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1. Introduction 

In the actual geo-political and market context, in which the energy trilemma: energy 
security – energy accessibility and sustainability becomes an essential issue at a world-wide level, 
the PhD Thesis ”The development of an Advanced Energy Management System” proposes a 
logical structure and a technical and financial model trough which energy end-users can identify, 
quantify (from a technical and financial point of view) and support the implementation of Energy 
Performance Improvement Actions (EnPIA) and Power Quality Indices Improvement Actions 
(PQIIA). 

By implementing the Advanced Energy Management System (AEMS) proposed in the 
PhD Thesis, end-users can identify, in real time, potential actions for increasing their overall 
energy performance, mitigate potential Power Quality Indices issues and evaluate the technical 
and financial potential of implementing hybrid distributed-generation projects. 

Real time analysis leads the end-user to a faster identification and implementation time for 
organizational (no cost or low investment cost) measures, whilst the medium to long term analysis 
leads to a better understanding of significant-investment measures and actions for increasing the 
overall energy performance. The former type of actions is thus better and more accurately 
evaluated and understood, from both a technical point of view and from a financial performance 
point of view. 

All these aspects can lead to a significant decrease of the energy bought by the end-user 
and can thus lead to a significant increase in the overall profitability of the company which 
implements the proposed AEMS. 

1.1. Legal framework 

The European legislation, which is in a continuous process of increasing it’s transition 
towards sustainability ambitions, is the main reason for the necessity of developing the proposed 
AEMS, having the potential of becoming an important tool trough which end-users can meet the 
requirements and targets set by both the European and national legislation, in all relevant fields of 
actions: energy efficiency, power quality and distributed energy generation. 

In order to identify the high energy-savings potential energy sectors in which AEMS can 
be implemented, an in-depth analysis of the main regulatory and legal framework regarding 
Energy Efficiency was conducted, doubled by an in-depth analysis of relevant scientific literature. 

At a national level, the regulatory framework is elaborated by the Romanian Energy 
Regulatory Agency (RERA), based on the en-force primary legislation. A number of Laws, 
Decisions and Orders are currently regulating the energy efficiency field, the energy performance 
of buildings, the end-users obligations regarding periodical reporting procedures to relevant state 
agencies, the methods of promoting energy generation based on renewable energy sources and the 
energy services sector (energy management and energy auditing services). 

The existing regulatory framework should lead an energy end-user towards an optimization 
of it’s energy performance indicators by the end of the period stated in the annual Energy 
Performance Improvement Plan (EnPIP). This objective is, however, hard to reach. The most 
important aspects which lead to a negative influence over the energy performance improvement 
actions efficiency and implementation rate include, but are note limited to: a lack of various energy 
flows monitoring / metering, the impossibility to corelate various types of energy uses with the 
final product / service of the end-user, a lack of a proper communication between the energy 
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manager and the top management of the company, a lack of energy-education of all employees 
and a lack of interest regarding energy efficiency for companies in which energy related costs are 
not significant with regard to the overall costs. 

As a mean of achieving the energy efficiency objectives, the International Standardization 
Organization – ISO – defined, conceived and elaborated a number of Standards which offer 
guidance for any type of end-user (industrial, tertiary, public or residential sector) in implementing 
an Energy Management System (EMS) adequate with their existing situation – the ISO 50001 – 
50015 group of standards. 

 Late 2019, the European Commission decided that Energy Efficiency has to become a 
priority for the European Union – Energy Efficiency First!, the new target of energy efficiency 
increase being set at a minimum of 32.5% by the end of 2030, compared with the BAU scenario 
(Business As Usual), by including the obligation of obtaining energy-savings in the 01.01.2021 – 
31.12.2030 in the current legislation, revising the existing regulations regarding thermal energy 
monitoring and billing and increasing the efficiency of heating and cooling processes. In order to 
achieve these objectives, the European Union proposes, as a first dimension of the solution, a 
moderation in energy demand. 

In addition to this, in the second half of 2021, the Fit for 55 legislative package was 
launched, through which the European Union proposes the increase of the target regarding climate-
change mitigation. The EU proposes a new CO2 certificate transaction mechanism for the 
transportation and buildings sectors by 2026, increasing the target of reducing equivalent CO2 
emissions from 40% to 61% by the end of 2030 (with a reference point set for the emissions levels 
of 2005). 

Another new dimension of the EU is that “Polluters Pay!”, as detailed in the 2004/35/CE 
Directive, modified, and updated on the 17th of June 2020. This update states that any company 
which generates an environmental impact is directly responsible for it and must take all reparative 
or preventive measures, whilst integrally supporting the associated costs.  

It is thus becoming extremely important for end-users to be able to monitor, with a high 
degree of accuracy, the environmental impact generated by their current activity, in order to be 
able to quickly identify the necessary preventive actions, thus minimizing the long-term costs 
generated by this new EU dimension. 

Regarding the energy produced by using renewable energy sources, Fit for 55 increases 
the target from 32% to 40% by the end of 2030. Energy efficiency is a top priority, the targets 
being raised from 32.5% to 36-39% by the end of 2030. The novelty of this package is that it 
stipulates that all Member States must ensure a decrease in energy demand (by increasing energy 
efficiency) by up to 9% by the end of 2030. 

From an energy efficiency point of view, AEMS was implemented and tested in the energy 
boundaries of various types of end-users, both from the tertiary sector (office buildings), industrial 
sector and power-distribution sector (distribution system operators), as it will be shown in Chapters 
3 and 4. 

Through its energy demand forecast and energy performance evolution statistical analysis 
modules, AEMS acts as a tool for achieving the goals regarding energy efficiency and, implicitly, 
the transition towards sustainability of end-users. 

In the thesis, a technical, energetical and financial evaluation methodology was proposed 
in order to quantify the impact of various Power Quality Indices over the energy boundary, thus 
proving that the consideration of some PQIs in the EnPIP stage is mandatory and essential.  
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In order to develop the PQI analysis modules, an in-depth analysis of the existing national 
and international regulatory framework for PQIs was conducted.  

It was thus identified that PQIs which have a high potential of increasing EnPIs (such as 
current unbalances, current harmonic distortions etc.) do not have limit values set by en-force 
standards / regulations. Thus, a methodology for identifying the optimal variability of these PQIs 
in the analyzed energy boundary was proposed and tested, in order to lead to a maximization of 
the overall EnPIs. 

The development of the AEMS was based on the principles presented in this chapter, based 
on the idea that an in-depth energy monitoring and metering procedure represents the foundation 
of any efficient EnPIP. 
 Even though AEMS’s main objective consists in leading to an increase in the overall 
energy performance and, implicitly, financial profitability of the analyzed energy boundary, by 
doing so, AEMS can generate a domino’s effect on a macroeconomic scale, by reducing the energy 
demand in the power distribution grids. A significant part of this energy is currently produced from 
conventional sources (polluting energy sources). Also, the reduction of the energy demand of end-
users will also lead to a decrease in energy and power losses in the up-stream power distribution 
and transport grids.  

1.2. General Objectives of the Thesis  

The PhD Thesis elaboration was based on the necessity of developing an instrument 
(hardware and software) which is able to monitor relevant parameters, and which can lead to an 
increase of the energy performance of electricity end-users, with an adequate level of power quality 
and which can also support the implementation of distributed energy generation projects.  

The thesis had the following General Objectives:  

G.O.1. In depth analysis and identification of the main concepts, indicators, 
regulatory framework and technical norms and standards necessary for developing 
the AEMS – bibliographic research was conducted in order to identify existing 
EMS, both in an experimental development stage (TRL<9) and in a commercial 
readiness stage (TRL>9)< 

G.O.2. The development of the AEMS logigram – by completing this objective the 
logical algorithm of the AEMS was developed, on which both the hardware and 
software designs were based, 

G.O.3. Identifying and selecting the relevant energy boundaries for the 
experimental development of the AEMS – this stage allowed for the identification 
of the optimal testing and validation conditions of the results which can be obtained 
by implementing the AEMS. It also led to the identification of the main future 
improvements of the proposed AEMS, 

G.O.4. The hardware and software development of the AEMS – by reaching this 
objective, the AEMS concept was materialized into a completely functional system, 
ready for the testing, validation, and optimization stage, 

G.O.5. Testing, validating, and optimizing the AEMS – the results obtained via the 
Case Studies presented in Chapter 4, by implementing various analysis modules in 
various types of energy boundary prove the viability and replicability of the 
designed system. Throughout the doctoral studies, an AEMS improvement stage 
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was also conducted, after testing its performance on a reference energy boundary, 
by implementing additional forecasting functionalities by considering an increased 
number of variable factors. 

2. Relevant theoretical aspects 

In order the develop the proposed AEMS and to reach G.O.1 and G.O.2, the first step 
practical step was to undergo an in-depth analysis of the existing EMS. To ensure an as high as 
possible replicability of the AEMS and a high performance, an in-depth analysis of the main EnPI 
was also conducted, with regard with the best practices indicated by the ISO 50001-50015 group 
of standards regarding the normalization of EnPIs with relevant variable factors. 

An in-depth analysis of the mathematical models for determining the main PQIs was also 
conducted. These models were then adjusted and included in the monitoring and evaluation 
routines of the AEMS.  

2.1. Energy Management Systems 

In order to identify the opportunity of developing the AEMS and to determine the required 
functionalities and key attributes of it, an analysis of the main available EMS was conducted, by 
means of literature reviewing. A State-of-The-Art (SOTA) analysis was thus conducted. 

To highlight the differences and the common aspects of the proposed methodology, a 
SWOT (Strength, Weakness, Opportunity and Threat) analysis was conducted for the SOTA 
technologies. 

The main criteria used for the SWOT analysis consisted in: 
 INPUTS: Are the Measures / Variables which are inputs in the EMS sufficient for a correct / 

complete quantification of the EnPI / PQI? 
 FUNCTIONS: Is the EnPI / PQI quantification properly done?  
 FINAL OBJECTIVES: Are the outputs of the EMS useful for increasing the EnPi / 

improving the PQI / maximizing the financial profitability of the Organization? 
 It was thus observed that neither of the SOTA technologies take into consideration the 
influence generated by the PQIs over the profitability of a power grid / microgrid. Also, in neither 
of the cases, the EnPIs are not normalized by considering relevant variable and static factors, even 
though in some of the systems a subtle correlation between EnPIs and variable factors (such as the 
average outdoor temperature) is done. The interdependency between the EnPIs and the PQIs is 
also not considered in neither of the analyzed systems. 
 It can be thus concluded that integrating the notion of normalizing and optimizing the 
interdependency between EnPI and PQI and developing an AEMS are novel and innovative 
aspects which can contribute to a significant increase in the profitability of the energy boundary in 
which the AMES would be installed. 
 Regarding the commercial ready EMS, it can be observed that these are custom-built for 
specific applications. The replicability of the available EMS to different types of energy 
boundaries is difficult. Also, these systems to not take the PQI evolution and impact into account 
when quantifying the EnPI.  
 Based on the SOTA / SWOT analysis, several critical points for AEMS to answer to were 
identified. The AEMS must be able to: 

1. Monitor, in all relevant points, the values of the selected PQIs, 
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2. Quantify the energy performance and the financial impact of the PQIs, 
3. Quantify the EnPIs instead of purely metering the energy flows, so that it can lead to a 

benchmarking potential and thus be used to establish reference levels for energy use, 
4. Normalize EnPIs with respect to the critical variable factors, 
5. Forecast the evolution of both energy demand and EnPIs, so that it can lead to a 

maximization of the energy market participation for the end-user, 
6. Identify, propose, and quantify from both an energy and financial point of view EnPIAs 

and PQIIAs, 
7. Identify, propose, and quantify form both an energy and financial point of view hybrid 

energy generation and storage projects, by using renewable energy sources available in the 
energy boundary site, 

8. Provide the reporting and notification functionality for the end-user’s personnel, 
differentiated based on the position it occupies in the company (technical / commercial / 
top management). 
The main barriers in developing the AEMS, identified from the previously mentioned 

analysis are: 
1. Potential difficulties in integrating existing monitoring systems from an energy boundary 

into AEMS (low probability, as AEMS utilizes raw data from the monitoring systems, 
which can be transmitted through any type of communication protocol to the main Server), 

2. Potential difficulties in correctly identifying the critical variable factors for various energy 
uses (the impact can be minimized by configuring the normalization system after installing 
the AEMS and after undergoing a preliminary measured data analysis and by installing 
variable factors monitoring / metering systems at a local level, when possible), 

3. Potential difficulties in integrating existing expert systems from the energy boundary into 
AEMS (the impact can be minimized by introducing the relevant data by the AEMS 
operator, when installing / configuring the system), 
The risks which need to be minimized after the AEMS installation are: 

1. Ensuring the cybersecurity of the AEMS (can be done by implementing the AMES on-site, 
in a first stage and by using standardized communication protocols, secured by unique 
cryptographic keys), 

2. Ensuring the up time of the AEMS, regardless of the end-user status (back-up power 
supplies will be installed in various relevant points, to ensure a redundancy for critical 
AEMS systems), 

3. Choosing a sampling frequency which will lead to maximum performances with a 
minimum computational resource (and, implicitly energy resources) use. 

2.2. Energy Performance Evaluation 

Implementing Energy Performance Improvement Actions at end-user level is one of the 
easiest ways to increase the overall energy performance to the goals and targets presented in 
Chapter 1. In the thesis most of the analyzed energy boundaries were tertiary energy sector end-
users (office buildings, public buildings, commercial centers etc.). 

Considering the main objective of developing an Advanced Energy Management System, 
the most relevant EnPIs were analyzed. 

Based on these, several EnPIs were proposed for the analyzed energy boundaries on which 
AEMS was developed, tested, and improved. 
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To ensure an as high as possible quality of the energy analysis done by the AEMS and, 
implicitly, of the recommended EnPIAs proposed by the system operator, it is necessary to adapt 
the EnPI list on a case-by-case basis. The EnPI selection must minimally consider: 
 The potential to monitor the energy flows which defined the proposed EnPI, 
 The existence of variable factors dependency, 
 The potential to monitor the variable factors, 
 The existence of a potential for improvement of the process for which the EnPI is 

defined. 
Based on these restrictions, the following EnPIs were selected: 

 Specific electricity use reported to the useful surface – it helps the end-user to quantify the 
electricity use required for undergoing it’s current activity for each square meter of useful 
surface, 

 Specific electricity use reported to the number of clients – it helps the end-user to quantify 
the electricity use required for each client / person in the energy boundary, 

 Specific electricity use reported to earnings – it helps the end-user to quantify the 
electricity use required for generating one thousand EUR of earnings, 

 Specific equivalent CO2 emissions reported to the number of clients – it helps the end-user 
to quantify the sustainability of the energy boundary, 

 Specific equivalent CO2 emissions reported to earnings – it is an indicator which offers an 
overall view of the environmental impact generated by the energy boundary for every one 
thousand EUR of earnings. This EnPI can be assimilated to a global environmental 
sustainability indicator,  

 Energy Intensity – A global EnPI which enables the evaluation of the efficiency of energy 
resources use for the current activity of the company. It quantifies the overall energy use 
by reporting it to the total earnings generated by the base activity and it takes all forms of 
energy into account (electricity, thermal energy, natural gas, fossil fuels etc.). 

The main variable factors considered in the development of the AEMS are the average 
outdoor temperature, relative humidity, rainfall, natural illumination level and the cloudiness level. 

The next step is to define and quantify the static factors. A static factor is a parameter which 
does not vary over the analysis period, but which may become a relevant variable factor in the 
future, if the initial conditions change.  

The analysis period is basically the period over which the initial value of an EnPI is 
compared with the new value, after the implementation of an EnPIA. 
 The importance of normalizing the EnPI values comes from the desire to obtain an as clear 
as possible image over the motives of its variation over time. When EnPIs vary form a reporting 
period to another and no static factors were changed, variable factors are always responsible for it. 
 It must be mentioned that some of the variable factors (such as the average outdoor 
temperature) are not influenceable by the end-user, the top management of the company or by the 
decision-making process. In this case, the variance of the independent variable factor must be 
accounted for and the target / expected EnPI values must be adjusted. 
 Normalized EnPI and the determined Energy Baseline will be used for quantifying the 
efforts of improving the overall energy performance of the organization.  
 An organization can decide to periodically reset the values of these two indicators, either 
because of a major change form the initial conditions (e.g: the fundamental change of the current 
activity, the change of the technology used in the manufacturing process, the movement of the 
production site in a new geographical area etc.) or from subjective reasons. 
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 EnPI normalization can be done by using three distinct mathematical models: Regression, 
Lagrange interpolation and Neville’s algorithm. 
 To choose the best suited normalization methodology for the development of AEMS, a 
comparative test of all three methods was conducted. The results of the simulations of a sample 
size of 121,232 data sets (with a dependent variable – electric power use and five predictive 
variables – the selected variable factors) are presented in Table 2.2.1. 
Table 2.2.1 – Normalization analysis results 

Mathematical model Computation time Standard deviation 
SIMPLE LINEAR REGRESSION 00:00:05 13.341 

MULTIPLE LINEAR REGRESSION 00:01:21 5.492 
LAGRANGE INTERPOLATION 00:03:15 1.421 

NEVILLE’S ALGORITHM 00:06:03 1.291 
 It can be observed that Lagrange Interpolation and Neville’s algorithm lead to the smallest 
standard deviations. Even though Neville’s algorithm led to a standard deviation 3.80% smaller 
than Lagrange interpolation, the computation time was higher by 91.4%. As such, for the analyzed 
energy boundaries the EnPI normalization will be done by applying Lagrange Interpolation, this 
method leading to the optimum between the computation time and the standard deviation of the 
results. 
 In order to increase the flexibility of the proposed solution, when configuring the AEMS 
and throughout it’s operation, the mathematical method of normalizing the EnPIs can be changed, 
from a set of available functions, which can be continuously updated with new methods of 
normalization, based on ensuring the optimum ratio described beforehand. 
 For developing the technical, energy and financial performance analysis model, AEMS 
will require both energy related data (such as the power flow) and operational data (such as the 
state of various end-uses / receivers) and organizational data (productivity, earnings generated 
etc.). 
 At the same time, to maximize the efficiency of the EnPI normalization process, the 
frequency of data sampling and their quality must be high enough to ensure a minimum 
computation time and standard deviations. Otherwise, if the computation time passes the 15 
minutes limit, the results provided by AEMS will have a significantly lower impact, especially 
because, starting form 01.02.2021, the metering period decreased from one hour to fifteen minutes 
– so AEMS will not be able to contribute to the optimization of the energy market participation of 
the end-user.  
 In order to integrate the capability to real-time determine the EnPI and normalize it and to 
determine the Energy Baseline with a high enough accuracy, the AEMS must be capable of: 
 Monitoring, in real time, the evolution of the power demand on the energy boundaries on 

which the EnPIs are defined, 
 Acquiring, from existing systems, relevant non-technical data, such as financial results 

(e.g.: earnings over a period of time), 
 Monitoring, in real time, the variable factors which influence the analyzed EnPI, 
 Forecasting (internally or by using software solutions or external databases) by using 

machine-learning algorithms, the evolution of external variable factors – such as 
meteorological factors, 

 Forecasting by using machine learning algorithms the evolution of the analyzed EnPi by 
using variable factors forecasts, with a standard deviation of maximum 2%, 

 Notifying and alarming the proper personnel when EnPI values are above the set threshold 
or above the forecasted values, 
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 Storing a high volume of raw data, required for the learning and testing stages of the 
machine learning algorithms. 

2.3. Power Quality Indices Evaluation 

One of the specific objectives of the thesis is to quantify the impact that poor PQIs generate 
on the EnPI and, implicitly, on the overall energy and financial performance of the analyzed energy 
boundary, on which AEMS will be deployed. 
 The PQIs can be classified based on the entity which is responsible with maintaining an 
admissible variation interval for them, or, when needed, with taking actions to improve them – 
PQIIA. 
 The PQIs are thus split into primary power quality indices – the DSO (Distribution System 
Operator) is responsible of maintaining their values and/or correcting them and secondary power 
quality indices – the end-user is responsible of maintaining their values and/or correcting them. 
 The primary power quality indices (PI) are those PQIs which describe the quality of the 
service / product – frequency, voltage amplitude, voltage sags and spikes. 
 The secondary power quality indices (SI) are those PQIs whose values are influenced / 
determined by the end-user, such as harmonic distortions, unbalances, and voltage fluctuations.   
 The following PQIs were selected and modeled into the proposed AEMS, based on their 
quantifiable impact on the EnPI: 

a) Voltage Peak Factor (kv) – defined as the ratio between the maximum value of the voltage 
curve and the RMS value (PI), 

b) Voltage Form Factor (kf) – (PI), 
c) Voltage sags and short-term interrupts (PI), 
a) Voltage spikes (PI), 
b) Voltage unbalances (PI) – a simplified method of evaluation was used, in order to 

maximize the calculation process, 
c) Current unbalances (SI), 
d) PCC Power Factor (SI), 
e) Voltage Total Harmonic Distortion (SI), 
f) Current Total Harmonic Distortion (SI), 

In order to integrate the capability of real-time determining and evaluation the PQI and the 
capacity to quantify the impact they generate on the EnPIs and the Energy Baseline, the AEMS 
must be capable of: 
 Monitoring, in real time, the evolution of electrical measures, with a sampling ratio of at 

least 128 samples per cycle, 
 Monitoring / determining the following (at minimum): 

o Half period values of line and phase voltages, 
o RMS values of line and phase voltages and electrical current intensity, 
o Electrical current and voltage harmonics, up to at least the 40th rank (2 kHz), 
o Total Power Factor values, for each phase, 
o Electrical current intensity over the neutral wire, when the grid is configured as TN-S, 

 Being installed in all relevant electrical nodes from the low-voltage grid of the end-users, 
regardless of the current intensity in that node (it must be compatible with various current 
measurement devices / systems – current transformers (ct), Rogowski coils, shunt resistors, 
Hall sensors), 
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Increased attention must be given to the effects generated by distorting regimes on the 
current measurement systems. If these are not properly sized or chosen, they can introduce massive 
errors in the system, thus significantly harming the accuracy and performance of the AEMS. 

Because of this, all the current measurement systems used in the experimental development 
stage of the AEMS were Rogowski coils (IFA analyzer + Class A power quality analyzer) and 
Hall Sensors (SENSIX analyzer). 

2.4. Digitalization of Energy Management Services 

The AEMS must offer the potential of evaluating, over long periods of time, the evolution 
of the relative energy performance, in order to quantify and minimize the effects of the growing 
energy demand of the analyzed energy boundary – justified by the economic growth of the 
company, as a result of increasing the overall financial performance. 
 The fourth industrial revolution (Industry 4.0), also called the production based digital 
revolution, leads to the transformation of conventional manufacturing plants into smart factories, 
by using software solutions which allow for the integration and interconnection of the 
technological process and various systems used in it, by using IoT (Internet of Things) 
technologies and Big Data and Analytics concepts. Applying the concepts and principles of the 
fourth industrial revolution on the development of AEMS, by unifying the digital technologies 
with the conventional industry, leads to the creation of an integrated system made up from 
equipment, machinery, employees, mobile devices and IT&C systems which ultimately generates 
four main advantages: 
 The optimization of the time resource: by automating and digitalizing, the data acquisition 

and process is autonomous, reducing the effort of the employees and freeing up additional 
time for them to turn to other value generating activities, 

 The optimization of costs: the increase in data accuracy, the increase in various analysis 
accuracy and presenting the results in the proper format with regard to the reader’s position 
in the company can lead to an improved planning of costs and earnings, 

 Increasing the flexibility: the possibility of optimizing the processes based on data analysis 
provided by various energy / operational and financial flows significantly increases the 
global flexibility of the company, 

 Complete integration potential: as the process is completely automatized and digitalized, 
the global up time increases. 

3. Developing the Advanced Energy Management System 

The study aimed, on the one hand, to carry out a detailed analysis of the various technical 
solutions to improve IPE and the impact they have on ICTEE, and on the other hand, the analysis 
of the impact of increasing the share of distributed sources of generation. of electricity from 
renewable sources has it on the two categories of indicators. The goal is to determine and develop 
an integrated, real-time analysis model to maximize the technical, energy and financial 
performance of the energy contours on which it is applied. 

In this regard, several independent analysis modules have been developed, covering 
various areas, such as determining the Peak Shaving Potential (AGS), increasing energy and 
economic performance by reducing THDI and using Machine Learning procedures to forecast both 
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energy use and the evolution of EnPI and PQIs. The integration of the analysis modules in the 
AEMS was done starting from the logigram of AEMS, proposed in the thesis (see Figure 3.1). 

The AEMS algorithm is based on a series of inputs, categorized as "Performance Criteria 
established by the Organization", of which the most important are: The period of technical, energy 
and economic analysis and Hierarchy of targets for the Top-Management: production, specific 
energy use, equivalent CO2 emissions, power quality, operating costs, maintenance costs etc. 

After setting these initial input data, which consider the view and goals of the company's 
Top Management, the measurement and verification protocol is defined, which operates within a 
logic loop. The predefined measurement interval, at the points where metering / measurement 
systems are installed, is one second, with an aggregation period of fifteen minutes, according to 
the provisions of IPMVP (International Measurement and Verification Protocol). This interval is 
also related to the methodology for calculating the Maximum Duration Load (MDL). 

At the first initialization of the algorithm, the User must define the Economic Indicators 
(EI) - they can be taken from ERP (Enterprise Resource Planning), from the accounting 
management software or can be entered manually - of which the most important are: Monthly / 
Annual energy Costs, Acquisition costs of various equipment used in production / electrical 
receivers, Monthly / annual operating costs, Monthly / annual maintenance costs. The user must 
also define and enter the Technical Indicators (TI) - the technical characteristics of the equipment 
under monitoring / metering, which can automatically be acquired from the ERP or manually 
introduced by the system operator (TI’s can be: Nominal power of the receiver, Daily duration of 
use of the receiver, Average daily load of the receiver etc). 

 

 

Figure 3.1 – AEMS Logigram 
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Once the monitoring loop has started, the algorithm will take over the values recorded by 
all metering / monitoring systems during the “Monitoring” stage, respecting the principle of 
simultaneity. The user will be able to select the EnPI evaluation method, choosing the way in 
which the IPE limit values will be determined or established. To cover all possible scenarios, the 
User will be able to choose between: 

 Establishing the limit value of EnPI as an arithmetic mean (EnPI lim= EnPI av) for a 
chosen reporting period, 

 Determining the limit value of IPE as absolute value (EnPI lim=val), if there is the 
information needed to establish this value - method applicable if there are several 
similar energy boundaries, whose maximum EnPIs are known and all the values 
registered under a global value, established at Company level; 

 Establishing the reporting value of IPE based on an algorithm specified in the 
regulations in force and agreed by the Beneficiary. 

The values thus calculated are then compared with the reference values: EnPIs chosen by 
the User in the previous stage and predefined PQIs, according to the legislation, norms and 
technical standards in force. If the values fall within the set admissibility limits, a “Report” is 
generated, and the logic loop is resumed with the next set of measured values. 

If the EnPI values do not fall within the established admissibility limits, the normalization 
of the EnPI depending on the External Variable Factors (EF) or Static Factors (SF) is done. If the 
standardized EnPI is still above the limit value of the reference EnPI, the verification of the PQIs 
compliance with the permissible limits established by the legislation, standards and technical rules 
in force will done. If the values of one or more PQI do not fall within the established admissibility 
limits, the impact that exceeding these limits generate on the analyzed IPEs is assessed. 

Each PQI that has recorded values outside the established admissibility limits is quantified 
and a partial report is generated. This report presents the economic quantification of the impact of 
non-compliance with the cut-off value by the PQI concerned and how it influences the IPE values. 
All these partial reports are then incorporated in a "Final Report" which ends with a series of 
"Recommendations" in order to remedy the problems recorded for the User. 

However, if the PQI values meet the established limits and the current values (EFact) are 
compared with the values recorded in the previous reporting period (EFprevious) and the EFact values 
do not differ by a relevant percentage for each of the analyzed factors, the cause of non-compliance 
is organizational. A report is thus generated and sent to the decision-makers on the operating side, 
for which a weekly report is prepared and sent through which the economic losses are quantified 
and cumulated. 

3.1. Developing, implementing, and testing the monitoring system 

Taking into account the aspects highlighted in the SWOT Analysis carried out in Chapter 
2, and the relevant legislative aspects, the first stage of the research and experimental development 
of AEMS consisted in choosing the relevant energy boundaries. 

In order to acquire the relevant energy data, several types of monitoring systems were used, 
which will be presented below. 

Firstly, an advanced monitoring system developed by the Institute of Atomic Physics was 
installed and tested, in partnership with NET ENERGY S.R.L. - installed in 3 measurement points. 
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The system works as an IoT module, capable of connecting to the Internet an extensive 
class of local modules used for data acquisition. The Central Unit (CU) is configured to provide 
communication via the Phoenix bus within the DIN rail (between UC and auxiliary modules), two 
configurable serial channels (RS232 / RS485 or I2C) and GSM (signal transmitter + amplification 
antenna). 

The CU measures the three alternating voltages (corresponding to the three phases).  
The local modules ensure the acquisition of four analog signals (max. 500 mA) that 

measure, through Rogowski coils, the values of electric currents on the three phases and on the 
neutral conductor of the network with a resolution below 0.2%. Also, the phase shift between the 
electric current and voltage curves is measured, as well as the degree of harmonic deformation. 

In the process of data acquisition 4 voltages (L1, L2, L3, N) and 4 electric currents (L1, 
L2, L3, N) are measured, with a number of 64 samples every 312.5 microseconds. 

The local modules are equipped with two additional inputs, configurable as a Switch (SW) 
or serial channel inputs, but also with an optotriac that has externally connectable terminals and 
allows the transmission of any commands for remote control of switching equipment. 

The installation phase of the systems was started in June 2020. The Central Units were 
constantly improved, through updates of the proprietary software developed in partnership with 
NET ENERGY S.R.L., reaching a stable version in September 2020. The measurements that were 
the basis for the elaboration of thesis were conducted between 06.09.2020 - 25.01.2021, with a 
measurement frequency of 1 data set / second and an aggregation of data measured in the CU at 1 
minute. The database was subsequently completed with measurements conducted between 
25.01.2021 - 28.02.2021. 

The CU transmitted the data via GSM with an aggregation of 1 data set per minute for the 
entire duration of the measurements to the dedicated physical server, by using a Cloud Storage 
service. 

Additionally, an advanced monitoring system developed by SENSIX S.R.L. was installed 
and tested (https://sensix.io/) - installed in a tertiary sector energy boundary. The Central Unit 
(CU) is configured to provide communication through two configurable serial channels RS232, 
RS485 or I2C for communication with its own peripherals or any other existing devices in the 
monitored structure and via Wi-Fi by a signal transmitter and an amplification antenna. 

The CU measures the four alternating voltages (corresponding to the three phases and the 
neutral conductor) and the intensities of the electric currents on the three phases and on the neutral 
conductor, using either a set of Hall sensors or shunt resistors. The modules ensure the acquisition 
of four analog signals (max. 32 A), with a resolution below 0.3% but also the phase shift between 
the electric current and voltage curves and the degree of harmonic deformation. 

In the process of data acquisition 4 voltages (L1, L2, L3, N) and 4 electric currents (L1, 
L2, L3, N) are measured, with a number of 64 samples every 312.5 microseconds. 

In order to validate the data recorded by the two independently developed systems, six Clas 
A three-phase power quality analyzers were used, according to the in-force provisions. 

Two Fluke 1770 three-phase mobile power quality analyzers were used, with the help of 
which electrical energy measurements were performed in parallel with the independently 
developed systems, to validate the accuracy of the data measured by them. The transmission of the 
measured data was done via ethernet, to the AEMS server. Also, for another energy boundary, four 
Janitza UMG 512 three-phase fixed power quality analyzers were used, which allow sampling at 
a rate of 25.6 kHz (512 samples over a cycle). For these, the retrieval and centralization of data in 
the AEMS Server was done using the Modbus protocol - TCP / IP. 

https://sensix.io/
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In order to evaluate, with a high degree of accuracy, both the evolution of EnPIs and the 
evolution of PQIs, the proposed monitoring scheme is based on the FENCE Diagram presented in 
Chapter 2 of the PhD Thesis and takes into account the basic principle of PQI (classification of 
users according to ICTEE). 

The first stage in the development of the software solution was the aggregation and 
statistical analysis of the measured data, in order to identify possible measurement errors, 
information transmission errors or exceptional situations, such as interruptions in the power supply 
of the analyzed energy boundary. The files containing the data recorded in Comma Separated 
Values (CSV) format - UC IFA / SENSIX or Excel - Fluke 1770, Janitza UMG 512 were processed 
and brought to the desired form and format, by building a conversion algorithm. 

In situations where measurement errors have been recorded (most often due to 
communication / data conversion errors), in order to use the data recorded for the purpose of 
driving the neural network that will underlie the forecast of electricity consumption depending on 
variable factors, the regression method was used, which consists in replacing the erroneous values 
with the value of the indicator determined by calculating the 95th percentile. 

To increase the efficiency of the data regeneration process, the proposed algorithm was 
applied directly to the raw values provided by the monitoring systems. 

In order to assess the correctness of the measured values, the following logical process of 
data verification was established (see Figure 3.1.1), as an integral part of the LOGIC BLOCK 
called MONITORING AND VERIFICATION PROTOCOL. 

 
Figure 3.1.1  – Algoritm verificare corectitudine date măsurate 

 After acquiring the measured data from the existing / available systems, with a transmission 
frequency from the analyzers / monitoring systems to the server of 1 data packet / second, these 
data are used in the logical block to evaluate the correctness of the recorded values. 

An aggregation of the measured values in sub-sets of 900 (900 seconds - 15 minutes) or 
3,600 values (3,600 seconds - 1 hour) is performed, depending on the type of measured data. 
Statistical analysis applies to each such subset of records. 

It was proposed to aggregate the recorded data in one hour sets to maintain the correlation 
with the variation of the external variable factors - at aggregation periods of less than one hour the 
factors variation is much too small to be able to train the Machine Learning algorithm with a high 
degree of confidence. At aggregation periods longer than one hour, the variation becomes too large 
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and, implicitly, the accuracy of the electricity consumption forecast will be strongly influenced in 
a negative way. 

In order to optimize the related storage space, the monitoring and verification logic block 
stores in the long term (more than one year) only those statistical data relevant to the end user - 
especially the results of technical, energy and financial analyses. Quantifiable energy data in 
monetary units (such as electricity consumption) is stored indefinitely, this process having a low 
memory requirement due to the small size of the data but also their frequency (a 15-minute record 
in the PCC). 

For all voltage values, any deviation from the permissible range VC ± 10% is reported in 
the log, where VC is the contracted supply voltage (declared). Normally, this is the rated voltage 
(Vn) of the network but following an agreement between the Distribution Operator and the end 
user, it may be different. In the case study presented, VC = VN = 400 V. 
By integrating the two monitoring systems developed by IFA and SENSIX in the experimental 
part of the thesis, which are at the prototype stage, significant improvements were made, by testing 
and validating their functionality. Also, SENSIX has taken over and integrated in its own platform 
to be commercially launched a series of energy reporting elements developed in the thesis (such 
as statistical analysis of the evolution of electricity demand, calculation of the equivalent CO2 
footprint etc.). 

3.2.  Development, implementation, and testing of the Analysis Modules 

The second step in the development of the AEMS, after the commissioning of the 
monitoring system in several energy boundaries, using several types of physical systems - three-
phase class A quality analyzers, IFA analyzers and SENSIX analyzers (thus demonstrating the 
interconnection and integrability of the AEMS), consisted in the development, implementation and 
testing of analysis modules. 

In order to develop the algorithm for evaluating the PQIs, the evaluations were performed 
using class A three-phase power quality analyzers (according to the IEC 61000-4-30 standard), 
which ensured a data flow with a frequency of 1 package of measurements per second, for a period 
of 12 months, in a number of six relevant Low Voltage (LV) measurement points: 

A. 1 Measurement Point – Industrial End-User:  
1. In the Point of Common Coupling – the secondary of the 20/0.4 kV power transformer 

which supplies approximatively 25% of the power demand of an industrial end-user, 
2. On the power supply of a production section in which highly waveform distorting 

devices were identified. 
B. 1 Measurement Point – Tertiary Sector End-User 1 (office building): 
1. In the Point of Common Coupling – the secondary of the 20/0.4 kV power transformer 

which supplies the power for the building, 
2. On the power supply of the HVAC (Heating, Ventilation and Air Conditioning) system. 
C. 4 Measurement Points – Tertiary Sector End-User  2 (four office buildings): 
1. In the Point of Common Coupling – the secondary of the 20/0.4 kV power transformers 

which supplies the power for the buildings, 
2. On the power supply of the HVAC (Heating, Ventilation and Air Conditioning) 

systems. 

Analysis modules for all the PQIs presented in Chapter 2 have been designed, developed, 
deployed, tested and validated. 



The Development of an Advanced Energy Management System 

Page 17 of 41 

The EnPI evaluation algorithm was developed in a stratified manner, practically 
implementing the calculation methodologies for each EnPI, so that at the AEMS level the relevant 
EnPI can be selected by the user, depending on the specifics of his activity. This ensures the highest 
possible modularity of the AEMS and high replicability in any other energy boundary. 

All EnPIs presented in Chapter 2 of the Doctoral Thesis were implemented. For the testing 
and improvement stage of AEMS, EnPIs selected and presented in Chapter 2 were used. 

In its entirety, AEMS was developed using the programming language Py (Python) and the 
code builder Jupyter Notebook, which allows the use of an agnostic language (Py, C ++, Java, etc.) 
thus ensuring the greatest possible compatibility with other software solutions further developed 
and thus allowing their unification into a unitary, final solution. 

In order to analyze the interdependence relationship between EFs (External Variables) and 
EnPIs and to determine the forecast of the variation of EnPIn = f (EFs), a complex set of Machine 
Learning systems based on LSTM (Long Short Term Memory) RNNs will be applied, introduced 
by Hochreiter and Schimdhuber in 1997. 

The RNN LSTM was initially developed for the forecast of active power demand based on 
a single external variable factor (average external temperature). The LSTM RNN parameterization 
thus developed was performed by successive iterations, aiming to identify the optimal values of 
the hyperparameters that would lead to the best form of the active power demand forecast. 

It used the following key values: 
 Length of learning sequence (time_steps): 24; 
 Number of neurons per cell (LSTM_units): 192; 
 Epochs (epochs): 20; 
 Number of examples from a learning step (batch_size): 24; 
 Training / learning weight (train_test_split): 0.15. 
After identifying the hyperparameters that led to the maximum degree of accuracy of the 

LSTM RNN, the LSTM was extended from a known variable to five predicted variables (average 
outdoor temperature, insolation level, degree of cloudiness, relative humidity, and wind speed), 
the open-source platform https://openweathermap.org/ was used. 

Through this extension, the degree of accuracy of the developed software model and the 
quality of the selected hyperparameters were analyzed when new variable factors appeared. Also, 
for the transposition in a real context, the forecast of the electricity use is made using 
meteorological forecasts - thus quantifying and evaluating the uncertainties introduced by the 
meteorological forecast errors. For this, based on a monthly subscription, a call function of an API 
(Application Programming Interface) has been developed that provides an hourly forecast for a 
period of two (2) days, for each call. This API allows the transmission of a maximum of 2,000 
requests per day, which practically means that a subscription can provide the daily weather data 
needed for 2,000 separate locations where SAME is implemented. The returned results are then 
processed for integration into the database, by transforming them from the JSON format provided 
by the API, into a format compatible with the Machine Learning algorithm. 

Unlike the results obtained in the preliminary stage of development of the LSTM RNN, 
the use of forecasted meteorological data increases the uncertainty of the algorithm for predicting 
the absorbed active power, from an initial value of 0.5 - 2% to a value of 1 - 12%, depending on 
the accuracy of the meteorological data (real vs. forecasted). 

It is therefore shown that there is a direct dependence between the accuracy of the active 
power demand forecast and the accuracy of the meteorological data forecast for the time intervals 
on which the prediction is made. 

https://openweathermap.org/
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Also, an extremely important influencing factor is the energy behavior of the consumer 
(consumer behavior1). 

In order to normalize the EnPI, the following calculation subroutine will be followed: 
 It is verified if EnPIn = y is a function of EFs = x by applying the vertical line method, 
 If the condition is observed, it is verified if y = f (x) is a one-to-one function, by 

applying the horizontal line method, 
 By applying the Lagrange interpolation methodology, the expected values of y for 

various values of x are determined, 
 By implementing a Machine Learning system, the previously determined form of the 

function y = f (x) will be adjusted based on the data recorded by the Monitoring system. 
Lagrange Interpolation was used as a normalization method, and it was observed that it 

provides a similar function (over 0.80% less accurate) to that provided by the Neville Algorithm, 
with a significantly shorter computation time (over 90% faster). 

Linear regression leads to a high mean square error, with an average value of over 13%, 
due to the large number of dependent variables considered, and is therefore not recommended for 
EnPI normalization. 

Thus, Energy Performance Indicators (determined for the energy sector in the tertiary 
sector - office building) are normalized in relation to five variables considered relevant (historical): 
average outdoor temperature, relative humidity, cloudiness, lighting and wind speed . 

The determination of EnPI over relevant periods of time (week / month / year) by AEMS 
also allows their normalization by reference to the evolution of variables, which is a significant 
advantage for the User, as he can use AEMS results for reporting at both company level (setting 
internal targets on energy performance / environmental impact), as well as at the level of the 
Ministry of Energy - Directorate for Energy Efficiency (annual reports on energy performance - 
energy questionnaire submitted by the Energy Manager of the User). 

The proposed logic diagram of the IPE analysis module is presented in Figure 3.2.1. 

 
Figure 3.2.1  –  Schema logică propusă pentru modulul de analiză, normalizare și predicție IPE 

 
1 Consumer Behaviour – Notion that takes into account the variability generated by the different behavior of users, 
depending on subjective or objective criteria, classifiable into categories such as: user behavior on weekdays / 
weekends / holidays, the behavior of users in a certain age group: 18 - 25 years, 26 - 40 years, 40 - 65 years, 65+ years 
etc. 
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The most cost-effective solution for decentralized power generation at the moment, at end-
user level in Romania, is photoelectric technology, especially if it can be correlated with the 
potential for flattening the load graph and if its contribution to increasing continuity of supply is 
taken into account.  
 The peak of the daily load curve, although short in time, has a major impact on the energy 
and operational efficiency of electricity networks. The conventional approach to minimize the 
impact of this phenomenon is to increase electricity generation capacity during the peak period. 
However, this is not always economically feasible, can be inefficient in terms of generator use (as 
it involves having generators that need to be purchased, maintained, and used for only a few hours 
a day) and can significantly increase the specific environmental impact when peak sources use 
conventional fuels.  

The four relevant strategies for Load Curve Flattening (LCF) and optimizing the operation 
of the electricity distribution network are: 

1) Increasing the capacity of network elements by replacing power transformers and power 
lines with units of appropriate rated power (better optimized for the load curve), following 
techno-economic calculations;  

2) Integration of Electricity Storage Systems (ESS); 
3) Intelligent Integration of Electric Vehicles into Electric Grids (V2G - Vehicle to Grid); 
4) Demand Response (DR). 

 One of the biggest challenges for the TSO is to ensure a balance between electricity 
generation and electricity demand, where an imbalance between these two components can lead 
to instability, voltage variations and even blackouts. 
 Imbalances between electricity generation and electricity demand result in extra demands 
on generating units and in low PQIs (frequency drops outside the permissible quality limits). The 
most effective solution to minimize these imbalances is to obtain a load curve with a low peak-to-
peak difference. 
 Replacing power transformers and power lines is a very expensive operation and other 
solutions to increase the power transfer capacity are being sought. Also, obtaining permits and 
agreements for new power line routes and land for transformer stations is a difficult and lengthy 
process. 
 The load curve flattening factor is the most useful technique to quantify the variability of 
energy demand, thus determining how efficiently the asset under consideration is used. A low 
flattening factor implies highly variable load and inefficient asset utilization. 
 An optimal flattening factor is essential for the financial feasibility of power plants/power 
grids, leading to minimized energy costs. Improving the flattening factor is therefore mandatory 
to reduce the operating costs of power plants and power grids, thus increasing their economic and 
financial feasibility.  Reducing the power demand at peak load is the simplest solution to improve 
the Flattening Factor.  
 Also, the transit of high peak power leads to increased, non-linear power and energy losses 
in transmission and distribution networks, according to the Joule-Lenz law.  

In general, TSOs/DSOs and power generators do not own modern energy storage systems, 
which is why the electricity produced must not exceed the electricity demand, otherwise unit 
production costs increase significantly (for the same unit of energy - MW produced, sold and used, 
costs increase as more units of energy have been produced).  
 Reducing peak loads will lead to lower transmission and distribution costs by minimizing 
Joule-Lenz losses, increase equipment lifetime - by avoiding equipment operating at 
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maximum/overloaded loads and minimizing maintenance costs, thus ensuring maximized financial 
benefits for the DSO.  
 Due to the intermittent nature of renewables, maintaining the stability and availability of 
power grids is becoming an increasingly important issue as the installed electrical capacity of these 
types of power plants increases.  

Increasing the number and power of renewable energy power plants installed at end-user 
level (self-consumption regime) generates a number of significant benefits both at the end-user 
level (by avoiding a share of the cost of electricity purchased from the NES, relieving grid elements 
owned by the end-user - power transformers and power lines) and at the DSO level, by ensuring a 
better voltage level along the electricity distribution grid and relieving grid elements (power 
transformers and power lines) of load beyond economic operating limits. 
 At the same time, the increased implementation of distributed generation projects will, over 
time, lead to a reduction in the revenues of the DSOs/TSOs by reducing the level of energy 
transited through the networks owned/leased and operated by them, the economic effect being of 
a dual nature.  
 Increasing the number and power of renewables-based plants, combined with the use of 
ESS, can solve most of the usual problems caused by the load chart, through LCF. Also, the 
intelligent coupling of ESS with RES can eliminate or minimize the problems caused by the 
variability of electricity generation by RES, by minimizing the Balancing Market charges, by 
increasing the accuracy of the forecast of the amount of electricity absorbed from/injected into the 
NES. 
 Meeting a time-varying peak load is sometimes a process with extremely low financial 
efficiency and high environmental impact. Thus, the price of electricity generation increases 
during peak load, which is borne by end-users.  
 LCF is therefore also an important method for this category of market participants as, by 
approaching a differentiated tariff scheme, they can achieve significant savings on their energy 
bills by moving their own peak load to off-peak periods of the load curve at NES level.  
 Secondary benefits from AGS can be in increasing the reliability of end-user owned 
network elements, but also in improving the PQIs. Operating with below normalized/optimal load 
is not economic, as the transfer capacity for which the network element has been sized is not used 
rationally. 
 Using network elements (power transformers and power lines) at technically and 
economically optimal loads ensures that their lifetime does not fall below their normal service life 
as a result of avoiding overheating and insulation damage. Also, the introduction of a distributed 
energy source makes it easier to ensure the desired values of some PQI, the most relevant of which 
is voltage variation. 

The technical and economic viability of applying the LCF procedure using Battery Energy 
Storage System (BESS) type ESS at the level of energy end-users was also analyzed in the thesis, 
as well as the influences of the development of RES and the impact of minimizing THDI on their 
energy and financial performance. 
 The operating principle is to use BESS for LCF by charging the system during off-load 
periods and discharging it during peak load periods. 
 The use of BESS for LCF has been intensively researched recently by the international 
scientific community. All studies have shown that without the existence of an hourly differentiated 
pricing scheme (off-peak/peak), the exclusive use of BESS cannot be financially feasible under 
current market conditions. 
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 A RES generator equipped with BESS can, however, have important advantages when 
bidding for bilateral contracts in the market where it can offer quasi-constant generation over time 
and avoid losses in case of forecast errors in electricity generation. 
 In this respect, the author analyzed the financial viability of a hybrid system for LCF, which 
will use both a distributed energy source in the form of a small to medium sized photoelectric 
power plant and a small BESS for electricity storage and LCF realization. The aim is to assess the 
financial potential of LCF procedures under current market conditions and to identify those 
adjustments that, once made, can lead to financial support for these types of actions. 
 As the aim of the AEMS is to increase energy, operational and financial efficiency 
primarily at the end-user level, an analysis module has been developed that will work under the 
assumption that the investment is made exclusively from the end-user's own funds, without any 
contribution, co-financing or support from the Distribution System Operator, although both the 
benefits and disadvantages of this solution will be passed on to the DSO, as explained in the 
previous chapters.  
 Implementation of LCF based solely on Peak-Shaving / Peak-Shifting procedures are 
financially feasible either if the range of variation of the electricity price is complex, taking into 
account peaks / gaps in the load curve, or if they actively participate in the electricity market by 
contracting on settlement intervals for the amount of energy needed.  
 Under these conditions, for the development of the theoretical model and the experimental 
procedure, a power contour fed through a power transformer having 20/0.4 kV with a rated power 
of 250 kVA, ONAN cooled, with ∆𝑃𝑃0 =  0,3 kW and ∆𝑃𝑃𝑘𝑘 =  3,25 𝑘𝑘𝑘𝑘. The schematic diagram of 
the analyzed energy boundary is shown in Figure 3.2.2. 

 
Figure 3.2.2  – Schema electrică monofilară de principiu a Postului de Transformare analizat 

An optimum load factor of the power transformer leading to operation at maximum 
efficiency, βopt=60 [%], as specified in the Regulation on the Technical Operation of Electrical 
Equipment in Primary Distribution, was considered, with oil-insulated, natural circulation and air-
cooled, natural circulation (ONAN = Oil Natural Air Natural).  
 Depending on the technology used to manufacture power transformers, the optimum 
transformer load factor for maximum efficiency operation will be different. Within the developed 
software solution, the user will be able to select from a list the type of power transformer under 
consideration or manually enter the value of the optimum load factor for maximum efficiency 
operation.  
 In order to increase the energy performance of the power distribution process in the 
analyzed energy boundary, three variants are available: 
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1. Adoption of EnPIAs through which a decrease in the power flowing through the power 
transformer is achieved, 

2. Replacing the existing power transformer with a correctly sized one to ensure operation 
at optimum load for as long as possible (requires a technical-economic calculation 
justifying the savings made compared to the investment required), 

3. Implementation of both solutions presented above. 
 The next step was to determine the average daily load graph for the two types of days: 
working vs. non-working. By calculating the average values of the absorbed electric powers 
(mean) and aggregating the values thus obtained, the corresponding load graphs were constructed. 
 In order to determine the amounts of power above and below the optimal transformer load, 
respectively, a "0-crossing of the curve" sub-module was developed, which takes the optimal 
transformer load as relative zero. 
 This module determines with a deviation of 0.5% the moment of intersection between the 
load curve and the optimal load curve and then, by integration, determines the quantities of 
electricity in the analyzed interval - between two successive intersections. The results of this 
calculation are shown in Figure 3.2.3. 

 

 

Figure 3.2.3  – Cuantificarea cantităților de energie din regimurile de gol / vârf ale curbei de 
încărcare, în cazul unui transformator cu puterea nominală de 250 kVA 

It can be seen that in the case study presented, the areas identified by WA and WC represent 
overload operating ranges, and the area identified by WB represents an underload operating range. 
 From the point of view of the distribution of operating regimes, it is found that in the 
analyzed case study, the power transformer load curve is characterized by a ratio of 14.5 to 1 in 
terms of the amount of energy absorbed in the overload versus underload regime. 
 Quantifying by operating times, it is observed that the transformer operates in overload 
mode (the load transited is higher than the optimal load) 18.5 hours/day and in underload mode 
only 5.5 hours/day.  
 It is worth noting that the shape of the load graph is different from the usual load graph, 
and a peak load operating regime is identified that spans several hours of the day. The main reason 
for this regime is the behavioral changes of users due to the COVID-19 pandemic - telework. This 
new concept generates a substantial change in the daily load curve at power transformers supplying 
residential and commercial users. 
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 Therefore, knowing the quantities of energy related to the "overloaded" and "underloaded" 
regimes, a software module was developed to size and technically quantify an optimal Load Curve 
Flattening (LCF) solution. 
 In this respect, three technically feasible directions can be investigated:  

 Implementation of Energy Performance Improvement Actions(*), 
 Use of energy from renewable sources - photoelectric systems, 
 The use of electricity storage solutions - batteries. 

 (*) This point cannot be analyzed in the case of residential users, as it is difficult to quantify 
how to support the implementation of EnPIAs in households. It can only be quantified for 
industrial, tertiary-commercial and tertiary-institutional end-users. 

An iterative calculation model based on the PV GIS platform SARAH was developed for 
the sizing of a photoelectric power plant. Using the API made available by the aforementioned 
platform, the iterative calculation model tests the viability of installing a photoelectric system 
using the relation: P1h,PV ≤ 𝑆𝑆𝑛𝑛𝑛𝑛 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑𝑛𝑛 + 𝑃𝑃𝑉𝑉𝐿𝐿𝐿𝐿  [kW], where: 𝑃𝑃1ℎ,𝑃𝑃𝑃𝑃 [𝑘𝑘𝑘𝑘]is the maximum power 
produced by the photoelectric system, 𝑃𝑃𝑉𝑉𝐿𝐿𝐿𝐿  [kW] is the maximum power absorbed at peak load, 
𝑆𝑆𝑛𝑛𝑛𝑛 [𝑘𝑘𝑉𝑉𝑘𝑘] is the rated power of the transformer and cos𝜑𝜑𝑛𝑛 = 0,90[−] is the neutral power factor. 
 The iterative calculation module calls the API in successive iterations (24 iterations per 
second) to determine the output of a photoelectric system using monocrystalline panels, with an 
average tilt of 30 degrees, without tracking system, based on the GPS coordinates of the analyzed 
site.  The minimum installed power of the modelled PV system is 50 kWp (kW peak - power at 
peak production, under Standard Test Conditions - STC), and the upper limit is 1,000 kWp, with 
an iteration step of 1 kWp. For the example analyzed, the optimal installed power of the 
photoelectric system was determined to be 432 kWp. 
 Once the optimal installed power is determined, the software module simulates an optimal 
day of operation of the photoelectric system and plots, by overlapping, the power production curve. 
 By applying the "0-crossing of the curve" analysis sub-module, which takes the optimal 
load for maximum efficiency operation of the transformer as relative zero, the quantities of energy 
related to the photoelectric system below the transformer optimum (negative sign) and above the 
transformer optimum (positive sign) are determined - see also Figure 3.2.4: 

 The amounts of electricity produced by the photoelectric system below the transformer 
optimum (negative sign) represent a surplus that cannot be used as such for LCF; 

 Quantities of electricity produced by the photoelectric system above the transformer 
optimum (positive sign) represent a surplus that can be used as such for LCF, if they 
overlap the (positive) quantities of electricity on the load curve. 

 
Figure 3.2.4  – Determinarea cantităților de energie electrică utilizabile pentru Aplatizarea 

Graficului de Sarcină (verde) și disponibilă pentru aplatizarea indirectă a graficului de sarcină 
(roșu și albastru). 
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 The results provided by the module are presented in Figure 3.2.5. 

 
Figure 3.2.5  – Rezultatele modului de analiză a potențialului de aplatizare a curbei de sarcină a 

sistemului fotoelectric 
 Since it can be seen that the photoelectric system is not able to ensure a correct flattening 
of the load curve if analyzed individually, an additional analysis module has been developed, 
dimensioning a BESS solution that has the role of optimizing the distribution of the electrical 
energy produced by the photoelectric system over a day, so that the flattening of the load graph is 
achieved at optimal parameters. To this end, a preliminary database has been designed, containing 
different types of battery technologies, technical characteristics, and financial characteristics. 

The analysis module iteratively goes through all the entries in the provided database and 
determines what is the cost associated with each battery type in the analyzed regime. Based on 
these results, it applies a minimum function and displays the financially optimal BESS structure 
to the user. 
 Once the two systems (photoelectric and BESS) are sized, SAME continues with a techno-
economic analysis module. The techno-economic analysis module uses the financial indicators 
presented in Table 3.2.1. In order to perform the techno-economic analysis, a number of user-
defined inputs were considered, such as electricity price, electricity price growth rate, discount 
rate, analysis duration, specific cost of the photoelectric system and specific operating cost of the 
photoelectric/BESS system. 
Table 3.2.1 – Financial Indicators used for LCF module 

Financial Indicators 
Indicator Notation Formula M.U. 

Net Present Value  NPV 𝑁𝑁𝑃𝑃𝑉𝑉 = ∑ 𝐼𝐼𝑡𝑡−𝐿𝐿𝑡𝑡
(1+𝑎𝑎)𝑡𝑡

𝑡𝑡𝑡𝑡𝑡𝑡
𝑡𝑡=1 − 𝐶𝐶𝑘𝑘𝑃𝑃𝐶𝐶𝐶𝐶  [EUR] 

Internal Rate of Return IRR 𝑁𝑁𝑃𝑃𝑉𝑉 = �
𝐼𝐼𝑡𝑡 − 𝐶𝐶𝑡𝑡

(1 + 𝐼𝐼𝐼𝐼𝐼𝐼)𝑡𝑡

𝑡𝑡𝑡𝑡𝑡𝑡

𝑡𝑡=1

= 0 [%/year] 

Simple Payback Period SPP 𝑆𝑆𝑃𝑃𝑃𝑃 =
𝐶𝐶𝑘𝑘𝑃𝑃𝐶𝐶𝐶𝐶

∑ 𝐼𝐼𝑖𝑖 − 𝐶𝐶𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡
𝑖𝑖=1
𝑡𝑡𝑡𝑡𝑡𝑡

 [years] 

In order to determine the annual benefits generated by the project, the power and energy 
losses in the transformer due to operation at less-than-optimal load were determined to establish 
the baseline level. 

Subsequently, power and energy losses were determined in the scenario of the 
implementation of the load curve flattening project considering the two components: the 
Photoelectric System and the Electricity Storage System. 

The daily amount of energy required to pass through the transformer for it to operate at 
optimal load was also determined. 

In order to increase the accuracy of the proposed analysis method, the developed software 
module also takes into account the following technical-economic aspects: 

 The degradation over time of the photoelectric modules and the storage capacity of the 
electrochemical batteries, considering an average degradation/denomination rates of 
0.6%/year for the photoelectric system and 0.01%/cycle for the storage system. 
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 The electricity price evolution forecast, using a WEB-CRAWLER application that 
evaluates (daily) OPCOM price reports on the various energy markets of interest 
(DAM, Intra-day and Balancing Market). 

The results of the financial analysis module are presented in Figure 3.2.6. 

 

 

 
Figure 3.2.6  – LCF module – financial analysis results 

It can therefore be seen that the project is only marginally viable in this case. There are 
several justifications for this, the most important of which are: 

 The non-existence of an advantageous tariff system for Peak Shaving / Peak Shifting 
projects, which would imply differentiation of the electricity tariff according to the time 
of day; However, the implementation of a hybrid solution can generate financial 
advantages by optimizing participation in the energy market (given the quasi-constancy 
of the load schedule), harnessing excess energy through accumulation in the storage 
system, and avoiding penalties for failure to meet contractual conditions in the absence 
of solar radiation during the day (production forecast errors), 

 Alignment of the load graph - load regimes above the transformer optimum are more 
than 4 times longer in time than load regimes below the optimum for full transformer 
efficiency operation, so the project cannot be implemented using BESS alone, without 
generating additional renewable electricity, 

 Relatively high costs associated with operating/maintaining/replacing battery packs - 
given sustained technological progress, these are expected to fall in line with 
photoelectric technology. 

 Flattening factor (pre-project implementation) and non-uniformity factor (pre-project 
implementation) were not within the range identified as attractive for such projects 
(0.4-0.6). 
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 In order to accurately quantify the variability of the PV system output proposed for 
analysis, an ML-LSTM algorithm was developed which, based on historical consumption data and 
electricity production forecast (hourly data), determines the annual amount of electricity that can 
be covered by the implementation of the PV+BESS system, thus increasing the accuracy and 
precision of the techno-economic analysis module. 
 The logical diagram of the LCF module is presented in Figure 3.2.7. 

 
Figure 3.2.7  – Logic diagram for the proposed LCF module 

 According to the current technical standards governing the PQI analysis, the first step is 
always to check the Total Harmonic Voltage Distortion Factor. If the values recorded by THDV 
are within the required limits, the analysis can continue with the investigation of the values 
recorded by the Total Harmonic Current Distortion Factor - THDI. 
 The operation of distribution networks in distorted - harmonic current distortion - regimes 
leads to increased power and energy losses and operational and operational problems. The 
inclusion of PQI in the admissibility range is a necessity for optimizing the energy performance of 
electricity networks, whether in the residential, tertiary or industrial sector. 
 The operation of power grids with low energy performance negatively influences the 
potential application of the LCF procedures described above. Also, the presence of distorted 
waveforms can lead to the phenomenon of derating of power transformers. 
 Increased active power losses result in higher winding temperature during operation, which 
can lead to a corresponding reduction in transformer lifetime. In order to eliminate this, it is 
necessary to reduce the transformer load, i.e. use at a lower power than rated (denominating / de-
energizing the transformer).  
 In order to provide additional functionality to the analysis module, an algorithm has also 
been developed to financially evaluate the potential obtained by limiting the THDI, based on the 
Simple Payback Period limit considered acceptable by the end user. In this context, the default 
value limit is 5 years, but this can be replaced at any time by a value entered by the user via the 
Human Machine Interface (HMI). 
 It should be taken into account that the SPP limit value depends on the following factors: 

1. The size of the investment (tens, hundreds of thousands, millions of EUR), 
2. Financial strength of the company (turnover), 
3. Type of investment (technological process, non-technological processes, organizational 

processes), 
4. Cash Flow of the company, 
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5. Credibility of the company with (bank) financing institutions, 
6. Existence and quality of the business plan related to the investment. 

 Thus, the usual values of the SPP limit are 3, 5 and 10 years respectively.  
 The financial analysis module determines the maximum amount of CAPEX (Capital 
Expenditures) that can lead, by minimizing the harmonic ranks identified as having values 
significantly above the recommended limit of 5% of the fundamental, to the recovery of the 
investment within 5 calendar years. Subsequently, the analysis module determines the Net Present 
Income that can be obtained over the 10-year study period, in accordance with the regulations in 
force, thus encouraging the end-user's representatives to take the decision to make the proposed 
investment. 
 The proposed logic diagram of the PQIIA implementation potential analysis module on 
minimizing the electric current distorting regime is shown in Figure 3.2.8. 
 In order to support end-users, a module has also been developed to monitor in real time the 
evolution of the average power factor achieved at the level of the analyzed energy boundary (at 
the PCC level) and to quantify the costs of the reactive electricity (the decision to monitor the 
power factor at the user is determined more by its economic-financial impact and less by whether 
it is within the limit set by the neutral power factor).  

A notification module has also been implemented, whereby the user's technical 
representative is notified in real time when the aggregated 60-minute average realized power factor 
is less than 0.65. 

 
Figure 3.2.8  – Logic diagram of the PQIIA module - THDI 

3.3. Integrating the analysis modules in the AEMS 

 Throughout the thesis, a number of energy and financial analysis modules were developed, 
implemented, tested and validated, based on the main logigram of the AEMS: 
A. PQI Analysis module, which evaluates, in real time: 

o Voltage sags, 
o Voltage spikes, 
o Interrupts, 
o Voltage Peak Factor, 
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o Voltage Form Factor, 
o Voltage Unbalances, 
o Current Unbalances, 
o Voltage Total Harmonic Distortion, 
o Current Total Harmonic Distortion, 
o Total Power Factor (and, implicitly all active, reactive and apparent powers), 
o The cost of operating the energy boundary in non-neutral Power Factor regimes. 

B. The LCF Module, which: 
o Evaluates, in real time, the load of power transformers, 
o Evaluates the power and energy losses in power transformers, 
o Quantifies the energy flows in under-loaded and over-loaded regime with respect to the 

optimal load of the power transformer, 
o Sizes, by using a dedicated API, a distributed energy generation system capable of 

providing the required power for the end-user in order to minimize the load transited 
through the power transformer (at the PCC), 

o Sizes a BESS system, capable of optimally distributing the RES generated energy in time, 
so that it ensures an optimal load of the power transformer, 

o Quantifies the financial benefit by doing an in-depth techno-economical analysis 
regarding the feasibility of the LCF project for the analyzed energy boundary. 

C. The PQIIA Module – current harmonic distortion, which: 
o Evaluates the Total Harmonic Distortion Factor (THDI)  at the monitoring point / energy 

boundary level, in real time, 
o Determines the power and energy losses in the network elements (electric lines and power 

transformers) when operating in distorting current regimes, 
o Sizes a harmonic filtering system (based on the relevant harmonic ranks – such as 5, 7 and 

11 but also 2n+1 rank), 
o Does a detailed techno-economical analysis through which it indicates the energy, 

financial and operational benefits which can be obtained by implementing the PQIIA and 
indicates the maximum CAPEX value for which the project is still feasible from a 
financial point of view. 

D. The EnPI Analysis Module, which: 
o Evaluates, in real time, the evolution of EnPI, 
o Evaluates the evolution of aggregated (with an aggregation period set by the user) EnPIs, 
o Normalizes the EnPI with respect to the relevant variable or static factors, thus increasing 

the accuracy of the overall evaluation process. 
E. The Power Demand Forecast Module (PDF), based on the ML algorithm presented in 

Chapter 3, which: 
o Forecasts the power demand of the energy boundary, in three different stages of 

aggregation, 
o Forecasts the evolution of the selected EnPIs, in two stages of aggregation (hourly and 

daily). 
As each module contains a technical component and a financial component, it is necessary 

to integrate the results provided by these modules into an overall financial function, providing an 
overview of the financial profitability associated with the use of electricity and, therefore, the 
potential for improvement/maximization.  
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This integration will also provide an overview of the potential for reducing environmental 
impact at the level of the analyzed energy boundary, by implementing the different actions 
recommended by AEMS. 

Based on the description of the analysis modules in this chapter, the main financial results 
provided by AEMS will be presented in Table 3.3.1. 

In Table 3.3.2, the functions defining the financial indicators are presented, and Annex 5 
details/describes their variables. 

All the results provided by AEMS, for each Module described, have been integrated into 
the Human Machine Interface, in order to provide relevant, global results / reports that can give an 
overview of the potential electricity savings (and therefore the associated cost savings and 
environmental impact reduction). 
Table 3.3.1 – Financial results supplied by AEMS 

MODULE RESULT TYPE 

A 
Active Energy Cost –  𝐶𝐶𝑊𝑊𝑃𝑃 Periodic COST 
Reactive Energy Cost – 𝐶𝐶𝑊𝑊𝑄𝑄 Periodic COST 

B 

Yearly Energy Losses Cost – Power Transformer Load – 𝐶𝐶𝛥𝛥𝑊𝑊𝑃𝑃
𝐴𝐴𝐴𝐴𝐴𝐴  Periodic COST 

Cost of implementing the DER project –  𝐶𝐶𝐴𝐴𝐴𝐴𝑆𝑆 Investment COST 
Cost of implementing the BESS project –  𝐶𝐶𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆   Investment COST 
Yearly Energy Losses Cost Reduction – Power Transformer Load –  𝐶𝐶𝛥𝛥𝑊𝑊𝑃𝑃 Potential SAVINGS 

C 
Yearly Energy Losses Cost – High THDI – 𝐶𝐶𝛥𝛥𝑊𝑊𝑃𝑃

𝑛𝑛𝑇𝑇𝑆𝑆𝐼𝐼 Periodic COST 

Yearly Energy Losses Cost Reduction – Low THDI –  𝐶𝐶𝛥𝛥𝑊𝑊𝑃𝑃
𝑛𝑛𝑇𝑇𝑆𝑆𝐼𝐼 Potential SAVINGS 

Cost of implementing the Active Harmonic Filter – Maximum Cost –  𝐶𝐶𝐴𝐴𝑇𝑇𝐴𝐴,𝑚𝑚𝑎𝑎𝑚𝑚
𝑛𝑛𝑇𝑇𝑆𝑆𝐼𝐼  Investment COST 

D - - 
E - - 

TOTAL Total potential Saving – 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡  Potential SAVINGS 

 
Table 3.3.2 – Financial Indicators – formulas and relevant variables  

INDICATOR FUNCȚIA U.M. 

CWP
initial CWP

initial = P ∙ t ∙ cw = f�CΔWP
AGS , CΔWP

THDI , P, PF, kn , cw� [
EUR

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡
] 

CWQ CWQ = P ∙ sin(acos(PF)) ∙ t ∙ cqpaliere(PF) = f �P, PF, cqpaliere(PF)� [
EUR

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡
] 

CΔWP
AGS  CΔWP

AGS = ΔP0 ∙ t1 ∙ cw + ΔPk ∙ �
W(t)

PM
∙

W(t)
PM

+ 10.000

27.500 − W(t)
PM

� ∙ �
PM ∙ PFM

SnT
�
2

∙ cw  = f(ΔP0,ΔPk, PM, PFM, cw) [
EUR

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡
] 

CSGD CSGD = Prated,PV ∙ csp  = f�PMaxPV = PM(t), csp� [EUR] 

CSSEE CSSEE = �Wpeste optim
fără PV − WPV peste optim

cu PV � ∙ cBESS = ���Pi,med − Popt� − �Pi,PV − Popt�� ∙ ti

23

i=0

∙ cBESS = f(Pmăsurat, Popt, cBESS) [EUR] 

EΔWP  EΔWP = CΔWP
AGS − CΔWP

AGS,cu PV+BESS = f�Pmăsurat, Popt� [
EUR

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡
] 

CΔWP

THDI CΔWP

THDI = �∆PTh + ∆PLEC� ∙ t ∙ cw = f(Ih, RT, R0, s, sn, l, σ, cw) [
EUR

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡
] 

EΔWP

THDI EΔWP

THDI = CΔWP

THDI − CΔWP

THDI,minimizat = f(Ih) [
EUR

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡
] 

CAHF,max
THDI  CAHF,max

THDI = f(Ih, TRB = 5ani) [EUR] 

Etotale Etotale = CWP
final < CWP

initial = f(Investiții) [
EUR

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡
] 

3.4.  Developing the Human-Machine Interface (HMI) 

 The development of the Human Machine Interface (HMI) was based on the creation of an 
online, user-friendly system to supervise the analysis processes and their results. Also, by using an 
open-source platform, automatic alarm functions were implemented, based on a set of rules that 
can be modified at any time, in order to ensure compliance with the legislation in force or 
adaptation to the targets imposed by the organization (the actual beneficiary of AEMS). 
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 The AEMS therefore ensures that the results of the analysis modules are displayed in an 
intuitive, user-friendly format for all the organization’s decision-makers, from the technical 
managers - in the case of users with an energy use of more than 1,000 t.e.p./year, these will be 
authorized Energy Managers (detailed real-time reports) to Senior Management (regular reports, 
with a focus on the economic and financial implications).  

In order to translate the Analysis Modules into an integrated, "user-friendly" system that 
can be used efficiently by operating staff, technical managers and Top Management of the energy 
contour, in this last stage of SAME development, the Human Machine Interface (HMI) has been 
designed and built. 
 The AEMS was developed using the Py programming language (Python) and the Jupyter 
Notebook code builder, which allows the use of a language agnostic (Py, C++, Java, etc.). The 
databases built both for running AEMS and by AEMS itself (the results of the analysis modules) 
are based on a PANDAS DATAFRAME structure. 
 After the development of AEMS, the HMI component was developed using two separate 
modules. First, for the evaluation of the metrics (results of the energy analysis modules), the StatsD 
Network Daemon (a program running as a background process, not controllable by the user) 
running on the Node.js platform was used, which checks the transmission of metrics over UDP or 
TCP protocols and then transmits their aggregated values to one or more back-end services. 
 To ensure high redundancy, two serialized back-end services were used. The first layer 
consisted of using the open-source PROMETHEUS platform. This platform collects and stores the 
metrics as time series data (data is stored with the time label at which it was retrieved and with 
other optional key-value pairs as labels). PROMETHEUS therefore allows the construction of a 
multidimensional data model.   
 After providing the first layer of metric aggregation, in order to ensure a more user-friendly 
interface, the Open-Source GRAFANA platform was used. It allows the construction of a graphical 
interface structured on both real-time and aggregated data. 
 It also allows the design of alarms/notifications/reports, depending on the metrics displayed 
and has the facility to ensure their transmission both via email and via a dedicated mobile app, thus 
minimizing the response time of technical managers when abnormal situations occur in the 
operation of the monitored energy contours. 
 All the Analysis Modules developed in the work have been introduced in this platform. 
Taking into account the AEMS performance (in terms of data acquisition speed and 
computation/processing time), the GRAFANA interactive platform was configured with a 5 
second auto-update rate (all displayed values are automatically updated every 5 seconds). 

4. Implementing the AEMS. Case Studies and Results 

The AEMS has been implemented and tested on a number of six distinct energy boundaries 
as follows: 

 An industrial user in the automotive industry in Sibiu county - AEMS was installed at 
the point of common coupling of the energy boundary and at a transformer substation 
supplying power to approximately 25% of the industrial platform - four monitored 
circuits (PCC, the secondary of the 20/0.4 kV power transformer and the secondaries 
of two 0.4/0.12 kV transformers supplying a production section), 
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 At the level of two office buildings in the same real estate project in Bucharest (at the 
level of the power transformer secondaries supplying the buildings and at the level of 
the HVAC power supply) - four monitored circuits (2 at each building), 

 At the level of a transformer substation belonging to SDEE Transilvania SUD, located 
in Brasov county (at TDRI level) - four monitored circuits. 

4.1.   Case Study – Identifying PQIIA – Limiting high current harmonics regime  

 As part of the research to demonstrate the importance of minimizing THDI in the end-user 
distribution network, a case study on the technical and financial viability of implementing THDI 
reduction solutions was carried out.  
 The experimental research carried out for the elaboration of this case study and for the 
development of the module for the analysis of the implementation potential of the PQIIA 
concerning the reduction of the electric current distortion regime, was based on an industrial user 
carrying out its current activity according to a NACE code 2031 - Manufacture of miscellaneous 
parts and accessories for motor vehicles and motor vehicle engines.  
 During the period prior to the analysis, it had undergone a series of technical events, 
concentrated in two production areas where several CNC (Computer Numerically Controlled) 
machines were operating. The CNC machines are equipped with 3-axis DC electric drive systems 
(more than 12 DC electric motors/CNC machine). 
These CNC machines are powered by transformers with an apparent power rating of 112.5 kVA 
and voltage rating of 0.4/0.12 kV, with a Yy6 connection group - designed and manufactured in 
the USA. Over the last four years the user has replaced more than 40 transformers of this type as 
a result of complete breakdown, incurring total additional costs of more than EUR 30,000/year, 
plus financial losses of more than EUR 8,500/year as a result of the temporary cessation of 
production. 
 The impact of distorted operation is all the more significant as the analyzed receivers 
operate continuously (8,600 hours/year), with the exception of possible maintenance/repair periods 
(on average 160 hours/year). 
 The analysis carried out as part of the experimental research identified that the type 1 and 
2 CNC machines generated significant harmonic electric current disturbances, mainly due to the 
power conversion systems (rectifiers) used to power the multiple DC motors. 
 The next step was to carry out a thermographic analysis of the power transformers feeding 
these CNC machines, which identified that all the 0.4/0.12 kV power transformers and the power 
lines connecting them to the CNC machines were operating in a severe overload regime (see 
Figure 4.1.1). 

The operating temperature of the power line connected to the secondary terminal of the 
power transformer was 139.6 ˚C, more than 70% higher than the manufacturer's guaranteed 
nominal operating temperature (65-70 ˚C). 
 By reducing the level of harmonics of rank 3 (influence on the Neutral conductor), 5, 7 and 
9 as a result of the installation of an Active Harmonic Filter (AHF) system, the user no longer 
encountered situations resulting in the failure of power transformers and thus eliminated both 
additional power and energy losses in the distribution network and non-energy related financial 
losses (equipment replacements and production downtime). 
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a)    b) 

Figure 4.1.1  – Thermographic analysis of L3 phase from the power supply of a type 1 CNC 
machine a) before implementing the THDI minimization project, b) after the implementation of 

the project 
 In order to experimentally develop the analysis model, a measurement campaign was 
carried out at the secondary terminals of the 0.4/0.12 kV power transformer.  

Following the measurement campaign at the secondary level of the transformer in the 
operating state (T1), carried out over a period of 72 hours, with a data acquisition rate of 1 data 
packet per second, using a Class A three-phase power quality analyzer (FLUKE 1734), the 
database used for testing the calculation module was built. 

 
Figure 4.1.2  – The single line diagram of the analyzed energy boundary – PQIIA Module 

 
Figure 4.1.3  – The single line diagram of TGD 3 – PQIIA Module 
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Taking into account the structure of the Transformer Substation, shown in Figure 4.1.2, 
measurements were performed on each output of the TGD to identify the relevant source of electric 
current harmonics. It was thus identified that the relevant source of electric current harmonics is 
represented by TG 3 (General Table 3) - see Figure 4.1.3 - as a result of the grouping at this point 
in the network of the CNC machines with the most significant contributions to electric current 
harmonic distortion. Significant current unbalances were also identified, highlighting a reduced 
concern for phase load balancing. In this regard, the impact of electric current harmonics on the 
energy performance associated with LEC1 was determined. 

By applying the methodology presented in Chapter 3, the Cost-Benefit Analysis carried 
out shows that the project can generate, over the study period (10 years), a Net Present Value 
(NPV) of more than EUR 1.4 million, with a Total Present Cost (TOTEX) of EUR 650,000. The 
gross payback period is only 3 years, compared to the manufacturer's guaranteed lifetime of the 
AHF of 10 years. It has therefore been demonstrated that this module can significantly contribute 
to increasing the energy and financial performance of end-user distribution networks. 

4.2.  Case Study – Active Power Demand Forecast 

 The energy boundary on which the Machine Learning algorithm has been developed, tested 
and extended is a tertiary energy sector end-user - office building. The air conditioning system is 
responsible for more than 70% of the annual electricity demand, with both heating, cooling and 
domestic hot water provided by electrical systems. 
 In the first stage of development of the machine learning and prediction algorithm, only 
the dependency between the active power input and the average outdoor temperature was 
considered. The parameterization of the neural network was performed through successive 
iterations, aiming to identify the optimal values of the hyperparameters leading to the best form of 
active power demand forecasting. At the end of the learning/testing process, after the 20 epochs 
(successive runs through the available data), a root mean square error of 15.96 kW (<0.02%) was 
obtained. The evolution of the measured power demand, outdoor temperature and the forecasted 
power demand over the learning / testing cycles are presented in Figure 4.2.1. 

 
Figure 4.2.1  – The evolution of the measured power, in kW (blue) and forecasted power demand by the 

LSTM RNN, in kW (green), depending on the outdoor temperature (orange), in ˚C 
 For further testing of the developed genetic algorithm, a set of data provided by the 
Department of Energy (DOE) from a tertiary sector Office Building located in Richland Township, 
Benton County, Washington State, USA was used. 
 The data provided included building power input and average outdoor temperature, 
aggregated hourly, over three calendar years (2018-2019-2020). The results obtained by applying 
the ML algorithm described above are shown in Figure 4.2.2 and Figure 4.2.3. 
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Figure 4.2.2  – The evolution of the measured power, in kW (blue) and forecasted power demand by the 

LSTM RNN, in kW (green), depending on the outdoor temperature (orange), in ˚C – DOE dataset 

 
Figure 4.2.3  – The forecasted power demand, in kW (blue) and the actual measured power 

demand, in kW (orange) – DOE dataset 
 To extend the machine learning algorithm from one variable external factor to five variable 
external factors, as presented in Chapter 3, historical consumption data for a period of 4 calendar 
years was used to regenerate the learning model of the algorithm using the same hyperparameters 
identified previously.  The prediction of variable external factors was performed by calling the 
API created. 
 Taking into account the specificity of the analyzed energy boundary - office building, the 
absorbed electrical power depends directly on the building occupancy. Since at the time of writing 
the transit of people in the building is not properly monitored/quantified, additional errors due to 
this variable occur, which however the prediction algorithm detects and corrects, on the fly, as can 
be seen in Figure 4.2.4  - each point represented in the figure represents the hourly (60 minutes) 
aggregated electric power. The results are similar for all data aggregation categories. 

 
Figure 4.2.4  – Power demand forecast (yellow) vs. actual power demand (green) 

 The forecast of active power demand is carried out in three distinct steps: 
1. A forecast is made for the next hour, useful for participation in the Balancing Market (BM): 

for example, at 15:00, the quantities of electricity to be used in the next four (4) settlement 
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intervals - defined by 15-minute intervals - are forecasted. This forecast is essential to 
maximize the financial efficiency of participation in the balancing market, 

2. A forecast is made for the next hour: e.g., at 15:00 the amount of electricity to be used in the 
next 60 minutes, i.e. until 16:00, is forecasted. This forecast is essential for estimating the 
energy performance of the energy subsystems related to the analyzed energy boundary. In the 
presented case study, the Significant Energy Use is represented by the HVAC system (Chillers 
+ Air Handling Units + Circulation Pumps + Fan Coils). Forecasting the electricity use for the 
next hour allows to evaluate the energy performance of the HVAC system in advance, based 
on the previous performance, 

3. A forecast is made for the next day: for example, at 00:00 each day, the amount of electricity 
to be used in the next 24 hours is forecasted (with a forecast step of 60 minutes). This forecast 
is essential both for participation in the Day-Ahead Market (DAM) and for the overall 
assessment of the energy performance of the analyzed energy boundary, in advance.  

 The results provided by the Machine Learning algorithm generate the following benefits: 
1. The possibility to evaluate, in advance, the energy performance of the analyzed energy 

boundary in order to identify possible deficiencies in the operation / parameterization of 
the installations, 

2. The possibility to optimize energy trading in the DAM, from the point of view of the 
Beneficiary, in order to increase its ability to forecast the energy demand; 

3. In the case of large electricity users, it leads to maximizing the efficiency of participation 
in the Balancing Market, in the sense of increasing the efficiency of consumption forecasts. 

 Also, by using the forecast electricity demand values, it is possible to predict the evolution 
of energy performance indicators at the level of the monitored energy subsystem or even at the 
level of the overall energy boundary.  
 The machine learning algorithm achieves very good performance, with an aggregate 24-
hour forecast error of only 1.09%, generated mainly by the variability of the variable external 
factors (forecast vs. realized) and the lack of quantification of other variable factors relevant for 
the forecast (such as hourly occupancy of the building/rooms and habits of the building users - 
temperature regulation in the rooms). The variable factors considered in the presented case study 
are relevant to the energy analyzed energy boundary, each of them generating a quantifiable impact 
on the electricity demand. It is necessary, however, that in the actual training phase of the machine 
learning algorithm, the possibility that some of the variable factors initially considered do not 
generate a quantifiable impact or generate an impact that can be quantified by a smaller number of 
factors, thus optimizing the learning time and minimizing the deviations due to forecast errors for 
them, is also analyzed. Also, in order to increase the accuracy of the forecast it will be necessary 
to quantify other variable factors as presented in the thesis (e.g. number of people served, specific 
productivity, etc.). 

5. Conclusions. Personal Contributions. Further Research Directions 

5.1. Conclusions 

Following the development, implementation, testing and improvement phases of the 
Advanced Energy Management System, the following conclusions on its technical functions 
emerge: 
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 It is necessary to measure, in real time, with a periodicity of 1 data set per second (up 
to 256 samples per cycle) the data necessary for the application of the proposed 
calculation methodologies - a lower sampling rate does not allow capturing, with a 
sufficient degree of accuracy, the values necessary for the determination of the Power 
Quality Indices while a higher sampling rate becomes financially unfeasible, 

 For the normalization of the Energy Performance Indicators, it is mandatory to monitor, 
in real time, the relevant variable factors (average ambient temperature, relative 
humidity, precipitation, daylight level etc.) with a periodicity of 1 data set per hour - a 
higher sampling rate does not increase the accuracy of the forecast, as the variation 
over shorter periods of time of the variable factors is not significant, 

 For the successful application of Machine Learning procedures, it is necessary to 
acquire, in real time, the relevant forecast of the variable factors (average ambient 
temperature, relative humidity, precipitation, natural light level), with a periodicity of 
1 data set per hour - forecast for the next 48 hours - a higher sampling rate does not 
lead to an increase in forecast accuracy, as the variation over shorter periods of time of 
the variable factors is not significant while the use of forecasts over periods longer than 
48 hours introduces a significant error, which will propagate into the ML algorithm, 

 In order to quantify the interdependence between the Power Quality Indices and the 
Energy Performance Indicators, it is necessary to ensure a high level and depth of 
Assessment of the selected Power Quality Indices: 

o Voltage Waveform Factor, 
o Voltage Peak Factor, 
o Voltage dips (number, magnitude, and frequency of occurrence), 
o Voltage spikes (number, magnitude, and frequency of occurrence), 
o Voltage unbalances - Voltage unbalances factor, 
o Electric current unbalances - the electric current unbalance factor, calculation 

of the potential to reduce losses by correct balancing of network phases, 
o Total harmonic distortion factors of electric current and voltage - harmonic rank 

analysis and THDU/THDI analysis. 
 In order to allow normalization of the energy performance indicators, over time, it is 

necessary that the assessment of the total active power input is carried out in relation 
to the relevant variable (or static) factors for the energy contour - in the thesis five 
relevant variable factors were considered (temperature, wind speed, degree of 
cloudiness, degree of daylighting, relative humidity), 

 For the prediction of the active power demand in relation to the predicted variable 
factors, thus normalizing the predicted power demand, it is necessary to apply 
Machine-Learning procedures. In the absence of these procedures, normalization and 
forecasting can be performed by simplified mathematical methods (presented in the 
paper, in Chapter 2), 

 It is necessary to forecast the demand for power and therefore energy according to the 
relevant variable factors, in order to assess the potential for implementing Energy 
Performance Improvement Actions, such as flattening of the load curve, development 
of distributed power generation projects, implementation of active filtering systems for 
electric current harmonics or reactive power compensation systems, 
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 Continuous analysis of load curve indicators is mandatory, both to identify the potential 
for implementation of load flattening actions and to assess the performance of such 
projects over time, post-implementation, 

 It is mandatory to analyze power and energy losses in the monitored distribution 
network, both to identify the potential for implementing actions to flatten the load 
profile or improve the PQI and to assess the performance of such projects over time, 
post-implementation, 

 In order to encourage the implementation of Load Curve Flattening projects, the system 
shall carry out, at relevant intervals (monthly), a techno-economic analysis of the 
potential for the application of Load Curve Flattening processes through the use of 
renewable energy sources and electricity storage systems, which shall satisfy, as a 
minimum, the following functionalities: 

o Iterative sizing of the optimal size of a PV+BESS hybrid system ensuring 
technical-energy efficiency, 

o Life-cycle techno-economic analysis of the system, taking into account the 
degradation of the photoelectric modules, the loss of storage capacity of the 
electrochemical batteries and the evolution of the electricity price over the study 
period. 

 In order to encourage the implementation of PQI Improvement projects, it is necessary 
to apply Machine-Learning processes for the prediction of average annual losses due 
to the distorted electric current operation of grid elements, which should perform a 
techno-economic analysis of the potential application of these actions, using the 
proposed Opportunity Cost Analysis methodology. 

 By analyzing the results obtained from the development, implementation, testing and 
validation of the AEMS, it can be concluded that: 

1. The application of correct phase balancing procedures is technically and financially 
justifiable only if the average electrical current unbalance factor exceeds 20%. 
Otherwise, the benefits obtained by this action are small in relation to the work and 
investment required, 

2. The implementation of power factor correction measures is technically justifiable if the 
total average power factor at the energy boundary level is less than 0.8 for at least 50% 
of the duration of a year and is less than the limit of 0.65 for at least 10% of the duration 
of a year, 

3. Monitoring the voltage curve unbalance factor is of particular interest for users 
owning/operating three-phase motors, as values above the 2% limit will lead to a drastic 
reduction in their lifetime, 

4. At present, the application of Load Curve Flattening procedures is not viable from a 
technical-economic point of view if it is not financially supported by a solution for an 
overall reduction in the amount of electricity absorbed by the user, due to the non-
existence of a tariff scheme differentiated by hourly intervals, 

5. Encouraging the application of technically simpler LCF procedures - Peak Shaving / 
Peak Shifting using electricity storage systems can be achieved by developing a tariff 
scheme that should have an off-load tariff of maximum 50% of the peak load tariff for 
the load curve analyzed in the PhD thesis, 

6. The application of procedures to limit the negative effects generated by the operation 
of electricity distribution networks in distorted electricity regimes is attractive even 
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considering only additional power and energy losses. If these regimes lead to additional 
faults/damage/financial losses in the analyzed energy boundary, as has been 
demonstrated, PQIIAs become even more attractive and acceptable to the user's top 
management, 

7. The implementation of Machine Learning (ML) algorithms to increase the accuracy of 
electricity consumption forecasting can generate major financial benefits, especially 
for large users who are obliged to participate in the Balancing Market. In the case study 
presented, the user achieved a reduction in expenses associated with participation in 
the Balancing Market of EUR 6,500 in only 4 months of operation by minimizing 
forecast error. Prior to the implementation of the ML process, energy consumption 
estimates were made exclusively on a historical basis (future settlement interval = 
previous settlement interval of the current day and month of the previous year). The 
ML algorithm becomes operational and efficient after at least one year of the AEMS 
operation (hourly aggregated records). Maximum efficiency is reached after 
aggregation of data for a period of two years (hourly aggregated records). 

8. The implementation of machine learning (ML) algorithms for obtaining input data in 
techno-economic analyses can significantly increase their quality and accuracy, as 
observed in the analysis of the PQIIA application, even though they only took into 
account energy-related aspects, and not operational aspects (material damage due to 
distorted electric current operation). By integrating AEMS with ERP / SAP, such 
particular elements can also be taken into account - thus integrating the energy 
management system with the user's financial and operational management systems. 

9. The development of SAME using Open-Source solutions and systems (Python / Jupyter 
Notebook / Prometheus / Grafana etc.) easily allows both technology transfer to Pay-
to-Use platforms and community access to AEMS results for continuous development 
and improvement.  

10. The technical-economic viability of implementing an Advanced Energy Management 
System has been clearly demonstrated in the thesis, with the actions identified and 
proposed by the AEMS having a gross payback period of less than 4 years (including 
the actual cost of the AEMS). 

5.2. Personal Contributions 

During the PhD training period, starting in 2018, the system for monitoring energy flows 
and variable factors was designed and implemented in several distinct energy boundaries relevant 
to the objectives of the PhD thesis, with personal contributions consisting of: 

1. Designing the AEMS logic scheme, 
2. Participation in the experimental development phase of the hardware and software 

part of two three-phase power quality analyzers based on Open-Source systems and 
modelling (in partnership with NET ENERGY and SENSIX) - devices that can be 
produced and sold at a competitive price in the market, which consisted of: 
2.1. Hardware development of analyzers - personal contributions in the choice of 

microchip used for Fourier analysis and in the choice of electrical current 
sensors used, 

2.2. Software development of the analyzers - personal contributions in the 
development of models for the calculation of PQIs at the level of the microchips 
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used, in order to minimize the size of the data packets transmitted from the 
analyzer to the AEMS server, 

2.3. Power Quality Analyzers testing and validation - personal contributions in the 
performing electrical measurement campaigns using a set of three-phase Class 
A power quality analyzers as a benchmark. 

3. Design and construction of the database used to monitor, aggregate and store the 
electrical and non-electrical measurements made, 

4. Conducting energy measurement campaigns at six distinct energy boundaries, in which 
the aforementioned three-phase power quality analyzers were tested and validated and 
the information needed for testing, validating and improving the AEMS (both energy 
information and relevant variable factors as presented in the thesis) was acquired, 

5. Development of seven technical and economic analysis modules, three of which use 
recurrent neural networks - machine-learning procedures, 

6. Design and construction of the databases necessary for the application of the technical-
economic analysis modules, 

7. Software development of the AEMS, including machine-learning procedures and 
modular implementation of techno-economic analysis modules, 

8. Implementation of the AEMS at the level of the six energy boundaries in order to test 
and validate the proposed methodology and the developed analysis modules, 

9. Demonstrating the replicability of the proposed AEMS by installation in similar energy 
boundaries (in terms of electricity use sector), 

10. Carrying out more than five case studies demonstrating the functionalities and 
technical, energy and financial benefits generated by proposed AEMS. 

The capabilities of SAME and, implicitly, of the proposed algorithms have been tested and 
demonstrated, and the results of the various R&D stages have been disseminated through the 
publication of sixteen (16) scientific articles indexed in ISI and BDI databases, including: 

 One (1) article was published in the UPB Scientific Bulletin, Series C, 
 Six (6) articles have been defended in ISI indexed international conferences, 
 One (1) article was published in a BDI journal, 
 Eight (8) articles have been defended in BDI indexed international conferences. 

5.3. Future research directions 

As a result of the experimental research and development work carried out in the thesis, 
several future research directions have been identified that may be of interest from the perspective 
of Energy Efficiency targets and, implicitly, the fight against climate change.  

Although the AEMS has been designed with the overall objective of system modularity, 
further research is needed on the potential application of the system for small (in energy terms) 
end-users - SMEs (small and medium-sized enterprises), as this sector has a significant share in 
total energy needs. 

A key direction, which can lead to a significant change in the behavior of energy end-users 
in terms of flattening the load curve associated with them at the level of electricity distribution 
network elements, is the development of a Dynamic Tariff Mechanism (DTM), by network zones, 
through which the use of energy at no-load is rewarded and the use of energy at peak load is 
penalized.  



The Development of an Advanced Energy Management System 

Page 40 of 41 

Another key direction that can lead to increased energy performance of DSO-owned 
electricity distribution networks may be the development of a Demand Response (DR) system, by 
grid zone and user type. This may be attractive in the residential sector, but it would entail 
significant costs on the DSO side to replace the electrical switchboards in homes (in such a way 
as to allow selective remote operation of specific circuits - e.g.: powering the fridge / washing 
machine / air conditioning). Detailed research into public receptiveness and the results of a cost-
benefit analysis may be needed to assess the technical, financial, and commercial viability of this 
type of action.  

Also, the tertiary sector (shopping centers and logistics warehouses) is extremely attractive 
for the implementation of such a DR system, due to the large capacities of the refrigeration and 
cooling systems owned by users in this sector. 

With regard to the development of RES generation capacities, the results of the LCF 
Potential Analysis Module justify the legal, commercial and financial analysis of changing the 
main axes of reimbursable/non-reimbursable financing in such a way that end-users wishing to 
become active users are encouraged to implement exclusively hybrid systems (generation + 
storage), thus becoming direct participants in the process of flattening the load curve related to the 
electricity distribution network elements. 

Financing of conventional projects (only photo-electric power plants) from public sources 
is not justified in the current market conditions (continuously decreasing investment costs and high 
electricity prices), leading to extremely attractive financial indicators (e.g., IRR values of more 
than 30-40%/year).   

Regarding the applicability of Machine Learning / Artificial Intelligence procedures in the 
energy services sector, based on the results of the scientific report, it is possible to determine the 
optimal structures of monitoring systems such as Building Management System (BMS) / 
Warehouse Management System (WMS) etc. leading to an optimized data flow in terms of the 
quality of the recorded data: measurement points, frequency of data acquisition, level of 
aggregation, which is extremely important for the implementation of Digitized Energy 
Management procedures. 
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