
Verification of Programmable Networks

Dragos, Dumitrescu

Advisor: Prof. Dr. Ing. Dragos, Niculescu

Facultatea de Automatică s, i Calculatoare
Universitatea Politehnica Bucures, ti

This dissertation is submitted for the degree of
Doctor of Philosophy

Bucharest May 2022

Summary

Keywords: networks, model-checking, verification, P4, SDN, BGP, network verification,
network correctness, cloud networking.

Computer networks are at the center of modern day lives, they are the building blocks of all
compute systems. As such, they need to be highly reliable and bug-free to ensure the correct
functioning of safety and mission critical applications. The advent of network data- and control-
plane programmability as key enablers of multi-tenant cloud infrastructures has made networks
more and more complex; it is thus increasingly difficult to manually assess their correctness. In
order to tackle this problem, a new area of research – network verification – has seen significant
success in the past decade.

In this dissertation, I will report on my research in making network verification algorithms
practical in modern programmable networks. Practicality is explored in two flavors: ease of use
and performance. In what ease of use is concerned, I explore implicit correctness properties
which must hold for all networks under consideration, thus requiring a zero-specification effort
from administrators. In what performance is concerned, the main requirement is to have
verification tools scale reasonably well to large public cloud-provider networks, which may be
comprised of thousands of routers, servers and network appliances.

The contributions of this thesis are positioned at the layers of programmability involved in
a typical cloud network environment and show how my work tackles some of the hurdles en-
countered at each layer. Dataplane programming (e.g., P4) deals with programming forwarding
devices; software defined networking (e.g. OpenFlow) handles the orchestration of multiple
network devices while control plane configuration (e.g., routing policies) handles dissemination
of control-plane information across the entire provider network. My research answers questions
at all these layers. First of all, my contributions to Vera (Stoenescu et.al., Debugging P4
programs with Vera in SIGCOMM’18), Vera2 (Dumitrescu et.al. Dataplane verification for
P4 presentation in NetPL’19) and bf4 (Dumitrescu et.al., bf4: Towards bug-free P4 programs
in SIGCOMM’20) show how detecting bugs in P4 programs can be made practical and easy
to use. Secondly, netdiff (Dumitrescu et.al. Equivalence and its applications to network
dataplanes in NSDI’19) is an algorithm which employs network dataplane equivalence to find

vi

bugs in SDN controllers. My third contributions makes BGP simulation and model-checking
efficient for production-scale cloud networks.

Contributions summary. The positioning of my work in the landscape of network verifica-
tion hints at the prominent research endeavor tackled within my thesis: "finding efficient and
scalable decision procedures in the context of complex and programmable network policies".

The most important principle my work is driven by consists of ease of specification or even
zero-specification. My efforts in both programmable network dataplane and SDN controller
verification use implicit notions of correctness and tailor decision algorithms based on their
specifics.

My work in control plane verification builds upon tools which are innately customized
checks meant to increase scalability. Thus, they obey the same previously advertised zero-
specification principle. While this design decision is not part of my contribution, the approach
is nonetheless worth mentioning as an alternative to existing forms of zero-specification. Given
the properties under verification, my contributions focus on scaling BGP simulation algorithms
to production networks. This is the second principle behind my work: building verification
solutions which scale to large networks.

The main research question of this thesis can be summarized as follows: "Can one efficiently
verify the correctness of programmable networks with little (preferably no) specification effort
from network users?".

Note on previously published material. Some of the chapters in this thesis contain excerpts
of already published scientific papers. The contents of sections 4.1 and 2.6.2.8 will undergo
submission for publication in the near future.

Thesis outline. Starting from the lowest layer in the OSI model, in Chapter 2, I report on
my research in P4 programmable dataplane verification. The focus lies on zero-specification
verification of undefined behaviors in P4 dataplanes. Section 2.5 describes a new algorithm to
infer runtime filters or produce code fixes in such way as to guarantee no bugs are present at
runtime. Section 2.6 offers a detailed design and implementation report of P4 verification tools.

In chapter 3, I dive into network dataplane equivalence, another implicit form of specifying
network correctness. The observation is that virtual networks are often regarded from distinct
perspectives – what the tenant had intended and what the provider has actually implemented.
The gap between these perspectives is bridged by a highly complex piece of distributed middle-
ware which is prone to bugs and inconsistencies. The aim of this paper is to show correctness
by checking equivalence between the two perspectives. Using this method, we have come
across rare bugs in Neutron – OpenStack’s networking driver.

vii

Chapter 4 presents my contributions to network control-plane simulation in large cloud
networks. In section 4.1, I focus on the methods to make BGP simulation in DC networks scale
to large production DCs.

Chapter 5 draws the conclusions of this dissertation and relates them to the research
questions initially formulated. It also provides insights into research avenues which I find
interesting to explore in the future.

Table of Contents

1 Introduction 1
1.1 Programmability in cloud networks . 2
1.2 Finding network bugs . 7
1.3 Contributions summary . 10
1.4 Network Verification Background. 11

2 P4 Verification 15
2.1 A P4 primer . 15
2.2 Bugs in P4 programs . 18
2.3 Debugging P4 programs with Vera . 19

2.3.1 Translating P4 to SEFL . 19
2.3.2 Evaluation . 23

2.4 Vera2 – Verification Condition Generation for P4 26
2.5 bf4 – towards bug-free P4 programs . 28

2.5.1 Introduction . 28
2.5.2 Motivation . 30
2.5.3 Solution space . 32
2.5.4 bf4 overview . 34
2.5.5 Evaluation . 48
2.5.6 Related work . 54
2.5.7 Conclusions . 54

2.6 Anatomy of a P4 Verification Engine . 55
2.6.1 Introduction . 55
2.6.2 The P4 verification ingredients . 56
2.6.3 Reachability with packet processing 72
2.6.4 Takeaways and next steps . 78

x Table of Contents

3 Equivalence and its applications to network dataplane verification 81
3.1 Introduction . 81
3.2 Goals . 83
3.3 Approaches to checking equivalence . 85

3.3.1 Existing solutions fall short . 86
3.4 Dataplane equivalence with netdiff . 87

3.4.1 Dataplane symbolic execution . 89
3.4.2 Equivalence between pathsets . 90
3.4.3 Correctness and complexity . 92

3.5 Correctness of netdiff . 93
3.6 Implementation . 95

3.6.1 OpenStack Neutron Integration . 96
3.7 Evaluation . 98

3.7.1 Neutron bugs . 98
3.7.2 Checking a large Neutron deployment 103
3.7.3 P4 equivalence . 104

3.8 Related work . 105
3.9 Conclusions . 106

4 Scaling BGP verification 109
4.1 Making datacenter network simulation fast 110

4.1.1 Introduction . 110
4.1.2 Illustration . 112
4.1.3 Algorithms . 120
4.1.4 Evaluation . 132
4.1.5 Related Work . 133
4.1.6 Conclusion . 134

5 Conclusions 137
5.1 Future work . 139

	Table of Contents

