
University POLITEHNICA of Bucharest

Faculty of Automatic Control and Computers,
Computer Science and Engineering Department

PHD THESIS
SUMMARY

Trustworthy Cyber-Infrastructure

Scientific Adviser: Author:
Prof. Dr. Ing. Răzvan-Victor Rughiniș Ing. Florin-Alexandru Stancu

Bucharest, 2022

Contents

1 Introduction 1
1.1 Thesis Objectives . 2
1.2 Thesis Contributions . 2
1.3 Thesis Structure . 3

2 Trusted Computing Technologies 5
2.1 Trusted Computing Group and the TPM . 5
2.2 Trusted Execution Environments . 5
2.3 Challenges in Trusted Technologies . 7

3 Trustworthy Cloud Services 9
3.1 Current State of Trusted Cloud Solutions 9
3.2 SecCollab - Improving Confidentiality for Existing Cloud-based Collabora-

tive Editors . 10

4 Trusted Application Development 11
4.1 Development Model . 11
4.2 Trusted Development Frameworks . 11
4.3 HiddenApp - Securing Linux Applications Using ARM TrustZone 12

5 Embedded Devices in Trusted Infrastructures 14
5.1 Evaluation of cryptographic primitives on modern microcontroller platforms 14
5.2 Energy Considerations Regarding Transport Layer Security in Wireless IoT

Devices . 15

6 Trusted I/O Path 18
6.1 Problem Overview . 18
6.2 Systematization of Trusted I/O Solutions for TEEs 18
6.3 TIO - Secure Input/Output for Intel SGX 20

7 Trusted Industrial Infrastructure 22

8 Conclusions 24
8.1 Thesis Summary . 24
8.2 Contributions . 25
8.3 Future Work . 26
8.4 List of publications . 26

i

Chapter 1

Introduction

Modern computers are powerful and have more than enough memory to sustain and effi-
ciently multitask several applications. Many programs are built from millions of lines of
code (e.g., graphical environments, web browsers) which, due to this complexity, makes
it difficult (even unfeasible) to test and validate against security vulnerabilities. More-
over, the Operating System (OS) is usually charged with memory protection between the
userspace applications and providing mechanisms for hardware / network access, inter-
process communication etc. But a modern OS is also a large piece of software (e.g., Linux
now has reached over 27 million lines of code [1]) which may contain privilege escala-
tion vulnerabilities. The Trusted Computing Base (TCB) term was coined to describe the
components required to be secure (e.g., hardware, firmware, hypervisor, OS kernel) for the
entire system to be trustworthy. Ideally, the TCB must be kept as small as possible.

To address this problem, hardware-based trusted execution technologies started to emerge [2],
allowing programs to run in secure execution contexts, isolated even from privileged sys-
tem software, thus drastically reducing the TCB of the application. Popular ones include
ARM Security Extensions (TrustZone [3]), Intel Software Guard Extensions (SGX [4]) and
AMD Secure Encrypted Virtualization (SEV [5]). Among the possible use cases of trusted
execution, we highlight: securing cloud computing services (ensuring the privacy of cus-
tomer’s data in case of third party hosting), embedded systems (hardening mobile / IoT /
industrial devices from cyberattacks or even physical attacks), Digital Rights Management
(secure software / media licensing and distribution), securing critical personal / corporate
computer applications (e.g., user authentication, trusted financial transactions, protecting
the confidentiality of customer databases for GDPR compliance).

Note that some of the available trusted technologies were designed for just a subset of these
applications. For example, ARM TrustZone is usable only in embedded systems where
such CPUs are employed. Intel’s SGX technology is available on both servers and personal
workstations, but mainly lacks the means to ensure a trusted I/O path with peripherals,
leaving out many applications requiring secure user interaction. In contrast, AMD’s SEV
was specifically designed for cloud services, securing the virtualmachines’memory against
an untrusted hypervisor.

1

CHAPTER 1. INTRODUCTION 2

1.1 Thesis Objectives

Trusted execution technologies promise a refresh of thememory isolation paradigmby pro-
tecting sensitive applications against privileged actors such as untrusted OS or hypervisor.
CPU manufacturers (e.g., ARM, Intel and AMD) already started to incorporate hardware-
assisted isolation features into their commercial offerings, marking a major milestone to
the cyber-security landscape.

Still, there are several research challenges left for Trusted Execution Environments (TEE)
to be able increase their adoption rate. Thus, we define the following objectives for our
thesis:

1. Study the available trusted platforms and assess their architecture, security model,
practical applications and limitations;

2. Investigate solutions for ensuring the confidentiality of sensitive applications in the
cloud against untrusted providers;

3. Describe the requirements of TEE application development and design methods for
facilitating it;

4. Test whether modern, off-the-shelf microcontrollers are appropriate for developing
trusted embedded devices (e.g., their cryptographic performance, memory, power
consumption);

5. Review and develop methods for ensuring secure I/O access (e.g., keyboard, display,
printers) from trusted execution environments;

6. Explore the use of trusted technologies for hardening industrial control systems’
security.

1.2 Thesis Contributions

Our thesis covers the components of a trustworthy infrastructure, employing trusted exe-
cution technologies (e.g., ARM TrustZone, Intel SGX) to protect the applications’ sensitive
data against highly privileged attackers (e.g., compromised Operating Systems), highlight-
ing their current limitations (applicability, portability, trusted I/O) and contributing solu-
tions to these problems.

Summarized, our main contributions are:

• A background review of the various historic and state-of-the-art trusted technologies,
including the latest commercially available solutions from ARM, Intel and AMD.

• Analysis of currently available trusted cloud technologies and our solution for ensur-
ing the confidentiality and integrity of collaborative document editing applications
(e.g., Google Docs) using transparent client-side encryption via a browser extension.

CHAPTER 1. INTRODUCTION 3

• Insight into design challenges for developing TEE code and an overview of the vari-
ous SDKs and tools available for popular platforms (ARMTrustZone and Intel SGX).
We develop HiddenApp, a system call proxying technique facilitating the migration
of Linux-based applications to a TrustZone secure enclave.

• We evaluate the usability of embedded devices with resource-constrained microcon-
trollers in a trustworthy infrastructure, benchmarking the processing speed and en-
ergy usage with modern cryptographic libraries.

• An extensive review of the Trusted I/O Path problem and comparison of the avail-
able state-of-the-art solutions: supported peripherals, targeted TEEs and TCB com-
ponents.

• The design of a portable, embedded device (TIO) used to establish a secure commu-
nication channel between trusted applications and USB-based peripheral devices.
We demonstrate its capabilities for protecting keyboard input (e.g., passwords) and
securely printing documents from an Intel SGX enclave.

• An architecture for improving the security of critical industrial control systems with
trusted execution and a custom embedded firewall device used to authenticate com-
mands sent over legacy industrial networks (using the Modbus protocol).

1.3 Thesis Structure

The thesis is structured as follows:

In Chapter 2, we introduce the trusted computing concepts and describe the major trusted
execution technologies: Intel TxT, ARM TrustZone, Intel SGX, AMD SEV, plus other re-
lated research works.

Chapter 3 discusses the case of the untrusted cloud: lack of privacy guarantees when host-
ing applications on third party servers. As we analyze various approaches for ensuring the
trustworthiness of cloud services, we argue that trusted execution technologies represent a
viable solution for ensuring the confidentiality of applications processing sensitive data on
untrusted servers, with experimental / upcoming support from all major cloud providers
(Amazon, Microsoft, Google, IBM).Wemake our contribution, SecCollab, a method for se-
curing the users’ documents in cloud-based collaborative web applications by using client-
side encryption.

Chapter 4 presents the new software development challenges introduced by Trusted Exe-
cution Environments: the need for architectural modifications, the security of interaction
with an untrusted Operating System, the integration of trusted services (attestation, seal-
ing, cryptographic implementations) and portability to other platforms. We present state-
of-the-art frameworks to facilitate trusted application development or even run unmodi-
fied binaries inside secure enclaves with the help of OS abstraction libraries. Finally, we
describe HiddenApp, our approach for easily running Linux applications inside the ARM

CHAPTER 1. INTRODUCTION 4

TrustZone’s secure context by automatically proxying system calls to the rich OS for exe-
cution.

In Chapter 5, we explore the use of embedded devices as trusted platforms for specific ap-
plications (IoT, industrial and even PC security). We take several low cost, off-the-shelf mi-
crocontrollers and evaluate the performance, memory and energy consumption of various
cryptographic libraries implementing modern algorithms (both symmetric and asymmet-
ric) and protocols (TLS). We will later make use of this work to design multiple hardware
prototypes that will aid in securing computer peripherals and industrial communication
protocols with trusted technologies.

With Chapter 6, we introduce the Trusted I/O Path problem: due to the untrusted OS usu-
ally having privileged access overmost hardware, it is now required to secure the communi-
cation between TEEs and the system’s peripherals, especially when inputting or outputting
sensitive data. We systematize the available state-of-the-art works in 6.2, where we analyze
and compare several trusted I/O solutions targeting multiple hardware device classes and
trusted platforms. In 6.3, we designTIO – a portable device for ensuring a trusted I/O chan-
nel between Intel SGX TEEs and USB devices. We use TIO to protect keyboard input and
secure printing from enclaves.

In Chapter 7, we describe an architecture for securing industrial control systems using
trusted execution, proposing a low-cost custom embedded device to act as gateway / fire-
wall. We use it to enhance the legacy Modbus protocol with cryptographic authentication
features in order to prevent attackers from sending malicious commands which can have
dangerous consequences.

We conclude in Chapter 8 with the thesis summary, conclusions, future work and the list
of original contributions.

Chapter 2

Trusted Computing Technologies

This chapter describes the most popular trusted computing technologies and their evolu-
tion, beginning with the Trusted Platform Module (TPM) and Intel’s Trusted Execution
Technology (TxT), through modern trusted execution features embedded into modern
CPUs (ARM Trustzone, Intel SGX, AMD Secure Encrypted Virtualization).

Finally, we present some of the ongoing research challenges we explore throughout this
thesis.

2.1 Trusted Computing Group and the TPM

The “TrustedComputing” termwas promoted by theTrustedComputing PlatformAlliance
in 1999, later renamed to Trusted Computing Group, with the aim of making computers
behave in a consistent and secure way, e.g., the ability to verify that no unintended modifi-
cations were made / malware deployed to a system before unlocking specific secrets (e.g.,
encryption keys, confidential data). The TCG publishes specifications for a secure comput-
ing architecture, their most popular solution being the Trusted Platform Module (TPM).

The TPM is an embeddable cryptoprocessor, often integrated into modern computing de-
vices (e.g., PCs, laptops, servers) to improve their security. It provides a cryptographic
engine, a series of Platform Configuration Registers (PCR) and small tamper-proof, non-
volatile storagememory (NVRAM). These low-level featureswere designed to be combined
together, resulting in a series of high-level security functions: integrity measurement of
code and data (before execution), sealed storage (locking / encrypting data to a specific
platform state) and remote attestation (proving the platform’s integrity to a third party be-
fore provisioning secrets).

2.2 Trusted Execution Environments

A Trusted Execution Environment (TEE) can be described as an isolated memory region
and CPU execution context where programs can run with platform-assured confidentiality
and integrity protections from the normal (rich) environment, especially higher-privileged
components (OS kernel, hypervisor, firmware or even physical tampering), often regarded
as untrusted.

There aremultiple approaches for implementing aTEE: software-only (e.g., VirtualGhost [6],
SofTEE [7]) and hardware-assisted (e.g., secure virtualization, architectural CPU modifi-

5

CHAPTER 2. TRUSTED COMPUTING TECHNOLOGIES 6

cations introducing isolated execution contexts). We focus on the latter and summarize
the current commercially available trusted technologies.

2.2.1 Intel Trusted Execution Technology (TxT)

Intel’s Trusted Execution Technology (TxT [8]), one of the first commercially available
trusted technologies, enables a trusted hypervisor to launch late in the boot process (after
the normal OS has started, excluding its entire boot chain from the platform’s TCB). Intel
TxT also uses an auxiliary Trusted Platform Module chip for providing integrity measure-
ment, data sealing and remote attestation features.

This late-launch feature is said to make up a Dynamic Root of Trust for Measurement
(DRTM) platform due to its integrity not being affected by any previously executed code,
in contrast to the static one from the initial cold boot. Once the virtual machine has been
started and measured, its resources will be isolated by the CPU’s hardware virtualization
protection features. The normal (untrusted) OS may continue to run side-by-side with it,
outside of the system’s Trusted Computing Base.

2.2.2 ARM TrustZone

ARM TrustZone [3] is an architectural extension for ARM microprocessors providing
hardware-enforced separation between two domains: the Secure World, where a Trusted
Execution Environment can be implemented, and the Normal World, where the rich soft-
ware stack resides (i.e., the untrusted operating system and user applications). This was
realized by adding a new security context, complementary to the traditional privilege levels
(kernelspace and userspace). The TrustZone architecture also enforces memory isolation
using an enhanced Memory Management Unit (MMU), plus a modified Interrupt Con-
troller to provide priority interrupt handling to the Secure World. Additionally, an ARM
System on Chip (SoC) may include TrustZone-aware peripherals (e.g., extra static/dy-
namic RAM or flash memory), which may use the execution flags to make hardware-level
authorization decisions for their bus transactions.

Switching between the twoWorlds can only be done by employing a special, extra-privileged
exception level called Monitor Mode, where a firmware-installed handler is responsible
for validating and securely saving / restoring the CPU contexts accordingly. This process
happens automatically when a hardware interrupt is received and must be handled by a
different security domain, or manually, when software uses the new Secure Monitor Call
(SMC) instruction to access trusted services (similar to the Supervisor Call used to shift
from user to kernel mode).

2.2.3 Intel Software Guard Extensions (SGX)

With Software Guard Extensions [4], Intel developed a new Trusted Execution Environ-
ment for their general purpose x86 CPU family. Using SGX, userspace applications may

CHAPTER 2. TRUSTED COMPUTING TECHNOLOGIES 7

run in special execution contexts called Enclaves, with hardware-level protections (includ-
ing RAM encryption) against a privileged Operating System reading their memory or alter-
ing the execution flow, resulting in a minimal TCB consisting only of the CPU hardware,
its microcode / embedded firmware and the enclave software.

From the user’s perspective, an SGX application installs and launches the same as any
other program of the Operating System. For a developer, the application must be split in
two major components: the enclave code (which will be executed inside the TEE), and the
untrusted program (used initially to load the enclave and provide untrusted OS services,
e.g., networking, file system, peripheral access). The untrusted applications and their en-
claves may switch back and forth using Enclave Calls and Outside Calls. When the en-
clave is loaded, its code, along with the initial data and metadata (e.g., version number,
developer’s public key) will be automatically hashed by the hardware inside several special
measurement registers that uniquely describe the enclave running inside the trusted envi-
ronment. These measurements can be used for local / remote attestation and data sealing
purposes.

2.2.4 AMD Secure Encrypted Virtualization

Starting with their new EPYC (Zen-based) server CPUs, Secure Encrypted Virtualization
(SEV [5]) is AMD’s latest incursion into hardware security technologies. AMD SEV works
by transparently encrypting the guest VM’s RAM memory to make it inaccessible to hy-
pervisors and even physical attackers, effectively turning virtualized instances into secure
enclaves.

It uses an on-die SecureMemory Encryption (SME) controller to intercept all DRAM trans-
actions and seamlessly encrypt / decrypt them. This can also be done in a more granular
fashion by using a new enCrypted bit inside the page structure for enabling / disabling this
process. Key generation andmanagement happens inside the CPU’s add-on Secure Proces-
sor (AMD-SP), an ARM-basedmicrocontroller core used for trusted platform functionality.
This crypto-processor also provides a firmware-based TPM and an API usable by the hy-
pervisors for generating encryption keys to their VMs, although being unable to actually
see them.

During launch, the initial image of a VM is loaded by the hypervisor as unencrypted pages.
The Secure Processor also takes a cryptographic measurement of its contents and meta-
data, similar to a TPM’s PCRs. Local VMs and remote third parties can then request an
attestation report to authenticate and provision the initial secrets to the trusted VM.

2.3 Challenges in Trusted Technologies

We highlight the software / hardware tradeoff in most trusted execution technologies:
hardware-based isolation approaches, although offering increased performance and re-
silience through better memory isolation, suffers from decreased flexibility, especially in
the case of security vulnerabilities: if (or when) discovered, architectural-level bugs tend

CHAPTER 2. TRUSTED COMPUTING TECHNOLOGIES 8

to be hard to patch, often by using code & compiler workarounds (e.g., to prevent side
channels) may lead to losses in performance. The design of a Trusted Execution Envi-
ronment with a proper mix of security-validated hardware primitives and a good software
(firmware) flexibility (but low TCB size) remains an ongoing challenge.

TEEs have a large applicability domain: mobile, cloud, workstations and even industrial
computing. Certain hardware-based technologies are only usable in areas where such
CPUs are available (e.g., AMD SEV for servers, ARM TrustZone for embedded). In our
thesis, we briefly address the use of these technologies in the untrusted cloud problem in
Chapter 3 (Trustworthy Cloud Services) and the industrial security in Chapter 7 (Trusted
Industrial Architecture).

Next, we note that there is an added development overhead when writing TEE applica-
tions: since the Operating System is not to be trusted, any services usually provided by
it (e.g., filesystem, networking, peripheral I/O, inter-process communication) either need
to be secured separately, usually by employing cryptography (e.g., API results validation,
using encrypted transport protocols) or, in some cases, re-implement some of them alto-
gether (e.g., memory management, trusted clocks). This has been the target of extensive
research, resulting in several approaches like OS abstraction libraries or system call vali-
dation frameworks for all commercial TEE platforms; we will describe them in Chapter 4
(Trusted Application Development).

Finally, one of the most outstanding issues for trusted technologies is difficulty of ensur-
ing trusted I/O paths with the peripheral devices of a system. This is especially impor-
tant for supporting interactive applications (e.g., for protecting keyboard input, display out-
put). Some TEE technologies were designed to properly support this (i.e., ARM TrustZone
for mobile devices), though this remains a challenging for general-purpose (i.e., x86) plat-
forms. This is also requirement for industrial systems, where the cyber-physical interfaces
are ubiquitous. We discuss these aspects in Chapter 6 (Trusted I/O Problem).

Chapter 3

Trustworthy Cloud Services

Over the last decade, the ubiquity of Internet access and the evolution of Web technologies
has led to the emergence of cloud-based services and applications. However, the user’s
data stored there is readily accessible by the cloud providers, with important security and
privacy implications. This chapter addresses the problem of the untrusted cloud and builds
towards a trusted architecture for online applications.

3.1 Current State of Trusted Cloud Solutions

3.1.1 Client-side encryption

The simplest solution for ensuring data protection in a cloud environment would be to do
client-side encryption, where the server will be unaware of the real contents of a user’s
data. Certain applications even allow this to be done in a transparent manner, e.g.: a third
party cloud file storage / synchronization service like Dropbox may be used with a virtual
filesystem that provides an encrypted view to the cloud server.

Unfortunately, this method only works when the server doesn’t require to run any com-
putation on the data for the application’s features to work. Fully Homomorphic Encryp-
tion (FHE) is a promising new scheme for solving this, but, unfortunately, is not always
well suited for all scenarios with its less than ideal flexibility and performance character-
istics [9].

3.1.2 Trusted Cloud Platforms

Besides client-side encryption, the Trusted Computing Technologies have been long de-
sired by the industry to provide affordable solution for ensuring the confidentiality and
integrity of clients. Trusted Execution Environments such as Intel SGX and AMD SEV can
offer increased isolation against users with privileged access (e.g., server sysadmins) by ex-
cluding the entire virtualization stack (hypervisor) and, optionally, the Operating System
from their TCB. Popular cloud vendors (Google, Microsoft, IBM, Red Hat) have started to
adopt them, announcing upcoming confidential cloud features to their VMs [10].

9

CHAPTER 3. TRUSTWORTHY CLOUD SERVICES 10

Server-Side Document

WARNING: ENCRYPTED DOCUMENT, DO NOT EDIT!

<document header / metadata>

<encrypted contents>

TG9yZW0gaXBzdW0gZG9sb3Igc2l0IGF

WxpdCwgc2VkIGRvIGVpdXNtb2QgdGVt

<encrypted journal entries>

TG9yZW0gaXBzdW0gZG9sb3Igc2l0IGFtZXQ=

IGluIHJlcHJlaGVuZGVyaXQgaW4gdm9sdXB0YXRl

cHJvaWRlbnQsIHN1bnQgaW4gY3VscGEgcXVp

Client #1

Lorem ipsum dolor sit amet,
consectetur adipiscing elit.
Ut enim ad minim veniam, quis
nostrud exercitation ullamco
laboris.

Client #2

Lorem ipsum dolor sit amet,
consectetur adipiscing elit.
Neque porro quisquam est, qui
dolorem ipsum quia dolor sit amet,
consectetur, adipisci velit

Figure 3.1: Encrypted collaborative document structure.

3.2 SecCollab - Improving Confidentiality for Existing Cloud-
based Collaborative Editors

Wepresent amethod for providing confidentiality and integrity for these applicationswhile
preserving their core feature, that of multiple authors being able to collaboratively edit the
same document in real-time, for example, Google Docs.

Thus, there will be two versions of the document: server-side and client-side, illustrated in
Figure 3.1. We only use the server-side document as an encrypted storage and synchroniza-
tion mechanism based on its collaborative protocol. We take each operational transforma-
tion made by the user on its decrypted document and append it inside a special, encrypted
journal block. The usual operations done that the server will see here are just additions.
When the journal gets too large, a client will acquire a mutex (lock) on the document and
run a special snapshotting (compaction) operation.

We have implemented a proof of concept addon for the Google Docs service in the form
of a browser extension, acting as middleware agent between the web page and the server,
intercepting and altering the traffic made by AJAX (Asynchronous JavaScript and XML)
such that the server only received encrypted data.

In our implementation, each journal entry is a JSON string (containing transformation
metadata) that weighs approximately 40 bytes. Additionally, we employed a AES256-GCM
encryption algorithm uses a 96-bit initialization vector plus a 64-bit authentication tag,
with a total of 16𝑏𝑦𝑡𝑒𝑠. The Base64 encoding also has an overhead given by the formula
𝑐𝑒𝑖𝑙(𝑛/3) ∗ 4 plus a padding (1-4 bytes), so the resulting size of an encrypted journal block
is 𝑐𝑒𝑖𝑙((41 + 16)/3) ∗ 4 + 𝑝𝑎𝑑 = 76 + 𝑝𝑎𝑑 = 80 bytes. Our snapshotting process limits the
maximum size of the journal to 33.6𝐾𝐵.

Chapter 4

Trusted Application Development

In this chapter, we describe the application development challenges introduced by trusted
execution: requirements for trusted versus untrusted API calls, abstractions for cross-
platform TEE software, and state-of-the-art compatibility layers for running normal, un-
modified programs inside TEEs.

4.1 Development Model

Normally, existing applications that wish to use trusted execution technologies will require
a re-design, i.e., for their code to be split in two: a trusted, security-critical component
(to be run inside the secure environment) and an untrusted part (for unsecure execution
inside a rich OS). Moreover, each TEE platform uses a different architecture and API for
the development of trusted applications. Thus, more development effort is required from
vendors wishing to support multiple TEEs, which translates to increased costs. Reusable
abstractions (e.g., in the form of libraries) can be used to alleviate this, although they can
potentially increase TCB size.

Another problem is related to the additional design requirements of trusted software. A
typical application uses the OS kernel system call interface for accessing the filesystem,
communicating with other processes or over the network, reading input from the users
and displaying results on the screen etc. A secure application might require some of these
features and will either need them to be implemented by the trusted environment, or for
some of them, relayed to the OS for execution.

Solutions exist, usually by adding an OS compatibility layer inside the TEE to delegate
the system calls either to the trusted platform’s services, or even to the untrusted OS (and
securing the interaction by other means), as we present in the next section.

4.2 Trusted Development Frameworks

Frameworks for Trusted Execution Environment development are hot research topic. This
sections reviews such solutions grouped by their targeted platform. We also present several
cross-TEE abstraction layers that help developers target multiple platforms at once.

The first one, ARM TrustZone, requires a special trusted firmware to be developed (boot-
loader, special Monitor handler and trusted microkernel). Frameworks such as Private-
Zone [11] allow developers to easily split the program and run parts of their applications

11

CHAPTER 4. TRUSTED APPLICATION DEVELOPMENT 12

inside the secure world, while other works focus on bringing specialized programming
language support for TEEs (e.g., .NET Framework, Rust).

TrustShadow [12] describes a method to run unmodified Linux binaries inside the Secure
World using a transparent system call forwarding scheme: applications inside the TEE
have their requests proxied over to the rich OS, executed, then results copied back. Our
work, HiddenApp, also does system call proxying for running Linux programs inside the
trusted environment. The main difference is that we use an untrusted user-space process
(wrapper) as gateway for the calls in a similar way to Intel SGX’s OCall approach.

For Intel SGX user-space enclaves, the developers must specifically write a library with
the code to run inside the TEE context. Several SDKs were built to help this (OpenSGX,
Intel SGX SDK). Running unmodified applications inside Intel SGX enclaves is possible
by employing library OSes such as Haven [13] for Windows applications, SCONE [14]
for Linux containers like Docker and Graphene-SGX [15], which runs unmodified POSIX
binaries. These allow easily porting applications to enclaves at the expense of increased
TCB complexity.

4.3 HiddenApp - SecuringLinuxApplicationsUsingARMTrust-
Zone

HiddenApp is our solution for easily porting existing programs to an ARM TrustZone [3]
trusted environment. Recall that TrustZone’s Secure World also has separate privilege
levels for user / kernel modes. Thus, we developed amicrokernel providing secure services
while also functioning as an OS abstraction layer, intercepting the system calls from the
TEE, forwarding them to the normal (Rich) OS for execution then returning their results
back to the trusted application. Note that the application’s source code does not require
any changes, offering an easy way for protecting it in the face of an untrusted OS and
minimizing the TCB.

Our solution uses multiple components. When the system boots, a secure loader will prop-
erly configure the memory, interrupt controller and other TrustZone aware peripherals
(e.g., serial console, touch input or display) and install a MonitorMode handler (for Secure
Monitor Calls – SMC, switching context between the secure / normal worlds). Note that,
with ARM TrustZone, a segment of the SoC’s physical memory will be reserved for the
Secure World and will be inaccessible to the normal OS. The trusted firmware may block
several interrupts from reaching the normal OS (e.g., to intermediate access for trusted
devices). After that, both the Trusted Microkernel and the Rich Operating System are
launched into their respective execution contexts. The normal OS (a GNU/Linux kernel)
is passed control and waits for trusted applications to be run by the user.

Both the Trusted Microkernel and the TrustZone Communication Kernel Module will need
to marshal / unmarshal the system call data using a custom packet structure. Thus, they
require abstraction code for all the available Rich OS service routines: their parameters’
order, data types, buffer directions / lengths and their overall behavior (i.e., the kernel’s

CHAPTER 4. TRUSTED APPLICATION DEVELOPMENT 13

0 100 200 300 400 5000

50

100

150

200

Buffer Size (B)

La
te
nc
y
(m
s)

Standard Call
TrustZone Call

Figure 4.1: Write syscall durations for various buffer sizes [16].

userspace API). Each system call must also have proper checks as to prevent unauthorized
access (e.g., Iago attacks) or buffer overflow vulnerabilities. Custom trusted features may
also be implemented at this layer, e.g. transparent filesystem encryption.

We implemented and tested our solution on a NXP i.MX53 development board powered
by Linux v2.6.35, using a modified U-Boot as bootloader for doing TrustZone platform ini-
tialization and booting the OSes. Our microkernel was designed to be as small as possi-
ble. This resulted in a TCB of ≈ 2000 lines of code (C + assembly), excluding the crypto
library (LibTomCrypt) used for RSA-based digital signature verification with a large foot-
print (30𝐾𝐵 as binary). We validated it by testing simple programs requiringOS interaction
such as filesystem read/write, a telnet and a ssh client.

The syscall latency is shown in Table 4.1. An obvious issue is the large overhead of≈ 49𝑚𝑠
between normal and proxied system calls, mainly due to themany Supervisor andMonitor
mode context switches made in this process. We can see that the time is amortized when
the system call’s execution takes longer, as is the case with the write routine. Although
the performance difference is quite large, we emphasize the security improvements from
protecting the applications’ sensitive data against powerful attackers and consider the costs
as acceptable. Speed optimizations might still be possible, though we leave them as future
work.

Table 4.1: Average latency for tested system calls [16].

Name Standard (ms) TrustZone (ms) Overhead (%)
getpid 0.58 49.33 8325 %
socket 12.6 61.5 384 %
write (256B) 29.60 114.27 386 %
write (512B) 51.92 153.19 295 %

Chapter 5

Embedded Devices in Trusted
Infrastructures

Traditionally, embedded devices usually lack modern security due to their constrained ca-
pabilities (processing power, memory and firmware code size). Cryptography is often nec-
essary for ensuring the information security of such embedded systems, but the implemen-
tation cost is often regarded as being high. Because of the demanding computational power
and memory that these algorithms require, and the limited resources available from the
hardware, developers have previously used inadequate security practices or even skipped
them entirely. Nowadays, as technology continuously improves, we have faster, smaller
and more power efficient processors, up to the point that the costs of adding security to
embedded applications have become low enough to be feasible, justified even for low-end
products.

In this chapter, we test several modern microcontroller platforms, benchmarking various
cryptographic algorithms and libraries over multiple devices to help choose the most ap-
propriate product for a cost-efficient, but secure design. Ourwork is used later in this thesis
for the design of embedded devices used to augment trusted infrastructures with missing
features (such Trusted I/O and trusted industrial systems firewall).

5.1 Evaluation of cryptographic primitives on modern micro-
controller platforms

We evaluated the performance of multiple open-source libraries marketed for embedded
use, selecting popular cryptographic algorithms (both symmetric and asymmetric encryp-
tion, hashing and authentication) on several low-cost ARM Cortex-M processors. We im-
plemented a modular firmware in C that allowed us to test them all, report and compare
their results.

The overall performance comparison of the symmetric algorithms is shown in Figure 5.1.

The last algorithm to be tested, the asymmetric cipher RSA (Table 5.1) had the hardest
impact on the embedded systems. No implementation could run on EFM32ZG because
of the program size exceeding its flash memory (40𝐾𝐵 versus 32𝐾𝐵) regardless of any
optimizations we tried. The other two microcontrollers had a single 128 bytes operation
take a lot more cycles to complete, as expected from the heavyweight RSA cryptosystem.

14

CHAPTER 5. EMBEDDED DEVICES IN TRUSTED INFRASTRUCTURES 15

}
EF
M
32
ZG

}
EF
M
32
ZG

}
EF
M
32
ZG

}
EF
M
32
ZG

65
.3 88
.7

19
0.
5

10
8.
8

13
6.
7

81
.8

25
9

97
.8 14
7.
2

AES ChaCha SHA Poly1305

102

103

104

105

}
SA
M
D2
0

}
SA
M
D2
0

}
SA
M
D2
0

}
SA
M
D2
0

16
5.
9 25
9.
1

14
1.
1

46
4.
8

22
2.
8

31
5.
9

20
5.
5 59

6.
2

25
6.
6

33
6.
6

Th
ro
ug
hp
ut
(K
B/
s,
lo
ga
rit
hm

ic
)

mbedTLS TomCrypt wolfSSL

}

ST
M3
2F4

}

ST
M3
2F4

}

ST
M3
2F4 }

STM32
F4

79
2.
1 1,
93
0.
6

74
8.
1

2,
56
0

1,
66
2

7,
39
8

1,
13
4 3,

00
4

1,
97
2

6,
13
3

Figure 5.1: Throughtput comparison of AES, ChaCha, SHA and Poly1305 on all platforms

Platform Library Prog.Size Memory Decrypt Encrypt
(Bytes) (Bytes) (ms) (ms)

SAMD20 mbedTLS 46160 5412 830.6 44.1
SAMD20 TomCrypt 42696 8536 3335.4 340.3
SAMD20 wolfSSL 44720 3272 3699.5 364.3
STM32F4 mbedTLS 44628 6978 88.6 4.2
STM32F4 TomCrypt 41256 10112 274.0 22.8
STM32F4 wolfSSL 42360 4856 348.4 28.8

Table 5.1: Results for the asymmetric RSA cipher (1024 bit).

Finally, the power requirements are presented in Figure 5.2. The current consumption
was essentially the same for all implementations on a platform, regardless of the algorithm
executing, so the table only includes the combined results.

5.2 Energy Considerations Regarding Transport Layer Security
in Wireless IoT Devices

Commercial Internet of Things (IoT) appliances are expected to protect their users’ privacy
and to prevent control by remote attackers, but usually fail to do so due to insufficient
security measures or improper implementations. Many IoT specific application protocols
that are optimized for low complexity and low resource usage, such as CoAP or MQTT.
These protocols rely on other layers to provide security, such as a secure communication
channel ensured byTransport Layer Security (TLS)which is seldomemployeddue to power

CHAPTER 5. EMBEDDED DEVICES IN TRUSTED INFRASTRUCTURES 16

EFM32ZG SAMD20 STM32F4
0
50
100
150

4.6 10.5

70.9

7.2 12.2

105.6

Po
w
er
(m
W
)

Idle Running

Figure 5.2: Power consumption (idle versus execution).

Figure 5.3: TLS Handshake - Current Waveform, DMM Capture [17]

consumption considerations.

Our work measures the energy impact of using the Transport Layer Security protocol in
WiFi-enabled IoT devices (we tested an Espressif ESP32 development board) and shows
that, under real-world conditions, is actually of low concern.

We used aDigitalMultimeter interfacedwith a computer tomeasure the current consump-
tion of the device under test, together with an oscilloscope connected in parallel for cap-
turing more accurate peaks (due) and having a secondary channel connected to a GPIO,
signalling the various states of the protocol (illustrated in Figure 5.3).

Using the above methodology, the device’s performance (processing time and current us-
age) is evaluated using multiple scenarios. First, the baseline current values will be mea-
sured for different basic states and operating modes: idle, a NOP loop, and the targeted
algorithms in a synthetic environment (i.e., with no network activity, radio off). These
baseline values are, then, matched onto the complex waveforms obtained when running a

CHAPTER 5. EMBEDDED DEVICES IN TRUSTED INFRASTRUCTURES 17

real TLS session.

The energy consumption contributions were plotted in Figure 5.4. We see that the radio
(in receive mode) only requires about half of the total power, the rest (static power) is used
by the microcontroller just being active.

Regarding TLS overhead, the handshake operation is significantly more costly than ap-
plication data exchange, which is performed using a symmetric cipher. In applications
that exchange large volumes of data, the one-time character of the handshake makes its
overall contribution negligible. In applications that transmit data occasionally, it may be
advantageous to disconnect from the wireless network and place the device in a low-power
sleep state, but the connection needs to be re-established, forcing the significant handshake
overhead.

39%

44%

13%
4%

Static Power
Receive
Processing
Transmit

(a) TLS Handshake

40%

48%

9%3%

Static Power
Receive
Processing
Transmit

(b) TLS Receive

Figure 5.4: TLS Energy Contributions [17]

Chapter 6

Trusted I/O Path

6.1 Problem Overview

The Operating System is traditionally responsible for interfacing with the external world
(e.g., network, storage, peripherals). Programs running inside a Trusted Execution Envi-
ronment may freely make use of OS services, but they are not to be trusted. However, some
use cases might require secure access to specific hardware components. For example, the
keyboard is often used as method of authentication (e.g., via passphrases). Unfortunately,
some popular platforms (e.g., PCs) lack integrated means of establishing trusted commu-
nication paths with its peripherals, which we will discuss in this chapter.

Many security-critical applications require interactionwith the peripherals (e.g., keyboard,
display, touchscreen) or some other devices (e.g., industrial equipment connected over
serial adapters). These applications would greatly benefit from being isolated inside a
Trusted Execution Environment, but the usual way they interact with the hardware is
by making use of untrusted Operating System services (via its device drivers). To protect
against this, either access to the specific hardware peripherals needs to be denied from the
OS, or a trusted communication channel must be established with the application TEE
such that a malicious Man-in-the-Middle kernel would be unable to interfere. This is
defined as the Trusted I/O Path problem [18], and there aremultiple approaches for solving
it depending on the peripheral device’s class and available platform features.

6.2 Systematization of Trusted I/O Solutions for TEEs

In this section, multiple works in the Trusted I/O Path field will be presented, highlighting
their novelty concepts, notable differences and improvements. Note that, to each of the
articles, a single-word alias has been given, which will be used through the rest of the
paper for easy identification.

As presented in Table 6.1, the available trusted path solutions are diverse, with varying
application classes and platform requirements. We used multilateral classification by: pe-
ripheral type (Human Input Device / Display / others); the I/O isolation mechanisms used
(virtualization-based - Virt, chipset-based access control - Chip, external device - Ext); in-
terface / protocol: USB / Bluetooth / Network; for virtualization-based approaches, their
implementation method: MMIO (memory mapped I/O) / device driver virtualization.

Note that the half-circle denotes a partial implementation of the feature; for HID, it means

18

CHAPTER 6. TRUSTED I/O PATH 19

Iso
lat
ion

Int
erf
ace

HI
D
Di
spl
ay

Ot
he
rs

Ta
rge
t T
EE

+H
yp
erv
iso
r

+C
hip
/fi
rm
wa
re

+E
xt.
De
v

TC
B L
oC

Name Peripherals TCB Additions
ZTIC [19] Ext USB Remote 7 7 3 ≈ 110𝐾𝐵 1

Bumpy [20] Ext USB Flicker 7 7 3 ≈ 8.5𝑘
Bumpy Dis-
play

Ext Network 7 7 3 ≈ 10𝑘

UTP [21] Virt Driver Flicker 3 7 7 ≈ 2.3𝑘
VTP x86 [18] Virt MMIO TrustVisor 3 7 7 ≈ 15𝑘
Intel
PAVP [22]

Chip GPU DRTM,
SGX

7 3 7 𝑛/𝑎

TrustUI [23] Virt Driver TrustZone 3 7 7 ≈ 10𝑘
Wimpy [24] Virt MMIO DRTM 3 7 7 ≈ 3.5𝑘
GSK [25] Virt GPU

MMIO
TrustVisor 3 7 7 ≈ 35𝑘

SGXIO [26] Virt Driver SGX 3 7 7 𝑛/𝑎
BASTION-
SGX [27]

Chip Bluetooth
HCI

SGX 7 3 7 𝑛/𝑎

ProximiTEE [28] Ext USB SGX 7 7 3 ≈ 5𝑘
SecDisplay [29] Virt USB TrustZone 3 7 7 ≈ 2𝑘
TIO [30] Ext USB SGX 7 7 3 ≈ 27𝑘 2

Aurora [31] SMM
Virt

MMIO SGX 7 3 7 ≈ 3.3𝑘+
696𝐾𝐵 3

Table 6.1: Comparison of Trusted Path Solutions.
1 only binary size given 2 counts firmware, enclave framework & full asymmetric crypto lib 3 hypervisor

(LoC) + enclave library (compiled binary)

only a subset on input devices are usable; for display, it means text-only output. The
additional TCB components are given (including the added device / chip module, besides
from the CPU platform).

A first observation is that implementing trusted graphical display is a hard problem: many
solutions only worked for partial, text-mode output either using an external LCD or secure
console output (using BIOS-like text mode switching).

We note that, for the Trusted Computing Base - a desirable comparison metric, the size
values were taken as-is from the papers and are unreliable for this purpose because of dif-
ferences in measurement methodologies (e.g., lines of code vs binary sizes, different sup-
ported devices / feature sets, target platforms incurring framework overhead, unoptimized
cryptographic libraries used).

CHAPTER 6. TRUSTED I/O PATH 20

TIO Secure Element

Secure Peripherals

Hardware

OS Kernel

Userspace

Trusted Execution Environment (TEE)

Other Apps
Untrusted

Wrapper

 + Libraries
Provisioning

Enclave

USB Device

USB Host

Edge
Calls

Platform
Drivers

Trusted Channel

Peripheral-specific Interface (e.g., HID /
Printer / CDC)

System
Calls

App

Enclave

Support Libraries

Composite Interface (CDC +
passthrough)

Figure 6.1: TIO System Architecture.

6.3 TIO - Secure Input/Output for Intel SGX

TIO consists of a custom hardware dongle with two USB ports: a host interface for con-
necting generic peripherals, and a separate USB device interface for interacting with the
SGX-enabled PC. Thus, the TIO secure element acts as a transparent I/O gateway, estab-
lishing a secure channel between the enclave and an otherwise unaware peripheral, for
exchanging USB packets. The overall system design is illustrated in Figure 6.1.

When establishing the secure channel between an enclave and the TIO module, we use
a proper authentication protocol that protects the user against man-in-the-middle attacks
by mutual authentication of the involved parties. We solve this by introducing a one-time
setup prerequisite: the trusted device needs to be paired to the user’s machine beforehand
(by booting a read-only Linux OS stored inside the flash memory of the dongle).

(a) v1 (with debugging wires attached) (b) v2 (cleaner, Type A device connector)

Figure 6.2: TIO hardware prototypes.

Our TIO prototypes use a low-cost STM32F405 ARM Cortex-M4 microcontroller running
at 168MHz with 192KB SRAM and 1MB flash. It also includes 2xUSB OTG interfaces, one

CHAPTER 6. TRUSTED I/O PATH 21

used for connection with the PC, and the other one configured as USB host for trusted
peripherals. The dongle-like device was packaged as a small-factor printed circuit board,
with connectors and auxiliary components, as presented in Figure 6.2.

Table 6.2: TCB size measurements for the microcontroller firmware and the enclave, split
components.

(a) Microcontroller Firmware

Module LoC ObjCode
(KB)

mbedTLS 15018 44.1
STM32 SDK 8277 18.1
Firmware code 3215 11.2

(b) Device Provisioning Enclave

Module LoC ObjCode
(KB)

IPP Crypto 22955 254
SGX tRTS 9742 111
DPE code 687 11.1

The TCB size results are presented in Table 6.2a for the microcontroller firmware, and
in Table 6.2b for the Enclave. We observe that the enclave has a bigger total footprint
compared to the embedded code due to the large Intel SGX framework employed.

Table 6.3: Performance measurements.

Handshake Time 1165ms
HID Report Latency Overhead (RTT) 1.3ms

In Table 6.3, we measured the time taken for the enclave to do the initial Diffie-Hellman
handshake with the microcontroller and the latency overhead of input reports from a HID
peripheral (a USB keyboard).

Our implementation currently understands the USB HID and Printer class protocols. Our
solution can be extended to cover other peripheral classes by implementing the appropriate
device class inside the enclave (for certain applications, the developer must also enhance
the microcontroller’s firmware for class-specific I/O state management / filtering, or for
adding activity indication).

Chapter 7

Trusted Industrial Infrastructure

Any use of connected computers opens the issue of security. This is also the case for the
industrial systems used for efficiently automating the processes of a factory or plant, since
it requires their embedded devices, controllers and supervisory PCs to communicate with
each other to ensure a proper execution logic, present a friendly interface to the users for
monitoring etc. Since such systems are able to control physical machinery like electric
motors or valves, the damage potential in case of a cyber-attack could have devastating
consequences.

In this chapter, we explore using Trusted Execution technologies in an effort to improve
the security of sensitive applications by separating them from a potentially vulnerable rich
operating system such that, if exploited, the attacker’s reach will be limited.

Our work proposes an architecture employing TEEs and a firewall device to isolate the
security-sensitive industrial control network from general-purpose systems (e.g., operator
PCs, remote servers) which may be exposed to cyber-attacks from external sources (e.g.,
Internet, USB sticks), while still providing the means for issuing both normal and excep-
tional (emergency stop) commands to the automation controllers securely. To this end, we
enhance the most popular industrial electronics communication protocol, Modbus, with
cryptographic authentication features and design an affordable firewall device to make it
easy for legacy equipment to transition to a secured network. Since realtime requirements
aremandated, we demonstrate that even low-power, off the shelfmicrocontrollers can han-
dle the cryptographic computations required for a secure protocol with acceptable perfor-
mance.

Our architecture, illustrated in Figure 7.1, introduces an authenticated communication
channel between the control equipment and trusted applications running on untrusted
devices (on the corporate / management network which is, presumably, connected to the
Internet). We used a low cost, low power, microcontroller-based firewall as model for
integrating a network of legacy devices over a serial network, though each of the controllers
may implement the authenticated Modbus protocol separately due to the low hardware
requirements of our solution. Because of this, we further abstract the individual industrial
devices and consider our gateway as the sole control system within our protocol.

We modify Modbus in a compatible way, adding a cryptographic authentication protocol
by using a custom function code and encapsulating everything else as data, so any protocol
translation devices in theway (such asModbus TCP toModbus RTU)will continue towork
as expected.

22

CHAPTER 7. TRUSTED INDUSTRIAL INFRASTRUCTURE 23

Untrusted Operator PC / Server

Firewall /
Protocol
Gateway

Industrial Network

PLCs

HMI

Classic Modbus Authenticated Modbus

Untrusted Network

Operating System
Hardware

Control App
(TEE)Userspace

Figure 7.1: Trusted ICS Architecture.

We implemented a firewall prototype using an Olimex STM32F4 microcontroller develop-
ment kit. The MCU has a maximum frequency of 168MHz, 192KB of RAM memory and
1MB flash storage. Two of the board’s UARTs (serial interfaces) were wired to a Raspberry
Pi and a laptop simulating the industrial control devices / master using Python.

We used a logic analyzer (Figure 7.2) to determine the performance / latency overhead
introduced by our modified protocol (since Modbus RTU’s has strict timings). The total
MCU run time of the authenticated Diffie Hellman operations is of ≈ 1100 𝑚𝑠, though it
is split among 2 requests.

Figure 7.2: Logic Analyzer Output

In normal operation conditions, the symmetric MAC computation latency introduced is
280𝑢𝑆/𝑏𝑙𝑜𝑐𝑘 (1 𝑏𝑙𝑜𝑐𝑘 = 16 𝑏𝑦𝑡𝑒𝑠). For calculating Modbus’s maximum silence period:
𝑡𝑠𝑖𝑙𝑒𝑛𝑐𝑒 =

3.5∗10
𝑏𝑎𝑢𝑑𝑟𝑎𝑡𝑒

, which, for a baudrate of 115200 we obtain: 303 𝑢𝑆. There is also a fixed
PDU size overhead of 33 𝑏𝑦𝑡𝑒𝑠, whichwould increase the transmission duration (especially
on low baud rates), but otherwise it won’t affect any of the protocol’s requirements.

Chapter 8

Conclusions

Our thesis focused on Trusted Execution Environments (TEE), a technology providing
isolated hardware areas which can be used to protect sensitive applications against more
privileged malware and by reducing the complexity of the Trusted Computing Base (TCB),
the set of security-critical components in a system.

We explored several specific research issues: cloud trustworthiness, trusted software archi-
tecture & engineering challenges, the feasibility of embedded devices in trusted infrastruc-
tures, ensuring a trusted I/O path for hardware peripherals and hardening the security of
industrial devices with the help of TEEs.

8.1 Thesis Summary

In Chapter 2, we described the evolution of trusted computing concepts leading to the
emergence of practical trusted execution environments. We presented the various isolation
technologies available in commodity hardware (for both embedded /mobile devices: ARM
TrustZone, and the general computing chips: Intel’s Trusted Execution Technology, its
successor, Software Guard Extensions and AMD’s Secure Encrypted Virtualization), along
with related scientific publications.

In Chapter 3, we begin by reviewing the cloud trustworthiness problem and approaches for
protecting the users’ data on untrusted servers. We argue that new solutions are enabled
by the novel trusted technologies and their current / upcoming availability in commercial
offerings from top vendors (Amazon AWS, Microsoft Azure, Google Cloud), a move that
can increase the trustworthiness of cloud services. We develop SecCollab, our approach for
ensuring privacy in cloud-based document editing systems. It takes the form of a browser
extension and leverages the existing differential synchronization protocol used by collab-
orative applications, implementing an encrypted journal on top of it in order to preserve
both the confidentiality of the users’ documents and their real-time editing features.

Next, in Chapter 4, we presented how the trusted execution concept requires changes in
the software development paradigms for trusted applications. As the Operating System is
now considered untrusted, programs relying on its services (e.g., filesystem, networking,
hardware I/O access) must protect their secrets using additional means (cryptography or
other trusted platform services). In Section 4.2, we discussed several research works aimed
at minimizing the development effort: running programs inside TEEs with little to no
modifications, or frameworks for building cross-platform trusted applications. We also

24

CHAPTER 8. CONCLUSIONS 25

described our approach, HiddenApp (4.3), for enabling trusted execution of existing Linux
applications inside an ARM TrustZone TEE. For this, we developed a microkernel that
can run unaltered programs inside the Secure World by intercepting their system calls and
forwarding them to the Rich OS for processing.

Chapter 5 showed that modern microcontrollers can successfully run cryptographic code
with reasonable performance, mostly depending on the power requirements of the applica-
tion. Multiple open-source cryptographic libraries were evaluated to run on small devices
where storage space andmemory are scarce, and has been shown that the energy consump-
tion due to cryptographic processing is negligible. We later used this as a building block
for designing embedded devices to enhance the security of trusted applications.

With Chapter 6, we move to the Trusted I/O Path problem: ensuring secure communi-
cation between Trusted Execution Environments and hardware peripherals in the face of
an untrusted OS. In Section 6.2, we presented a systematization of the existing state-of-
the-art trusted path solutions for various TEE platforms (Intel TxT, ARM TrustZone, Intel
SGX) and devices (categorized by type: HID input / display output; by interface: memory-
mapped I/O, GPU, USB, Bluetooth etc.). In 6.3, we developed TIO, a hardware-based ap-
proach for establishing a secure I/O pathway between generic USB devices and Intel SGX-
based TEEs. Our embedded device is a small and practical way to enhance the trustworthi-
ness of applications requiring secure user interaction, which we demonstrate by protecting
keyboard input and securely printing PDF documents.

Finally, in Chapter 7, we described an architecture for securing industrial control systems.
Our solution is based on a low-cost firewall device situated at the boundary between the
sensitive control network and the untrusted management / corporate networks or even
behind each cyber-physical unit. A trusted application (residing inside an enclave on the
operator’s PC) establishes a trusted I/O channel with the embedded firewalls and signs
each request with a shared authentication key, which the device can then use to filter out
any malicious commands, thus preventing sabotage even from privileged attackers. We
also retrofitted a popular industrial protocol (Modbus) with cryptographic integrity fields
for ensuring the authenticity of the packets sent within legacy networks.

8.2 Contributions

In our thesis, wemade several original contributions to solve some of the current issues that
might make the adoption of trusted execution technologies difficult: trusted application
development and trusted I/O path. We also propose solutions to improve the security in
all popular application domains: cloud, personal, embedded and industrial computing.

1. We gave a comprehensive background on the Trusted Computing history, TEE tech-
nologies currently available on commodity CPUs, along with reviewing numerous
state-of-the-art works related to this field.

2. Wedesigned SecCollab [32], amethod for ensuring the confidentiality of online, web-

CHAPTER 8. CONCLUSIONS 26

based collaborative document editing applications by using a browser extension to
add client-side encryption to differential synchronization protocols.

3. We presented the application development challenges of targeting isolated environ-
ments and implemented HiddenApp [16], a solution for running unmodified Linux
applications inside ARM TrustZone’s Secure World.

4. We tested the cryptographic performance ofmultiple embedded devices and software
libraries [33, 17] with the aim of using them as trusted devices.

5. We approached the problem of securing the interaction of TEEs with input / out-
put peripherals from untrusted Operating Systems, proposing TIO [30], a low-cost
hardware-based solution for Intel SGX enclaves to safely communicate with other
USB devices (e.g., keyboard, printers). We also systematized the other Trusted I/O
Path solutions, comparing their usability and TCB sizes.

6. We proposed an architecture for improving the security of cyber-physical (industrial)
systems [34] with the aid of Trusted Execution Environments and custom, low-cost
embedded devices, enhancing the traditionally insecureModbus protocol to do cryp-
tographic authentication of sensitive control commands or sensor data.

8.3 Future Work

Finally, we state future directions we would like to pursue or see accomplished in the
trusted technologies field. First, we argue that cyber-security of general purpose comput-
ing would greatly benefit if vendors came together with a more open platform for trusted
execution, so developers could rely on standardized set of features (e.g., edge call APIs,
remote attestation, trusted I/O for some basic peripherals), increasing adoption of the
trusted execution solutions.

We also plan to further develop our embedded TIO USB device to enhance performance,
support to other classes of peripherals (e.g., USB Hub) and integrate it to desktop appli-
cations requiring enhanced secrets protection (password managers, certificate storage, ssh
etc.). We would also like to explore building a portable Trusted Execution Environment as
an on-the-go security appliance (using an embedded application CPU like the Raspberry
Pi’s).

8.4 List of publications

1. Dumitru C. Trancă, Florin Stancu, Răzvan Rughiniș and Daniel Rosner, “SiloSense:
ZigBee-basedwirelessmeasurement systemarchitecture for agriculture parametermon-
itoring”, 2017 4th International Conference on Control, Decision and Information
Technologies (CoDIT), Barcelona, pp. 0330-0335, 2017 (IEEE),
DOI: 10.1109/CoDIT.2017.8102613, WOS: 000450826500057.

CHAPTER 8. CONCLUSIONS 27

2. Florin Stancu, Mihai Chiroiu and Răzvan Rughiniș, ”SecCollab - Improving Con-
fidentiality for Existing Cloud-Based Collaborative Editors”, 2017 21st International
Conference on Control Systems and Computer Science (CSCS), Bucharest, pp. 324-
331, 2017 (IEEE), DOI: 10.1109/CSCS.2017.51, WOS: 000449004400044.

3. Veronica Velciu, Florin Stancu and Mihai Chiroiu, “HiddenApp - Securing Linux
Applications Using ARM TrustZone”, Innovative Security Solutions for Information
Technology and Communications (SECITC), 2018 Lecture Notes in Computer Sci-
ence, vol 11359, 2018 (Springer, Cham), DOI: 10.1007/978-3-030-12942-2_5.

4. Florin Stancu, Dumitru C. Trancă, Mihai Chiroiu and Răzvan Rughiniş, “Evalu-
ation of cryptographic primitives on modern microcontroller platforms”, 2018 17th
RoEduNet Conference: Networking in Education and Research (RoEduNet), Cluj-
Napoca, pp. 1-6, 2018 (IEEE), DOI: 10.1109/ROEDUNET.2018.8514127,
WOS: 000517570500005.

5. Daniel Rosner, CristianaTrifu, DumitruC. Trancă, IuliuVasilescu andFlorin Stancu,
“Magnetic Field Sensor for UAV Power Line Acquisition and Tracking”, 2018 17th
RoEduNet Conference: Networking in Education and Research (RoEduNet), Cluj-
Napoca, pp. 1-5, 2018 (IEEE), DOI: 10.1109/ROEDUNET.2018.8514123,
WOS: 000517570500002.

6. Răzvan Tataroiu, Florin Stancu and Dumitru C. Trancă, “Energy Considerations
Regarding Transport Layer Security in Wireless IoT Devices”, 2019 22nd International
Conference on Control Systems and Computer Science (CSCS), Bucharest, Romania,
pp. 337-341, 2019 (IEEE), DOI: 10.1109/CSCS.2019.00060, WOS: 000491270300053.

7. Florin Stancu, Dumitru C. Trancă and Mihai Chiroiu, “TIO - Secure Input/Output
for Intel SGX Enclaves”, 2019 International Workshop on Secure Internet of Things
(SIOT), 2019 (IEEE), DOI: 10.1109/SIOT48044.2019.9637105.

8. Florin Stancu, Răzvan Rughiniș, Dumitru C. Trancă and Ioana Popescu, “Trusted
Industrial Modbus Firewall for Critical Infrastructure Systems”, 2020 RoEduNet (19th
RoEduNet Conference: Networking in Education and Research), 2020 (IEEE), DOI:
10.1109/RoEduNet51892.2020.9324884, WOS: 000654265900033.

9. Florin Stancu, Alexandru Mircea, Răzvan Rughiniș, Mihai Chiroiu, “Systematiza-
tion of Trusted I/O solutions for Isolated Eecution Environments”, accepted for publi-
cation at U.P.B. Scientific Bulletin, Series C, Bucharest, Romania, 2022 (Journal).

Bibliography

[1] M. Larabel, Phoronix, “The Linux Kernel Enters 2020 At 27.8 Million Lines In Git,”
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-
EOY2019, January 2020.

[2] J.-E. Ekberg, K. Kostiainen, and N. Asokan, “The untapped potential of trusted
execution environments on mobile devices,” IEEE Security & Privacy, vol. 12, no. 4,
pp. 29–37, 2014.

[3] ARM Holdings, “ARM TrustZone Security Extensions,”
https://developer.arm.com/technologies/trustzone.

[4] Intel, “Intel SGX Software Guard Extensions,” https://software.intel.com/en-us/sgx.

[5] D. Kaplan, J. Powell, and T. Woller, “AMDMemory Encryption,”White paper, 2016.

[6] J. Criswell, N. Dautenhahn, and V. Adve, “Virtual ghost: Protecting applications
from hostile operating systems,” ACM SIGARCH Computer Architecture News,
vol. 42, no. 1, pp. 81–96, 2014.

[7] U. Lee and C. Park, “SofTEE: Software-based trusted execution environment for user
applications,” IEEE Access, vol. 8, pp. 121 874–121 888, 2020.

[8] W. Futral and J. Greene, “Fundamental principles of intel® txt,” in Intel® Trusted
Execution Technology for Server Platforms. Springer, 2013, pp. 15–36.

[9] C. Fontaine and F. Galand, “A survey of homomorphic encryption for
nonspecialists,” EURASIP Journal on Information Security, vol. 2007, pp. 1–10, 2007.

[10] F. Y. Rashid, “The rise of confidential computing: Big tech companies are adopting a
new security model to protect data while it’s in use-[news],” IEEE Spectrum, vol. 57,
no. 6, pp. 8–9, 2020.

[11] J. Jang, C. Choi, J. Lee, N. Kwak, S. Lee, Y. Choi, and B. B. Kang, “Privatezone:
Providing a private execution environment using arm trustzone,” IEEE Transactions
on Dependable and Secure Computing, vol. 15, no. 5, pp. 797–810, 2018.

[12] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger, “TrustShadow:
Secure execution of unmodified applications with ARM trustzone,” in Proceedings of
the 15th Annual International Conference on Mobile Systems, Applications, and
Services. ACM, 2017, pp. 488–501.

[13] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an untrusted
cloud with Haven,” ACM Transactions on Computer Systems (TOCS), vol. 33, no. 3,
pp. 1–26, 2015.

28

https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019
https://developer.arm.com/technologies/trustzone
https://software.intel.com/en-us/sgx

BIBLIOGRAPHY 29

[14] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,
D. Muthukumaran, D. O’keeffe, M. L. Stillwell et al., “{SCONE}: Secure linux
containers with intel {SGX},” in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), 2016, pp. 689–703.

[15] C.-C. Tsai, D. E. Porter, and M. Vij, “{Graphene-SGX}: A practical library {OS} for
unmodified applications on {SGX},” in 2017 USENIX Annual Technical Conference
(USENIX ATC 17), 2017, pp. 645–658.

[16] V. Velciu, F. Stancu, and M. Chiroiu, “Hiddenapp – Securing linux applications
using ARM TrustZone,” in International Conference on Security for Information
Technology and Communications. Springer, Cham, 2018, pp. 41–52.

[17] R. Tataroiu, F. A. Stancu, and D.-C. Tranca, “Energy considerations regarding
Transport Layer Security in wireless IOT devices,” in 2019 22nd International
Conference on Control Systems and Computer Science (CSCS). IEEE, 2019, pp.
337–341.

[18] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune, “Building verifiable trusted
path on commodity x86 computers,” in 2012 IEEE symposium on security and
privacy. IEEE, 2012, pp. 616–630.

[19] T. Weigold, T. Kramp, R. Hermann, F. Höring, P. Buhler, and M. Baentsch, “The
Zurich Trusted Information Channel–an efficient defence against
man-in-the-middle and malicious software attacks,” in International Conference on
Trusted Computing. Springer, 2008, pp. 75–91.

[20] J. M. McCune, “Safe passage for passwords and other sensitive data,” in Proceedings
of the Network and Distributed System Security Symposium, 2009, 2009.

[21] A. Filyanov, J. M. McCuney, A.-R. Sadeghiz, and M. Winandy, “Uni-directional
trusted path: Transaction confirmation on just one device,” in 2011 IEEE/IFIP 41st
International Conference on Dependable Systems & Networks (DSN). IEEE, 2011,
pp. 1–12.

[22] X. Ruan, Platform Embedded Security Technology Revealed. Springer Nature, 2014.

[23] W. Li, M. Ma, J. Han, Y. Xia, B. Zang, C.-K. Chu, and T. Li, “Building trusted path on
untrusted device drivers for mobile devices,” in Proceedings of 5th Asia-Pacific
Workshop on Systems, 2014, pp. 1–7.

[24] Z. Zhou, M. Yu, and V. D. Gligor, “Dancing with giants: Wimpy kernels for
on-demand isolated i/o,” in 2014 IEEE symposium on security and privacy. IEEE,
2014, pp. 308–323.

[25] M. Yu, V. D. Gligor, and Z. Zhou, “Trusted display on untrusted commodity
platforms,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015, pp. 989–1003.

BIBLIOGRAPHY 30

[26] S. Weiser and M. Werner, “SGXIO: Generic trusted I/O path for Intel SGX,” in
Proceedings of the seventh ACM on conference on data and application security and
privacy, 2017, pp. 261–268.

[27] T. Peters, R. Lal, S. Varadarajan, P. Pappachan, and D. Kotz, “BASTION-SGX:
Bluetooth and architectural support for trusted I/O on SGX,” in Proceedings of the
7th International Workshop on Hardware and Architectural Support for Security and
Privacy, 2018, pp. 1–9.

[28] A. Dhar, I. Puddu, K. Kostiainen, and S. Capkun, “ProximiTEE: Hardened SGX
attestation by proximity verification,” in Proceedings of the Tenth ACM Conference on
Data and Application Security and Privacy, 2020, pp. 5–16.

[29] J. Cui, Y. Zhang, Z. Cai, A. Liu, and Y. Li, “Securing display path for
security-sensitive applications on mobile devices,” Computers, Materials and
Continua, vol. 55, no. 1, p. 17, 2018.

[30] D. C. T. F. A. Stancu and M. Chiroiu, “TIO – Secure Input/Output for Intel SGX
Enclaves,” in International Workshop on Secure Internet of Things (SIOT), 2019.

[31] H. Liang, M. Li, Y. Chen, L. Jiang, Z. Xie, and T. Yang, “Establishing trusted I/O
paths for SGX client systems with Aurora,” IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 1589–1600, 2019.

[32] F. A. Stancu, M. Chiroiu, and R. Rughinis, “SecCollab – Improving Confidentiality
for Existing Cloud-Based Collaborative Editors,” in 2017 21st International
Conference on Control Systems and Computer Science (CSCS). IEEE, 2017, pp.
324–331.

[33] F. A. Stancu, C. D. Trancă, M. D. Chiroiu, and R. Rughiniş, “Evaluation of
cryptographic primitives on modern microcontroller platforms,” in 2018 17th
RoEduNet Conference: Networking in Education and Research (RoEduNet). IEEE,
2018, pp. 1–6.

[34] F. A. Stancu, R. V. Rughinis, C. D. Tranca, and I. L. Popescu, “Trusted Industrial
Modbus Firewall for Critical Infrastructure Systems,” in 2020 19th RoEduNet
Conference: Networking in Education and Research (RoEduNet). IEEE, 2020, pp.
1–5.

	1 Introduction
	1.1 Thesis Objectives
	1.2 Thesis Contributions
	1.3 Thesis Structure

	2 Trusted Computing Technologies
	2.1 Trusted Computing Group and the TPM
	2.2 Trusted Execution Environments
	2.3 Challenges in Trusted Technologies

	3 Trustworthy Cloud Services
	3.1 Current State of Trusted Cloud Solutions
	3.2 SecCollab - Improving Confidentiality for Existing Cloud-based Collaborative Editors

	4 Trusted Application Development
	4.1 Development Model
	4.2 Trusted Development Frameworks
	4.3 HiddenApp - Securing Linux Applications Using ARM TrustZone

	5 Embedded Devices in Trusted Infrastructures
	5.1 Evaluation of cryptographic primitives on modern microcontroller platforms
	5.2 Energy Considerations Regarding Transport Layer Security in Wireless IoT Devices

	6 Trusted I/O Path
	6.1 Problem Overview
	6.2 Systematization of Trusted I/O Solutions for TEEs
	6.3 TIO - Secure Input/Output for Intel SGX

	7 Trusted Industrial Infrastructure
	8 Conclusions
	8.1 Thesis Summary
	8.2 Contributions
	8.3 Future Work
	8.4 List of publications

