances, i.e. the IC product is no longer working
as it was intended to, and this represents an major concern. The circuit performance
parameters, also known as Electrical Parameters (EP) or probe-test, are measures of
circuit performances given a specific set of operating conditions. They are simulated
during the pre-silicon (preSi) verification and measured during post-silicon (postSi)
validation, at different temperatures. The Process Control Monitor Parameters (PCM),
also named technology parameters, represent a direct measure of the process variation
management during production, performed on a few special narrow structures called
Process Control Monitor structures, located among the productive dies.

It is currently possible to correlate the EP to the PCM, which are a closer indication
of the process variation, during the postSi validation, by using the Design of Experiments
(DoE) lots. However, this analysis is performed late, after the long, costly and time-
consuming steps of production and testing. Also, in postSi, the number of each PCM
measurements on a wafer is far smaller than the number of measurements available for
each EP (a dozen versus thousands), causing the analysis to be inaccurate due to the
lack of 1-to-1 correspondence between the two types of parameters. Consequently, in
nowadays production processes there is a high demand for an accurate estimation of the
relationship between IC performances and the process variation, early in the design and
production process, as it would significantly reduce the time-to-market and overall costs

of the products.

1.3 Motivation

The first motivation of the thesis is developing a methodology that is able to predict
the relationship between the circuit performances and the process variation (by using
technology parameters as indicators) at an early stage, by employing the PCM for
an alternative use. The second motivation is linked to extracting new and valuable
knowledge from the history production data, using ML techniques. The third motivation
is correlated to the areas where such relationship could be helpful: earlier diagnostic
of circuit responses sensitive to process variation, improvement of yield prediction
and diagnostic of inaccuracies in simulation device model. The fourth motivation is
linked to other problems that may be addressed based on an early relationship between
EP and PCM: Fab-to-fab migration, The approximation effect of the device models,
Technology-specific DoE plan, Root cause analysis and IC model checking with process

variation.



1.4 Scope of the Research

The main objective of this thesis is to develop a comprehensive methodology for accu-
rate assessing of the process variation impact on circuit design, at an early stage. The
methodology relies on data acquired from different verification phases (preSi simulations
and postSi measurements) and aims to understand and predict the relationship between
the technology parameters (as indicators for the process variations) and the circuit per-
formance parameters. First, this thesis introduces the methodology for modeling the
early-stage functional and statistical dependencies between the circuit performances and
the process variation, under the form of reliable prediction metamodels. Further, this the-
sis proposes three more methods based on extending the above-mentioned methodology
in other areas of interest for the semiconductor industry: sensitivity analysis with process
variation (global and local), simulation model checking and multivariate parametric yield
prediction.

1.5 Thesis Structure

The rest of this thesis is divided into 5 Chapters. Chapter 2 presents the related work,
with a highlight on the state-of-the-art methods involving the use of process variation
measures in functional verification. Chapter 3 describes the theoretical fundamentals
of the ML regression algorithms and other methods related to them, all employed in
this thesis. Chapter 4 introduces the proposed methodology for the accurate assessing
of the process variation impact on circuit design, at an early stage, the Verification for
Manufacturability by Modelling Process Variation - Circuit Performance Dependency
methodology (P2P4M - Process to Performance for Manufacturability), capable to
offer insights on the process variation impact for manufacturability purposes. Chapter
5 concentrates on highlighting a series of use-cases where the accurate regression
metamodels can be employed. Lastly, Chapter 6, draws the final conclusions, along with
the concise summary of the contributions described in the thesis and the perspectives for

future research.



Chapter 2

Related Work

2.1 IC Verification and PCM Parameters

postSi Validation
preSi Verification

Production Testing

Volume

IC Chip Design & Production Ph
p Design oduction Phases Sy

1

Fig. 2.1 IC Design and Production verification stages

2.1.1 Pre-Silicon Verification

The preSi verification involves testing the circuit during the design stage, to ensure
functional correctness of the design before tape out. This implies the evaluation of the
IC design in a virtual environment, under various scenarios, based on sets of operating
condition, through simulations. The techniques are more diverse and mature, but very
often, they do not provide sufficient coverage, making it impossible to remove all bugs
from the design stage [1] — practically, despite all efforts, the process corners are prone

to not be tested enough.

2.1.2 Post-Silicon Validation

The postSi validation goal is to certify the correct behavior of the manufactured chip
considering a set of predefined operating conditions [17]. It is operated on the first

manufactured chips (usually obtained on test wafers) in actual environments.



2.1.3 DoE Testing and Production Testing

During the DoE testing, the first fabricated wafers (DoE lots), are processed and tested to
decide if the design will be unaffected by future process variations [7]. The main objec-
tive of production testing is to certify the packaged ICs function in perfect compliance to
their specifications from data sheet.

2.1.4 Process Control Monitor

In order to keep the process variation under control, it is constantly being supervised
during the manufacturing process, using the Process Control Monitor technique. The
measurements are performed on narrow electrical structures placed on the wafer among
the productive dies the outcome are the PCM, device parameters (usually very numerous)
and cover distinct areas: device features, metallization attributes and electrical defects
monitoring. They are used to characterize and control the technology in reference to
the technology specification [17]. Simulating the Process Control Monitor schematics
represents a new paradigm and it is first presented in [26], to help selecting the most
important test structures. In [19], the simulated and measured PCM are used to solve the

covariance equation for statistical modeling.

2.2 Sensitivity Analysis

2.2.1 Global Sensitivity Analysis

Global SA analyzes the relationship between the uncertainty in system’ outputs and the
uncertainty in each input factor, evaluated over the entire range of each input factor [33].
Its globability derives from the simultaneous variation of the input factors. The SA
methodologies found in the literature can be categorized as follows: variable-based
methods (where the factors influence on the output is quantified directly, based on
correlation-like metrics) [24] and model-based methods (where the functional dependen-
cies between the input factors and the output are derived firstly and the resulted model is
further used to quantify the influence) [8].

2.2.2 Local Sensitivity Analysis

Local SA assesses the local impact of inputs on the systems’ response in the proximity of
a set of predefined values, and it can be useful in several semiconductor areas, e.g. DoE
case, but one of its main drawbacks is the high computational cost [5]. Usually, the local
SA is computed using gradients or partial derivatives of the output function at specific

input factor values, while the values of other input factors are maintained constant [34].



2.3 Model Checking

Model checking is part of the formal verification and represents the primary technique to
inspect the behavior of the circuit model over time, by establishing if it meets a given
specification [22]. Statistical model checking represent a simulation-based approach
used to verify the statistical properties of complex circuits, where the traditional model
checking is not applicable [14]. Statistical model checking can become inefficient and
time consuming when the verification requires the simulation of a large number of rare
events (low probability events). It can be accelerated by generating frequent rare events.
Model verification in terms of process variation is the next step towards an efficient
model checking, due to the high importance of determine the effect of process variation
on the design specification. The work in [32] addresses the problem of estimating a safe
region of the parameters space ensuring the design specifications, based on parameters

originating from process variations.

2.4 Yield Prediction

2.4.1 General Concepts

The yield represents the percentage of IC chips that fulfill the specifications. Out-of-Spec
(0O0S) count involves the actual count the chips falling outside the specification limits.
When this count metric is applied on a large number of samples (thousands), it can offer
a reliable estimation with low variance.

No. of chips out —of — specs

00S = 4.1
Total no. of chips @D

Parametric yield prediction mainly involves forecasting by generating samples in
preSi stage, using MC simulations (to be statistically relevant) and further applying
failure count methods [9] (simulate-and-count approaches), or by applying statistical

methods on postSi (measured) data.

2.4.2 Advanced Approaches

Clear improvements in terms of accuracy and computational effectiveness have been
highlighted when including diversified measures of the process variation. A new method-
ology for yield estimation relying entirely on silicon measurements is introduced by [2].
In [31], the authors considers the advantage of the wafer-level spatial correlations be-
tween e-tests measurements (scribe line test structures) and the probe-test measurements
(circuit performances), by GP-based regression algorithms to predict measurements

(probe-test) for the remaining die locations on the wafer.



Chapter 3

Theoretical Fundamentals

3.1 Regression Algorithms

3.1.1 Supervised Learning

Supervised learning algorithms create a predictive model, i.e. a function, that maps the
inputs to an output, based on inputs-output labeled training data [10], [15]. Consequently,
it relies on the availability of the target response and aims at minimizing a cost function,
by approximating the inferred function. This function will be further used to predict the
output of the system, given new inputs, that is not part of the training data.

The flow of a supervised learning algorithm is depicted in 3.1; beside the training
dataset, it involves an error signal used to refine the algorithm in order to determine the

best prediction model.

3.1.2 State-of-the-Art Regression Algorithms

A typical regression problem, i. e. fitting a model that links an output to a set of
input predictors, can be addressed through several regression algorithms: linear, Ridge,
Support Vector Machines, Gaussian Process (GP), Multilayer Perceptron (MLP) Neural
Network (NN).

Yi

| l

Training data X Supervised o
{1 Y1) ———  Learning ——— —
(xn, yn)} Algorithm

l Error
Error > Error <
Threshold Compare Threshold
with
Threshold
Developed

Model

Fig. 3.1 Supervised learning flow



3.2 Model Improvement through Feature Selection

Feature selection, also known as variable selection, represent the procedure of selecting
a subset of relevant features (input variables) that explain the response, while removing
the others from the regression. One important step in most of the regression problems
is the selection of the variables [3], [16]. Thus, the redundancy is minimized and the
relevant information is maximized, in order to obtain the best regressor, fitted with a
reduced variable space [30].

Based on the search strategy, the feature selection methods can be classifies into
three categories: filter methods, wrapper methods and embedded methods.

3.3 Bayesian Optimization

Hyperparameter optimization or tuning can be defined as selecting a set of optimal hy-
perparamters for a specific ML algorithm. Consequently, it represents another important
problem that needs to be addressed when training regressors, since their performance
depends heavily on the hyperparameter choice. The simplest variants of searching the op-
timal hyperparameters are Grid Search (GS) and random search. Another approach is by
using automated hyperarameter tuning. Such technique is Bayesian Optimization (BO),
one of the most powerful methods for finding the extrema of objective functions whose
evaluation is expensive [4], as it uses surrogate optimization algorithms to iteratively
map the error dependence on the hyperparameters given the dataset [4], [25].

BO employs two elements in solving the optimization problem. Firstly, a probabilistic
surrogate function, comprising a prior distribution that captures beliefs about the behavior
of the objective function (function evaluations data) and an observation model (posterior
distribution), used to describe the data generation manner. Secondly, an acquisition
function used to guide the search, by indicating the next interrogated point, planed based
upon the posterior distribution. One of the main BO characteristics is that it does not
rely on local gradient and Hessian approximations (derivative-free), it uses the entire
information available from previous evaluations of the function [25]. Consequently, it can
find the minimum even of difficult non-convex functions with less computational expense
(relatively few iterations), only by spending more time to determine the next sample point.
Therewith, it can easily cope with uncertainties related to black-box stochastic functions,

although it can become rather slow in large number of hyperparameters problems.



Chapter 4

The Verification for Manufacturability
by Modelling Process Variation -
Circuit Performance Dependency
Methodology (P2P4M)

This chapter introduces the proposed methodology assessing the process variation impact
on circuit design. The proposed Verification for Manufacturability by Modelling Process
Variation - Circuit Performance Dependency methodology (P2P4M) is based on mod-
eling the functional and statistical dependencies between the circuit performances(EP)
and the manufacturing process variation (PCM), at an early stage, by employing ML

algorithms on preSi data.

4.1 Methodology Flow

4.1.1 General Framework

A schematic representation of an unified feature selection and hyperparameter BO
methodology for training regression models is presented in Figure 4.1.

4.1.2 Problem Formulation and P2P4M Methodology Flow

The goal of the P2P4M methodology is to express an optimal relationship under the
form of equation 1.1 through a ML model, by only using preSi MC simulation and no
additional prior knowledge regarding the possible dependencies between the considered
variables, namely each one of the EP and PCM, as Figure 4.2 shows.

EP = f(PCM;) + ¢ (1.1)
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Fig. 4.1 Schematic representation of the generalized framework
for optimization-based regression fitting
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Fig. 4.2 Schematic representation of P2P4M methodology [42]

4.2 Feature Selection Block

For the proposed P2P4M methodology, we employed a correlation metric-based feature
selection method, based on two correlation metrics, very recent advances in the field and
alleged as being among the best metrics for quantifying the dependence between any

two random variables (EP and PCM in our case):

* (Brownian) Distance Correlation — DistCorr: measures the degree of independence

between two variables [29] and it is based on Brownian motion.

¢ Maximal Information Coefficient — MIC: a mutual information-based metric that

measures the degree of correlation between the two considered variables [20].
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4.3 Model Fitting based on preSi Data

The second step of the P2P4M methodology consists in fitting a 3-layer feedforward
MLP NN (Levenberg-Marquardt backpropagation algorithm and hyperbolic tangent
sigmoid fansig activation function) regression model - metamodel for the studied EP,
at each iteration step determined by the BO, based on the subset of likely influential
PCM determined by the feature selection block and on the hidden-layer neurons number
optimally selected by the BO. The fitting uses the training subset of the available data,
pairs of pre-determined PCM and the corresponding values of each one of the studied
EP. Next, the estimated values (ﬁ”) are compared to the target ones (EF;4in) and the
NN parameters are adjusted.

4.4 Bayesian Optimization of the Fitted Model

The P2P4M methodology employs BO to iteratively develop a global statistical model
for the objective function formed of 2 variables - the feature selection metric threshold
and the NN’s hidden-layer neurons number. The input space is a 2-dimensional space
and at each iteration the goal is to find the promising input pair (FSthreshold and
neuronsNumber), fit a new metamodel using it, followed by the function evaluation
consisting on minimizing the metamodel’ residual error computed on the testing set
(Error = EP— EP). The BO implementation uses GP (based on Matérn 5/2 kernel) as

surrogate function and expected-improvement-plus acquisition function.

4.5 P2P4M Methodology Summary

The resulting algorithm for P2P4M methodology is summarized in Table 4.1.

Table 4.1 P2P4M methodology algorithm

Required parameters: EP, PCM, maxNN, itNumber
1: Split training-testing dataset (EPyqin, EPest, PCMyqin, PCM o)
2: FSmetrics = DistCorr(EPyqin, PCM i) (v1)
FSmetrics = MIC(EP1qin, PCMy4in) (v2)
: neuronsNumber < optimizableVariable([2,maxNN|)
: FSthreshold<— optimizableVariable([(min(FSmetrics), max(FSmetrics)])
5: OptResults = BayesianOptimization(EP;ygin, EPiest, PCMrgin, PCM ey,
FSmetrics, neuronsNumber, itNumber)
6: PCM; = PCM (FSmetrics > OptResults.FSthreshold)
7: metamodel = NNtrain((EPyyqin, PCM_t14in, OptResults.neuronsNumber)

~ W
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4.6 postSi Distribution Modelling and Validation of the
Methodology

Figure 4.3 illustrates the framework for predicting postSi EP distributions based on the
P2P4M metamodels. It requires the distribution that reflects the current process window
(P(PCM,)), the previously obtained individual EP’s metamodel, under the form of a
mathematical equation linking each one of the studied EP and the subset of influential
PCMs (f(PCM,_;)), as well as the prediction error (P(€)). The distribution of the circuit
performances (P(ﬁ’,)) is computed as the superposition between the predicted EP’s
values returned by the metamodel and the non-zero fitting error, that quantifies the impact

of other factors, not included in the initial analysis, on the EP.

Process Neural Predicted EP
Window Network Distribution
Distribution Metamodel —
P(EP
P(PCM,) pcm, | S(PCMiy) f(PCM)‘. EP, (EP)
‘
& /\
Fitting Error
Distribution

P(9)

Fig. 4.3 postSi EP distribution prediction framework

4.7 The Application of P2P4M Methodology

4.7.1 Unifying Feature Selection and Hyperparameter Bayesian Op-
timization

Table 4.2 summarizes the results obtained on a real dataset formed of n = 93 input
variables and one output variable, split into 7;,4;,;, = 862 and ns.5; = 100 samples. The
RMSE computed on the testing dataset has the same order for all four implementation.
Yet, the smallest RMSE was obtained when applying feature selection on the input
variables. The main advantages of the P2P4M methodology is the speed and the
computational cost; the same RMSE were obtained with only 7% of the iterations.

12



Table 4.2 RMSE, number of neurons and DistCorr threshold obtained on the real dataset

Train & Test Settings minRMSE | Number of | DistCorr
Neurons Threshold

GS on neurons number 0.0481 3 -
BO on neurons number 0.0525 7 -
BO on neurons number &

GS on DistCorr threshold 0.0396 2 0.1
BO on neurons number & 0.0398 ) 0.1444

DistCorr threshold (P2P4M)

4.7.2 Functional Dependency Modelling and Finding the Influen-
tial PCM

Table 4.3 shows the P2P4M methodology results and accuracy metrics on a dataset of 92
PCM and 5 EP. The feature selection increases the prediction accuracy (MSPE) from 2 to
8 times. The metamodels are reliable, considering the correlation between the predicted
and the target values (0z5_pp), as well as the lack of correlation between the fitting error

and the predicted values (p,_z7)-

Table 4.3 The training metrics and results of the P2P4M methodology for: (1) No feature
selection, (2) Feature selection with DistCorr metric, (3) Feature selection with MIC
metric

[ Parameter | EP, | EP, | EP3 | EP4 | EPs |

MSPE || 0.088 | 0.181 | 0.187 | 0.145 | 0.166
No Feature Selection | p—, ., || 0.385 | 0.289 | 0.273 | 0.214 | 0.232

P._gp || 0529 | -0.649 | -0.615 | -0.529 | -0.426
MSPE || 0.041 | 0.083 | 0.086 | 0.024 | 0.024

DistCorr Pp_pp | 0820 | 0.607 | 0.619 | 0.900 | 0.851
P, _zp | -0.026 | 0.022 | -0.030 | -0.010 | 0.065

MSPE || 0.041 | 0.083 | 0.087 | 0.022 | 0.024

MIC Pip_pp || 0823 | 0.592 | 0.592 | 0.899 | 0.841

P._gp || -0.077 | -0.079 | 0.019 | -0.113 | 0.065

4.7.3 preSi and postSi Distribution Modelling and Validation

Table 4.4 summarizes the results of two similarity metrics values - Bhattacharyya
distance and Wasserstein metric, aimed at quantifying the statistical distance between
the real EP distribution and the P2P4M modelled EP distribution. The preSi — postSi
(EPpresi — EPpossi) 1s considered a benchmark. As expected, the similarity between
the simulation distribution and its predicted counterpart is high for all parameters. A
high degree of similarity can also be observed between the postSi modelled distribution;

moreover, there is one order of magnitude closeness between the postSi estimated

13



Table 4.4 Similarity metrics between the EP real and modelled distributions, based on
preSi MC simulations or postSi real measurements

|  Parameter | Similarity metric | EP, | EP, | EP; | EPy | EPs |

_ Bhattacharyya - 5055 | 0.030 | 0.0040 | 0.0011 | 0.0015

EPesi — EP presi distance
Wasserstein - 0123 | 00139 | 0.0158 | 0.0081 | 0.0097

metric
_ Bhattacharyya -, 517 | 0.0026 | 0.0032 | 0.0033 | 0.0029

EP ossi — EP pogssi distance
Wassersteln |, 120 | 0.0144 | 0.0146 | 00155 | 0.0145

metric
Bhattacharyya | 0191 1 0.0317 | 0.0265 | 0.0342 | 0.6187

EPpreSi - EPp()StSi distance
Wasserstein ) 508 | 0.1496 | 0.1451 | 0.1787 | 0.4583

metric

distribution and the measured postSi distribution (3rd row), compared to the benchmark.
The EP marginal cdf plots represented in Figure 4.4 better illustrates this. The postSi
modelled distribution using the proposed approach, based on measured postSi PCM
samples (red line) entirely reassembles the real postSi distribution (green line). Even
when there is a significant difference between the preSi and postSi distribution, as it is the
case of EP4 (Figure 4.4(d)), the P2P4M methodology is able to adapt to the technology
changes and the modelled distribution is much closer to the real one (green line).

4.7.4 Methodology Reliability

As a final step, the methodology’s reliability and consistency were assessed during
four runs in order to evaluate its functioning capability across two PCM datasets:
initialSet93 - 93 PCM that are simulated during preSi and measured in postSi phase and
extendedSet198 - 198 PCM, the initialSet93 plus an additional 105 PCM that are not
being monitored in postSi. The high influence of the extended dataset on the performance
of the P2P4M methodology is emphasized in Figure 4.5. Clearly, the initialSet93 results
on EP;; represent an explicit example of EP’s behavior that is poorly explained by the
available set of PCM parameters. Even with a DistCorr threshold spanning between 0.19
and 0.31, the metamodels’ MSPE is set around 0.12. Furthermore, the low accuracy is
supported by a less than 0.35 correlation between the predicted and the target values of
the EP. The methodology selected two influential PCM - PCM; and PCM3, displaying
important distance correlation metrics of 0.3468 and 0.32549, respectively. Nevertheless,
taking into consideration all the results, one can conclude that the initial set of available
PCM parameters is not suited to fairly describe EP{;. The PCM with indexes from 189
to 193 display the highest correlation with EP;; and should definitely be monitored
during the postSi production phase by the technologist.

14
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MSPE DistCorr Threshold

0.1 0.3
0.2
0.05
0.1
0
initialSet93 extendedSet198 initial Set93 extendedSet198
Correlation predicted-target Correlation error-target
0.1
0.5
0.05
o L] [
initialSet93 extendedSet198 initial Set93 extendedSet198
15 Influential PCMs number
T
101 1
5k _

initialSet93 extendedSet198

Fig. 4.5 P2P4M’s reliability and consistency results obtained
during the 4 runs for EPy;

Employing the extentedSet198 contributes to significant improvements in the meta-
models’ accuracy. The average MSPE decreased to 0.02, while the Pearson’s correlation
between the target and the predicted reached 0.97. The accurate and optimal metamodels
are trained based on a PCM set consisting of 14 parameters, as the last plot from 4.5
exhibits. Similarly, Figure 4.6 presents the correlation coefficients between the extended
set of PCM and EP;;. There is a straightforward relationship between the improved
metamodels and the DistCorr metric values displayed by the additional 105 PCM -

the maximum distance correlation reaches 0.6983, almost double than the maximum

correlation metric between EP ;| and the initialSer93’s PCM.

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
PCM parameters index

01 0.2 0.3 04 05 06 0.7 08 0.9

Fig. 4.6 DistCorr correlation coefficients between the
extendedSet198’s PCM and EPq;
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Chapter 5

P2P4M Methodology Use-Cases

This chapter contains the work developed in the context of several use-case applications
of the P2P4M methodology, aimed to provide efficient instruments in tackling long-
known semiconductor issues. The motivation was the opportunity to fully benefit from
the metamodel assets, as well as to introduce new tailored methodologies for classical

IC challenges, within the process variation context.

5.1 Use-case 1: Sensitivity Analysis with Process Varia-

tion

5.1.1 Global Sensitivity Analysis Methodology

Figure 5.1 describes the steps of the proposed global SA methodology in detail. The first
step involves applying the P2P4M framework for the target EPand obtain the optimal
metamodel. Next, the captured relationship is assessed to extract the set of resulted PCM
that are the influencing factors (PCM;), as optimally determined by the BO framework,
based on the NN’s model test set residual error. In the last step, the sensitivity index S;
is computed, based on the DistCorr or MIC metric, as described in equation 1.1, and
the PCMs are ranked. Note that higher §; means greater impact.

Sj = DiSl‘COFV(EP, PCM,',]')

(1.1)
S; = MIC(EP,PCM;_)

5.1.2 Local Sensitivity Analysis Methodology

The steps of the proposed Local SA methodology are detailed in Figure 5.2. The first
step is the same as for the global SA methodology - the P2P4M framework must be
applied for the targeted EP in order to obtain the best EP’ metamodel. The relationship



* Apply P2P4M methodology and obtain the best EP’ metamodel
« Extract the subset of influential PCMs — PCM;

» Compute the sensitivity index for each influential PCM — S
Fig. 5.1 Global sensitivity analysis methodology steps

encapsulated by each metamodel is formulated as in eq. 1.2, where hyperbolic tangent
(tanh) represents the NN activation function, IW7 is the input-to-hidden layer weights
vector, LW is the hidden-to-output layer weights vector and B denotes the input-to-
hidden layer bias vector.

EP=IWT tanh(IW" PCM; + B) (1.2)

The second step consists in computing the derivative of each EP (metamodel’s
output) with respect to its influential PCM - PCM; (metamodel’s inputs), to obtain the
partial derivatives. Finallym the local sensitivity indices are computed, under the form of
equation 1.3, where PCM,) is the point used to compute the local SA of EP with respect
to its j™ influential PCM - PCM;_ ;.

SjlpcMy = W(PCMO) (1.3)

The local sensitivity of a circuit performance with » influential PCM is defined as

the Euclidian norm of all the local sensitivities indices:

Spem, = H[SI\PCMost\PCM(ﬁ---asn|PCM0]H2 (1.4)

* Apply P2P4M methodology and obtain the best EP’ metamodel

« Compute the derivative of the metamodel’s output (EP) with
respect to its inputs (PCM;)

» Compute the local sensitivity index — s

Fig. 5.2 Local sensitivity analysis methodology steps
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5.1.3 Experimental Results
Global Sensitivity Analysis

In Table 5.1 is listed the ranked set of influential PCM for each one of the EP for the
considered dataset (92 PCM) and their corresponding sensitivity index, for both metrics
- DistCorr and MIC. When connecting this data with the results from Table 4.3, it
can be easily observed that these metrics’ overall magnitude for each one of the EP
is strongly correlated with the regression models’ accuracy. The scatter plots between
EP3; and PCM»9 and PCMy, display a visual axis symmetry that proves the statistical
independence between the EP and PCM. On the other hand, the scatter plot between EP4
and PCMy;, as depicted in Figure 5.3, highlights the presence of statistical dependence
between the two considered parameters. Coordinating this outcome with the slightly
higher correlation between the predicted and target values of EP4 (pEE—Em - Table 4.3),
strengthens the influence PCMy; exerts on the considered EP.

Withal, the last results proves that the DistCorr implementation can be validated as
being more suitable as a feature selection method than MIC for this particular case.

Table 5.1 DistCorr and MIC sensitivity analysis indexes and the influential PCM’ ranking

Parameter DistCorr MiIC
Influential PCM | Spisicorr || Influential PCM | Syyc

PCM, 0.4567 PCM, 0.2885

EP, PCM»; 0.4532 PCMy», 0.2710

PCM, 0.4068 PCMy, 0.2504

PCM»g 0.2816 PCMyg 0.2075

PCM,y 0.2252 PCMy 0.1721

EP, PCM, 0.2235 PCM, 0.1697

PCMy 0.2183 PCMy, 0.1686

PCMy 0.1901 PCM, 0.1977

PCM,y 0.1573 PCMy; 0.1888

EP3 PCM, 0.1401 PCMy, 0.1657

PCMy4 0.1646

PCM»g 0.1619

EP, PCMy; 0.8031 PCMy; 0.6528
PCMy, 0.2060

EP. PCMy; 0.8096 PCMy, 0.6074

PCMy; 0.3798 PCMy; 0.2202

Local Sensitivity Analysis

Figure 5.4 sums up the methodology performance when running the 2 proposed experi-
ments - computing the total local sensitivities in all corners and the point of maximum
sensitivity within the influential PCM using a local optimizer. There are no points of

maximum sensitivity that exceed the maximum value of the local sensitivity computed
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Fig. 5.3 Scatter plot between EP,4 and the supplementary
influential PCM selected by the DistCorr metric (PCMy,)
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Fig. 5.4 Ranked total local SA values calculated for the studied
EP

in the corners of the influential PCM for none of the EP. However, the newly obtained

critical points indicated within the influential PCM specification limits still introduce

20



high sensitivity. For example, for EP, the total local sensitivity in the point of maximum
sensitivity (1.2849) is comparable with the total local sensitivity in the worst corner
(obtained for PCM, at LSL, PCM4 at LSL, PCM,7 at USL).

5.2 Use-case 2: Simulation Model Checking

5.2.1 Methodology Flow

Figure 5.5 highlights the steps of the introduced simulation model checking with process
variation methodology and it relies on the existence of distributions discrepancies or
disparities. The methodology should be employed for one EP at the time, for which the
P2P4M methodology has been already applied, thus obtaining the optimal metamodel, as
well as the introduced global SA methodology and the resulting ranking of the influential
PCM. Besides this, the methodology requires preSi and postSi distributions for the
studied EP and for the entire set of influential PCM - PCM,;.

EPpTeSi EPpostSi
Distributions

l l

Compare EP
Distributions and Identify
Discrepancies

Yes No

Discrepancies

~Metamodel Subset of EP’s Model is OK
EP = f(PCM,) Influential PCMs - PCM;

Compare PCM;
Distributions and Identify«——
Discrepancies

PCMi—preSi PCMi—postSi
Distributions

Correlated
coverage
problems

Yes No

Additional investigations

Repair the Model (other root causes)

Fig. 5.5 Model checking methodology steps

21



5.2.2 Experimental Results

Figure 5.6 depicts a critical EP, namely EPg, showing both distributions discrepancies
and specifications’ surpassing oh the postSi distribution. One can easily observe that the
distributions of wafers 47 and 48 present clear distortions compared to the rest of the
wafers and right-shifting. Besides that, wafers 4, 39, 40, 43 and 46 distributions have
their mean shifted to the right compared to the preSi distribution, that, in theory, should
cover all postSi variations. EPg presents eight influential PCM found by the P2P4M
methodology; the most influential one - PCMg; does not display distributions’ disparities.
Yet, PCMs5, ranked as second (Sp;scorr Of 0.2815), display in Figure 5.7 right shift of
the postSi and history distributions, both of them violating the upper specification limit,

apart from the preSi distribution failing at covering the process variation.

1
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| Wafer2 ——-- Wafer20 Wafer37
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Fig. 5.6 cdf plot for preSi and postSi distributions of EPg

5.3 Use-case 3: Yield Prediction

5.3.1 preSi Yield Prediction for Normal Distributions Methodology

The first methodology aims at predicting the parametric yield at an early stage, based on
the P2P4M methodology’s metamodels, for EP and PCM displaying normal distributions.
Figure 5.8 describes the steps of the proposed approach for one EP and instead of
simulating the circuit responses using MC, it uses the dependency between the EP
and the dataset of influential PCM. More precisely, it starts by artificially generating a
high-sample dataset (millions of samples) for the influential PCM (PCM;), by modeling
the PCM distributions as a multivariate normal distribution, followed by estimating
the corresponding EP samples (Ei’), based on the relationship encapsulated by the
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Fig. 5.7 cdf plot for preSi, postSi and historical distributions of
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PCM;
High-Sample Dataset
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EP = f(PCM;) + ¢ Dataset Estimation

l

00Ss
Yield Prediction

Fig. 5.8 preSi yield prediction for normal distributions
methodology flow

corresponding metamodel. Finally, the yield prediction computed using the OOS metric,

by counting the EP’ samples falling outside the specification limits.

5.3.2 Parametric Yield Prediction Methodology

The algorithm is presented in Table 5.2 and it needs the EP’s metamodel, together with
the influential PCM distributions (PCM;)) and the metamodel fitting error distribution
for the analyzed performance parameter. In order to compute the OOS metric, the
parameter specification limits LSL and U SL are required as well. The key point of this
new approach is its ability to deal with non-normal distributions, that extends for both
PCM and the fitting error, based on employing the distFit method presented in [11], a
multivariate distribution fitting framework capable of generating data according to the

modeled distribution. Then, the corresponding EP values are estimated based on the
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metamodel, the synthetic generated PCM values (PCM,;_g.,) and the modeled fitting
error (€gep), thus resulting EP. Finally, the OOS is computed for the studied EP based on
eq. 3.5.

no. of samples out of spec

OOSEp = 3.5
EP total no. of samples (3-5)

Table 5.2 Parametric yield prediction algorithm

Required parameters: EP = f (PCM;) + €, PCM;, €, LSLgp, USLgp

1: Generate &g, ~ distFit(€)

2: Generate PCM ., ~ distFit(PCM;)
3: EP :f(PCMi_gen + ege,,)

4: Count OOS 5P

5.3.3 Experimental Results
preSi Yield Prediction for Normal Distributions

Table 5.3 presents the results obtained for 3 EP and the entire product (considering
the dataset on which the proposed methodology was applied). The proposed solution
achieves similar, but lower OOS values as the considered benchmark (the OOSs computed
on the preSi initial dataset). On the other hand, it must be taken into consideration the
high variance of OOS when computed on small datasets, which is exactly the case of the
used preSi data. Consequently, the proposed methodology performance is better than the
state-of-the-art approach of simply compute OOS on a small dataset of MC simulations,

obtaining lower variance in prediction.

Table 5.3 Yield loss prediction results for both the three studied EP and the entire product
- the preSi benchmark and the proposed methodology results

[ Method | EP; | EP, | EP3 | Product ||
OOS EP s
(%) 0.84 | 0.60 | 0.73 | 0.94
(962 samples)
00S EP ((‘7‘0) 092075 | 0.85 | 1.04
(1,200,000 samples) G
0.15|0.13 | 0.14 | 0.17
(%)

Parametric Yield Prediction

Figure 5.9 illustrates the visual representation of the obtained results for EP3 (a) and for

the multivariate (product) case (b), concentrating on the 10-iteration distribution of each
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Fig. 5.9 Box plots of the OOS metrics computed with the two
methods, along with the corresponding benchmark values, for:
(a) EP3 and (b) the entire product

method and the benchmark values (OOSs on preSi and postSi samples). Method 2 (the
algorithm presented in Table 5.3) outperforms Method 1, since it displays lower variances.
Method 1 implied computing the OOS metric for each one of the EP on a dataset obtained
as follows: firstly, the 220-sample EP was estimated, using the corresponding P2P4M’
metamodels and the available 220 measured samples of PCM,,s;. Next, the fitting
error was modelled based on distFit to reach the desired number of EP samples (in this
case, 164,129 samples). Both methods’ yield predictions (disregarding the particular
estimation type) have the tendency to be closer to the considered ideal reference (i.e.
postSi measurements OOS), than to the simulation-based-OOS, but the proposed yield
prediction algorithm shows a stable behavior and the resulting loss is in the safety

margins.
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Chapter 6
Conclusions

Chapter 6 draws the final conclusions and underlines the original contributions of this

research, along with future work perspectives.

6.1 General Objectives and Results

This research was dedicated to the study of the fabrication process variation assessment
in circuit design analysis, by employing Machine Learning approaches. The main
objective was to develop a comprehensive methodology for a precise assessment of
the process variation impact on circuit design performances, as early as possible in
the development flow, followed by its application in various semiconductor integrated
circuits (ICs) research domains, such as the sensitivity analysis of ICs’ performance with
process variation, diagnostic of inaccuracies in simulation device model or improvement
of the yield prediction considering the technological variation.

The P2P4M methodology represents an efficient and automated methodology for
modelling the relationship between the circuits performance parameters (EPs) and the
technology process variations (measured through the PCM), in preSi stage. It connects
the preSi verification and the postSi validation with respect to the process variation,
regardless of the data distribution and correlation configuration in order to overcome
the limitations of the current state-of-the-art methods. Moreover, it represents the only
available methodology able to establish the mathematical relation between EPs and
PCMs during the preSi phase. The methodology’s resulting reliable EPs regression
metamodels are able to express both the functional and the statistical influence of the
technology parameters on the circuit performances. Thus, it allows for an instant and
accurate snapshot on the circuit performances behavior when technological changes
appear, without the need for additional simulations or postSi measurements, since it is
able to adapt to the PCMs’ distributions immediately. The data-driven methodologies
are applicable to almost any IC implying continuous variables, when co-simulating the



analog circuit model and the PCM structures schematics is possible. They do not require
new experiments, but only standard MC simulations and postSi measurements samples.

The outcomes of the methodologies proposed in this research enable viable solutions
to the five problems of the semiconductor industry highlighted since the beginning. For
the fab-to-fab migration problem, the solution is straightforward; the P2P4M methodol-
ogy 1s applied on a historical PCMs dataset able to characterize the process window for
the target fabrication plant at a given moment and the circuit electrical performances’
distributions of the product to-be-migrated will result upfront, thus enabling the yield pre-
diction. In terms of the approximate effect of the device model, a large difference between
the predicted performances’ distribution and actual measured ones when employing the
P2P4M methodology for distribution modelling may provide a strong indication of the
device models accuracy problems. As previously stated, the local sensitivity analysis
method assists the designer in enabling a fast and computational-wise product-specific
DoE test plan, since the fitted metamodels, through the global sensitivity analysis method,
are able to provide the necessary information regarding the limited set of influential
PCMs. Similarly, besides predicting the parametric yield loss due to process variation
with the help of the introduced yield prediction methods, the relationship between the
circuit performance and the process variation encapsulated in the metamodels can be
used to easily determine the process variation parameter influencing the decrease of the
IC’s performance, thus resolving the root cause analysis problem. And last but not least
the IC model checking with process variation can be performed by using the introduced
model checking method that links the performances’ disparities in distribution to their

counterparts in the influential PCMs, thus providing a sufficient examination.

6.2 Original Contributions

The author’s major original contributions of this research (methodologies and concepts)
are summarized as follows, divided by chapter.
In Chapter 4:

* The development of an unified feature selection and hyperparameter Bayesian
Optimization methodology for training regression models, that stands out by
combining the best features selection metrics recommended by the literature
(DistCorr and MIC) with the Bayesian Optimization framework, to train a Neural
Network regression model - [40];

— The application on a controlled synthetic dataset generated by a custom
function with random (independent) extra variables to enable a comparative

study with grid search, in terms of performance;
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— The application on a real dataset generated by an integrated circuit that
depends on an unknown limited set of parameters, the rest of them having
little or no influence, followed by a comparative study with grid search;

— To the best of our knowledge, there are no similar approaches found in the

literature;

* The development of the Verification for Manufacturability by Modelling Process
Variation - Circuit Performance Dependency (P2P4M) methodology for modelling
the functional and statistical dependencies between the circuit performances (EPs)
and the manufacturing process variation (monitored through PCMs), during preSi

development stage - [6], [38];

— The application on an experimental IC (LDO) MC simulations to obtain the
optimal metamodels for each studied EP, that encapsulates the influential
PCMs subset;

— A reliability and consistency study of the P2P4M methodology, illustrated

by experimental results obtained on a real IC product;

— To the best of our knowledge, it represents the only available method that
determines the relationship between EPs and PCMs under a mathematical

form in preSi stage;

* The development of a framework for predicting postSi EP distributions based
on the P2P4M metamodels (reflecting the modelling of the circuit performance
behavior with the technology process variation) and a reference process window

information - [6];

— The application on an analog IC, for quickly estimating the postSi EPs’
distributions based on PCMs measurements’ distribution and validating the

approach accuracy using multidimensional similarity distribution metrics;
In Chapter 5:

* The development of a Global Sensitivity Analysis with process variation method-
ology for identifying and ranking the most important PCM factors, based on

correlation metrics - [37];
— A comparative study of the DistCorr, MIC and Pearson’s correlation metrics,
highlighting their limitations;

— The application on classical MC simulations of an IC product for determining
the circuit performances sensitivities with process variations, by obtaining a
ranked subset of influential PCMs;
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6.3

The development of a Local Sensitivity Analysis with process variation method-
ology, based on the partial derivative method applied of P2P4M metamodels,
for determining the local sensitivities of the circuit performances in the process
corners and the point of maximum sensitivity in the process variation window
- [42];

— The application on an IC product preSi dataset to prove the methodology

behavior and assist the IC designer in customizing a product-oriented DoE;

The development of a simulation model checking methodology for adequately
examining the process variation impact on circuit performances distributions’ dis-
parities, an alternate semi-formal solution to assess the inherent process variation

causing coverage problems - [12];

— The application on an analog IC, by employing preSi and postSi distribu-
tions to identify the EPs displaying distributions’ discrepancies, followed by
classifying them as critical and non-critical and analyzing the distributions
of the influential PCMs;

The development of the yield prediction methodology for computing the para-
metric yield of normal distributions at an early stage, based entirely on preSi MC

simulations - [41];

— The application for multivariate yield prediction of an IC product, by em-
ploying classical MC simulations and the illustration of the results compared

to a predefined benchmark;

The development of the parametric yield prediction with process variation, an
enhanced version of the previously-presented methodology to fit also non-normal

distributions of the Process Control Monitor parameters - [6];

— The application for multivariate parametric yield prediction of an IC product
influenced by PCMs displaying normal and non-normal distributions, based

on a limited number of wafers from two productive lots.
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6.4 Future Work

Future work can focus on addressing some of the following topics, in order to improve
the proposed approaches:

* The improvement of the P2P4M methodology in the context of computational
expense, by adding a stopping criterion to end the Bayesian Optimization iterations

when a specific minimum is reached;

* The application of the P2P4M methodology in analog circuits calibration, for
tuning the design towards technology variations, as the performances in production

test can be represented as a function of process parameters and the tuning knobs;

* The extension of the analysis by adding other influencing factors from an IC point
of view, such as temperature of input voltages, in addition to the process variation

measured through the Process Control Monitor parameters;

* The integration of the global and local sensitivity analysis with process variation
methodologies in the IC development phases, to assist the designer in setting the

experiments plan for the post-Silicon verification and validation (DoE);

* The enhancement of the parametric yield prediction methodology for high-yield
products cases when very low probability distribution tails are involved, by tuning

the distribution modelling with importance sampling techniques;

* The integration of the simulation model checking methodology in the IC product
development and its advancement to allow yield detractors’ detection to contribute

to yield optimization.
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