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CHAPTER 1 
INTRODUCTION. THESIS OBJECTIVES 

This chapter offers an introduction to fault diagnosis and emphasizes its importance by 
shortly describing a mechatronic system, of the faults that can affect its behavior and of the 
economical effects that the faults bring. The chapter describes the thesis and research objects as 
well as the thesis’ structure. 

Fault diagnosis gets more important in today’s industry and by using state of the art 
artificial intelligence, more and more researchers search for new methods to keep a system 
working and to avoid downtime. This can lead to a more efficient and uninterrupted production. 
Lately, there have been a lot of articles written in this area, especially in the field of predictive 
maintenance and its advantages in a system’s diagnosis. 

1.1 Faults of components and subsystems in mechatronics and 
robotics 

1.1.1. Components of a mechatronic system 
A mechatronic system usually has other subsystems, each responsible of the behavior of a 

certain part of the main system. These subsystems can be split up into 6 categories: 

1. Mechanical subsystems 
2. Actuating subsystems 
3. Electric and electronic subsystems 
4. Data acquisition subsystems and sensors 
5. Control subsystems 
6. Graphical user interface (GUI) and human-machine interaction (HMI) subsystems 

1.1.2. Usual faults of components and subsystems 
1.1.2.1 Actuating systems faults: 

a) Electrical faults: 

• Power fluctuations 
• Voltage drops 
• Phase oscillations 
• Phase losses 
• Current variations 
• Short circuits 

b) Mechanical faults 

• Stuck rotor 
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• Overloads 
• Coil overheat 
• Coil circuit interrupt 

1.1.2.2 Electrical and electronic systems faults: 

a) Isolation faults 
b) Contact faults 
c) Printed circuit board faults 
d) Switch faults 
e) Semiconductor faults 

1.1.2.3 Mechanical systems faults: 

a) Wear, failure or slip of transmission belts can cause the interruption of motion or 
change of the transmission ration 

b) Gear teeth wear or failure 
c) Wear of bearings and drives can cause looseness and precision loss 
d) Elastic elements and shaft failures  

e) Loss of airtightness for fluid-working devices 

1.2 Functional and economic effects of faults 
In his PhD thesis, Michael Patrick Brennan [1] analyses the economic and technological 

impact that faults can have in a production environment. The costs can be classified as follows: 

1. Proactive costs for preventing faults or reducing their occurrences 
2. Reactive costs for locating existing faults, repairs, and maintenance 
In domain literature there is a rule called “rule of 10” which shows that for every 

economic unit spent on prevention, 10 economic units are saved for fixing internal faults and 
100 units are saved for fixing external faults. There is an important number of research papers 
on this subject and that propose new methods for estimating the time between two fault 
occurrences, and by doing this being able to develop a reliability model. That’s why developing 
a robust fault diagnosis system is of utmost interest for industry units, all of them using 
electromechanical systems. 

1.3 Thesis objectives 
I. Literature research to find state-of-the-art methods for fault diagnosis algorithms to 

improve them or propose new methods of assessing a system’s state based on 
vibration data. 
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II. Identifying possible faults in mechatronic systems and ways to diagnose them using 
vibrations. 

III. Extraction of main features from vibration data of the system’s mobile components, 
sampled by acquisition of the acceleration signals from the monitored components 
and analyzing them using machine learning algorithms 

IV. Development and implementation of a robust fault diagnosis algorithm for different 
fault frequencies that can be used on multiple components 

V. Development and implementation of a monitoring and predictive maintenance 
algorithm for a mechatronic system formed by an actuating subsystem, transmission 
subsystem and the actuated subsystem (effector). 

CHAPTER 2 
CLASSIFYING FAULTS AND THEIR VIBRATORY FEATURES 

This chapter describes the usual mechanical faults that can occur in mechatronic systems 
that have a translation or rotation motion. Also, vibration features of these faults are presented.  

2.1 Faults that can occur in mechanical subsystems motion 
2.1.1 Unbalance  

The result of an eccentricity that appear when the center of mass of a cylindric piece 
(shaft) is not aligned with its rotation axis, creating an unbalance that can produce transversal 
vibrations. 

2.1.2 Shaft misalignment  
This fault appears usually when two shafts are not correctly aligned by their revolution 

axis or when the shaft’s axis have major angular deviations from the bearings or gearboxes axes.  

2.1.3 Mechanical looseness   
This can occur due to improper mounting, excessive wear, or component failure. 

2.2 Component faults 
2.2.1 Bent shaft 

This fault has the same frequency features as misalignment, phase analysis being needed 
to differentiate between these 2 faults. If this is not possible, these two faults can be considered 
part of the same fault class since both need shaft verification. 

2.2.2 Bearing faults 
Most of the time, bearing faults are consequences of overloading, bad lubrication, high 

working temperature, corrosion, or raceway contamination with external impurities. In [2] faults 
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that appear mostly in rolling bearings are presented, but without causes or functional 
consequences: 

a. Faults caused by excessive wear 
b. Faults caused by abrasive wear 
c. Faults caused by adhesion wear 
d. Faults caused by impacts 
e. Faults caused by corrosion 
f. Faults caused by improper mounting 
The above classification is a systematization based on physical or chemical phenomenon 

by combining the resources available in [2] and „Bearing fault analysis” of Timken [3]. Most of 
the faults are due to improper lubrication or improper mounting. Although the faults, themselves, 
do not have features, the bearing components have intrinsic frequencies that can help identify the 
faulty component. 

Intrinsic fault frequencies for each component can be computed using bearing 
geometry variables; if a fault occurs in a certain component, in the frequency domain, an 
amplitude peak will be visible at the component’s intrinsic frequency. 

It’s important to note that the signal energy analysis is of great interest for mechanical 
faults. This is because an impact produced by the fault can be hidden in the frequency domain by 
the components that stand between the place where the impact is made and the place where the 
vibrations are monitored (sensors). Therefore, the increased amplitude can be modulated in 
higher frequencies, phased by damping components. The frequency spectrum would contain 
amplitude peaks distanced on the frequency scale by a value equal to the fault frequency. 
Energy-wise, the impact will generate a frequency response that increases the amplitude at the 
natural frequency and so, by analyzing the energy spectrum, the frequency of this amplitude can 
be determined [4]. Another approach specific to vibration signal analysis in bearings and 
gearboxes is to determine the signal’s envelope and then look at the envelope spectrum. 

2.2.3 Belt-transmission faults 
Belt transmissions have multiple advantages like transmitting into the system a smooth 

and soundless rotation motion. This can be sustained through force for the adhesion-based belts 
or through form. Other advantages of this type of transmission are the low vibrations and low 
production and maintenance costs. Also, the force is not transferred to the system in case of a 
short-term overload, phenomenon that could otherwise lead to faults in the other components. 
Belt transmissions are not very sensitive at improper mounting or setup and can distribute the 
power from the rotating shaft to multiple other shafts. 

As presented in [5] and [6], the faults that can appear in this type of transmissions are: 
a. Failure 
b. Wear 
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2.2.4 Gearbox faults 
Gearboxes represent a mean of transmitting and transforming the rotational motion, 

transferring the power from one shaft to another with a very good efficiency ratio. This kind of 
transmission has a high durability and a transmission ratio which is theoretically constant. The 
disadvantages of this type of transmission is that the manufacturing process has to be very 
precise and that during functioning it gives out a high level of vibrations and sound [7]. 

The main gearbox faults that can occur besides the mounting ones are those related to the 
gears’ teeth: 

a. Teeth failure 
b. Teeth side wear 
c. Teeth side wear due to slips 
 

2.2.5 Electrical faults in actuating subsystems 
Electromechanical components offer vibration features in case of some electric faults as 

well. These can be easily monitored, using two times the supply current’s frequency, given that 
one every rotation there are two magnetic pulls to the closest magnetic pole, which makes the 
electrical signal to oscillate between 0 and two times the supply current frequency. 

It can be concluded that there is a large set of usual faults that can appear in 
mechatronic systems and their components. Given that these faults have specific vibration 
features, a low-cost method for monitoring can be implemented using vibration analysis and 
intelligent algorithms for diagnosis. 

CHAPTER 3  
METHODS, MEANS AND RESEARCH ABOUT MONITORING, 
PREDICTION AND DIAGNOSIS OF FAULTS IN 
MECHATRONIC SYSTEMS 

3.1 Reliability and maintenance 
The term of reliability appeared because of the importance the industry equipments 

security received lately. The term represents the characteristic of an equipment to run without 
failure. Mathematically, it is possible to establish the behavior of a system in certain working 
conditions.  

Reliability can be: 
• Qualitative 
• Quantitative 

Failure is the fundamental phenomenon that occurs when a devices ceases to execute its 
designed function. Failures can be: 
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• Minor 
• Major 
• Critical 

All the technical and logistic actions that are taken in order to restore a system to be 
working again is called maintenance. 

Maintenance costs have a high weight in running costs of industrial system, varying 
between 15 and 60. Optimal and performant running of industrial systems is related to fault 
prevention for defects that can occur due to wrong maneuvers, operator negligence or random 
overloads. That’s why monitoring and diagnosis techniques have a positive impact on reliability 
and maintenance. 

Four types of maintenance can be mentioned: 

Reactive maintenance 

Corrective maintenance  

Preventive maintenance   

Predictive maintenance –  this type of maintenance means that there is a periodical or 
specific monitoring of the mechanical, electrical state of the system or other functional 
parameters to increase the time between repair actions and to avoid downtime.  

Predictive maintenance improves the entire industrial system. This type of maintenance 
uses vibration monitoring, thermography, tribology, etc. to be able to monitor the functional 
parameters of the monitored system. Using this type of maintenance, downtimes can be avoided, 
and small faults can be diagnosed before becoming major issues. Most of the faults effects can 
be minimized by early diagnosis. 

3.2 Methods and means to detect and diagnose faults in literature 
In this section there are presented many methods from literature used for monitoring and 

diagnosing faults in mechatronic systems or in their components. A differentiation is made 
between different methods of diagnosis: model-based methods and data-based methods as shown 
in figure 3.1.  

The model-based faults offer detailed fault diagnosis, the dynamic behavior of the system 
being mathematically modelled. This way, the signals can be sampled from any component and 
so-called residual signal can be computed based on a reference given by the analytical model and 
the results of the measurements made on the real system. These residuals can give information 
about the monitored system state. However, the modern system models are getting more and 
more complex and have a lot of non-linearities that can add errors during the numerical 
computation, the obtained results not representing the real system. That’s why, because of the 
growth of computational power, more and more algorithms appeared that can create dynamical 
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models based on data. The intrinsic non-linearities are part of the data-based model and so this 
model can be used successfully on complex systems 

 
Figura 3.1: Methods and algorithms for diagnosis [8] 

To get a fault’s feature, the monitored system needs be defined by some signals that offer 
information on the dynamics and the state of the system. 

Vibration analysis is the cheapest and non-invasive diagnosis method. In [9] it is shown 
the difference between detection and analysis, emphasizing that only detecting a fault or it’s 
effect is not helpful because the root cause needs to be fixed. Vibrations are the dynamic 
system’s components response to internal or external forces. Each mechanical or electrical issue 
generates a unique response so that through vibrations feature analysis the faults can be 
diagnosed. The main components that can be analyzed through vibrations are: 

• Frequency – represents the number of occurrences of an event in a certain time 
span  

• Amplitude – represents the “size” of the vibration’s oscillation. Usually, it shows 
the existence of a fault and it corelates with the fault’s severity.  

Faults can be diagnosed through the before mentioned characteristics and using 
mathematical methods and models built around these characteristics. 
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CHAPTER 4 
SENSORS, VIRTUAL INSTRUMENTATION, DATA 
ACQUISITION AND SIGNAL PROCESSING 

This chapter presents monitoring ways of an electromechanical system (vibration 
analysis, thermography) and describes different types of sensors, especially accelerometers and 
how they work. Also, details are given about the needed virtual instrumentation for data 
acquisition and signal processing methods for extracting meaningful features. 

4.1  Vibration analysis 
It is one of the most used methods of fault diagnosis in electromechanical systems. 

Through this method, the system’s vibration parameters are determined, usually with an 
accelerometer, and then the amplitudes at certain frequencies are analyzed (figure 4.1) to identify 
the peaks given that the system has certain intrinsic frequencies while running. The change of 
amplitude in certain harmonics can indicate the presence of a fault. 

Through vibrations, there can be diagnosed faults like unbalances, bearing faults, 
structural resonance, rotor faults. The data sampling is fast and non-invasive, the monitored 
system’s work regime not being affected. 

 

Figure 4.1: Vibration analysis [10] 
For each electromechanical system, before going into production stage, a reference level 

for vibrations needs to be set so that any deviation from this level could indicate a fault. There is 
a standard that sets the levels of vibrations for different devices at different running speeds. 
These can be used as reference level when comparing data sampled during production.  
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4.2  Sensors 
In [11], Stephen Hanly presents different vibration measurement sensors and indicates 

how the vibration analysis can be done properly. Hence, the vibration sensors can be classified as 
follows: 

• Accelerometers. 
• Velocity sensors  
• Microphones or acoustic pressure sensors  
• Laser displacement sensors  

• Capacitive displacement sensors  

Accelerometers can be also split up as follows: 

• Capacitive accelerometers – the smallest and cheapest accelerometers that are 
used usually in mobile phones. The data quality is low, especially at high 
frequencies and they are not appropriate for industrial use; the production 
technology is based on MEMS (micro electromechanical systems) 

• Piezoelectric accelerometers – these are the most popular and used sensors for 
industrial applications, their lead zirconate titanate (PZT) sensing element 
producing electric charge or output under acceleration. The downside is that the 
coupling is made through AC current, and they can’t measure gravitational 
acceleration. 

• Piezoresistive accelerometers – these sensors are commonly used for 
impulse/impact measurements; the seismic mass deforms the elastic element on 
which piezoresistive elements are mounted, therefore they need amplification and 
temperature compensation; they are coupled through DC current 

4.3 Data acquisition, virtual instrumentation 
An instrument is a device that sample data from the environment or from a system, 

processes the data and shows the result to the user. Oscilloscopes, multimeters, spectrum 
analyzers, etc. are examples of physical instruments. Virtual instruments are another class of 
instruments which is formed by software and modular hardware that gives the user the possibility 
to adapt the sampling system to his needs [12]. 

A defining trait of a virtual instrument is that it can change its main function through 
software, being flexible and reliable in many applications. That’s why the software component is 
the most important part of a virtual instrument [13]. 

A virtual instrument is made up of multiple modules (figure 4.2): 
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• Sensor module 
• Sensor interface 
• Computing module 
• Graphical interface 

 
Figure 4.2: Virtual instrument architecture 

The used virtual instruments for data sampling will be described further. These 
instruments have the purpose of sampling data, process it and extract meaningful features for 
fault diagnosis in a mechatronic system using vibration analysis. The monitoring system will use 
a reference level that describes the system before the production stage, when it is considered that 
it’s running without faults. 

The monitored mechatronic system is represented by an actuating system (motor), 
transmission system (cinematic chain) and a system that is actuated and must execute a certain 
motion (effector). The vibration measurement is made with 2 sensors, one being mounted on the 
motor and one on the effector (figure 4.3). Hence, the sensor module will be formed by:: 

• Vibration sensors 
• Data acquisition board 

 
Figure 4.3: Monitored single-axis mechatronic system 

The sensor interface will be a wired one to allow real-time data sampling when the 
system is running. Another way of sampling data is by using a microcontroller instead of a 
dedicated data acquisition board which can then send the data through a wireless interface. 
Therefore, the sensor interface is composed of: 

• Data acquisition board / microcontroller 
• Computer cu wireless network card / serial port 
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The computing unit is a computer which has a wireless network card or a serial port to 
communicate with the sensor interface.  

The graphic interface is made up of a software program that can show the processed 
features of a signal and can notify the user if a fault is diagnosed/present in the system. 

4.4 Signal processing 
Signal processing is an important step in a diagnosis module because by using it, 

important information can be extracted that is relevant to the monitored system’s state. The 
signal processing domain in a huge one therefore only some theoretical concepts will be 
presented that will be later applied in different experiments and fault diagnosis methods. 

4.4.1 Signal processing methods 
A signal can be processed in the time domain, frequency domain or time-frequency 

domain. For each domain, there are different methods for extracting useful signal features. Some 
concepts will be briefly presented further. 

4.4.1.1 Signal processing in the time domain 

The data sampled in time by a sensor gives out a signal in the time domain from which 
statistical information can be extracted. Besides the signal’s form and its statistical features, 
another two measures are of interest, specifically the signal’s energy and the signal’s power. 
These two can offer important information on how strong a signal is in a given interval. For 
transient signals, the energy is important in a time frame as the power is useful for stationary 
processes. 

4.4.1.2 Signal processing in frequency domain 

For signal processing the frequency domain, the Fourier transform is used. This allows 
the time domain signal to be converted in the frequency domain through the decomposition of 
the initial signal into sine-like components of different periods and by finding the amplitudes of 
these components. This representation in the frequency domain is also known as the frequency 
spectrum of the signal, term used further for the graph formed by the signal’s amplitudes at 
different frequencies. 

The Fourier Transform 
The Fourieri transform extracts the processed signal’s correlations with sinusoidal signals 

the have different frequencies. Hence, if a signal x(t) needs to be represented in the frequency 
domains, the following equation can be used:  

𝑋𝑋(𝑓𝑓) = � 𝑥𝑥(𝑡𝑡)𝑒𝑒−𝑗𝑗2𝜋𝜋𝑓𝑓𝑓𝑓𝑑𝑑𝑡𝑡
∞

−∞
(4.1) 

where f is the frequency of sinusoidal component and X(f) its amplitude. 
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Obviously, the equation (4.1) is useful for analogical signals. Usually, a signal is sampled 
with a certain sample rate, and it needs digital processing, hence the discrete Fourier transform is 
used (DFT): 

𝑋𝑋(𝑘𝑘) =
1
𝑁𝑁
� 𝑥𝑥(𝑖𝑖)𝑒𝑒−

𝑗𝑗2𝜋𝜋𝑘𝑘𝑘𝑘
𝑁𝑁

𝑁𝑁−1

𝑘𝑘=0

(4.2) 

where N is the number of points of the signal after applying the DFT. This transform can be 
efficiently computed by using the Fast Fourieri Transform (FFT), however FFT requires that N is 
a power of 2 [14]. 

As per Parseval’s theorem and the law of energy conservation [15]: 

�|𝑥𝑥𝑛𝑛|2 = �|𝑋𝑋𝑘𝑘|2
𝑁𝑁−1

𝑘𝑘=0

 
𝑁𝑁−1

𝑛𝑛=0

(4.3) 

where xn is the initial signal, N is the number of points amd Xk is obtained using (4.2). Equation 
(4.3) expresses the fact that the signal’s energy in time domain is equal to the signal’s energy in 
frequency domain. 

Generalized Goertzel algorithm 
Another method of signal processing in frequency domain is by obtaining the DFT 

coefficients of the signal at specific frequencies by using the Goertzel algorithm. This algorithm 
is very useful if only a certain number of frequencies need monitoring, as presented [16]. This 
method requires only N multiplications and 2N adding operations. It more efficient than the DFT 
if the number of computed frequencies K is less than 4N/7 [17]. Another advantage of this 
algorithm is that N doesn’t have to be a power of 2 to be computational efficient. 

4.4.1.3 Signal processing in time-frequency domain 

The two types of signal processing presented above lose information that could be useful 
in fault diagnosis. Also, the Fourier transform is not useful for processing transient signals, 
which usually appear in real system faults. That’s why there are more methods to process a 
signal in both domains (out of which only 3 will be detailed, these being used for fault diagnosis 
algorithms available in the thesis): 

• Short time Fourier transform (STFT) – in this method, the signal is basically split 
up in multiple frames using a window of a certain duration; on each frame the 
Fourier transform is applied. 

• Wigner-Ville distribution – this method gives out the probability distribution of 
the signal at a certain frequency and at a specific moment in time. 
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• Wavelet Transform – it is a method that decomposes the signal using a Wavelet 
mother function, which must satisfy certain criteria, and which can be dilated and 
translated, offering resolution in both time and frequency domains. 

• Hilbert-Huang Transform – this method combines the Hilbert transform and the 
empirical mode decomposition. It is a method specifically created for the analysis 
of non-linear and non-stationary signals [18]. The intrinsic mode functions 
extracted are dependent on the signal itself, meaning that this is an adaptive 
algorithm which offers a very good resolution in time and frequency. It was 
presented by Huang et al. in [19]. 

• Wavelet Packets Transform – a method which is built on top of the discrete 
Wavelet transform but which substitutes the Wavelet mother function with two 
filters (Wavelet function and scaling function) with which the initial signal can be 
decomposed in an iterative way. 

• Mel frequency cepstral coefficients – a method which his very useful in 
extracting features from a signal for speech recognition. It is built on top of the 
STFT and the discrete cosine transform. 

CHAPTER 5 
FAULT DETECTION AND ISOLATION USING ARTIFICAL 
INTELLIGENCE 

This chapter is an overview of the artificial intelligence domain and gives some insight 
into some theoretical notions of different machine learning algorithms used for fault diagnosis.  

5.1 Artificial intelligence 
Artificial intelligence is a subcategory of computer science that deals with the 

intelligence of the machines, which gives the adjective of “artificial”. Usually, the main goal of 
artificial intelligence is to maximize the probability of success in a certain operation. For 
instance, if playing chess, an artificial intelligence algorithm will compute the probabilities of 
winning of every possible move and will make the move with the highest change of success   

5.1.1 Artificial intelligence algorithms 
Artificial intelligence has solved many complex problems in the field of computer 

science using different methods and algorithms. The main methods that are used in artificial 
intelligence can be split into the following classes [20]: 

• Search and optimization methods 
• Logical methods 
• Probability methods 
• Classification and statistical inference methods 
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• Neural networks 

5.1.2 Machine learning 
Machine learning is a subdomain of artificial intelligence that is composed of techniques 

through which a system can automatically learn.  After the learning stage, the system will build a 
model which will be used for approximating future results for the problem it was trained, no 
matter what the input is. 

The models can be classified in: 

• Neural networks 
• Decision graphs 
• Support vector machines (SVM) 
• Bayesiene networks 
• Genetic algorithms 

5.2 Artificial intelligence algorithms for fault diagnosis 
In [21], Chang et. al. presents different ways through which a machine can be monitored 

using artificial intelligence. It can be observed that neural networks are more and more used in 
this type of industry. Neural networks can be classified as: 

• Recurrent neural networks – a type of neural networks that creates a directed 
graph between its nodes (neural units) for a timespan 

• Deep neural networks – it’s a type of neural networks used in deep learning; these 
networks have multiple hidden layers and can make better estimations with fewer 
neural units than classical neural networks. However, these networks tend to 
create an overfitted model. 

• Convolutional neural networks – a type of deep neural networks, they are usually 
regularized to avoid overfitting.  

5.2.1 Anomaly detection 
Usually, a neural network model is used in supervised learning algorithms. For example, 

for classifying more types of faults, in the training set there must be data for each type of fault. 

If only the detection of a fault is needed, unsupervised learning can be used. Different 
models can be implemented starting from the data sampled from the system that runs without 
faults.  

5.2.1.1 Anomaly detection algorithm using normal distributions 

This algorithm is built using the probability density of the distribution of each dimension 
of the analyzed feature vector x. It is important to note that the data used for training has to be 
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processed so that the probability distribution function is a bell-shaped graph (Gaussian 
distribution). 

5.2.1.2 Isolation Forest 

This algorithm was introduced in 2008 by Liu and Ting through [22], being a new 
method to detect anomalies through a new approach: isolation. The algorithm is built around the 
idea that the anomalies are rare and very different than the reference data and hence, they are 
more susceptible to isolation. 

An isolation forest has the following advantages: 

• It is formed of isolations trees. Their advantage is that they create partial models 
which deal with small data sets. A small set decreases the chance of a false positive or 
false negative. 

• It doesn’t use distance or density measurements to find anomalies, hence eliminating 
a major cost in the computational needs 

• It has a linear time complexity and a small space complexity 
• It deals very well with big data sets with a high number of features 

In a tree built from random data, the partitioning of each point is done recursively until 
all the points are isolated. Because anomalies are very different, the partitioning will be very 
short and the path from the root to the leaf will be very short. Hence, when an isolation forest 
produces short paths for certain data points, those points are considered anomalies. 

5.2.1.3 Kolomogorov-Smirnov statistical test 

Another method to detect a potential fault is through the comparison of two statistical 
distributions built from the dynamic features extracted from a system. The first distribution (the 
reference one) is built by the features of the system running without fault while the second 
distribution is built from the data sampled from the system during production stage. 

The Kolmogorov-Smirnov test (K-S test) is a statistical test to decide whether a data 
point or set is part of a given distribution. This is achieved by comparing the one-dimensional 
probability distributions. It is a non-parametric test which can compare a dataset with a 
theoretical distribution, or it can compare two datasets. It can also be used as a goodness of fit 
test. This method is using null hypothesis testing using a statistic called D-stat. Also, K-S test 
gives a value p that, if it is smaller than 0.05, rejects the null hypothesis. 

5.2.2 Unsupervised classification algorithms 
5.2.2.1 K Nearest Neighbours - kNN 

This algorithm allows a system to classify new data by assigning it to a set learned on 
previous measurements; the classification process is made based on the Euclidean distance or 
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other type of measure that can be applied to multidimensional data, like the Minkowski measure: 
[18]: 

‖𝑥𝑥′ − 𝑥𝑥𝑛𝑛‖𝑝𝑝 = ��|(𝑥𝑥𝑘𝑘)′ − (𝑥𝑥𝑘𝑘)𝑛𝑛|𝑝𝑝
𝑀𝑀

𝑘𝑘=1

�

1
𝑝𝑝

(5.1) 

where x’ is a new data sample, xn is a previous data sample and is part of ℝM. 

The algorithm’s training stage is basically when a new data sample is classified, making 
this method very robust and easy to use.  

In [18], the author uses weighted-kNN successfully for fault diagnosis in gears by setting 
different weights to the distances to different fault classes. 

This algorithm represents an easy way to integrate in a monitoring system faults that are 
not known before the production stage and that may appear while the system is running. The 
faults can be classified by the operators upon their detection so that later the same category of 
faults will be successfully classified. 

CHAPTER 6 
SOFTWARE FAULT DIAGNOSIS THROUGH SIGNAL 
PROCESSING 

In this chapter there are described proprietary algorithms for vibration features extraction, 
algorithms that are needed in fault diagnosis and a complex software application is presented that 
can process signals and diagnose faults. 

6.1 Fault diagnosis algorithm for a complex mechatronics system 
One of the thesis’ objectives is to design and implement a robust fault diagnosis system 

for faults that may appear in a mechatronics system. To design such a system, first the structure 
of the observed system must be settled upon and asses its complexity. 

In this thesis, the monitoring algorithm is used for a one-axis cartesian system that is 
composed of an actuating subsystem, bearings, gearbox, transmission subsystem and effector 
subsystem. This system is presented in figure 4.3. 

Starting from this monitored system, an intelligent diagnosis algorithm was designed 
which is presented in figure 6.1. In the figure, the steps and the modules of the diagnosis 
processes can be seen. 
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Figure 6.1: Steps and modules of the designed fault diagnosis algorithm 

6.1.1 Signal acquisition 
The first step of the algorithm consists of getting the vibration characteristic signals from 

the monitored system. For this step, choosing the right accelerometers and the right sensorial 
interface is important. For the sensorial module, piezoelectrical accelerometers can be used such 
as Brüel & Kjær, which can measure acceleration oscillations of very high frequencies. 

For the acquisition of the data from the sensors, a professional data acquisition board can 
be used from National Instruments, which can be easily used and configured using LabView.  

For a real-time system, it is important to implement a continuous data stream to the signal 
processing module, which is easily done in python, a programming language that has a many 
optimized libraries for this purpose. 

6.1.2 Signal feature extraction 
The sampled data from the system needs to be processed in order to extract the 

information needed by the diagnosis modules. The designed fault diagnosis system uses 
vibration analysis for identifying faults, so the methods described in chapter 4 are useful for 
feature extraction. To obtain features that can characterize different mechanical and electrical 
faults, certain frequencies must be computed for which the amplitude increases if the 
correspondent fault is present, as described in chapter 2. 
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In chapter 4 a comparison between the 3 methods of signal processing in frequency-time 
domain is made: the Wavelet packets transform (WPT), Hilbert-Huang transform (HHT) and the 
extraction of mel-frequency cepstral coefficients (MFCC). Moreover, in chapter 7, the three 
methods are tested on data sampled from bearing. Out of these three methods, in the software 
solution WPT and HHT have been implemented, the two offering a very good time-frequency 
resolution. 

6.1.2.1 Feature extraction using the Goertzel algorithm 

Many faults can be identified in the frequency domain, by monitoring the amplitude of 
certain frequencies, that can be computed based on system parameters. The amplitude of the sine 
components with different frequencies is important in detecting fault signals, hence a fast 
algorithm is needed for monitoring a system while running.  

The feature extraction algorithm based on the Goertzel algorithm has the following steps:  

• The rotation speed of the actuating system or of the shaft is stored. As described in 
chapter 2, all the fault frequencies are depending on the rotation speed. Certain 
components (like bearings) need other parameters for computing the needed 
frequencies 

• Identify the needed parameters for computing the fault frequencies  
• Compute the fault frequencies which need to be monitored 
• Apply the Goertzel algorithm to get the Discrete Fourier Transform coefficients for the 

above-mentioned frequencies and compute the spectral amplitude for each frequency. 
In figure 6.2 the above algorithm is presented. The data acquisition from an 

accelerometer can be done through any method, if the sampling frequency is high enough to 
cover all the computed frequencies. 
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Figure 6.2: Feature extraction algorithm using the Goertzel algorithm 

Pentru calculul amplitudinii spectrale pe baza componentelor DFT se folosesc ecuațiile 
(4.32) și (4.33). 

Minor faults cannot be diagnosed in the signal’s frequency spectrum because they can be 
masked by the amplitudes of the rotation frequencies. The impulses caused by a fault should 
increase the signal’s energy in the frequency interval correspondent to the period of impact 
appearance due to the fault. So, as per Parseval’s theorem from equation (4.3), the frequency 
bandwidth with the highest energy can be found and analyzed for diagnosing the fault. 

6.1.2.2 Complex algorithms for extracting and processing the vibration features needed for 
fault diagnosis 

For extracting relevant features through the algorithm presented above, the sampled 
signal needs to be processed to get relevant information for the physical phenomenon that 
appears due to the fault of a component. As it was mentioned above, for such a processing, there 
were chosen two methods: WPT and HHT. 
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Through these two methods different frequency bandwidths can be observed, that are 
relevant to the appearance of an impact in the vibratory behavior of the observed system and 
even more, statistical data can be extracted from signals sampled from a component that has an 
unknown fault. This data can be later used for classifying similar faults. 

Further on, there will be presented a way to use the Wavelet packets transform or the 
Hilbert-Huang Transform will be presented, and additionally a new criterion to stop the 
empirical mode decomposition, which can be used to also diagnose faults. 

Using the Wavelet packets 
This method allows analyzing the signals in different frequency bandwidths and hence it 

represents a good algorithm for extracting features based on the computed fault frequencies. By 
applying the WPT, a perfect binary tree will be computed. However, some packets will not offer 
additional information, the decomposition being redundant. For avoiding this situation, a signal 
entropy-based decomposition can be used for computing a full binary tree, where every node has 
either 0 or 2 children. In other words, a basis is searched for the signal. 

After computing a basis for the signal (an optimal tree), the signal energies of the tree’s 
leaves can be analyzed. The algorithm will search for the node in the tree with the maximum 
energy. Once this node is located, the fault can be identified by extracting the features from the 
node’s signal. 

The algorithm can be described by the following figure: 

 
Figur3 6.3: Algorithm for feature extraction using the WPT 

For fault diagnosis used in bearings and gearboxes, the signal’s envelope is of great 
interest, and the envelope’s frequency spectrum. The signal’s envelope is computed by using the 
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Hilbert Transform on the signal and by computing the amplitude of the formed vectors from the 
transformed signal (which will be complex). The envelope is used as a signal out of which 
characteristic features can be extracted for the fault frequencies. Hence, instead of the signal’s 
frequency spectrum, the features can be directly extracted from the envelope’s frequency 
spectrum by using the Goertzel algorithm. 

This algorithm is implemented in section WPTHandler.py from Anexa A, where the 
PyWavelets [6] library is used. 

Using the Hilbert-Huang Transform 
This algorithm is especially used for extracting intrinsic functions for the analyzed signal 

a use them for computing the Hilbert spectrum. The Hilbert spectrum is built using the 
instantaneous energy which can be looked at by using the instantaneous frequency. 

Another approach is by using a similar method as used with the WPT where, once the 
intrinsic functions are computed, the envelope of each function can be calculated and out of the 
envelope, features can be extracted by using the Goertzel algorithm. Since the decomposition 
stops only when a maximum number of functions is computed (a maximum number chosen 
beforehand) or when the residual signal is a constant or monotonic function, a criterion of early 
stopping for the empirical mode decomposition by identifying the fault itself. In this way, a 
swift decision can be taken if a fault is diagnosed, especially in the case of a mechatronics 
system where time is of the essence. 

The HHT implementation is done in section HHTHandler.py of Anexa A, where the 
PyEMD [7] library is used for the empirical mode decomposition (EMF).  

A stopping condition to empirical mode decomposition based on the Goertzel algorithm 
for detecting frequency-based faults 

A criterion that accelerates the EMF for diagnosing certain faults is represented by 
learning certain features that can show the existence of a fault in the extracted intrinsic mode 
function (IMF). These features can be represented by statistical information computed for the 
distributions formed by the DFT coefficients computed by using the Goertzel algorithm in each 
IMF. When a new set of data is considered to be an outlier to the reference levels of the 
features, a fault can be considered diagnosed and the EMF can stop. 

Un criteriu care accelerează descompunerea empirică în moduri proprii de oscilație, 
pentru diagnosticarea anumitor defecte este reprezentat de învățarea anumitor caracteristici care 
indică prezența unui defect în cadrul unei funcții proprii extrase. Aceste caracteristici pot fi 
reprezentate de informații statistice calculate pentru distribuțiile compuse din coeficienții DFT 
extrași prin algoritmul Goertzel din fiecare funcție proprie. În momentul în care un nou set de 
date ar fi considerat în afara valorilor admise pentru caracteristici, se poate considera că 
funcția proprie conține un defect și descompunerea poate lua sfârșit. 

To have a comparison dataset, the proposed algorithm will have two main stages: 
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1. The training stage – done on data extracted for the system with no faults 
2. The diagnosis stage – the algorithm will run continuously and compare the extracted 

features for new data with the stored features extracted during the training stage 
The extracted statistical information will be represented by the mean, variance, and range 

for each of the distribution.  

These 3 features are enough to characterize a distribution for the purpose of checking 
how a new sample affects the recorded distribution for each of the monitored frequencies. 

The algorithm can be split into the following steps: 
1. Create a list of monitored frequencies 
2. Start the EMD algorithm on a training signal for a functional system 
3. Once all the IMFs have been computed, let A be a matrix with m by n (m is the 

number of monitored frequencies and n is the number of IMFs) filled with the 
absolute values of the DFT coefficients extracted using the generalized Goertzel 
algorithm for the fault frequencies for each IMF signal 

4. Each row in A represents a dataset for which the measures presented in equations (8), 
(9), (10) must be extracted and stored; besides these features, also the A matrix is 
stored 

5. During the diagnosis stage, once every IMF is extracted, the DFT coefficients are 
computed for the monitored frequencies and their absolute values are added as a new 
column to the A matrix, forming a new B matrix 

6. The statistical features are extracted from the B matrix and compared to the ones 
stored at point 4. If each of the feature values have changed with more than an a priori 
chosen coefficient, the fault has been detected and the IMF decomposition can stop  

The coefficient can be chosen through an automatic process during training. This 
coefficient represents the maximum offset allowed for any of the characteristics. The method of 
finding the coefficient is made up of two steps: 

• On the training data, the characteristics would be extracted using steps 1-4  
• Starting with a coefficient of 0.1, this was increased with a step of 0.1 until the 

algorithm would not detect a fault anymore for the validation data set (which is 
part of the functional data). This way, the coefficient can be chosen based on the 
functional data only, specific to each monitored system. 

This algorithm is implemented in CustomHHT.py of Anexa A. 

Computing the fault frequencies 
Based on the data shown in chapter 2, a high number of faults can be identified through 

vibration analysis by monitoring the amplitudes at certain frequencies. This way, the frequencies 
become features that must be monitored in a vibration-based diagnosis model. Given that faults 
in bearings and gearboxes are detected more easily through analyzing the signal given by the 
original signal’s envelope. Hence, both the original signal’s frequency spectrum and the 
envelope’s frequency spectrum are recorded for reference. 
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Computing the fault frequencies is implemented in section DiagnosisHandler.py in 
Anexa A. These are computed based on the construction data of the mechatronics system and its 
components. Choosing the method for signal processing is made by the engineer that installs the 
monitoring system. The method is chosen based on the data sampled from the system, WPT 
being faster than HHT, but the WPT Wavelet function needs to be known beforehand, while the 
HHT is an adaptive method. 

6.1.3 Fault detection module 
For detection and diagnosis, the software application will load the saved models to have 

reference levels and pre-trained models for diagnosing known faults. 

For fault detection, the features extracted through WPT are used. The reason for which 
WPT was chosen as processing method was the speed and the fact the Daubechies Wavelet 
function have similar vibration features to the ones computed through HHT, features that can be 
successfully used for the diagnosis of the monitored mechatronics system. These features are 
evaluated by an isolation forest (algorithm presented in 5.2.1.2), obtaining a correspondence 
between the leaves of the decomposition tree (signal coming from the actuating system and the 
effector system). Given more data samples and given the possibility of false negative results, 
there will be a statistical mean used for the isolation forest results. Hence, if the mean is 
positive, there is no fault and if it is negative, a fault is detected. 

The method is applied on the matrices A and B, composed of the packets computed for 
the sampled signals by the two accelerometers. A and B have the shape n x m, where n is the 
number of samples in the signal of a packet on the last level of the decomposition tree from WPT 
and m is the number of packets (m=2l where l is the last level of the tree). 

For the first detection filter there are two models that are used created using two isolation 
forests. This way, any anomaly in the vibration behavior of the motor or the effector can be 
easily detected. For the existence of a fault in the transmission system between the motor and the 
effector the following algorithm can be used. 

6.1.3.1 Modelling of the cinematic chain through a regression neural network 

To use a machine learning algorithm, the sampled data must be processed for obtaining 
information with intrinsic information to the system and which characterize the signal 
mathematically. This property needs to be useful for a cost function which is minimized by the 
machine learning algorithm. To extract the important spectral features a processing algorithm 
that can compute the features in a vectorial way needs to be used. 

The computed features are used to model the cinematic transmission system of the 
monitored mechatronics system. 
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Description of the problem and solution 
The approached problem is to estimate the vibration behavior of the effector system 

based on the features from the actuating system. To solve this non-linear problem a data-based 
model is needed, model which is represented by the weights of the trained regression neural 
network. Let A be a space with its based formed by the vectors of the extracted features sampled 
from the motor signal and B the space that has the feature vectors computed using the features 
from the effector; if T is a system then: 

𝑌𝑌�(𝑡𝑡) = 𝑋𝑋(𝑡𝑡)𝑇𝑇 (6.2) 

where 𝑌𝑌�(𝑡𝑡) is the estimation of system T at time t if the input is X(t). Finding a system T that can 
estimate correctly 𝑌𝑌�(𝑡𝑡) allows the monitoring of the transmission system and identification of 
some unknown issues which may occur due to the different involved factors. By using a model-
based model, any cinematic system used for transmission can be modelled this way (without 
changing the algorithm or its implementation). 

The above-mentioned algorithm was tested using different signal processing methods, 
like mel-frequency cepstral coefficients (MFCC) or WPT. The results of the test done through 
MFCC were presented in “International Conference of MECHATRONICS & CYBER-
MIXMECHATRONICS” (2020). The article [4] was published in the journal “International 
Journal of Mechatronics and Applied Mechanics” indexed SCOPUS. In this thesis the 
algorithm is implemented in NeuralNetManager.py from Anexa A. 

Extracting features and using them for fault  
Let a new sample xij be for every accelerometer, each being processed through WPT and 

computing the optimal decomposition tree based on entropy (as presented in 6.1.2): 

𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓𝑗𝑗 = 𝐸𝐸𝑥𝑥𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝐸𝐸𝑒𝑒𝑊𝑊𝑊𝑊𝑊𝑊�𝑥𝑥𝑘𝑘𝑗𝑗� (6.3) 

Xprelucratj can be A or B based on index j: 

𝐴𝐴, 𝑖𝑖𝑓𝑓 𝑗𝑗 = 1
𝐵𝐵, 𝑖𝑖𝑓𝑓 = 2 (6.4) 

Next, A and B are tested: 

𝑠𝑠𝑠𝑠𝑠𝑠𝐸𝐸𝑘𝑘𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑇𝑇𝑒𝑒𝑠𝑠𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴)
𝑠𝑠𝑠𝑠𝑠𝑠𝐸𝐸𝑘𝑘𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑇𝑇𝑒𝑒𝑠𝑠𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐵𝐵) (6.5) 

If the motor score is -1, then a motor fault has been detected. If the score obtained from 
the effector signal is -1, then there’s a fault either in the transmission system or in the effector 
system itself. 
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To detect where the defect comes from, the T transformation system will be used to 
compute the following equations: 

𝐵𝐵′ = 𝐴𝐴𝑇𝑇 

𝐵𝐵𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐵𝐵 − 𝐵𝐵′ (6.6) 

To compute the matrices A and B, a window of known duration is used to split the signal 
into short signals which represent training samples for the neural network model and for the 
isolation forest models. For the signal in each window, the WPT is applied. To store the packets, 
a tridimensional vector is used: the first dimension of the vector is the number of samples, the 
second is the number of the tree’s leaves and the third dimension is the number of points in a 
packet signal. 

The detection algorithm is implemented in DiagnosisHandler.py from Anexa A, function 
startDiagnosis. It is important to note that the detection and diagnosis modules are implemented 
in the same section but in different functions. 

6.1.4 The diagnosis module 
After the localization of the defects (either in the motor signal or in the effector signal), 

the WPT is applied and then the node with the maximum energy from the decomposition tree is 
found. The tree was already built in the detection step, so there is no complexity penalty in 
finding this node.  

If a fault is found at a frequency common to multiple faults, the faults could be identified 
based on the amplitude value. 

For the diagnosis of the motor, sample groups of known sizes are created (the higher the 
size, the higher the statistical accuracy). For each group, a distribution given by each frequency 
feature is computed, the frequencies being computed for the frequency spectrum and the 
envelope frequency spectrum. The signal is extracted from the node with the highest energy. 
After the distributions of the freshly sampled data are computed, they are compared with 
reference distributions loaded from the trained model. 

Basically, the diagnosis is done using binary vectors (that contain only 1 or 0), built upon 
the features extracted from the functional system during training. Such a vector has the size equal 
to the number of monitored frequencies and the value of each element is 0, if the distribution of 
the newly sampled data amplitudes is not different than the reference distribution, either 1 if 
there is a difference between the two. Two compare the two distributions, the following 
algorithm can be used: 
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6.1.4.1 Fault diagnosis algorithm using the Kolmogorov-Smirnov test 

In [1] an algorithm for bearing fault detection and diagnosis is presented using the 
method presented in 5.2.1.3. The algorithm was presented at the conference “THE 9th 
INTERNATIONAL  CONFERENCE  ON ADVANCED CONCEPTS  IN  MECHANICAL  
ENGINEERING” and it was published in “IOP Conference  Series: Materials  Science  and 
Engineering”, a journal  indexed ISI Web of Science and Scopus. Briefly, the algorithm is using 
the following steps: 

1. Store the features into a matrix for each of the possible faults. A matrix will have the 
dimensions m by n where m is the number of samples and n the number of 
frequencies 

2. Record new data for the same time as for the training 
3. For each possible fault, apply the K-S test where the data is represented by each 

column in the matrix, comparing the D-stat with the critical D-stat 
4. The probability that a fault is detected on the corresponding part for that sample is 

given by: 

𝑃𝑃𝑝𝑝ș𝑝𝑝𝑛𝑛𝑓𝑓𝑘𝑘𝑖𝑖𝑛𝑛 =
#𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡𝑒𝑒𝑖𝑖𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒 𝐸𝐸𝑒𝑒𝑠𝑠𝑖𝑖𝑖𝑖𝑛𝑛𝑠𝑠𝑒𝑒

#𝑓𝑓𝐸𝐸𝑒𝑒𝑠𝑠𝑓𝑓𝑒𝑒𝑛𝑛ț𝑒𝑒
(6.7) 

5. Given n samples, one could even apply conditional probability by using the law of 
total probability, which states that if several disjoint measurable events take place, 
then an event A of the same probability space would have the probability of: 

𝑃𝑃(𝐴𝐴) = �𝑃𝑃(𝐴𝐴|𝐵𝐵𝑘𝑘)𝑃𝑃(𝐵𝐵𝑘𝑘)
𝑛𝑛

𝑘𝑘

(6.8) 

6. Considering A as being the event where the bearing has a fault in that specific 
component and Bi the event of the bearing having a fault present in the recorded data 
of the sample, the probability that A has happened given Bi is equal to the probability 
of Bi over the entire sample space: 

𝑃𝑃(𝐴𝐴|𝐵𝐵𝑘𝑘) =
𝑃𝑃(𝐵𝐵𝑘𝑘)
𝑛𝑛

(6.9) 

The algorithm was implemented in section DiagnosisHandler.py from Anexa A, function 
doKSTest. The function uses the implemented of Kolmogorov-Smirnov test from the library 
scipy [2], computes the critical D-stat (step 3) and returns value 1 if the two distributions are not 
the same and value 0 if they are part of the same distribution class. The function is further used 
in the function diagnoseMotor, which implements steps 4, 5 and 6 to compute a fault probability 
and diagnose the fault (if it exists) in the system. 
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Figure 6.4: Flowchart of the algorithm using extracted features with Goertzel algorithm and 

applying the K-S test on them. 

For the feature extraction any algorithm can be used, like the one presented by the author 
at the conference “International Conference of MECHATRONICS & CYBER-
MIXMECHATRONICS” (2019) and it was published in “International Journal of 
Mechatronics and Applied Mechanics” with the index SCOPUS. In thesis, a modified version 
of this algorithm is implemented in Utilities.py from Anexa A, function getGoertzelCoeffs. 

The implementation of the fault diagnosis in done in section DiagnosisHandler.py from 
Anexa A function diagnoseMotor. If the fault cannot be classified, time-domain features are 
extracted from the signal, for every leaf in the decomposition tree (implemented in 
DiagnosisHandler.py from Anexa A function getSignalFeaturesFromWptData) and next fault 
with similar features are searched by using an unsupervised classification algorithm, kNN (k 
Nearest Neighbours) using the scikit [8] library. 

If the fault classification fails, the system is stopped automatically, and the operators are 
alerted that there is an unknown fault. At this moment, all the features are stored. After the fault 
is repaired, the operators are asked to label the fault for a future classification. 
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The stored feature vectors will be used in the kNN system. When a new fault that can’t be 
classified by the first part of the algorithm, the kNN algorithm will try to classify it into one of 
the already existing classes. If this is not possible, a new class will be made based on the 
extracted vibration features. 

6.1.5 Operators alerting module 
The operators in the factory or other interested parts of the system’s condition need to be 

alerted if a fault has occurred. That’s why an alerting module is needed that can be display error 
messages on the system’s dedicated screens, which can send electronic messages or send 
different sound or visual signals. This will happen whether the fault is known or not. After the 
fault was identified, this module will show the type of the defect that was diagnosed. This 
module is part of the section DiagnosisHandler.py from Anexa A being used in the function 
addToDiagnosticText. 

6.1.6 Model training and data storing module 
Although the training of the models takes place before the diagnosis process, the first 

step depends on the diagnosis algorithms and that’s why these were first presented, to offer a 
better understanding of the training process and of the data used and saved to have a valid 
reference. 

This module trains the data-based models, computes the fault frequencies, and stores the 
amplitudes for these frequencies, to create a reference used later in the diagnosis step. The 
models built are used by the isolation forests, the neural network, and the diagnosis algorithms. 

The diagnosis vectors, with the fault frequencies computed as mentioned in 6.1.2.2 will 
represent the reference for diagnosing new sampled data. 

Feature extraction and model training 
As it was presented in chapter 4, to identify certain patterns in signal, these have to be 

processed. After the processing, relevant features can be extracted that can offer important 
information about the system’s condition. 

For the fault detection, as presented in 6.1.3.1, matrices A and B need to be defined. Two 
training signals are built based on the data sampled from the motor and effector. 

These matrices are then used for training the neural network and the isolation forest 
models. After the training, the models are save into user-named files. 

The same Wavelet packets tree is used form using the fault frequency model. On every 
node signal, the Hilbert Transform is applied, and the envelope is extracted. From this signal and 
the original signal, the amplitudes at the fault frequencies are extracted using the Goertzel 
algorithm. The results are stored into two tridimensional vectors, one for the envelope spectrum 
and one for the original signal’s spectrum. The dimensions of the vectors are p x 2l -1 x ki, where 
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p is the number of samples, l is the maximum level of the tree and ki is the number of fault 
frequencies for the envelope (i=1) and for the original signal (i=2). These vectors are saved into 
user-named files. 

The implementation of this module is available in section DiagnosisHandler.py from 
Anexa A function startTrainingAllModels.  

6.2 Software application description and objectives 
The software application has two main objectives: 

1. Signal processing through different methods and visualizing of the results, 
allowing the user to change different the parameters so that different vibration 
features can be observed 

2. Online fault diagnosis of a mechatronics system with the automatic 
alerting of the operators in case a fault is detected and the automatic stopping 
of the monitored system 

The first objective is meant for the users with the purpose of allowing them to see 
different features of a signal. The processing methods are WPT and HHT. Based on these, a user 
can observe what is the best processing algorithm for a sampled signal from a functional system. 
Based on this decision, the user can use the chosen method for training a diagnosis model that 
represents the system in normal working conditions. 

The second objective allows the user to get diagnosis models in an offline environment 
(the data was sampled in the past – the training and analysis is done on a personal computer), so 
that these can be later used in an online environment where the data is sampled in real time. In 
this case, the diagnosis algorithm can run on a microcontroller as well (but this scenario must be 
carefully assessed because signal processing can be an exhaustive operation). When the 
monitoring system detects a fault, the observed system automatically stopped or driven into a 
fault tolerance working scenario. Either way, the operators are alerted about the existence of a 
fault in the system. 
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CHAPTER 7 
RESULTS REGARDING FAULT DIAGNOSIS IN 
COMPONENTS AND MECHATRONIC SYSTEMS 

7.1 Experiment on a test stand used for assessing the dynamic 
behavior of shafts 

7.1.1. Test stand description 
The test stand is used for measuring dynamic behavior of a shaft in vertical and 

horizontal directions. The measurement is done for various rotation speeds, from zero to above 
critical rotation speed. The critical rotation speed is surpassed to assess the dynamic behavior of 
the system in the presence of transversal vibrations. 

     
Figure 7.1: Test stand 

The amplitudes and the transversal vibration frequencies of the shaft and the disk (inertial 
mass) from figure 7.1 are measured in real time by the inductive transducers T1 and T2 (Wenglor, 
IW045CM65MG31). The signals are sampled using an acquisition board NI-6221 from National 
Instruments. The shaft rotation speed is tunable between 0 and 1500 rotations/min and it is 
measured by using an incremental transducer attached to the motor. To limit the displacement of 
the inertial mass, a support is used that has a bearing 61816, with rotating inner ring.  

7.1.2. Data acquisition 
The software to sample data is developed using the programming environment LabView 

from National Instruments. Using it, the data was sampled and saved in .tdms files. The 
experiment has provided data about different rotation speeds, during nominal conditions and 
when the speed was above the critical value. Also, data was sampled when there was an exterior 
perturbance of the system by slowing down the shaft’s speed. 

7.1.3. The experiment execution 
The objectives of the experiment were to verify the efficiency of the developed 

algorithms and software applications, to emphasize the perturbance of the system that can be 
treated as an accidental collision and the exceeding of the critical rotation speed. For this 
purpose, data was sampled during normal running conditions, as well as during the two faulty 
conditions presented before, by using the setup in figure 7.2.  



     MONITORIZARE ȘI MENTENANȚĂ INTELIGENTĂ A UNUI SISTEM MECATRONIC 

 

33 
 

 
Figure 7.2: Setup for experiment execution 

The motor was supplied from a continuous current source, through a potentiometer that 
could adjust the rotation speed. A second electrical source was needed to supply a voltage of 
20V to the transducers T1 and T2. Going into the critical rotation speed domain, a load dynamic 
behavior of the shaft was observed, this being acquired by the transducers. Data was recorded 
also when the shaft’s rotation speed was slowed down using an external brake, at an interval of 4 
seconds. 

7.1.4. Data processing  
After the experiment was executed and the data was recorded, the latter was pre-

processed by median elimination (4.5.4.1). The processed data was loaded in the application 
described in chapter 6.2. By applying the Wavelet Packet Transform and the Hilbert-Huang 
Transform, the braking is observed and can be identified through the isolation forest algorithm 
(presented in chapter 5). This algorithm is being used in the diagnosis system described in 
chapter 6.1 for early fault detection. In figure 7.3 and 7.4 the signals are presented processed 
through WPT for the normal running conditions and for the perturbation introduced through 
braking. 

 
Figure 7.3: Signal sampled during nominal running (left) and the WPT scalogram (right) 
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Figure 7.4: Signal sampled during braking (left) and the WPT scalogram (right) 

From figure 7.4 energy decreasing can be observed when the braking of the shaft is 
executed (seconds 2.5 and 7.5). Data was recorded for when the rotation speed of the shaft goes 
over the critical value and the amplitude of the shaft’s displacement increases (figure 7.5). 

 
Figure 7.5: Sampled signal when the rotation speed goes outside the nominal running interval (left) and 

it’s WPT scalogram  

Evaluating the data presented graphically in figure 7.4 and 7.5, split up in samples by 
using a 500 ms window, the isolation forest identified a defect in the signal with the added 
braking with a probability of 65% and in the signal where the rotation speed goes beyond the 
critical value with a probability of 95%. In these situations, the algorithm sends a command to 
the microcontroller attached to the system for stopping it, avoiding further degradation. The 
results show that the diagnosis system is robust, and the probabilities show that even in the 
perturbance scenario, only a part of the samples can be considered as faults, those samples that 
are affected by the brake; as for the critical value of the rotation speed, almost all the samples are 
considered faults, reflecting the dynamics of the physical system. 
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7.2 Results obtained on data sampled from bearings 
7.2.1 Differences between signal processing methods 

In chapter 4 three signal processing methods were presented for the signals sampled by 
accelerometers. These methods are relevant for extracting useful features for an intelligent and 
vibration-based fault diagnosis system. Using these methods, features were extracted from a 
signal sampled by accelerometers from a bearing with the purpose of observing which method is 
more robust and can offer relevant information for complex mechatronic systems. 

For testing the 3 methods, data sampled from bearings was used. The data comes from 
the University “Case Western Reserve”. The data is available at [29]. The tests were made using 
the application described in chapter 6.2 and the code developed by the author in python 
programming language is available in Anexa D. Part of the functions reuse the code of the 
application in Anexa A. 

In the analyzed files there is data for functional bearings and for bearing with different 
faulty components. The faults are made through electromechanical discharge, and they are 
basically small dents on the surface of the component. The diameters of the punctures are 
between 0.178 mm and 1.1016 mm. The data was sampled with a sampling frequency of 12 kHz. 
The bearings type is 6205-2RS JEM SKF and the rotation speed is 1797 rpm. In Table 7.1 the 
bearing geometrical characteristics are displayed and in table 2 the fault frequencies are 
computed.  

Tabelul 7.1: Bearing data 
Interior diameter 25 mm 
Exterior diameter 52 mm 
Width 15 mm 
Ball diameter 7.94 mm 
Pitch diameter 39.04 mm 

Tabelul 7.2 Fault frequencies for the observed bearings 
Ford 107.36 Hz 
Fird 162.18 Hz 
Fbd 141.16 Hz 
Fc 11.92 Hz 
By applying the method of extracting MFCC (mel-frequency cepstrum coefficients), the 

cepstograms displayed in figures 7.6, 7.7, 7.8 were obtained. O cepstogramă este similară cu o 
scalogramă, însă axa ordonată conține numărul coeficienților cepstrali, fiecare coeficient 
corespunzând unui interval de frecvențe. 



     MONITORIZARE ȘI MENTENANȚĂ INTELIGENTĂ A UNUI SISTEM MECATRONIC 

 

36 
 

 
Figure 7.6: MFCC for a functional bearing 

 
Figure 7.7: MFCC for a bearing with a fault on the inner ring 

 
Figure 7.8: MFCC for a bearing with a fault on the outer ring 

From figures 7.6, 7.7 and 7.8 there are differences between the cepstograms. A machine 
learning algorithm can easily classify the 3 states if there was data available for faults for each 
monitored component. This is not feasible though for a complex system, the fault diagnosis 
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system having to store the knowledge gained in the industry about the vibration behavior of the 
components when a fault is present. This would allow classifying known faults based on 
vibration features. Another disadvantage of this method is that low frequency resolution. 

A second method to process the signal is through decomposing it is using Wavelet 
packets. For the signal analysis, the application presented in 6.2 was used. 

In the below figures, the scaolograms for the 3 analyzed signals are presented: 

 
Figure 7.9: Scalogram for the signal sampled by an accelerometer from a functional bearing 

 
Figure 7.10: Scalogram for the signal sampled by an accelerometer from a bearing with a fault 

on the outer ring 
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Figure 7.11: Scalogram for the signal sampled by an accelerometer from a bearing with a fault 

on the inner ring 

The differences between the 3 scalograms are clear. Extracting the Wavelet packets 
binary trees and by analyzing the nodes’ energies, the trees are different because the information 
that is relevant is only present in certain frequency bands, where the impact generated by the 
fault increases the signal’s energy. 

Using the algorithm described in 6.1.2 and analyzing the leaf nodes with the maximum 
energy from the optimal binary trees, the envelope spectrum signals for these nodes are: 

 
Figure 7.12 Envelope spectrum for the signal of a functional bearing for the 4th node on the 4th 

level of the decomposition tree (frequency band 750-1125 Hz) 

For the functional bearing the dominating frequency is approximately 30 Hz, frequency 
correspondent to the rotation speed of the shaft of 1797 RPM. 
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Figure 7.13: Envelope spectrum for the signal of a bearing with fault on the inner ring for the 7th 

node on the 3rd  level of the decomposition tree (frequency band 3000-3750 Hz)

 
Figure 7.14: Envelope spectrum for the signal of a bearing with fault on the outer ring for the 7th 

node on the 3rd  level of the decomposition tree (frequency band 3000-3750 Hz) 
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Figure 7.15: Envelope spectrum for the signal of a functional bearing for the 7th node on the 3rd  

level of the decomposition tree (frequency band 3000-3750 Hz) 

In figures 7.13 and 7.14 the frequency peaks are at the fault frequencies (162 Hz and 107 
Hz) for the inner and outer ring. In figure 7.15 the envelope spectrum of the node with the same 
frequency band is displayed as in the 7.13 and 7.14, but this time for a functional bearing. The 
amplitude values are very small compared to the peaks present for a faulty bearing. 

Another important thing to consider is that the vibrations given by the faults are 
modulated in the same frequency band which is physically obvious given that the shaft’s rotation 
speed is the same. 

By applying the Goertzel algorithm presented in 6.1 on the signal extracted from the 
maximum energy node, the following values were obtained for the DFT coefficients: 

 

Figure 7.16: Comparison between the absolute values of the DFT coefficients for a 
functional bearing and a bearing with a fault on the inner ring 
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Figure 7.17: Comparison between the absolute values of the DFT coefficients for a 
functional bearing and a bearing with a fault on the outer ring 

In figures 7.16 and 7.17 the differences between the amplitudes extracted using the 
Goertzel algorithm are clear. 

7.2.2 Bearing fault diagnosis using the Kolmogorov-Smirnov statistical test 
Using the algorithm described in 6.1.4.1, faults that may appear in bearings can be 

detected, using features extracted from the sampled vibration signal and using a distribution 
comparison with the recorded distributions for these features. The features can be extracted 
through the Goertzel algorithm, the most useful information being the amplitude at a given 
frequency. 

For instance, the distributions from figures 7.16 and 7.17 are obviously different. In the 
following figures the empirical cumulative distribution functions (ECDF) for this data are 
presented: 

 
Figure 7.18: Comparison between ECDF of a functional bearing and for a bearing with a fault 

on the inner ring 
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Figure 7.19: Comparison between ECDF of a functional bearing and for a bearing with a fault 

on the outer ring 

If this data is used for applying the KS test (Kolmogorov-Smirnov), the faults are 
identified with the following probabilities (given 10 samples): 

Table 7.3: Fault probabilities for bearings with faults on the inner and outer ring 

Pext Pint 

100% 100% 
where Pext is the fault probability for a fault on the outer ring and Pint is the probability for a fault 
on the inner ring. 

7.2.3 Results obtained by applying a stop criterion to the empirical mode 
decomposition 
In comparison to the Wavelet Packets decomposition, the signal processing through HHT 

can consume a lot more resources and time because of the way the intrinsic functions are 
extracted. The time wasted can be optimally eliminated by using the algorithm presented in 
chapter 6.1.2.2.  

By applying this criterion, the following results were obtained: 
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Figure 7.20: Spectrum of the intrinsic function at which the decomposition has stopped for a 
bearing with a fault on the inner ring 

 

Figure 7.21: Spectrum of the intrinsic function at which the decomposition has stopped for a 
bearing with a fault on the outer ring 

It can be noted from figures 7.20 and 7.21 that the algorithm stops at the correct 
intrinsic function, detecting the fault corresponding to the monitored frequencies. 

As execution times, the following results were obtained: 

Table 7.4: EMD execution time for a 10-second signal 

Faulty component EMD execution time without the 
optimization algorithm [s] 

EMD execution time with the 
optimization algorithm [s] 

Inner ring 64.1 5.2 

Rolling element 12.9 1.1 

Outer ring 81.1 31.6 
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Table 7.5: EMD execution time for a 1-second signal 

Faulty component EMD execution time without the 
optimization algorithm [s] 

EMD execution time with the 
optimization algorithm [s] 

Inner ring 0.7 0.1 

Rolling element 0.2 0.07 

Outer ring 2.9 2.7 

7.3 Testing the detection algorithm on a mathematical model for 
the torsional vibrations in a gearbox  
Some faults can be detected only through torsional vibrations, but sometimes these 

signals are very hard to sample from a real system. Having a working mathematical model for 
this kind of vibrations is useful for testing and implementing a diagnosis system. The described 
model is the subject of the article [30], published by the author in Lecture Notes Network 
Systems, vol.143, 2020. 

7.3.1  Gearbox model 
During the research of the PhD thesis, an article was published through which a model 

for the torsional vibrations given by a gearbox can be built. For implementing the mathematical 
model in a simulation environment, the software 20-sim was used, the equations being 
represented through the “Bond Graphs” framework. By using distributed parameters, a gearbox 
composed of two identical gears can be represented as: 

 
Figure 7.22: Bond Graph for the driving gear of a gearbox 
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Figure 7.23: Bond Graph for the gears meshing 

 
Figure 7.24: Bond Graph for the driven gear 

7.3.2. Simulating torsional vibrations 

The simulation was made using Bond Graphs and the software 20sim. 

In the model from figure 7.22 there is a modulated flux source that allows adding an 
additional velocity in the model for the simulation of the fault. The velocity should be 
proportional to the rotation speed of the shaft and with the size of the fault. To test the above 
model, a gearbox composed of two identical gears is used and identical shafts. After the 
simulation with and without a fault, the rotational acceleration measured creates the following 
signals: 
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Figure 7.25: Rotation acceleration of the driven shaft for the gearbox without a fault 

 
Figure 7.26: Rotation acceleration of the driven shaft for the gearbox with a fault 

When impacts are generated every rotation, they have a pulsation of 85 rotations/s or 
13.53 Hz, these being clearly visible in the signal’s chart, offering the possibility to detect a fault. 
Hence, in figure 7.27 and 7.28 these signals were decomposed through Wavelet packets and the 
nodes with maximum energy were analyzed. 

 



     MONITORIZARE ȘI MENTENANȚĂ INTELIGENTĂ A UNUI SISTEM MECATRONIC 

 

47 
 

 
Figure 7.27: Signal from the node with maximum energy computed through WPT for the gearbox 

without a fault 

 
Figure 7.28: Signal from the node with maximum energy computed through WPT for the gearbox with 

a fault 

In figure 7.28 in comparison to the same node from figure 7.27, the frequency with the 
maximum amplitude that dominates the signal is at 13.5 Hz, being the exact same frequency with 
which the fault is modulated in the system. 

7.3.3. Diagnosing gearbox faults using the statistical test Kolmogorov-
Smirnov 
The algorithm presented in 7.2.1 and 7.2.2 was applied on the signals from figures 7.27 

and 7.28 and the fault was successfully detected, bringing out the robustness of the algorithm and 
that it can be used on any fault that has a specific frequency. 
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The distribution of the absolute values of the DFT coefficients is below: 

 
Figure 7.29: Comparison the absolute DFT coefficient values for a functional gearbox and for a 

faulty gearbox 

The fault was identified with a probability of 100%. It needs to be noted that this 
algorithm must be tested on multiple datasets to have a meaningful statistical accuracy. 

7.4 Testing the diagnosis system on a mechatronic translation 
positioning system 
To test the proposed algorithms on a complex system, data was sampled from a 

mechatronic system. Based on this data, the above-mentioned algorithms were tested, and new 
intelligent approaches were proposed for diagnosing complex faults. 

The accelerometers were mounted on a translation axis of a cartesian system as below: 

 

Figure 7.30: Mounting the first accelerometer on the exterior of the motor that puts into 
motion the monitored translation axis 
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Figure 7.31: Mounting the second accelerometer on the effector in the movement 
direction of the axis actuated by the motor 

As an acquisition board, NI 9234 from National Instruments was used: 

 

Figure 7.32: Acquisition board NI 9234 
For vibration sampling the software offered by National Instruments, LabView, was used. 

In the next figures, the sampled data is charted during the motion of the monitored axis 
for a duration of 60 seconds: 
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Figure 7.33: Motor signal 

 

Figure 7.34: Effector signal 
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From figures 7.33 and 7.34 a correlation exists between the two signals so that the 
different behavior of the vibrations given by the motor affects the vibration signal sampled from 
the effector. Between the two signals, a mapping can be done which can represent the cinematic 
system that binds the actuating system from the driven system, the mapping representing a 
transformation operator. For obtaining the charts the application described in 6.2 was used. It 
is important to emphasize the importance of the developed software in signal analysis and 
applying different processing methods to assess the effectiveness on the analyzed signals.  

CHAPTER 8 
CONCLUSIONS AND FURTHER WORK 

8.1 Thesis objectives fulfillment 
The goal of thesis is to develop a robust fault diagnosis system that may occur in a 

mechatronic system. The monitoring system can assure the adaptation of the machine’s working 
program so that a fault tolerance behavior can be kept. Reiterating over the proposed objectives 
in the introduction, these have been fulfilled as follows: 

I. “Literature research to find state-of-the-art methods for fault diagnosis algorithms to 
improve them or propose new methods of assessing a system’s state based on 
vibration data was done” which demonstrates the enhancement and adapting the 
existing method for creating a robust fault diagnosis system (chapter 3). 

II. “Possible faults in mechatronic systems and ways to diagnose them using vibrations 
were identified.”, thing that helped identifying certain diagnosis algorithms that can 
be used for monitoring multiple components in the mechatronic system (chapter 2). 

III. “Main features from vibration data of the system’s mobile components were 
extracted, sampled by acquisition of the acceleration signals from the monitored 
components and analyzing them using machine learning algorithms”. The features 
provide important information about the status of the system and can be easily 
analyzed by statistical algorithms or machine learning algorithms. Chapter 4 presents 
the methods of acquiring acceleration signals as well as different algorithms for 
processing them to obtain information of interest, intrinsic to the system. 

IV. “A robust fault diagnosis algorithm for different fault frequencies that can be used on 
multiple components was developed and implemented”. Chapter 6 presents different 
algorithms developed and implemented for the analysis of signals from different 
components that have known fault frequencies and based on which the system can be 
monitored. The results of applying these algorithms to different components are 
presented in Chapter 7. 

V. “A monitoring and predictive maintenance algorithm was developed for a 
mechatronic system formed by an actuating subsystem, transmission subsystem and 
the actuated subsystem (effector)”, monitoring algorithm that combines signal 
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processing techniques with specific artificial intelligence algorithms (Chapter 5) to 
detect and identify both faults with known and unknown vibratory behavior (by 
subsequent classification based on information from operators). Chapter 6 presents an 
application built for both this purpose and the advanced processing of acceleration 
signals to obtain useful features. The complex mechatronic system is dynamically 
characterized using only 2 accelerometers attached to the drive subsystem and the 
effector. Using data-based models and signal correlations, the power transmission 
system is also monitored, with the data acquisition subsystem being inexpensive and 
non-intrusive. 

8.2. Personal contributions 
The research and realization of the thesis lasted 4 years, of which 2 years were during the 

pandemic, which affected the possibility of extensive testing of the diagnostic system on real 
systems. However, different resources available in the virtual environment have been used to 
research and test different algorithms on different mechanical components and where this has not 
been possible, a mathematical model has been created for obtaining data through simulations. 

In a robust diagnostic system that aims to diagnose as many defects in a mechatronic 
system as possible only through vibration signals, an interdisciplinary team usually works to 
ensure both mathematical correctness in relation to the acquired signals and the characteristics of 
known defects. as well as the implementation of the necessary programs for such a diagnostic 
system. 

Thus, during the research and development of the thesis, the following contributions were 
made by methods, some of which, at the time of publication (to the author's knowledge), had not 
been addressed. 

The main thesis contributions are: 

• Using the Goertzel algorithm for extracting the Discrete Fourier Transform 
coefficients for the fault frequencies computed for bearings and gearboxes – the 
Goertzel algorithm is more time-efficient than the Fourier Transform when a 
small number of frequencies must be monitored. Thus, by using this algorithm, 
features were extracted that model the dynamic behavior of bearings and 
gearboxes 

• Developing an intelligent statistical algorithm by using the Kolmogorov-Smirnov 
test, for fault detection from the feature distributions extracted for faults that 
appear in bearings and gearboxes – an intelligent method to “learn” the dynamic 
behavior of bearings/gearboxes given by the extracted features from the vibration 
signals 
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• Modelling and simulating torsional vibrations in a gearbox by using distributed 
parameters and Bond graphs – the torsional vibrations are harder to sample in 
real systems, but through a dynamic model using distributed parameters and Bond 
Graphs, the vibration signals were simulated, and the data was used to test fault 
diagnosis algorithms 

• Modelling and training a neural network for characterizing the cinematic chain 
between the actuator and manipulator, using the features extracted from the data 
sampled by the accelerometers mounted on the actuator and manipulator – 
modelling such non-linear system presents a challenge and most analytical 
representations are far from the real system. Hence, obtaining a dynamic non-
linear model based on data is robust, allowing capturing all the phenomena that 
may appear in the observed system 

• Developing an intelligent stop criterion for the empirical model decomposition for 
fault diagnosis of faults with specific frequency – this signal processing algorithm 
is very robust; the decomposition being made in intrinsic modes to the signal. 
However, once a fault is diagnosed, the decomposition process is meaningless 

• Developing a robust diagnosis system for a one-axis mechatronic system which 
allows the diagnosis of known faults and the recording and learning of new faults 
using supervised and unsupervised machine learning algorithms – the fault 
diagnosis is important for a system in time and to avoid production stalls. 
Sometimes, using a fault diagnosis system may be impossible because of the high 
cost and because this may be invasive. Developing and implementing a non-
invasive and smart diagnosis system based on only 2 sensors could represent a big 
advantage in industry for whoever uses a mechatronic system which has actuators 
and effectors 

• Developing a diagnosis software application which allows visualizing and 
processing of the sampled signals, as well as training the diagnosis system – a 
software application for visualizing and processing of signals sampled from one 
or two accelerometers through Wavelet Transform or Hilbert-Huang Transform 
and training the algorithm using this data (the application was written and Python 
by using QtPython for the user interface) 

• Comparing different methods of signal processing for vibration signals by 
extracting relevant features for mechanical fault diagnosis – there are a lot of 
signal processing methods for diagnosis, but it is useful to use those that give the 
most relevant data for features that can be used in machine learning algorithms 



     MONITORIZARE ȘI MENTENANȚĂ INTELIGENTĂ A UNUI SISTEM MECATRONIC 

 

54 
 

8.3. Further work 
The monitoring system needs to be extensively tested on complex mechatronics devices 

that have as many faults as possible. The 1-axis algorithm must be expanded to support 
additional axes and be as robust as possible. 
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