Design and Implementation of Practical Software
Middleboxes

Summary

University Polithenica of Bucharest

L (I g

Submitted for the degree of
Doctor of Philosophy

Vladimir Olteanu

Supervisor: Valentin Cristea

Keywords

e networking
e datacenter
e middlebox

e protocol

Summary

This thesis discusses the design of horizontally scalable software middleboxes.

Middleboxes are machines that process network packets, performing tasks as simple as basic
filtering, or as complex as detecting leakage of sensitive information. They are a staple of today’s
Internet.

Traditionally, middleboxes were monolithic hardware appliances. Upgrading them either in
terms of performance or functionality was typically costly, as it meant outright replacing the ma-
chine with a different model. Moreover, they had to cope with peak hour traffic; during off-peak
hours the extra capacity was essentially wasted.

To address these issues, a new field of research emerged, called Network Function Virtualiza-
tion. The key proposal is to move traffic processing from dedicated appliances to software running
in a distributed manner on commodity hardware. Such middleboxes can scale out or in on the fly
as the demand for capacity increases or decreases: extra capacity can be conjured up by adding
more machines, and then removed by powering down some of them.

The most basic obstacle to scaling out middleboxes is that they may hold state, both per-flow
and shared across multiple flows. Such state is key to the correct handling of the traffic; were
it to become unavailable, even temporarily, all corresponding flows may experience disruptions.
Therefore, scaling out not only entails redirecting a portion of the incoming traffic to another
machine, but also migrating all relevant state to said machine.

There have been efforts to find a general framework that enables near-seamless scale-up and
scale-down events, but they tend to incur a rather steep performance cost. The subtext of this
thesis is that we argue against such generalized solutions; to that end, we design two separate
middleboxes, and use tailor-made solutions to solve their scalability issues.

The first middlebox we discuss is a large scale NAT. It is a rather straightforward middlebox to
implement, that holds both per-flow and per external IP. Our version features a novel state migration
algorithm aimed at incurring a minimal performance penalty. Here we show that by simply risking
reordering some packets while keeping all other guarantees intact, the performance cost of scale-
out or scale-in events is minimal. Occasional packet reorderings are generally something that
protocols at Layer 4 and up can cope with easily.

The second middlebox we discuss is Beamer, a stateless cloud-scale load-balancer, that also
works with MPTCP. Stateful load-balancers remember associations between connections and back-
end servers. This, in essence, attempts to duplicate information kept by the servers themselves in
their connection tables. By not holding any per-flow state, Beamer muxes are simple to implement
both in software and hardware, and avoid many of the pitfalls of scaling up and down. They can

easily handle SYN floods, something stateful designs struggle with.

Finally, we will discuss something that is a middlebox only in the loose sense of the word: we
have designed version 6 of the decades-old SOCKS protocol, and built a proxy around it. Version
6 addresses many of the shortcomings of version 5: its RTT overhead in most cases is zero (or
even negative!), it offers DNS from the proxy’s vantage point, and it plays well with the new
features introduced in TLS 1.3. Since the proxy is technically a service running on top of TCP,
large SOCKSv6 deployments can be made using Beamer.

Contents

L__Introduction

2 Background|

2.2 OpenFlowand SDN|.
|§.3 Multlpatﬁ l(fﬂ

3 Principles in building scalable network processing|
[3.1 Status quo| e e e e e

4 Carrier-grade NAT]|
1 Intr 1on and Motivation| Lo oL
4.2 Designing a Carrier-Grade NAT|,
4.3 Implementation|

L ns Learned|

5 Beamer

1 Intr 10N .« . o o e e e e e e
[3.2 Background
[5.3 Limaits of stateful load balancing|
[5.4 Beamer: stateless load-balancing| 00000
[5.4.1 Stable hashing|
[5.4.2 Dasychamingl oo
[5.4.3 Mux data plane algorithm| 0.

[5.5 Handling Multipath TCP|,
[5.5.1 MPLB’sapproachl
[5.5.2 Beamer’sapproach| oL

[3.6 Beamercontrolplane oo
[5.7 Defragmentation]
[3.8 Implementation|

1 Micro-benchmarksl 52

[5.9.2 Scalability and robustness| oo oL 55
[5.9.3 TLoad balancing HTTP over MPTCP| 59
[5.9.4 Controller scalability| 0oL 61
[5.9.5 Stable hashing| o oo 62
[5.9.6 Defragmentation| 62

63

: 65

1 Intr 0 65
[6.2 Mode of operation|. 66
[6.3 Requests|. 68
[6.4 Version Mismatch Replies| 69
[6.5 Authentication Replies| o 70
[6.6 Operation Replies| 71
[6.6.1T Handling CONNECT]. 72
[6.6.2 Handling BIND|. 72

0. Handling UDP IATE 73

[6.7 SOCKS Options]. i 77
[6.7.1 Stackoptions| 77
[6.7.2 Authentication Dataoptions| 84
[6.7.3 Authentication Method options| 84
[6.7.4 Sessionoptions| 86
[6.7.5 Idempotence options| 88
rname/P. rd Authentication| oL 90

6.9 SSL Authenticationl 92
[6.10 TCP Fast Open on the Client-Proxy Leg| 92
6.11 False Starts| 92
[6.12 DNS provided by SOCKS|, 92
[6.13 Security Considerations|. 93
[6.13.1 Largerequests| 93
[6.13.2 Replay attacks| o oo 94
[6.13.3 Resource exhaustion| 94

[6.14 Privacy Considerations| e e 94
[6.15 SOCKS timing] o v o et o e e e e e e e 94
[6.16 Implementation| 96
[6.17 Evaluation| 96
[6.18 Conclusionl 97
[/__Related workl 99
8__Conclusions! 101

