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Abstract
With the development of the spectrum of online services and the massive migration of the

masses, voluntary or forced by major global contexts, towards a digital interaction, the privacy
perspective on data has a new dimension. From minor analysis for commercial purposes to
manipulation in order to destabilize communities, data has become a form of exercising power. Thus,
awareness of aspects related to protection against exposure in the online environment is mandatory.

The concept of privacy implies the preservation of the personal environment and the exercise
of the right not to be invaded by unauthorized persons. In the online environment, setting up privacy
boundaries is a way to manage personal, private data with the goal not to be exposed to third parties
without a prior, deliberate agreement. Furthermore, to better emphasize the issue from a technical
perspective, it is essential to express the notion of privacy in a complex context, susceptible to being
targeted, by malicious entities, due to its relevance and scale. Thus, discussing data protection issues
in critical infrastructures, it becomes relevant. Critical infrastructure are those infrastructures
considered essential by a state or form of government for the optimal management of citizen life. In
general, from the perspective of state security, the first industries or sectors that become targets, in the
event of a war or a massive cyber-attack, are the critical systems.

This thesis outlines the understanding of privacy aspects from five points of observation. The
first is represented by the accessibility of data as a form of presentation and also as a form of delivery.
Aspects such as Software Development Life Cycle and Automation are being studied in order to
establish quick reaction mechanisms to vulnerabilities or exploits. The second is the anonymity of
data, exploring methods and methodologies of segregating the real identity from the one in digital
space. The methods of hiding the identity from blockchain technologies are analyzed and the existing
models are supplemented with intermediate stages. The structure of the scientific discussion revolves
around the development of a national voting system based on permissioned blockchain solutions. The
third is related to data transmission where blockchain technologies are considered for their intrinsic
ability to provide communication topologies. The qualities and problematic aspects in the
communication function are analyzed and compared with the cloud computing paradigm. The fourth
is related to the distribution and orchestration of data in which the feasibility of using containerized
infrastructures is validated. The isolation taxonomy is presented and the scheduling methods for
containerized data services are analyzed. One can see how user policies can have a better
representation with less complex isolation taxonomies. Furthermore, the study proposes a mix of
distinct governance models for distributed infrastructures (High Performance Computing, Grid and
Cloud Computing) in order to bring together the qualitative aspects of each, including also the privacy
dimension. The fifth shows the importance of establishing a risk assessment for data services. The
relevance of using honeypot infrastructures for the exposure of developed assets is emphasized.
Therefore, a development framework for such solutions has been provided and also a consistent cloud
deployment methodology facilitating coexistence with legitimate production.

Keywords: Security, Privacy, Data Protection, Blockchain, HPC, Grid, Containers, Cloud, Honeypots,
Automation

Context
In recent years, the global community has experienced several crises and major prospective

developments that have led to an increased acceleration of digital transformation. The Covid-19 crisis
showed us how we can cross the boundaries of physical distance, moving the entire activity online.
There has been a major increase in the use of co-working services, video conferencing tools, VPN
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solutions [1] and so on, as a consequence of major reforms in sectors such as education, information
technology or government services. During the lockdown, the behavioral habits of the users have also
changed. They supplemented part of the recreational activity in the online environment. Major
increases in online commerce could be observed, which subsequently led to a crisis in the supply
chain generating significant delays. At the same time, the semiconductor crisis and chip shortage
made critical industries unable to deliver on time, affecting important sectors such as critical
manufactures, transportation and other sectors relying on electronic systems. At the same time, the
post-pandemic tensions produced conflicts and wars that destabilized the financial and energy sectors,
especially in the European space through the conflict between Russia and Ukraine. Last but not least,
voted in 2016 and implemented in 2018, the General Data Protection Regulation, set those companies
that handle personal data of the European Union citizens, in a continuous restructuring of the IT
infrastructure in order to cover the new critical provisions. As can be seen, such major situations
imply additional stress and generate the premises of an endurance test in some of the key industrial
sectors.

With the massive migration of daily activity online, a significant increment in network attacks
and user exposure, in the online space, could also be observed [2]. Thus, the problem of security and
especially privacy has reached new heights, observing a rise in attack methods, exploitable but still
intensively used applications and success rates in compromising public assets. It becomes more and
more relevant to identify and understand, in detail, exploitation opportunities and the
countermeasures. All defense mechanisms can rely on general methodologies and industrial standards
or can be customized for each type of the exposed assets. It becomes relevant to talk about the use of
honeypots on a large scale for creating security reports per exposed service, about intelligent
orchestration of applications that also cover the need to preserve privacy, about anonymous
communication and secure transfer of digital assets over technologies such as blockchain, about
sharing large infrastructures between multiple tenants with the aim to facilitate digital transformation,
and so on.

The thesis covers multiple aspects of privacy preservation in various infrastructures. It
comprises both methods and methodologies, proposes solutions, analyzes critical situations, observes
the opportunities for digital transformation, suggesting forms through which the transition can be
made with the minimum effort required to cover relevant security and privacy needs for the
management of critical data, and also other relevant aspects. The focal point is set on critical
infrastructures, those infrastructures that are expensive, sensitive to global or local crises and which,
in the context of the inability to deliver services, affect the masses. Digital critical infrastructures tend
to implement the multi-tenancy paradigm and are mostly based on the distribution of computational
effort up to decentralization. Thus, the scientific analysis will primarily isolate and consider the
following attributes in regard to defining critical infrastructure: massive deployments, distributed,
centralized or decentralized infrastructures, geographically dispersed or maintained in large data
centers, being able to serve multiple tenants.

Motivation and Objectives
Preservation of data privacy is a real problem with global impact. Understanding the

opportunities and methods by which data protection can be guaranteed in small, medium and large
infrastructures is a relevant concern in the activity of IT engineers, as they are often put in a position
to react quickly to any disruptive event and to identify potential break-in points. Thus, the current
thesis analyzes the global context from the perspective of complex and expensive infrastructures
which must ensure an adequate level of data privacy and security. The topics studied cover a wide
range of points of interest around data confidentiality preservation:
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● light virtualization with containers for isolating the critical data processing context
● orchestration of large, containerized infrastructures to ensure the necessary data protection

and consistency from the deployment stage
● blockchain for its intake in secured and anonymous communication and also for the storage

function suitable for critical data
● honeypots as a way to establish organic parameters for measuring the security and privacy

level of exposed services
● large distributed systems such as grid computing or high-performance computing, centralized

or decentralized, and the policies they apply to maintain security, confidentiality, and
consistency of data

● automation to ensure a quick reaction to unexpected events, exploits or cyber attacks
● methods and methodologies for rapid digital transformation without losing sight of the

security and confidentiality of the managed data

Figure 1 - Thesis Objectives and case studies

The objectives of the thesis are illustrated in Figure 1, proposing five dimensions through
which data privacy assurance is analyzed. Those infrastructures under observation are critical
infrastructures, proposing three formal examples of industrial sectors on which I have built case
studies. However, the thesis addresses a wider scope of applicability, the studies generated being also
valid and portable to non-critical infrastructures of variable sizes. The five dimensions proposed are:

● Accessibility, which defines methods and methodologies for exposing data in order to be
consumed, proposes automation of development and release cycles, proposes methods of
presentation of data services in shared infrastructures.

● Anonymity, which highlights forms of establishing the separation of real and digital identities
with no need to obstruct participation in essential actions such as civic or governmental
processes, where consistent authentication is required.

● Transportation, which presents methods of maintaining confidentiality and consistency of data
while moving or trading private information between end-nodes, exposes limitations of
communication facilitators.

● Distribution and Orchestration, which presents mechanisms that perform data isolation and
packaging as part of the effort to ensure data secrecy and portability, methods to distribute or
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localize data, methods to schedule and spin-up data processors near the data stores in order to
avoid any possible delays generated by data migration, orchestrators that guarantee correct
application of Quality-of-Service policies or User policies, forms of mixing diverse
distributed infrastructures orchestrators in order to gather the goods from all and to cover
particular data manipulation scenarios.

● Risk assessment, which delivers methods and methodologies for building consistent security
and privacy reports for assets and services to be exposed externally, methods and
methodologies to build infrastructures intended to lure malicious users for organic analysis of
their ways to bypass restrictions.

Research Contribution
The thesis includes both case studies and practical solutions in the area of security and

privacy of complex and critical systems, including also the adoption of emerging technologies,
methodologies and practices. Therefore, in the study I adopted and adapted technologies like
Kubernetes, Blockchain, Containerization Engines or paradigms like shifting to cloud, grid and high
performance computing or transition towards microservices architecture. The main contributions are
the architectural overview and architecture methodologies proposed to overcome the security and
privacy challenges in various, multi-node, multi-tenant complex infrastructures, highly scalable,
covering a wide range of usage scenarios: from governmental services to finance or information
technology sectors. It is counted among my contribution the following:

● proposed a methodology that gradually support the transition of complex high performance
computing orchestration solutions, designed as monoliths, towards microservices paradigm

● implemented an automated workflow in one of the most expensive, critical and important
High Performance Computing and Grid Computing infrastructures, hosted by the ATLAS
experiment at CERN that allow tenants to properly visualize and manipulate machine learning
jobs/task processed data on an on-demand basis

● provided a complex analysis on how to adapt Kubernetes to support workload in High
Performance Computing, with emphasis on maintaining the user context isolated and secured

● generate a classification taxonomy for Kubernetes adaptations in High Performance
Computing for recent scientific literature

● presented simple but important improvements to Kubernetes adaptations in High Performance
Computing from recent scientific literature to better support the model and methods adopted

● led a study on the security and privacy of the containerization engines available on the market
with emphasize to the privilege escalation problem, investigating how by stripping the
isolation taxonomy may increase the resilience to corresponding attacks

● proposed a concept architecture for a system over Kubernetes that can constitute the basis for
designing a HPC-Grid governance mechanism, following patterns and practices inherited
form the cloud paradigm

● presented a methodology to design an e-election system over Blockchain with focus on
privacy and anonymity, by enforcing a data abstraction model in three stages

● proposed a complex methodology to help architects on defining honeypots architectures over
Kubernetes, alongside the legitimate production environment

● provided a heuristic and framework for defining honeypot generators to hide possible
similarities between successive deployments, provided an heuristic and a architecture for
defining honeypots generators in order to make such critical systems resilient to deployment
pattern matching over multiple distinct infrastructures

● provided a heuristic that implements real-time transactions over slow blockchains
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1. Data Accessibility

The first point to be defined regarding data privacy and security is data accessibility.
Therefore it is essential to understand several methodologies of exposing data to the outside world and
the mechanisms that facilitate quick reaction in case of failure, data breaches that require a hotfix,
updates with high availability constraints on data access and so on. Thus, I explore the capabilities of
a cloud environment to be used for displaying critical data and the opportunities to expand existing
distributed processing infrastructures with emerging services. The aim is to ensure a small code
change footprint to enable new services in critical, expensive but legacy infrastructures in order to
cover modern data protection policies.

1.1. Research Questions
● What are the opportunities to address the necessary automation over the

Software Development Lifecycle in critical infrastructures?
○ How to perform early detection for potential data exposure breaking

points?
● How to permit quick reaction in case of a 0-day exploit?

1.2. Contributions
● Stan, Ioan-Mihail, Siarhei Padolski, and Christopher Jon Lee. "Exploring the

self-service model to visualize the results of the ATLAS Machine Learning
analysis jobs in BigPanDA with OpenShift OKD3." EPJ Web of Conferences.
Vol. 251. EDP Sciences, 2021.

1.3. Background

1.3.1. DevOps and DevSecOps

Figure 2 - Software Development Life Cycle - Data Flow

A good opportunity to sustain the digital transformation effort in order to modernize legacy
software is to outsource small but relevant functions to a cloud provider. Therefore, instead of
inserting the entire logic of a new feature into a huge code base, sometimes defining monolithic and
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complex structures, a way to improve the development process is to detach them from the main
solution and design them as individual services or even microservices. Therefore the effort to respond
to change requests comes down to only defining loosely-coupled remote routines and not embedding
the entire new logic into the complex structure of the system. In order to sustain a significant growth
in modernizing the legacy infrastructure with such an outsourcing management model, it requires to
enforce an automation mindset among the contributors to digital transition. One step further is to
adopt methodologies and practices from the DevOps culture and to generate automated pipelines
(assembly lines) following the Software Development Life Cycle data flow (Figure 2). One important
practice, essential to modern software development is Continuous Integration[45]. By definition,
continuous integration covers the software delivery process from the code base up to the deployment
in the integration testing infrastructure (Figure 3).

Figure 3 - Continuous Integration

One quality gate can be set at code submission time and is achieved by performing static code
analysis before going further and triggering the build stage. At this point in time, a pipeline enforcing
code analysis may identify anti-pattern code snippets and may propose coding standards, with the aim
to improve not only the efficiency, but especially the security and the privacy of data exposed. For
example, as P. Ferrara et. al. present in [46], in such an early stage, one can have a consistent look on
the privacy requirements over the GDPR policy. While passing the quality gate, the pipeline can
trigger the build stage that, in many cases, must allocate physical resources in order to compile
executable artifacts. With the evolution of containerization systems and with the mass adoption of the
cloud paradigm, other buildable artifacts are also the container images. Containers, for their ability to
run on heterogeneous environments and for their intrinsic portability, are an alternative for delivering
software, very similar to any package management system.

Once constructed, all artifacts (binaries or container images) must be stored in dedicated
artifacts repositories. From here, sequential deployment stages will download the executable objects
and put them in running contexts. In addition, the build stage can integrate another security gate
represented by the execution of the unit tests. If passed all unit tests, the piece of software is qualified
to go further to the next stage in the pipeline.

Last step in Continuous Integration is the Integration testing. Here, if part of a larger solution,
each piece of software previously built is tested together with all the other applications or services in
order to identify any participation issue inside the ensemble. Thus, while in the previous stages, the
artifacts were tested individually, now they are validated together as a whole. At the end of this
session, a deliverable is generated that needs to go through an acceptance testing stage, before being
ready to be launched in a production context. In all intermediate levels, an important part of validating
the maturity of each artifact is to verify them from multiple angles. Therefore, an important insertion
between these regular stages is a rigorous security and privacy testing. Here the emphasis must be on
data leaks, privilege escalation, vulnerabilities in the libraries used and so on. Therefore, as a maturity
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metric, the software must be tamper-proof to at least the well-known vulnerabilities and attack
methods, and not just released in the wild.

Figure 4 - Continuous Integration, Continuous Delivery, Continuous Deployment

Once the acceptance stage is fulfilled, it has to be decided if the solutions developed can be
automatically deployed to production or require human intervention (Figure 4). This thin border
between the two approaches delimits two common practices, namely continuous delivery and
continuous deployment. One relies on continuously producing viable products, while the other
assumes the risk of a continuous flow of development and launches into production every change that
has passed the quality gates set. This latter step is also evaluated automatically. The term continuous
implies that in all targeted stages, the transition must be made automatically.

Figure 5 - From DevOps to DevSecOps

As DevOps [52], DevSecOps is more of a culture trend in the IT industry supported by tools
and automation and the mindset of continuous learning and continuous improving the streamlines
used internally as part of the Software Development Lifecycle. Pragmatically, DevSecOps impose a
shift left of the security (and privacy) validations with the aim to overcome the bottleneck bred by the
security teams while assessing deliverables prior to moving them to production. As can be seen in
Figure 5 and defined by R. Kumar [53] et al., particular security and privacy analysis can be
performed on each lifecycle stage. Thus, the security teams must make a selection of automatic tools,
set the desired security and data privacy constraints and policies in the context of the deliverables
produced and train the developers and operational teams in relation to the working principles. Such
multi-dimensional approach speeds up the time to market and provides the premises for producing
software development in continuous flow, with deliverables that are presented in a mature and
consumable form. Software development is fueled by various security and privacy analyses stages:
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Source Composition Analysis (SCA), Static Application Security Testing (SAST), Dynamic
Application Security Testing, Secret Management and so on, while Operations teams focuses on
hardening, runtime security, monitoring and so on [53].

1.3.2. ATLAS Infrastructure at CERN
Each of the principles and practices presented in the current section were considered in the

development of a feasibility study (proof-of-concept) regarding the digital transformation and
expansion of the ATLAS distribution infrastructure at CERN. The effort made was to onboard new
functions via the cloud paradigm with a minimum of effort required in terms of changing the complex
code base built over many years of existence. The focus was to propose new architectural models such
as the principle of distributed services and microservices and to perform automation throughout the
development cycle of new features. The proposed solution has been created to support the transition
towards the DevSecOps principles and mindset, especially from the perspective of the infrastructure's
criticality and its importance in a global context. The proof-of-concept was built around a solution for
visualizing data processed in the Grid and HPC infrastructure for machine learning tasks, since, in an
internal context, they require a special management and a dedicated handling methodology with the
aim of privacy and multi-tenancy. The cloud enabler was the OKD version 3 ( a Kuberentes flavor for
enterprises, powered by RedHat OpenShift)

Before going further, I will briefly introduce the structure of the ATLAS computational
infrastructure dedicated to simulations and analysis tasks.

Figure 6 - ATLAS Distributed Computing (Analysis infrastructure) High Level Overview

The ATLAS distributed computing system grants scientific groups and individuals with the
capability to analyze huge and expensive collections of data generated by particle collisions in the
Large Hadron Collider (HLC) and detected as events in the ATLAS sensor at CERN [55]. At the same
time, for the validation of scientific reasons, the same infrastructure serves for running Monte Carlo
simulations [56] and also for executing distinct production scenarios, originating from other scientific
areas. As can be seen in Figure 6, compiled from the information and architectural views present in
[57][58][59], the infrastructure abstracts and orchestrates scientific requirements, hiding behind a
complex data, metadata and workload management system. The ensemble is capable of running over
heterogeneous systems, distributed over large geographical areas and implementing different
paradigms (HPC and Super Computers, Cloud, Grid, University Networks and so on.). The system
itself embraces the Grid Computing paradigm, tailored to support the variety of systems involved in
scientific research. The orchestration of analysis or simulation tasks/jobs receives various inputs for
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their optimal scheduling and execution, including here the problem of data localization, which can be
in huge quantities, difficult to move to the premises of another Compute Engine. Other obvious
problems are those regarding the execution constraints and user policies applying on scientific groups,
individuals, or the resources availability.

The brain of the tailored infrastructure is the PanDA workflow manager [58], which gathers
around it all the essential systems. It implements the batching system, taking over the standardized
tasks from the submission platforms and queuing them in priority queues. Based on the input from the
metadata providers, it communicates with the Harvester buffer system or directly with the Pilot
systems to forward the tasks/jobs to be executed by the processing engines. PanDA is equipped with a
system for monitoring tasks/jobs throughout their lifetime, making it a perfect candidate for the pilot
project proposed by me. The monitoring platform is called BigPanDA [59].

1.4. Case Study - Data visualization cloud service with multi-tenant support
for HPC and Grid Processing

Figure 7 - Concept architecture of a self-service system for ML data visualization services

In the current case study [60], I focus on defining the interaction between BigPanDA and
OpenShift OKD. The context of such an interaction is related to the need to view Machine Learning
analysis data in a friendly format. At the same time, a management model detached from the core
ATLAS orchestration is being tested. As can be observed in the concept architecture and interaction
flow (Figure 7), a tenant, which has previously submitted a Machine Learning job or task to the
ATLAS processing infrastructure, can also request a visualization service to display the results. For
each demand, the BigPanda controller triggers the creation of a web service in OpenShift OKD. As
part of this routine, BigPanda’s role is to locate the results and download[59] them from the ATLAS
distributed infrastructure, via Rucio[72]. Once data is stored and indexed within BigPanDA, the
controller calls the OpenShift OKD API and triggers the creation of an MLFlow web service along
with all the OpenShift (Kubernetes) communication and configuration objects. The MLFlow pod
downloads the Machine Learning artifacts from BigPanDA and stores them locally, in a
temporary/volatile location.

Following such an approach, the BigPanDA solution outsources data visualization
management to an external cloud platform, optimized for this type of interaction. The principle on
which I based the architectural model is "segregation of duty". Therefore, instead of having one
solution that fits all, various auxiliary routines can be detached from the main solution and executed
through specialized platforms. OpenShift OKD is a viable platform for various scenarios, especially
when it involves creating on-demand services, multi-tenancy and intelligent container management.
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To take advantage of OpenShift and also to increase the portability of my solution, I deliver the
MLFlow instances in containers and pods. Following this cloud native model, the solution is
extremely portable and can be easily adjusted to run on most public and private clouds.

Figure 8 - OpenShift objects and communication model

OpenShift OKD is a Kubernetes implementation, therefore, it inherits the same base
architecture as the one implemented by the core project. A service that needs to be exposed to the
outside world will most often be accessible through the ingress-managed load balancer. Therefore, if a
client would want to connect to a service running inside an OpenShift OKD cluster, the client will be
able to use a specific domain name to reach that service. Furthermore, an ingress controller can also
manipulate internal routes to forward traffic toward various services based on subdomains or paths
selectors. BigPanDA will use the routing mechanism (ingress controller) to enable multi-tenancy by
creating unique fan-out definitions (Figure 8) and communication primitives for each MLFlow
instance, through the OKD API.

In addition, I observed that both OKD 3.11 and MLFlow v1.9 (versions selected for the proof
of concept) do not support target rewriting. This concept means that if an HTTP request path does not
correspond to an existing resource or application endpoint, the request will end up generating a
resource-not-found error. Since I will be using one DNS domain for all MLFlow instances running in
parallel, one can identify each instance by a random string embedded within the resource path. Some
web servers or web applications support remapping a non-existing endpoint to the root path. However,
both out-of-the-box OKD 3.11 with HAProxy Ingress Controller and MLFlow v1.9 do not have
support for such configuration. To work around this issue, I adopted a multi-container design pattern
for pods - the adapter pattern[73]. An Adapter object is located in front of the main MLFlow
application service, and it handles the requests coming from the load balancer. Each HTTP request
will be translated and sent to the MLFlow service through the localhost interface (Figure 8).

Figure 9 - DevOps practices

Finally, and also part of the architectural vision, I decided to create my own base container. It
includes the MLFlow middleware and the assembly scripts and is built using the native build
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capabilities available in OpenShift OKD. Therefore, I separated the preparation of the base MLFlow
image from the actual application deployment, respecting the DevOps methodology and practices
(Figure 9). All the configuration items are currently stored separately from the BigPanDA code base,
and everytime a change is detected, a trigger executes the Continuous Deployment pipeline.

1.5. Insights
In this current case study I have developed a new feature for BigPanDA that offers the ability

to visualize the machine learning results, produced in the ATLAS Distributed Computing
infrastructure. A tenant (PhD student, scientific groups etc.) can request such a service directly from
BigPanDA, and the workload will be further delegated to an OpenShift OKD cluster via REST API
Calls. OpenShift will spin-up a MLFlow pod per request, download the Machine Learning artifacts
from BigPanDA, expose the web service to the outside world and maintain high availability through
the native healing mechanisms. Following this delegation model, I demonstrated that BigPanDA can
easily adopt a cloud native approach and also that it can function as a catalog of scientific services, in
the context of the ATLAS Distributed Computing at CERN. Moreover, I also followed several
DevOps methodologies and practices to facilitate the build of the base MLFlow container from
scratch. Therefore, I implemented continuous integration and continuous deployment pipelines using
the native mechanisms of OpenShift OKD. These pipelines are triggered automatically each time a
PUSH event occurs in the external configuration items repository. Furthermore, as a good practice, the
deployment strategy is using the rolling-upgrade model, a method that minimizes downtime inevitable
for an upgrading process. Finally, I also implemented a garbage collector, a Python procedure that
identifies old service instances and deletes them if they passed the 24 hours expiration time.

The results obtained during the testing phase certifies the end-to-end functionality of the
integrated solution. For new iterations, I have already identified a few other paths of development and
optimization and here I include: the use of initialization containers, a migration to the operators
pattern, use of health probes and the delegation of the routing process to another ingress controller
solution. These changes can bring significant improvements to the solution architecture, as they apply
a more performant functional block separation model and also remove the need to have additional
components such as an adapter object.

In the current case study, I presented a way to expose critical data in complex, legacy, and
multi-tenant environments by outsourcing the data visualization function to an external cloud
environment. An easy way to restrict access to data, accessible to any developer, is to implement light
obfuscation methods over the access coordinates. In addition, automation plays a key role as a method
to react quickly in the event of a major hazard. All these implementations are relevant components in
establishing the data accessibility dimension.

2. Data Anonymity

In any data exchange, the transmission infrastructure needs to ensure no critical or private
date is disclosed. This is a mandatory security and privacy function and is frequently added as a native
capability to communication facilitators. From asynchronous HTTPS API calls among services
running together to provide complex outcomes to securely encrypting and signing data prior to storing
it to a distributed, decentralized database, many technologies cover such needs and provide them with
no extra effort, while deploying the solutions. However, such capabilities only establish boundaries
that enclose the information transmitted among end-entities and do not obfuscate the source of data or
the information that targets entities or individuals. Thus it ensures only half of the privacy needs when
performing analysis on critical data. The other half has to deal with the actual knowledge shared and
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must hide any private information of the origins of data or of the targeted audience [75][76].
Blockchain provides peers with mechanisms to hide their real identity behind a digital identity.
However, as Q. Feng et al. present in their state of the art paper [80] , through its peer-to-peer nature,
a public implementation developed around crypto-currencies is not fully protected against network
analysis or address clustering analysis that may reveal the source of data. My approach is to adapt and
distribute the effort of handling data to multiple institutions in a private and permissioned
implementation, while part of the anonymity and obfuscation heuristics and functions are outsourced
to other, outside of blockchain (off-chain), custom technologies. I demonstrate that blockchain
solutions can cover the needs of a critical governmental process - the state election process, following
and aggregating success stories from countries that ran such e-election pilot projects before.

2.1. Research Questions
● How can ensure anonymity/information confidentiality over public1 data in

critical systems that require user authentication?

2.2. Contributions
● Stan, Ioan-Mihail, Ilie-Constantin Barac, and Daniel Rosner. "Architecting a

scalable e-election system using Blockchain technologies." 2021 20th
RoEduNet Conference: Networking in Education and Research (RoEduNet).
IEEE, 2021.

2.3. Case study - Blockchain in government services

Figure 10 - E-voting platform - concept architecture [92]

When defining the architecture of an election system [92], it is mandatory to embed security
patterns within its structure, from the very beginning. The main challenge when running a nationwide
e-voting system for state or community elections is to ensure a balance between anonymity and the
risk of inserting malicious unsigned ballots within the system. Since these 2 concepts may somehow
conflict with each other, the activity of splitting the architectural view into dataflows and fully

1 shared/exposed outside users' premises
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isolated functional blocks becomes a de facto requirement. Therefore, when designing an e-voting
system, one main aspect is the segregation of duty, on one side from the business logic perspective
and on the other side from the target responsibility group perspective. One state organization should
evaluate the authentication and authorization part and translate an active elector into a digital entity,
another state organization should deal with the flow of the anonymized ballots, double checking and
removing any personal information and transferring them to a collector entity. Finally, the election
process should be concluded by a specialized organization that needs to reveal and count the votes and
publish the results.

To ensure anonymity, the authentication and authorization mechanism needs to be fully
detached from the main voting system (Figure 10), thus minimizing the specter of chances to be able
to match a human being with its digital identity. The authentication and authorization mechanism uses
the legal means to identify a person that has the right to vote in the current election process.
Furthermore, based on the user coordinates, it also has the role to allocate the digital identity of a
voter to a local organizational unit for optimizing the election process and increasing the traceability
in case of malicious attempts to generate multiple ballots (a double spending problem [96]). This
heuristic needs also to monitor those users that were blacklisted by the legal systems, and it has also to
be in touch with the local organizational units to revoke those certificates that are connected to a
recent blacklisted user, and in consequence to cancel all the votes generated by that user.

Once translated into a digital entity, a citizen gets a private key and a certificate signed by the
local organization, which can be used in the encryption process to sign digital ballots for participating
in the current election process.

The voting process itself requires 2 encryption stages and should allow participants to change
their option before the election due date. The ballot itself will be wrapped into a “double envelope”
[97] to secure the information and protect the identity of the elector during the election process. In the
first encryption stage, the information stored within the ballot will be encrypted with the public key
allocated for the current election campaign. Once secured, the ballot must be delivered to a collector
unit, dataflow which triggers a second encryption process. In this second stage the output previously
generated is signed with the user’s private key and sent to a collector unit, the information being
encrypted with the collector’s public key. Pragmatically speaking, the ballot box has its own pair of
keys with the aim of hiding and protecting the ballots in the digital context. However, in case the
ballot box is compromised, the participant’s options won’t be visible since the election campaign
private key will be hosted by another unit which is in charge to compute the voting decision.

The aggregator or the digital ballot box will continuously receive transactions containing the
voter’s options, preserved in a cryptographic envelope. The entity will actively monitor the time frame
established for the voting process and consider only the latest transaction received from a specific
origin. Therefore, in case an elector will want to change its choice before the election due date, only
the latest option will be considered. Once the time frame allocated elapses, a routine will reiterate
through all ballots received by the collector entity, will extract the encrypted recording of a vote, and
remove the user’s signature. At this point in time, any link to the originator of a vote will be removed.
The collector entity will forward all the encrypted ballots to a decisional unit that will further compute
and publish the results of the election. Any new transactions coming from local units will not be
considered and will not be further sent to the decisional unit, making it impossible to manipulate the
system after the election’s time frame elapses and the digital ballot boxes are sealed. One key aspect
when defining such a model with 2 main dataflows (local hubs to collector unit and collector unit to
decisional unit) is to isolate the communication channels between local organizational units and
decisional units. Following this approach, the information flow will be hidden for those critical
components of the system and therefore no unit will be able to run complex algorithms and do parallel
calculations based on behavioral patterns. Of course, if all the system’s components will be managed
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by only one authority and the digital security will not be doubled by law, the system will not be
tamper-proof. However, by distributing the responsibility to specialized administration units, such
segregated topologies may become opportunities in designing nationwide e-voting platforms.

The structure proposed follows some success stories and design patterns absorbed from
existing implementations from countries like Estonia, Norway, or Switzerland. However, one
interesting challenge remains the structure of the authentication mechanism. Here one implementation
has to bring to a remote location or into the elector’s home, the security and privacy provided by a
specialized voting center. An option can be the adoption of a specific election card, or a key stored in
an electronic ID, hidden behind a pin code, and read with a specialized USB chip reader. Another
option can be a digital signature obtained from a valid organization prior to the voting process.

A third option, and the one that has been considered by me when designing the concept
architecture, was the idea of obtaining the full control of the webcam of the device from where an
elector decides to express the voting options and use this capability to gather essential information.
Prior to accessing the voting interface, a user is asked to scan the ID or passport, by using the device’s
webcam and to pose for some profile pictures [98]. A similar method is currently used by companies
that provide alternative banking services [99] to open new debit accounts on behalf of a person. Once
obtained all the required input data, complex artificial intelligence algorithms can ingest that
information and authenticate or reject the access of an user by trying to find similarities between the
identity retrieved from the official documents and the pictures taken by the webcam.

Another key aspect when detaching the authorization and authentication mechanism from the
main e-voting platform is the ease of management when the election process runs a hybrid model.
Having one centralized system connected to any evidence of population databases and able to register
people that express their vote through any means may also significantly reduce the risk of double
voting. This model needs also to be supported by a methodology to establish the priorities in case of
an attempt to vote through all available means (e.g.: votes expressed through postal services vs
electronic vote that can be easily canceled through certificate revocation; paper ballot must replace
any other method).

As the global context has shown us the stake of digitalization during the Covid-19 crisis,
quick solutions for complex problems might be an important driver nowadays. One big opportunity is
to reuse existing assets in solutions and scenarios where they can bring a significant contribution even
if they were not designed to perfectly fit within the context.

Considering this driver, I adopted Blockchain and Hyperledger Fabric to make use of those
well-tested and mature routines that address part of the critical building blocks proposed in the
architectural view.
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Figure 11 - Designing over Hyperledger Fabric [92]

The model adopted by Hyperledger Fabric [36] emphasizes the role of organization in the
structure of a communication topology. Each macro entity is represented by an organization on behalf
of each, users can send information within the network. One organizational entity can establish its
own validation rules and admission controllers and can also simulate the behavior one transaction may
trigger within the network. Furthermore, the structure can be distributed to several systems, not
necessarily collocated, which can also segregate the responsibility for specific decisions to specialized
administration entities. Having a broader look (Figure 11), besides the participative component, one
organization has its own Certificate Authority to authorize and validate users subscribed to it. For my
use case, I have 3 types of organizations, but only one type exposed to electors to express their vote.
As previously described, I have several local hubs that can be distributed geographically, one collector
unit or a digital ballot box and a decisional unit that needs to receive all ballots and to be able to
compute the election results. Since the aim of my architectural model is to centralize the
authentication and authorization mechanism, the user’s distribution, and communication with local
organization’s CAs will be managed from external via Hyperledger APIs. Thus, one actor will go first
through a 3rd party authentication mechanism that will take decisions based on the actors’
coordinates. First, a heuristic will assign the user to a local organization (e.g., based on the user's
home address). Once decided, the same external entity will trigger the appropriate Certificate
Authority to generate a digital identity for the authenticated user. The same entity will monitor the
blacklisted users and ask the organization to cancel and to remove the rights of voting for a specific
identity.

Once authenticated, the users will get access to another 3rd party interface, associated with
the local hub. From here it will be able to generate encrypted ballots and trigger blockchain
transactions on behalf of the local organization. Thus, the additional logic that stays above the existing
routines of Hyperledger Fabric, will be the ability to generate a secret ballot encrypted with a
supplementary public key, generated in advance for the current election process. Once generated, this
value-bearer asset (in the form of an encrypted message), will be sent through blockchain to the
collector entity (digital ballot box) in the form of a blockchain transaction. At this point the ballot will
have a double envelope, since it is in the form of an encrypted string, encrypted also by the transaction
mechanism with the key belonging to the collector.

The transaction flow process can be redesigned via custom chain codes, since it implies
several constraints related to the enforcement of a time frame for the election process and the ability
to change the original vote before the due date. Thus, the chain code will require to interrogate an
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oracle to monitor the time frame (e.g., a Network Time Protocol server from outside) and must
override the value-barer asset in the destination if several other transactions are triggered from the
same source. Moreover, if the time frame elapses, the chain code should stop processing any further
transactions.

Another chain code might be also required between the collector entity and decision-making
unit. Once the election time frame ends, this chain code should gather all the assets received by the
collector unit, remove any digital signature, and send them in transactions to the decisional unit
account. Once reached, the decisional unit can forward the information to another 3rd party service or
run another chain code that hosts the current election key pair and decrypt the ballots and compute the
results.

To provide full isolation between the communication channels established among the local
organizations and the collector and between the collector and decisional unit, Hyperledger provides
the concept of channels. Therefore, an implementation using this feature will have two different
blockchains and two chain codes residing on different blockchains.

Since Hyperledger Fabric is a permissioned/private blockchain technology, the consensus
mechanism can be simplified based on the business need. In my case, the consensus should be
established by the receiving unit, like a supply chain implementation. Therefore, the destination
organization should validate the parameters of a transaction and propose blocks.

Using blockchain may also increase the traceability in case of an investigation of fraud as it
will be easier to follow each stage a vote has been through, even if the information recorded is secret.

2.4. Insights
In the current case study [92], I proposed an architectural model, oriented on blockchain

technology for a national voting system. The design and architectural decisions were built bottom-up,
starting from the Hyperledger Fabric structure, and incorporating patterns from existing voting
systems. The novelty proposed by me results from the model of segregation of the functional
components, from the authentication method taken from the world of alternative financial solutions
and from the simplicity of the model easily adaptable to any state regional organizational chart. In
addition, a minimal implementation of the e-voting platform provided a good prediction of scalability.
I based my measurements on fine-tuning of the Hyperledger Fabric configuration parameters, and I
identified those configuration items that will increase the overall system performance - blocks with
many transactions and embedded GoLevelDB database for state management. Following a distributed
and decentralized model, the system proposed turned out to be fault tolerant and resilient to malicious
forms of manipulation.

The transaction heuristic chosen, by establishing 3 phases of the voting process, the
aggregation and generalization stange enforced and the use of the double-envelope methodology,
offers a granular perspective on the establishment of the dimension of the anonymization of data
transmitted.

3. Data Transportation

Another essential aspect to be presented in regards to data privacy and security is how data is
moved while properly maintaining the boundaries of ownership and its secrecy. Such aspects may
require better understanding of how a communication topology must be built in order to cover
natively such requirements. Furthermore, it is also very important to understand the opportunities of
scalability and the resilience of the infrastructure deployed in the event of a network attack. While
many infrastructures are able to properly manage privacy and security demands, sometimes they may
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involve considerable performance or resource demand costs which must be balanced in order to
provide a desired outcome. In communication in particular, there must always be a tradeoff between
security and privacy policies and velocity, since the excess of one affects the other dimensions. Full
security and privacy analysis on single or correlated events, captured in a communication network,
may bring a disproportionate cost of resources and may slow down the communication flow.

3.1. Research Questions
● How to ensure data authenticity2 and change data ownership in byzantine3

communication?
● What are the opportunities, and which are the costs to transport confidential

and valuable data?
○ How to transfer valuable digital assets over the Internet?

3.2. Contributions
● Popa, Alin Bogdan, Ioan Mihail Stan, and Răzvan Rughiniş. "Instant

payment and latent transactions on the Ethereum Blockchain." 2018 17th
RoEduNet Conference: Networking in Education and Research (RoEduNet).
IEEE, 2018.

● Stan, Ioan-Mihail, Ilie-Constantin Barac, and Daniel Rosner. "Architecting a
scalable e-election system using Blockchain technologies." 2021 20th
RoEduNet Conference: Networking in Education and Research (RoEduNet).
IEEE, 2021.

3.3. Background
Besides its storing function, Blockchain is a peer-to-peer network (P2P) that ensures

communication between peers via transactions. Thus, each transaction (communication occurrence) is
validated by the community and stored, in data structures called blocks, in the ledger, for traceability.
The validation process requires recipients to satisfy the conditions imposed by the smart contract in
order to process the transaction. Once validated, a transaction is performed only when the consensus
was reached among participating peers and the transaction is listed in a newly generated block further
attached to the blockchain. While performing such a complex validation process, the times of
processing transactions may increase and therefore the communication can be less efficient. However,
depending on the implementation, different blockchain solutions can record different time values
between consecutive block promotions. In the public spectrum, implementations for cryptocurrencies
are directly impacted by the consensus mechanism. In Bitcoin, for example, the time between
promoting consecutive blocks is approximately 10 minutes [109], while in Ethereum, the GHOST
protocol[110] supports quicker block times, approximately 10 to 19 seconds. In addition to
transferring digital assets between peers, a blockchain solution has to deal with exchanging
transactions and blocks information among all peers. Furthermore as V. Deshpande et. al [106]
explained in the problem statement, each peer needs to maintain locally information about the
communication topology, full or partial. Therefore, each individual needs to rely on peer discovery

3 exposed to a wide spectrum of attacks
2 origin
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mechanisms, filtering mechanisms for inbound traffic, neighbor selection heuristics and so on. Part of
these side actions have a direct influence in the overall communication progress. As V. Deshpande et.
al emphasize, the communication topology properties is influenced by the blockchain type, the
consensus mechanism, the amount of inbound and outbound connections and by the neighbor
selection process. In addition, the paper provides measurements that prove how permissioned
blockchains can manage fewer peers than public blockchain implementations, due to the lightweight
consensus model. Furthermore the authors make a distinction between voting consensus mechanism
and lottery mecanism, the latter being able to gather more stakeholder inside the network.

As J. Spasovski et. al. defines, compared to non-blockchain implementations [108],
blockchain solutions may have delays up to 2-4 times in response time and may not have the same
resilience in case of heavy load. In order to minimize the impact of the consensus mechanism, authors
run analysis on proof-of-stake blockchains, lightweight consensus mechanisms that conserve the
processing power and engage peers to participate with their wealth in the network. Since their stake is
directly impacted by the behavior shown in the distributed and decentralized system, it requires less
power and causes less congestion. However, as the authors emphasize, blockchain solutions scale
linearly and with enough nodes joining to the network, such implementation may still record good
telemetry: high throughput and low response times. With the intrinsic values of blockchain regarding
immutability it may still be a perfect fit in various scenarios including critical industries focused on
secured transactions.

Blockchain became a suitable option for ensuring a proper and secure internet-of-things
communication platform, supporting big data, especially in the private spectrum. As J. Zhang et al
present in the paper [107], blockchain implements the concurrent communication tree model and also
is able to distribute the storage function towards multiple aggregator nodes, enforcing also proper
security and privacy over data transmitted. In private and permissioned blockchains, users can adhere
to organizations' networks in order to gather information from sensors and IoT devices [111][112].
Thus it can be used in smart cities implementation to gather relevant telemetry and to securely share it
to the audience. Furthermore, it can be used to trade energy in microgrids, sustaining the innovation of
the energy industry.

Public blockchain are the most well known implementation by masses and are mostly used in
cryptocurrency. With the rise of Ethereum and their turing-complete smart contract programming
language [113] - Solidity, a new age of online services consumption has been born. Thus, Ethereum,
through DApps [114], is now able to provide processing power on demand with no need to own the
underlying infrastructure by one service provider. However, over time, blockchain solutions were not
fully tamper proof against network, smart contracts or consensus attacks [115][116][117] and
sometimes such attacks resulted in actually corrupting the ledger. One of the problems is related to the
double spending problem, when, in cryptocurrency, a peer fools the network and manages to spend the
same value-bearer token in two distinct transactions. Two of these transaction security issues [115] are
represented by the Finney Attack and Race Attack [117], both making use of an early logic flaw in
processing transactions. In recent updates, such issues are no longer possible, since now transaction
processing is constrained by a confirmation heuristic. The most problematic issue, also related to
transaction security, is the 51% issue [117]. This happens if a peer or a sub-community of peers
control more than a half of the network. These cyber-cartels, in theory, can alter the blockchain as
they are capitalizing more hash rates than the other miners.

The spectrum of network attacks is also comprehensive being the most relevant in the context
of communication. Categories of attacks are also inherited from former P2P solutions, used in other
domains. One relevant problem is the Sybil attack where a malicious user can create and hide behind
multiple identities. Another relevant network security issue is the Eclipse attack [115][116], a targeted
attack with the goal to disconnect a node from the blockchain and make it communicate and exchange
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information only with malicious nodes. Such issues can be solved if the node is able to identify
legitimate neighbors and reject any other inbound traffic.

In addition, as in any publicly exposed setup, all participating nodes can be subject to
Distributed Denial of Service attacks, therefore with no extensive protection in place, targeted nodes
can be disrupted.

Part of the security issues previously presented may not be relevant in private and
permissioned blockchains, as in most cases, these are closed networks where the peers are certified
priorly, before joining the community. Public blockchain are permissionless, meaning that everyone
can join and any information exchange must be validated by miners which involve enough processing
power to protect the network. All the information is public and everyone can read from and write to
the distributed and decentralized ledger. Private permissioned blockchains may fit better to other use
cases, where the concern is not on complex validation but on traceability inside closed communities.
The cost of running consensus mechanisms like Proof-of-Work, able to cover the full byzantine
context, may not be feasible, therefore lighter consensus mechanisms are required. Algorithms similar
to RAFT[118] implementing the leader election paradigm or similar to lottery-based election
algorithms provide sufficient trust in private-permissioned blockchains.

3.4. Case study - Instant payment in crypto-financial transactions via the
Ethereum Blockchain

Figure 12 - Latent Transaction System Concept Architecture

Implementation like Ethereum [120], which provides mechanisms to extend the base
functionality of the network via Turing-Complete smart contracts and DApps, opened up a new
market for managed services, renting processing power in exchange to crypto currency. Therefore,
through DApps, in theory, one can access a large variety of services developed as an extra layer over
the public setup. Even if Ethereum records small block times, for real time services still does not offer
good perspectives. Therefore, one method to overcome the velocity issues is to develop a
complementary infrastructure in a hybrid mix. Therefore the innovative idea on which I contribute is
called latent transactions [119] and implement core banking and insurance services over Ethereum. A
latent transaction is an off-chain agreement that provides guarantees to both consumer and
producer/facilitator that in exchange for real-time services, a remuneration transaction will be
processed at a later time. The two guarantees on the consistency of the agreement are the ERC20
[121] standard for developing smart contracts that provides the means to control the balance of a peer
once a contract is established and an alternative rating system for both stakeholders, based on previous
experience (Figure 12). Furthermore, in addition to novel latent transactions, the hybrid setup also
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proposes a platform that displays a service catalog, ready to onboard new real-time service providers
(as for example game servers maintainers or video streaming service providers).

Following the industry standards in regards to real time services there were established five
distinct acceptance criteria for remuneration systems:
Q1 - The solution needs to be able to expose an infinite variety of services or operations
Q2 - The trust in a supplier must be based on rating and analysis
Q3 - The services payment must be adaptive based on to demand or computational effort
Q4 - The system must support instant payment/remuneration
Q5 - The system needs to accept requests and provide services even if the stakeholders are
disconnected from to the public blockchain while exchanging data

To summarize, the case study presents a solution that aims to solve the transaction latency in
Ethereum Blockchain and similar networks. Therefore a novel concept has been presented called
latent transactions that outsource the amount exchanges to an off-chain platform while the actual
payment can be registered in the main Ethereum chain at a later time. The setup supports adaptive
prices and is designed for real-time services vendors. The solution has been developed following the
ERC 20 smart contract standard and in order to overcome possible double spending issues due to the
off-chain character of the solution, it also implements a rating service to express the trust of peers.

3.5. Discussions
In regards to the case study presented in the previous section - Data Anonymity, Permissioned

blockchain represents a subcategory of the blockchain implementations that are designed to run
privately and to provide a network with an extra layer on top, for access management. Therefore, each
peer joining the network has to obtain a digital identity from the blockchain manager, provided via
x509 certificates. Each certificate embeds a set of parameters that define the permissions a
stakeholder has within the network. Such security models provide better privacy than the public
solutions, since each member has granular access to the information stored into the blockchain and
also has a dedicated and pre-established role within the network. However, since the participants are
all known and pre-validated, such solutions lack anonymity. Furthermore, the consensus and data
validation is handled by a pre-established set of participants [122]. Thus, in very specific cases, this
comes with an issue as designated stakeholders can change the consensus mechanism, membership
policy or smart contracts lifecycle[123] at runtime. In most implementations, in financial sectors and
not only, such blockchain networks are maintained by consortium of organizations, exchanging
transactions and valuable information, validated by authorized members and not by miners as in the
public spectrum. As M. Cash et al [124] mention, not all peers have the right to read or write to the
blockchain. By its characteristic of being private, it does not mean that a blockchain cannot be
exposed outside, it means that not all peers have the access to manipulate data within the ledger. Other
opportunities associated with permissioned blockchains is the semi-decentralization, where by design,
it does not need broader communities in order to secure the network, but fewer participating entities.
This makes it run faster and imposes lighter consensus mechanisms. Furthermore, by its nature of
being modeled at runtime according to the goals of the participating entities or organizations, the
solutions implemented in the private spectrum are highly customizable and provide interoperability
mechanisms. However, even if in terms of communication, it implies a trust model and access
management suitable for covering most privacy concerns, such solutions have their own pitfalls. Thus,
by limiting decentralization, brings opportunities to corrupt the network since the security is handled
by fewer, designated, peers. If compromised, they can easily affect the integrity of data. However,
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such situations are less probable as most of the implementations are not transiting towards
centralization but follow an incremental decentralization.

The blockchain solutions are suitable for providing the communication topology for trading
valuable information, exchanged in critical or noncritical industries, especially when using
permissioned blockchains. However, one pitfall is the fact that it may involve consistent
computational power and storage capacity for only one service that ensures communication and
traceability. Thus in many cases, the limited spectrum of services delivered in contrast to the
infrastructure involved may not be feasible, as the cost of maintaining such a network may not be
advantageous. Even if through complex smart contracts one can extend the spectrum of consumable
services, they are still limited by slow processing, by constrained development and code maintenance
overtime and also by the intrinsec immutability, which does not allow hotfixing existing
contracts[125]. Therefore, for the same resources involved one can implement the cloud paradigm
which can significantly extend the services portfolio and also provide various communication services
that can be used (alongside the others services). Another problem regarding Blockchain is related to
the GDPR compliance [126], where the right to be forgotten can not be easily implemented as long as
historic data must be kept inside as part of the immutability attribute. Normally, the proof of burn
which is the capability to delete the cryptographic keys which provide the access to the private data is
not fully compliant with the regulations since encrypted data are still available and shared among the
participating nodes. However, in hybrid setups, the real data can be hosted in external data sources,
compliant with the regulation, while a fingerprint can be kept in public blockchains. As N.B Truong
et. al. suggest, in permissioned blockchain many compliance problems can be addressed by properly
establishing the GDPR specific roles (Data Processors, Data Controllers, Data Subjects etc) and
developing an external access management on top of the blockchain system, including an
intermediation on any exposed API.

3.6. Insights
To summarize the information presented, the blockchain is an excellent starting point for

establishing a communication topology that natively ensures the need for security and privacy of the
transported data. However, the exposure in the public space brings a new set of attack methods,
slightly different from the classic models. Even in private exposure, the risks of data manipulation are
still present. However, the technology delivers sufficient protection out-of-the-box, reducing the effort
of developing additional methods to complement the shortcomings. For the migration of security and
confidentiality control over the transported data, in the premises of the delivered service, the cloud
paradigm can be a better facilitator for the communication function.

The public blockchain is an excellent driver for the secure transfer of digital assets over the
Internet and for establishing their ownership. However, the computational cost, the financial cost and
the diversity of network attack types, compared to the usual ones, often make it infeasible.

The private blockchain solves an important part of the problems of the public blockchain. It
reduces the computational cost by using light consensus protocols and addresses private contexts.
However, it tends to break the boundary of data anonymity due to the fact that it addresses small and
closed communities, and the membership is certified. Also, maintenance can be slightly complex for
the collection of functions it offers over the involved infrastructure. The cloud thus becomes relevant
in the context of elasticity and versatility.
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4. Data Distribution & Orchestration

Another topic developed around data privacy is data orchestration and data distribution, a
proposal that concerns and emphasizes matters like data locality and data mobility and how intelligent
orchestration can commision and decommission information with the purpose to ensure availability,
security and privacy. Thus, as previously mentioned, it is important to have means to constraint where
sensitive information arrives, how information is processed and where and how one can ensure
multi-tenancy in distributed systems through smart orchestration. Therefore I explore the possibility to
merge different data governance systems like cloud control plane and scheduling mechanism with
High Performance and Grid Computing management routines, with the aim to consolidate, in a
unified solution, the best from all paradigms. Furthermore as part of data mobility, briefly presented
through the eyeglass of data transmission and data exposure, I focus on validating the consistency of
containerization engines in delivering data via containers. Therefore, on one side, the data processors
are loaded in containers, able to run out-of-the-box on heterogeneous systems, near the data. On the
other side, I validate how containers can preserve privacy using the classical isolation taxonomy
versus a weaker isolation. A container is a method to perform virtualization with support from the
host kernel. Thus, it stays above the kernel space sharing it with the host system. In a more pragmatic
definition, a container can be seen as a multiplication of the user space. From a security perspective,
escaping from a container implies a high risk in corrupting the entire hosting system, as the most
critical part of it is shared among other containers and user space.

4.1. Research Questions
● How can I orchestrate both data and processors over large distributed

systems?
● How data locality4 can be ensured in critical infrastructures?

4.2. Contributions
● Stan, Ioan-Mihail, Daniel Rosner, and Ştefan-Dan Ciocîrlan. "Enforce a

global security policy for user access to clustered container systems via user
namespace sharing." 2020 19th RoEduNet Conference: Networking in
Education and Research (RoEduNet). IEEE, 2020.

● Stan, Ioan-Mihail, Ştefan-Dan Ciocîrlan and Răzvan Rughiniș.
“UNDERSTANDING THE OPPORTUNITIES OF APPLYING
KUBERNETES SCHEDULING CAPABILITIES IN HIGH
PERFORMANCE COMPUTING” Scientific bulletin. Series C: electrical
engineering and computer science

4 move processing where data is located
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4.3. Case Study - User namespace unification for better security and privacy

Figure 13- Conceptual isolation taxonomy for containers [135]

Modern, widely used, operating systems are mostly monolithic, meaning that between
hardware (physical or emulated) there is an abstraction layer called Kernel space. This layer includes
all drivers, schedulers and routines that interact optimally with the hardware. The kernel space offers
services to the upper layer through system calls and enforces a protection ring model for the
components managed. The superior layer, and the one that serves as an interface between the user's
software and the operating system, is called user space.

The scope or the context of a user space is provided by 2 important features/services
implemented in the Kernel (Linux Kernel): cgroups and kernel namespaces[136]. They can limit the
scope of a user-space and provide an isolation taxonomy[136] (Figure 13 - containers isolation
taxonomy with User namespace shared). When talking about containers, one can simply define a
running container as being a separate instance of a user space - Figure 13. In this regard, by applying
the same isolation taxonomy, the new instance of a user space will have its own objects and indexing
mechanism and it will have mostly the same role as the main, native user space.

By switching the observation to the user namespace, this namespace covers all aspects of user
management, including the user indexing system (UID). Therefore, a user with UID 1000 in the
system user space is different from a user with UID 1000 defined in a container. A user policy applied
at the level of the operating system may require adoption and reimplementation in the container.
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Figure 14- Concept architecture to support sharing a unique user
namespace [135]

Access and user management is one of the most important primitives when designing a
multi-tenant, multi-node secured system - Figure 14. Sometimes it can also involve special QoS
Policies for access granularity, which can be implemented in a distributed manner or centralized. With
the advancement of containerization, the security paradigm had to be extended, because, by spinning
up a raw, conceptual container, one can impersonate the native user space ensemble. Therefore, a
container user might be able to bypass some of the constraints that have been implemented at the
system level, as they do not apply on other isolated user namespaces. In addition, if a process relies on
the system access management to make some decisions, by running an instance of that process in a
container, on a restricted physical node, one may be able to easily tamper the user indexing
mechanism and to masquerade a malicious intention.

Conceptually speaking, this security aspect can have two simple resolutions, in relation with
the capabilities that modern containerization engines are able to offer:

● limiting access to a list of essential people to the processing nodes and delegating the
reinforcement of the user context and user policies to an external orchestrator or to the engine

● sharing the native system user namespace between host system and virtual enclaves
(container)
With the former solution, a smart engine can apply a user remapping mechanism which will

link users defined in a container to a predefined subset of system-defined non-privileged User IDs
(UIDs). Therefore, all attempts to access system resources will be proxied through system user space
and further executed without escalated privileges. Another method to overcome this challenge is to
alter the default user context at bootstrap. Therefore, even if the original container image applies a
specific user context, this will be changed when the container is launched. This approach is currently
implemented by some container orchestrators (e.g., OpenShift OKD, Kubernetes) and it can be
outsourced from the engine. However, sometimes this model may bring some compatibility issues.
The most common problem is when processes/applications have been designed to run under the root
account and a security policy forces the application to run as a non-root account. The application
won’t be able to run, and the containers will end up in an error state.

For the latter option, by simply attaching the system user namespace to all containers (Figure
13 and 14), all processes will inherit the same set of permissions and regulations from the user who
requested the container execution. Despite the ideal model previously presented, in a pragmatic
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approach, other namespaces may also be needed to partially merge into the system. They may need to
provide additional services or objects to support the enforcement of a particular policy or setting (e.g.,
for user management, /etc/passwd and /etc/shadow files must be bind-mounted to containers, with
read-only access).

Figure 15 – Concept architectural design - implementation model [135]

In order to address the design (Figure 15) needs over the architecture proposed, I will analyze
different containerization engines (Docker, Podman and Singularity) and I will reveal how their
structure may sometimes embed a risk in bypassing the access boundaries by exposing escalation
privileges opportunities. I will test how different containerization engines can be manipulated to run
containers with unified user context and I will identify which are those services and artifacts that have
to be shared between user space and container. The architecture proposed aims to provide critical
infrastructures with the means to ensure a unified user policy context for properly maintaining the
private assets and their processing in isolated, proprietary contexts. From the list proposed, Singularity
acts better since its native isolation taxonomy proposes 1 layer isolation via the mount namespace.
Docker, due to its client-server architecture, may present a risk since it may merge with the system
root account, during the user namespace unification. Docker daemon runs as root, while the client can
send requests from unprivileged users. Podman runs directly from the user context being designed as a
client-only solution. Therefore, in the event of running containers with an unified user namespace, the
mapping will fall  back to the system user, which requested the container’s creation.

In this case study [135], I have shown different containerization engines and their constraints
in terms of the ease of merging the container user's namespace with the host user's namespace. I
presented that, in the context of very complex QoS policies, tailored per individual, having a common
user namespace shared between all virtual entities and the operating system, can increase the security
of the entire ensemble. Moreover, extending this scenario to multi-node, multi-tenant topologies, I
have identified a common clustered configuration in which such an approach can be essential -
High-Performance Computing clusters.

The best containerization engine in regard to my case study is Singularity. This engine
natively offers the function of sharing the user namespace. The solution is also compatible with
artifacts developed for other containerization engines (e.g., Docker images). For Docker and Podman,
similar results (user namespace merge) can be achieved through a sequence of manual steps or via an
Orchestrator that can replicate and propagate user policies on each container, while deploying.

Finally, I propose a concept architecture and design for a multi-node, multi-tenant cluster that
can support the unification of the user namespace [135]. I used OpenLDAP to outsource the user
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management with posixAccounts, a Network File System to share any critical user artifact among all
containers and Kubernetes to orchestrate the enforcement of the appropriate user context on
containers.

4.4. Case Study - Adopting Kubernetes in High Performance computing
High Performance Computing is one of the most prolific concepts in Information Technology

and one of the drivers of innovation. From the early stages of Covid-19 pandemics, companies and
institutions brought together an incredible number of resources for running studies on the new virus.
The Covid19 HPC Consortium shared freely around 6.4 million CPU cores, 603 Petaflops and 4.9k
GPUs for running Covid-19 related projects. Still a rigid infrastructure, HPC has begun to adopt the
container as a processing unit, inspired by the benefits they have brought to the cloud.

Another important game changer and innovator in the distributed systems market is
Kubernetes, a container orchestrator, cloud-enabler, with a consistent adoption rate worldwide. As
announced by CNCF (Linux Foundation), there are currently about 5.6 million developers who have
adopted Kubernetes globally. With a well-developed control plan and an ecosystem built around
technology, Kubernetes outperforms other competitors and becomes an industry standard.

As both distributed systems-based platforms focus their efforts on containers, the current case
study proposes a classification of HPC-Kubernetes hybrid implementations and the way in which the
important capabilities of both systems have merged. This taxonomy aims to analyze the
implementations found in the literature, to group them.

Figure 16 - Hybrid HPC-Kubernetes system classification model

The classification methodology comprises a simplified structure on three layers that aims to
cover most implementations and to provide a better visibility of the integration methods used - Figure
16. The three layers taxonomy – fully-managed by Kubernetes, Kubernetes to HPC and HPC to
Kubernetes - that define the form of communication between the control planes of the two distributed
infrastructures is doubled by another dimensional axis, which represents the volatility of the hosting
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infrastructure – fixed/pre-defined and provisioned on a demand basis. This observation perspective
nuances the opportunities for cost optimization in terms of resource consumption.

The improvements suggested during the solutions analysis propose small but impactful
changes in the architecture and design of the solutions found, especially in terms of replacing specific
Kubernetes objects in certain use cases for optimizing the current workflows.

4.5. Insights
As could be seen in the case study presented in the section 4.3, by simplifying the classical

container isolation taxonomy may ease the enforcement of global user policies. One one side, via the
engine itself, if we’re considering working on one-node topologies. On the other side, via smart
orchestrators, which can manipulate multiple engines and enforce complex scheduling and constraints
over containers provisioned. Therefore, such an approach shows a list of opportunities for setting
boundaries over data and data processors in the context of critical distributed systems.

The case study briefly presented in section 4.4, proposes a classification taxonomy for
solution found in recent scientific literature, as a way to emphasize the possibility to mix various
distributed systems gouvernance models with the aim to address complex scenarios. Therefore such
merges may enhance native scheduling mechanisms in order to address data locality problems or data
distribution. In previous chapters, It has been proved how the cloud paradigm is quite versatile in
scheduling capabilities, while batch-systems are highly constrained. Mixing both, may improve the
capabilities to sustain modern privacy policies in regards to data and data processor scheduling.

5. Risk assessment

Cyber-attacks have intensified in recent times, as people tend to perform a larger spectrum of
operations on the Internet. Similarly, malicious users have diversified their methods of attacking,
proportionally to the new wave of Internet usage. To overcome the new security challenges, services
running on the Internet may need to enforce their own protection mechanism, based on qualitative
security analysis of the assets exposed. Running honeypots alongside production can become a
standard, as by design, such a setup is able to capture behavioral attack information at runtime.
Furthermore, as the adoption of the microservices paradigm has grown, such solutions tend to expand
the attack surface, therefore, it is more relevant to validate the resilience of the assets exposed in case
of a cyber attack and to generate consistent and organic risk assessments reports. Customization of
protection policies, based on the attributes revealed by the risk assessment, can mitigate the risk of
exposing confidential data.

5.1. Research Questions
● What are the opportunities to generate organic5 security and privacy

feedback/reports on assets/services and infrastructures exposing critical data?

5.2. Contributions
● Bontaș, Carol-Sebastian, Ioan-Mihail Stan and Răzvan Rughiniș. “Honeypot

generator using software defined networks and recursively defined

5 consistent, not incentivized
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topologies.” 2022 21st RoEduNet Conference: Networking in Education and
Research (RoEduNet). IEEE, 2022

● Stan, Ioan-Mihail, Ştefan-Dan Ciocîrlan and Răzvan Rughiniș. “Deployment
methodology and practises for running  Hybrid HoneyPots together with the
microservice- based production over Kubernetes”6

5.3. Case Study - Honeypot Generator for randomizing deployment patterns
Running Honeypots is no longer an emerging trend but a necessity due to the increasing

number of exploits. Such setups aim to provide a consistent view on the techniques cyber attackers
use to obtain unauthorized access to private systems. Therefore, deploying honeypots may provide the
means to understand and prevent 0-day vulnerabilities, complex exploiting techniques, malicious
behavior between the clients of a platform and so on. A general problem of honeypots is that they may
embed in their structure the developers fingerprint, therefore, successive deployments of a similar
infrastructure within the premises of two distinct organizations may reveal the purpose of the
infrastructure. One cyber criminal, attacking both setups, may see comparable patterns that can
suggest it has been trapped in order to be observed and analyzed.

The recipes for deploying such complex infrastructures alongside the critical applications that
must be protected are usually closed source. Governmental institutions or businesses tend to maintain
their assets closed from the public, employing specialists in order to furnish defending techniques and
configuration based on the industry standards. However, in the current context, attackers find refined
methods to bypass the standards, every day. Therefore, the industry is in an unfair race with cyber
criminals to understand the challenges and improve the security and privacy conventions in order to
be offered to the general public.

Considering both challenges, my proposal is to deliver an open source solution for generating
high-interaction honeypots that can serve both as a development framework and as a basis for the
construction of complex research infrastructures, with an increased degree of randomization to reduce
the problem of similarity in successive deployments. My approach tends towards the generation of
consistent security and privacy reports of the services to be exposed to the public and the creation of
dedicated policies to reduce the risks associated with a successful attack. Combined with the standards
suggested by the industry, it could significantly increase the resistance of assets to malicious actions.
The solution for generating honeypots, which can incorporate a production asset before release, is cost
effective, being able to be run as a single system and simulating, with the help of containers, an entire
physical infrastructure. The open source character of the high interaction honeypot generator offers
exposure to consultants, specialists, developers who can contribute massively to the subsequent
improvement of the solution. The developed system incorporates technological concepts such as
Software Defined Networks, Recursively Defined Topologies and container orchestration. The
proposed solution, which can constitute a framework for the development of honeypots with a large
attack surface, introduces a mathematical formalism for the generation of recursive topologies with
containers, a formal language for configuring the scalability parameters over the variables of the
mathematical formalism, an algorithm for constructing topologies and a proprietary container
orchestration methodology. At the same time, the case study proposes an extended, modern
architecture that combines Software Defined Networks solutions with proprietary orchestration over
containerization engines. Both facilitate the spin-up and deprovision of vulnerable services,

6 Not published,  summary and abstract accepted by DS Symposium Committee
(http://doctorat.acs.pub.ro/ds-symposium-ro/)
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dynamically, based on the attacker's behavior. The platform developed can be used for research
purposes as part of the effort to counter novel attack methods or in the premises of IT organizations to
expose services and simulate production. Before going further and presenting the concept architecture,
it is mandatory to establish the premises and requirements [193]:

First, I set the focus on high-interaction honeypots for their complexity and relevance in
critical sectors and research. Therefore they can help to establish the novel trends in cyber attacks and
also reveal the tooling in use [169]. In regards to low-interaction honeypots, high-interaction
honeypots require physical or virtual infrastructure since they act as legitimate production networks.

Secondly, I considered the dynamicity problem and the idea of reducing the development
fingerprint in order to deliver legitimacy in a context of an attack. Therefore, the solution must
respond to unpredictable scaling situations and must be able to react unassisted during the entire
lifecycle of an attack or honeypot unfolding. The solution implements and adapts recursively defined
topology heuristics such as FiConn[104] or DCell[170], usually used in datacenters construction for
their ease on vertical scaling.

Thirdly, I learned from the construction techniques of cloud orchestrators and provided users
with the capability to perform dynamic changes or establish the scaling capabilities from the very
beginning, in order to allow the software to deal with the deployment operations automatically.
Therefore vulnerable containerized services and network objects can be provisioned and
deprovisioned based on observations. The smart heuristics implementing the control plane are brought
together in order to build a proprietary container orchestrator and a framework for further
development.

Last but not least, the solution must be resilient to unpredictable situations. Therefore it is
important and mandatory to provide engineers with mechanisms to react quickly and to be able alter
the network configuration or decommission vulnerable services in order to stop a complex attack. The
framework proposed relies on Software Defined Networks [171] and Docker containers, which can be
quickly and easily manipulated through proprietary management services.

Figure 17 - Honeypot Generator Concept Architecture

The concept architecture (Figure 17) comprises six essential components [193]:

● Intrusion Detection System (IDS)
● Abstract Recursively Defined Topology module (ARDT)
● Tracing Module (MD)
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● Central Command Module (CCM)
● Active Virtual Topology module (AVT)
● Parameter generator

The Intrusion Detection System is interposed in the frontend infrastructure and it is in charge
to perform early detection of the user’s intent[172][173][174][175] in regards to the services exposed.
Therefore, if the user is malicious, the dynamic network infrastructure, delivered through SDN
controllers and OpenVSwitch [176], will forward the potential attacker towards the honeypot.
Legitimate users are certified by the same system and redirected to the production infrastructure[193].

The tracing module is in charge to analyze the current behavior of the malicious user while
this one is trapped inside the honeypot. For simplicity, in the initial version of the system proposed,
the Tracing Module is only able to detect and analyze privilege escalation attacks, where the attacker
manages to exploit well purposed vulnerabilities in order to obtain a shell session towards the nearby
containers[193].

The high interaction honeypot generator implements the lazy-evaluation strategy[193].
Therefore instead of deploying the entire container's infrastructure from the beginning, it provisions
new vulnerable containers at runtime, during the lifecycle of an attack. In this regard, the system
needs to always have knowledge about the location of the attacker and generate successive containers
while neighbors are compromised. A simplified method to detect such occurrences is to capture
change events in the shell history of a container. Therefore when an untouched container is detected as
being manipulated from inside, it means that it has been exploited and the attacker is currently moving
towards it. At this point, other containers are provisioned and part of the previous containers are
decommissioned, based on a simple heuristic similar to minimax algorithm. The current active
topology, the playground for the attacker, is figured in the architecture as AVT (Active Virtual
Topology module). The logical structure (including provisioned, decommissioned and unprovisioned
containers) is maintained in memory in the Abstract Recursive Defined Topology module. Thus, the
control plane has a physical representation and a logical one, and knows all the time what needs to be
provisioned, reprovisioned or decommissioned following the virtual image of the topology exposed
and the attacker behavior[193].

The Central Command Module implements the orchestration function and gathers information
or interacts with other modules in order to maintain the AVT in a consistent state. Therefore, it
interprets the provisioning parameters and the heuristic selected, encapsulates the SDN Controller and
the container orchestration function and gathers relevant information from ARDT. The Parameter
Generator works as both a configuration management system and custom heuristic provider[193].

In addition, one of the aims of the solution proposed is that it can implement RDT-like
algorithms such as DCell[170] and FiConn[104] to ensure scalability of the honeypot infrastructure
and at the same time for predictability in resource management. Therefore, part of the research effort
spent was concentrated on finding correlations between different heuristics. Through the configuration
management system, one can define DCell or FiConn container topologies or other custom RDT
dispatching heuristics [193]. The effort spent to understand the similarities between DCell and FiConn
drived to defining a simplified mathematical formalism for RDT structures. Therefore, one can
consider the following tuple [193] where(𝑁, 𝐾, 𝑐, 𝑓𝑐)

● -> number of grade -1 hosts (hosts part of the basic structure, interconnected by switches)𝑁
● -> a maximum grade to reach in the RDT topology, pre-established as a measure of𝐾

predictability and resource management
● -> a minimum grade from where the RDT structure imposes to have a fix number of links𝑐

from c - graded structures towards other similar or higher grades structures
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● -> the function that provides the number of links a c-graded structure needs to have with𝑓𝑐
each grade structure

5.4. Case Study - Building Hybrid Honeypots Architectures over Kubernetes
In recent years, cyberattacks have seen a significant increase in numbers and success rates. A

study led by Accenture showed that in 2021, the number of attacks per company during the year
increased by 31% compared to 2020. From approximately 270 attempts of cyber-attacks, 29 of them
succeeded. With the variety of attack methods and the growth of exploitable vulnerabilities, it is
harder to scale generic security guidelines, pattern and threats detection models to cover the variety of
services exposed to the Internet. However, such a process requires a broad understanding of the
security aspects of the assets exposed. A method to obtain information, as quickly as possible, is to
analyze attacker behavior on the premises of the service exposed to be consumed [181][182]. Running
a honeypot that places the production assets in a controlled environment is a good way to generate
organic security reports per item. A considerable challenge arises, when both production and the
honeypot must be transparently displayed to both legitimate and malicious users. Thus, the entrance
point towards the infrastructure must be shared between both infrastructure branches: production and
honeypot. I call hybrid honeypot, critical infrastructure hosting both the production environment and a
high-interaction honeypot in the premises of which attackers must be trapped while the ensemble still
provides the production function.

Many of the Internet applications nowadays are constantly moving towards the microservices
paradigm. The concept presented by Martin Fowler and James Luis proposes a way to break
monoliths into small, independent, consumable services focused on delivering only one small
function. Running together they can serve wider purposes. Those facilitators providing the means to
build applications based on microservices architectures are the containerization engines (e.g., Docker)
and container orchestrators (e.g., Kubernetes). The current study focuses on understanding various
deployment methodologies and design patterns implemented in those technologies, with the aim to
provide guidelines for generating hybrid honeypots for distributed containerized solutions.

This case study proposes a methodology for designing hybrid honeypots based on the
microservices architecture with the aim to protect and isolate genuine assets. Architectural decisions
have a pragmatic nuance and follow the idea of running distributed applications in containers over a
Docker-Kubernetes ecosystem. The case study presents both architecture and design and introduces
Kubernetes specific deployable objects, which can help to achieve a consistent isolation taxonomy.
The evaluation of the methodology observes the mechanisms available in the Kubernetes ecosystem
that ensure the multidimensional isolation of the production assets from those hosted in honeypots.
The focus is on the segregation of the communication topology and on the resilience in the context of
container-escape attacks.

In an overview, the methodology proposes 4 major stages:
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Figure 18 -  Segregation of duty over Kubernetes

First stage proposes a split between microservices or containerized services in different
namespaces (workspaces) with the aim to apply distinct protection policies (Figure 18) over the assets
hosted. Therefore, one can segregate the public services/frontend services from backend and data
layers, while a Demilitarized Zone is required to perform the forwarding function towards the
production or the honeypot namespaces/workspaces.

Figure 19 -  Communication matrix

Second stage (Figure 19), proposes a communication and access matrix in order to define the
communication boundaries for the containerized application, with respect for the architectural
principles in microservices. Therefore, from a technical perspective, the stateful firewall function
delivered by various network facilitators in Kubernetes, is consumed via Kubernetes native Network
Policy objects.
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Figure 20 -  Services distribution over Kuberentes clusters

Third stage (Figure 20) proposes how the segregation taxonomy can be distributed on
Kubernetes clusters, in order to make possible the enforcement of distinct protection policies on the
underlying infrastructure. Therefore, affinity function is used to alter the default behavior of the
Kubernetes scheduler in order to spin-up specific application containers on specific nodes.

Figure 21 -  Hardening in containerization engines

The fourth stage (Figure 21) considers the possibility to detach the native runtime of different
containerization engines and replace it with more secure runtimes. Kata containers embed each
container in small, lightweight virtual machines, to extend the system stack and to outsource the
syscall API. gVisor with runsc, provides an admission controller over the existing kernel space, in
order to filter any possible malicious syscall, originated from inside a container.
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5.5. Insights
One relevant aspect when deploying critical assets is to understand the security risks that may

lead to data exposure and therefore that may corrupt the borders established by data privacy
objectives. Therefore, building honeypots around assets for early detection of major break-in points
may constitute a real necessity especially in critical infrastructures. Therefore, one can expose early
versions of the services in honeypots, prior to moving them to production, while in particular cases,
both infrastructure branches can coexist.

In the case study presented in section 5.3, the solution proposed managed to establish a mix
between two modern key concepts in dynamic service provisioning and scalable topologies: Software
Defined Network and Recursively Defined Topologies. Through the platform provided, designed as a
framework, researchers and developers can further generate high-interaction honeypots with the aim
to counter 0-day exploits and to understand the novel cyber attacking techniques. Through its
versatility and the fact that it is designed as a containerized infrastructure over Docker, it's easier to
implement variable scenarios and expose one node topologies outside for validation.

In the case study presented in section 5.4, the work provides a methodology that constitutes
the cornerstone for the construction of hybrid honeypots architectures over microservice applications.
The bottom-up approach absorbs design models and methods from technologies like Kubernetes and
Docker while both technologies are also providing the underlying infrastructure for the case study
conducted. The methodology presents two main architectural views: the communication topology and
the security and hardening stack deployed over the hosting nodes. Also, it shows how honeypots can
be integrated into the production ecosystem, in a hybrid setup.

6. Conclusions
The work described in the current thesis provides relevant insights into the issue of privacy in

complex and distributed infrastructures, with a focus on critical and expensive implementations. The
thesis brings to the fore several models of governance over distributed systems, analyzing their ability
to respond to current security and privacy issues. It also discussed how emerging technologies
identified on the market, used in their original form, or adapted, can have a major impact on
maintaining data privacy. Thus, I presented how blockchain can supplement the communication
function, ensuring a consistent environment for anonymous cooperation. At the same time, the
necessity of building honeypots around the production assets was considered, for a better
understanding of the break-in points in the event of a public exposure.

The thesis addresses five major focal points in regard to analyzing data privacy matters: data
accessibility, data anonymity, data transportation, data distribution & orchestration and risk
assessment over the data exposed. I also present various case studies, developed around critical
infrastructures such as government, financial or information technology sectors.
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