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Abstract 

Information technology has produced incremental changes in nearly all industries, whereas recent 
research on technology applied in education has shown the potential to generate an inflection point 
in the way people learn. The current educational revolution is mainly driven by three components: 
Artificial Intelligence, Internet availability, and advancements in educational sciences. Intelligent 
Tutoring Systems (ITSs) are considered one of the most suitable candidates for educational 
transformation. An ITS is a computer-based system that produces personalized tutoring through 
individualized, pedagogically sound, and easy-to-access educational material. ITSs engage students 
independently or collaboratively to ensure effective learning. The AI in Education (AIED) research 
groups explored various methods and assumptions for building efficient tutors in the cognitive field, 
with notable results in disciplines like physics, mathematics, and informatics. In contrast, the 
psychomotor field is exhibiting only lately an intensive digitalization process, as more recent 
approaches are introducing intelligent tutors for this field. 

The overarching objective of this thesis is to provide personalized sports training sessions in the 
psychomotor field in the form of an ITS – Selfit – an efficient and easy-to-use system that has the 
long-term goal to engage people in sports and improve the general health of the mass population. 

This objective is three-fold. First, we introduce an ontology to model key concepts of the 
psychomotor field – representations, and relations between the concepts, data, and entities. The 
ontology for knowledge modeling in Selfit, called OntoStrength, was built using the Ontology 
Development 101 framework and employing a multi-disciplinary team, with sports, medical, and 
computer science specialists. 

Second, we introduce a contextual multi-armed bandit algorithm for generating personalized training 
sessions. The decision-making process of a psychomotor tutor proves difficult. There are many 
unknown variables and uncertainty: the training time is limited, the trainee cannot test all the 
activities, and the personalization should happen in real-time while maintaining the user motivated 
and engaged. The Selfit approach for psychomotor tutoring has proven to surpass the fixed-rules 
training approach in our simulations. 

Third, we evaluate the utility and effectiveness of our ITS prototype on a population of 42 users, 
with low and medium training experience, which were involved in an experiment, that included two 
adaptive strategies for tutoring – one narrow, and the other with a wide exploration space. Selfit has 
a user-friendly mobile interface, where the user can visualize the video training content to execute 
and is required to assess the effort implied by each training component. A usability and experience 
survey was filled out at the end of the experiment. The users generally perceived Selfit as practical, 
predictable, simple, connective, stylish, motivating, novel, and captivating. The results are also in line 
with our initial simulations, proving the potential of the proposed approach in personalized training. 

Selfit evaluation showed promising results and highlighted the usefulness of the ITS architecture in 
the psychomotor field. The current thesis can be considered at the foundation of a new crossroad, 
between AIED and psychomotor training, opening new research directions aiming to improve the 
general health of the population through automated systems. 

Future work aims to extend the knowledge base from strength training to other training types, such 
as flexibility and mobility, enrich the user experience by providing voice support while training, as 
well as integrate NLP techniques to enhance tutor-trainee interaction and computer vision 
algorithms for real-time assessment. 
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1 Introduction 

1.1 Goals and Interests 

The rise of information technologies, mainly driven by computer innovation, has revolutionized the 

way we interact and learn (Woolf, 2010). The confluence of the Internet, Artificial Intelligence, and 

cognitive sciences has further created new tools in education, improving the way educational content 

is produced, and delivered, and increasing education efficiency overall. An important candidate in 

this field is the Intelligent Tutoring System, which is an Artificial Intelligence-based computer system 

that provides an adaptive educational experience (Fenza & Orciuoli, 2016). 

An Intelligent Tutoring System (ITS) aims to enhance student learning experiences by creating 

immediate, customized instructions and feedback while collecting comprehensive information. Most 

ITSs are divided from an architectural point of view into four components (Nkambou, 2010), 

namely: Domain Module – defines rules, concepts, and problem-solving strategies (expert knowledge), 

Student Module – learner’s cognitive and affective states, evolution while learning, Tutoring Module –

selects the best tutoring strategies and actions to take, and Interface Module –responsible for student 

interaction. 

The present work aims at contributing to the development of ITS in psychomotor field for large 

communities of users with a focus on strength and health improvement. Psychomotor skills 

development is a lifelong process of learning how to move accordingly to a dynamic environment. 

A movement competence is a transaction between an individual and a movement task within an 

environment. Essential movements, such as pushing, pulling, core, knee, or hip-dominant exercises 

are prerequisites for learning specialized, complex psychomotor tasks required by daily life, 

professional, or leisure activities. Learning to perform a movement safely and efficiently requires 

practicing an adequate volume of exercises for enhancing associated physical qualities, such as 

strength, flexibility, or endurance. 

However, one of the main challenges for such a development is the high cost when creating a strong 

knowledge base from scratch. As stated by Zouaq and Nkambou (2010), an acute research issue is 

how the tutoring module of an ITS can be efficiently modeled, and what kind of knowledge 

representations are available, and what kind of knowledge acquisition techniques can be applied. 

In the process of building an Intelligent Tutoring System, each component is well defined with roles 

and rules for implementation. ITS components work together to produce a uniform instructional 

system capable of recognizing patterns of learner behavior (Orey, 1993) and responding to those 

patterns with appropriate instructions. However, when it comes to applying it to an open 
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environment (which reflects more realistically the usual training environment), e.g., more 

unpredictable, and poorly defined, it raises new questions on modeling and efficiency. 

Another challenge when developing such a system is to define the right tools and frameworks to 

acquire accurate student knowledge competencies for predicting its progress while training. Recent 

ITSs built for military training are often limited to laboratory settings on standard PCs and laptops, 

which focus on training cognitive skills (such as decision-making and problem solving) and may 

potentially limit the learning and retention of mastering physical tasks (LaViola et al., 2015). 

Another challenge is the optimization of the teaching sequences – generally, the Tutoring system 

uses an estimation of the student competence levels and progression to choose the activities that 

provide the best learning experience at a certain time. An ITS accessible to the vast majority of 

people, which addresses general health, should provide a personalized learning experience relying 

only on little domain knowledge. 

The challenge that the tutor faces is to find what is the optimal sequence of activities that maximizes 

the average competence level over all the targeted skills (Clement, Roy, Oudeyer, & Lopes, 2015). 

This challenge, which was raised initially in the cognitive field and has the equivalent in psychomotor 

development, is driven by three main factors: limited time for practicing activities – the tutor cannot 

test all combinations of sequences, or all activities; managing motivation is hard – students will learn 

efficiently only if they are engaged in the activities; individual differences between students make an 

optimal sequence for a student inefficient for another one. 

In addition, an ITS is deemed to replace the human coach and mediate abstract knowledge with real 

trainees. Thus, ITS performance is not only determined by the knowledge it carries, but also by the 

quality of the user experience. 

Based on the challenges raised above, this thesis addresses the following major research objectives: 

• RO1: Design an effective knowledge representation model for the psychomotor skills 

development in an Intelligent Tutoring System. 

• RO2: Provide personalized sports exercise’ recommendations for the mass population when 

training in open environments. 

• RO3: Implement an intuitive and effective Communication Module that facilitates the 

assessment of the sport trainee’s progress in open environments. 

1.2 Thesis Outline 

The thesis is structured into three main parts, Theoretical Aspects, Experiments and Results, and Discussions 

and Conclusions. The chapters described in the Theoretical Aspects part support the sections from the 
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Experiments and Results, as can be seen in Figure 1. The chapters in the Experiments part have a 

corresponding chapter in the Theoretical Aspects. 

 

Figure 1 Thesis structure. 

The Theoretical Aspects structure is the following – first, Intelligent Tutoring Systems are presented, 

together with their usages in the psychomotor field (Chapter 2), then we present how the knowledge 

is modelled in ITS (Chapter 3), and what are the methods commonly employed for tutoring in ITSs 

(Chapter 4).  

Then, in the Experiments and Results part, we propose a new model for the psychomotor field, called 

OntoStrength (Chapter 5), which was built based on the findings presented in Chapter 3. Next, a 

method for personalizing learning sequences in psychomotor training is introduced, called RiERiT 

– Chapter 6, which was inspired by the findings in Chapter 4, where similar methods were proposed 

and used in the cognitive field. The Selfit system is introduced in the next chapter, as a prototype for 

psychomotor training ITS in open environments.  

Here, the work presented in knowledge modeling and psychomotor tutors’ experiments is merged 

to create a system that showcases the potential of our findings. The Selfit chapter also presents the 

Communication module and how this was integrated to exchange information with the other 

components. The last chapter in this part introduces the results of our experiments, conducted in 

two main directions - on one hand, the efficacy of the RiARiT algorithms – bandit learning, and on 

the other hand, the user’s experience. The Selfit system was tested with real users, who trained 

between 1st January 2022 and 31st May 2022, the overall goal being to assess if the proposed prototype 

is valid for psychomotor training. 

Next, the Discussions and Conclusions part describes the advantages of our approach, the problems 

faced and how they were overcome, and the limitations, along with a list of envisioned applications. 

The Conclusions Chapter presents the summary of the work, our contributions, and potential 

directions for future research. 
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2 Intelligent Tutoring Systems and Psychomotor Training 

Intelligent Tutoring Systems (ITSs) are at the cross-road of education and technology (Paviotti, 

2012). An ITS is a computer-based instructional system, aimed at supporting learning through 

different tutoring services that specify what to teach, how to teach, the teaching strategies, and makes 

inferences about a student’s level of mastery on a set of topics for dynamical adaption of content or 

instructions (Murray, 1999). Development of such systems has been a co-disciplinary process, 

involving both didactics and knowledge technologies experts. Intelligent tutoring system 

development requires an understanding of how people learn and teach. 

2.1 Intelligent Tutoring System Architecture and Features 

The most common architectural pattern empowered when designing an ITS is the Four-Component 

Architecture, which is composed of a Domain module, a Tutoring module, a Student module, and 

the Graphical User Interface (Nkambou, 2010). 

The Domain module handles knowledge relating to the subject matter and contains concepts, rules, 

and strategies. ITS uses the Domain knowledge to reason with, find solutions to problems or 

respond to students’ questions. Another feature of the Domain module is that it can be used to detect 

students’ errors and propose solutions to correct them. Alternative teaching strategies may be 

obtained by developing distinct knowledge representations of the same domain knowledge. 

The Tutoring module provides the necessary knowledge to attain teaching goals. It receives information 

from both Domain and Student modules, and it is responsible for selecting the subject content the 

student will use, providing the response mechanisms for answering the student's questions and 

patterns to detect when learners need help by embracing different styles of delivery. The Tutoring 

module selects the teaching goals and decides what are the most suitable teaching strategies based on 

the Student model and the Student's objectives. A performant Tutoring module knows when it is the 

right time to update the learning process and how to do it. It interacts with the student through 

feedback and hints. 

The Student module describes the learner's emerging knowledge and skills, and it is considered a critical 

component of an ITS. The teaching process should be adapted to every student's characteristics, and 

based on this, the system needs to collect as much information as it can about learners’ preferences, 

cognitive and affective states, as well as their progression while learning. An ITS is more efficient 

the more it manages to collect data from and about the learner and use it to perform an analysis of 

the current state of its knowledge. 
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The Interface module, also known as the Communication module, or Graphical User Interface module, 

facilitates the communication between the Student and the Tutoring module. Even with the best student 

and teaching knowledge, a tutor is of limited value without effective communicative strategies and 

so a large amount of work should go into developing this module (Woolf, 2010). In most of the 

cases, the graphical environment is responsible for providing lessons and help while learning, results, 

and pedagogical actions 

2.2 Psychomotor Development in Intelligent Tutoring Systems 

The psychomotor domain, also referred to as psycho-motor or psycho motor or physical, includes 

physical movement, coordination, and use of the motor-skill areas. The development of skills in this 

domain requires practice, and the corresponding measurements of performance consider speed, 

precision, distance, procedures, or techniques in execution. 

A systematic literature review (Neagu, Rigaud, Travadel, Dascalu, & Rughinis, 2020) was conducted 

in November 2019 on the most reputable online data sources for assessing the amount and quality 

of research conducted to design and develop ITSs for training psychomotor abilities. This work was 

the foundation for the experiments presented further in this thesis. 

The method to identify the existing digital tutors for psychomotor development implied three phases 

– Identification Phase, Inclusion/Exclusion Criteria Definition Phase, and Quality Assessment 

Phase, as can be seen in Figure 2. 

 

Figure 2. Systematic Literature Review - Method Overview 

The search query applied for obtaining the list of articles in the online databases is the following: 
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("Intelligent Tutoring System*" OR "Intelligent Computer-Aided Instruction*" OR "Intelligent Computer-Assisted 

Instruction*" OR "Knowledge-Based Tutoring System*" OR "Adaptive Tutoring System*" OR "Computer-based 

Tutoring System*") AND (psycho-motor OR psychomotor OR "psycho motor" OR physical) 

Even though the above query was the targeted search query to be applied to all the data sources, 

different constraints were encountered while using each search engine, such as the length of the 

query provided was too large, or too many masks were applied (where the mask is considered “*” 

character), all presented further in detail. 

The literature review was conducted in November 2019 using the following electronic international 

databases: Scopus, Web of Science, ScienceDirect, IEEE Explore Digital Library, Springer, ACM, 

and Journal of Education in Data Mining. These data sources are the most common online sets used 

in scientific research (Dieste, Grimán, & Juristo, 2009). 

The literature review work was focused on finding adequate papers with original research on 

different areas where ITSs were used for training psychomotor abilities. Thus, the following 

inclusion criteria were developed: Full papers and peer-reviewed papers; Papers with empirical 

research (qualitative and quantitative); Papers describing ITS architectures or variations; and Papers 

clearly explain areas of the psychomotor domain, where ITS was applied. 

The papers related to psychomotor training vary from very specific (e.g., training for marksmanship, 

training for ball-passing), to broader activities (e.g., improving human motor learning, training 

physical tasks). The papers matching the Inclusion / Exclusion criteria were published at several 

conferences in a timeframe of twelve years, while most papers were published in the past two years. 

The next step implied reading the accepted papers after inclusion/exclusion filters and assessing if 

the solutions present any outcomes of the proposed architectures and if they are following any 

psychomotor taxonomies.  

From this literature review, we conclude that, even though initially developed for training cognitive 

skills, ITSs have emerged also in psychomotor training, with usages in several sub-fields, such as 

Medicine (Laparoscopic Surgery Training, Radiology), Military (GIFT), Driving (Adaptive VR 

driving simulator), Sports (Football - Ball-Passing Training, dance, retraining for health), and Generic 

manual procedures (TUMA). 

2.3 Challenges in Psychomotor Domain Digitalization 

Knowledge Modeling. One of the most difficult challenges when building ITSs is creating a strong 

knowledge base from scratch (Zouaq & Nkambou, 2010). The tasks for representing the knowledge, 
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the knowledge acquisition techniques, and efficient modeling of the tutoring require acute research 

in the field. 

Sports training periodization is considered a young field. The first research work on describing the 

rules for training has been performed 5 years ago by Bompa (2017). Before there were no clear 

standards for performing sports training and periodization, and different sports coaches were using 

different terminologies when referring to specific topics. 

Ontologies are becoming a strong candidate for building knowledge in Intelligent Tutoring Systems 

and adaptations of such systems. As stated by Neagu, Guarnieri, et al. (2020), no previous ontology 

has been developed in the psychomotor field; existing works focus on recognizing sports activities 

with technology or support decision-making based on data collected during sports competitions.  

Intelligent Tutoring Strategies. The tutoring module of an ITS is responsible to choose the optimal 

learning sequences to provide a good learning experience based on the estimation of the student 

competence levels and progression, and little knowledge about the cognitive and student models 

(Clement et al., 2015). The same principles are applied in the psychomotor field too. The literature 

shows that for learning how to drive, Ropelato, Zund, Magnenat, Menozzi, and Sumner (2018) 

created a virtual reality environment where learners receive optimal sequences based on the Zone of 

Proximal Development and Empirical Success (ZPDES) algorithm.. 

The rifle marksmanship tutoring focuses on learning the basic functional elements for effectively 

operating the weapon, and the instructions are focused on consistently striking static targets at fixed 

distances (Goldberg, Amburn, Ragusa, & Chen, 2018). In the closed environment, the training 

components: stability, aiming, control, and movement, are tracked by the tutor using sensing 

technologies. The model for personalizing the learner training sequence tracked parameters such as 

body position, breathing, trigger squeeze, and muzzle wobble while training, but the algorithms 

implemented for adjusting the sequences were not clearly described.  

A big challenge in tutoring in open environments is caused by the lack of accurate learner 

information while training. Also, time resources are limited for the learners, a learner cannot test all 

the training activities or all the existing sequences of training. A rule-based tutor may prove 

inefficient both in the cognitive and psychomotor fields. A learning sequence that is optimal for one 

trainee may be inefficient for another one (Clement et al., 2015). Building a psychomotor tutor in an 

open environment is a challenging task, as minimum learner data should be acquired while training, 

tutoring relies on the trainee’s input, partially acquired data from the environment, and caution on 

learner’s health– new sequences generated by the adaptive tutor should protect the learner from 

injuries, medical issues, or physical exhaustion. On the other side, the learner should be engaged in 
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learning and maintain long-term motivation for training. Learning should be delivered in the trainee’s 

zone of proximal development. 

Interaction with the Trainee. A tutor may have the best student and teaching knowledge, but without 

an efficient interface component to interact with the learner, it will limit the value of the tutor (Woolf, 

2010). The user interfaces should be clear and simple, attractive, and responsive. Based on these 

considerations, building a proper communication module usually involves a big amount of effort. A 

human tutor easily detects learner reactions in the classroom, he can easily detect problems and 

provides feedback and remediation. The traditional tutor can track learners’ focus of attention during 

classes, level of fatigue, and motivation. The classification of the communication layers between 

tutors and learners inside an ITS includes graphics communication, social intelligence, component 

interfaces, and natural language techniques(Woolf, 2010). 

In an open environment, the interaction with the learner proves to be more challenging than in 

closed, fully supervised environments. The learner training setup is unknown, and assessment is hard 

to perform. For learning psychomotor skills, the learner needs guidance for execution, which can be 

video, image, or written, and voice or visual feedback. Also, the assessment may prove critical for 

both tracking the learner’s progress and avoiding the risk of injuries. The more data the system 

gathers, the better the assessment and personalization should be.  

The data used to measure the training impact, such as heart rate, calories burnt, or quality of sleep, 

which can accurately be gathered through IoT devices (smartwatches, smart bands) should not be 

mandatory and just enhance the model, but it should not rely on them. The communication between 

the system and the trainee needs to be efficient and simple, the trainer should not be forced to be 

tied up with the system while training. Designing such a system is a challenge that, from our findings, 

was not addressed in the literature. 

The literature review shown an increasing interest of the research communities in designing and 

developing intelligent tutors for psychomotor training. Researchers introduced in the past years 

systems in several psychomotor sub-fields, including ball-passing training, medical (for surgeries), 

car driving, or military (marksmanship training). Our goal is to build a psychomotor tutor for 

athletization, and to provide optimal training sessions for novice and intermediate trainees. 
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3 Models of Knowledge and Learning Process 

3.1 Learning Theories 

Every schoolteacher has an educational philosophy, a set of stated or unstated ideas and assumptions 

about how to best teach (Woolf, 2010). On one end, some teachers see their job’s main responsibility 

to impart information to students and then identify who has learned. They are viewed as 

traditionalists in teaching philosophy (Becker, 2000), the instructor is the knowledgeable source, and 

the student is the novice, willing to listen and learn. On the other end, there are the modern teachers 

who are responsible for creating experiences for students. 

ITSs are a particular type of intelligent system to support learning, whose components reflect the 

values regarding the nature of knowledge, learning, and teaching (Self & Akhras, 2002). The 

architecture focuses on representing the knowledge to be learned (domain model), inferring the 

learner’s knowledge (student model), and planning instructional steps for the learner (tutoring 

model). ITS architecture is matching the traditional teaching philosophy. However, for the 

constructivist theory, Self and Akhras (2002) challenge the classic ITS architecture, the constructivist 

view emphasizes different values at its core and potentially requires a different architecture. Authors 

proposed a new approach to building ITSs where, at the core of the learning process, there are 

interactions between learners and tutors. They showcase their new architecture with two 

applications: SAMPLE – ITS to support the learning of salad-making concepts, and INCENSE – 

ITS for learning software engineering. Even though they briefly explain the design of the systems, 

no validation has been presented for any of them. 

The field of Artificial Intelligent in Education aims to use intelligence to reason about teaching and 

learning. This is a challenging task, as knowing what, when, and how to teach involves multi-

disciplinary teams, from several disciplines, such as psychology, education, and computer science.  

3.2 Modeling Knowledge and Teaching 

Common techniques for generating learner models include Bayesian networks, belief networks, case-

based reasoning (CBR), and expectation-maximization. The learner models can be classified by their 

performing function (Sottilare, Graesser, Hu, & Holden, 2013). They are categorized as corrective, 

elaborative, strategic, diagnostic, predictive, or evaluative. 
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Many ITSs developments consider the student model as an overlay or subset of the domain model 

(Ma, Adesope, Nesbit, & Liu, 2014). As the ITS aim to teach the domain or a part of the domain, 

initial work, before representing student knowledge, should be the definition of the domain model. 

In a traditional ITS, the domain knowledge representation has been implemented through a) black-

box models, where reasoning is not clearly explained, but the solutions are accurate; and b) glass-

box models, where the reasoning is explained step by step (Polson & Richardson, 1988).  

There are two types of knowledge in both models: a) declarative, which is conceptual information; 

and b) procedural, for action sequences and problem-solving procedures. The goal of these 

representations is to ensure that the tutor module has access to structured knowledge and proper 

learning sequences (Zouaq & Nkambou, 2010). Several representation formalisms have been 

proposed and used traditionally in ITS, such as simple rules, case-based reasoning, fuzzy logic, 

concept maps, topic maps, or conceptual graphs (Zouaq & Nkambou, 2010). 

A domain ontology is a strong alternative for knowledge representation when building ITSs for their 

standard formalism, ease of reuse of other ontologies, and modularity. System designers must 

integrate different ontologies to enforce the reuse and interconnection of various relevant resources. 

An ontology is a shared vocabulary and representation of knowledge used to model a domain; 

ontologies define explicit descriptions of concepts and their relations and integrate computer-

processable semantics for data on the Web (Fensel, 2001).  

An acute research issue when developing an ITS is how the Tutoring module can be efficiently 

modelled (Zouaq & Nkambou, 2010), what kind of knowledge representations are available, and 

what kind of knowledge acquisition techniques can be applied. The tutor must have an explicit 

representation of the domain knowledge that is the subject of the learning goal. 

The extensive literature review shows that the model-tracing / cognitive tutor approach has been 

used the most (21.21%), then example-tracing (18.18%), content and problem based (12.12%), 

dialog-based (9.09%), constraint-based (6.06%), machine and human-based (6.06%), while the 

remaining ones were not clearly described or non-specific (27.27%). The studies included presented 

ITSs either as an illustrative scenario (39.39%), controlled experiments (27.27%), case studies 

(15.15%), survey (3.03%), or others (15.15%). 

The example-tracing tutors are responsible to interpret and assess the student’s behavior regarding 

generalized examples of problem-solving behavior (Aleven, Mclaren, Sewall, & Koedinger, 2009). 

This paradigm has been proposed by Aleven 13 years ago and it has been adopted very fast; 18% of 

the selected studies in the literature review have been using example tracing as an authoring strategy. 
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This strategy allows domain experts and specialists to build a cognitive model by demonstration 

rather than by programming a rule model, reducing the development costs overall. 

The apprenticeship teaching strategy implies the expert does not engage in explicit tutoring. It is the 

first strategy modelled on human tutoring, where the student acquires, develops, and uses authentic 

cognitive tools in learning, both outside and inside the school (Brown , Collins , & Duguid 1989). 

The apprenticeship tutor is responsible to monitor student performance, reflecting on students’ 

approaches, can provide advice on demand, and the path to solutions should be modelled through 

multiple paths. Apprenticeship training is common in learning how to play an instrument, training 

for athletization, or learning how to drive. Based on the teaching strategies and the skills developed 

in the existing tutoring systems built using this approach, apprenticeship teaching is one of the 

strongest candidates for developing psychomotor tutors. 

An intelligent tutor has limited value if the communication component does not implement efficient 

strategies. Communication modeling is a comprehensive process. Tutor-learner interaction should 

be simple, clear, and efficient. Several techniques have been implemented for communication 

modeling, including animated tutors, virtual reality, visual recognition of emotion, and natural 

language processing. 

An efficient tutor communication module makes learners feel authentic, and social, involving the 

reciprocal exchange of information with the system. Intelligent tutors can compose explanations, 

either spoken or textual, to criticize or maintain a dialogue with the learner through natural language 

techniques. The classification of modeling communication made by Woolf et al (Woolf, 2010) 

includes 4 main categories: graphic communication, social intelligence, component interfaces, and 

natural language communication. 

3.3 Principles of Models Evaluation 

Evaluation is considered the process by which relevant data are collected and transformed into 

meaningful information used for decision-making, according to specific purposes (Mark & Greer, 

1993). Evaluation is different in several fields. Intelligent tutoring systems evaluation involves both 

learning outcome effectiveness, and software usability, but also other evaluation parameters, such as 

user experience or learning theory contribution. 

A recent systematic literature review on evaluation methods used in ITSs (Mousavinasab et al., 2018) 

shows that evaluation mainly involves the measurement of system performance, learner’s 

performance, and experiences. Most of the studies were used in computer programming (55%), then 

health/medical (15.09%), followed by mathematics (15.09%). The focus on the health/medical ITSs 
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is also in the cognitive field, for use-cases in theoretical education such as anatomy, childhood 

diseases, physiology, or clinical reasoning. 

Evaluation in an ITS should also consider short-term and long-term issues. Woolf (Woolf, 2010) 

proposed six stages of tutor evaluation which include tutor goals, evaluation goals, evaluation design, 

tutor instantiation,  tutor results, and evaluation discussion. In the next section, the evaluation 

principles will be described further, followed by a few recent ITS evaluation use-cases, in both the 

cognitive and psychomotor fields. 

Evaluation designs include the following categories: pre-test, intervention, post-test, delayed post-

test, interrupted time series, crossover, and partial crossover. Pre-test measure learners’ knowledge 

level before starting the experiment. It might additionally assess student characteristics, such as 

learning style or motivation, to help allocate subjects to groups. This may be required for an even 

distribution across groups. Tutor intervention is involving the tutor in the learning process with 

specific teaching goals. Post-test is performed at the end of the experiment to measure acquired 

learners’ knowledge. An example of an evaluation design with pre-test and post-test can be seen in 

Figure 3. a. Delayed Post-test is used in evaluation design to measure the long-term effects of 

learning. The evaluation setup with pre, post, and delayed tests can be visualized in Figure 3.b. The 

issue with these approaches is that they do not track the moments when learning happens, when 

learners improve their skills, and what are the roots of learning – see Figure 3.c.  

Interrupted Time Series implies the measurement of learning outcome through repeated post-tests, 

which will enable the assessment of differences in learning – see Figure 3.d. Even though there are 

high benefits of this method, it is time highly time-consuming, and it involves more work to be 

enabled. The crossover method (Figure 3.e) implies a harder setup – four groups of students, two 

forms of intervention (which can be intelligent tutors and traditional classroom), and two versions 

of the same test (test A and test B). Groups first receive a type of intervention, and they perform 

first pre-test A, and then post-test A. Then, the group’s intervention is switched, they perform pre-

test B, and then post-test B. This method can assess the effects of different teaching methods in the 

population selected. The disadvantages of this method are the complicated setup and the complexity 

of the four experimental conditions. The partial crossover method (Figure 3.f) is a simplification of 

the crossover method, with only two groups, but following the same rules.  

The evaluation design can be performed for real-world or laboratory setup. Real-world experiments 

are preferable to laboratory environments, as they increase the tutor efficiency argumentation. On 

the other hand, laboratory tests are useful in certain scenarios, as they permit experiment control, 

such as the number of subjects, prior knowledge, and learning profiles. When designing an 
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evaluation, a critical factor is describing its validity, or what the experiment will measure to consider 

the evaluation success. If the hypothesis made is valid for a population and can then be extrapolated 

to the outside world, it means that the evaluation has external validity.  

   

(a) Pre-Test to Post-Test (b) Pre to Post to Delayed Post (c) When does learning 

happen? 

   

(d) Interrupted time-series (e) Crossover (f) Partial Crossover 

   

Figure 3. Evaluation designs schemas 

Evaluation efficiency needs to be performed using benchmarks. Woolf (Woolf, 2010) proposed six 

examples of evaluation comparisons, with their associated prototype designs, adapted from the 

theories of evaluation design, which are summarized in Table 1. 

Table 1. Evaluation Comparisons Examples and Designs Used with Intelligent Tutors (Woolf, 2010) 

Evaluation Comparisons Evaluation Designs 

Tutor alone Intervention + Post-test 

Tutor versus non-interventional control Pre-test + Intervention + Post-test 

Benchmark: Tutor versus traditional classroom Pre-test + Intervention + Post-test + Delayed Post-test 

Within system: Tutor 1 versus Tutor 2 Interrupted Time Series 

Tutor versus ablated Tutor Crossover 

Between systems: Tutor A versus Tutor B Partial Crossover 

The fourth phase of tutor evaluation is the instantiation of evaluation design. The previous phases 

aimed to create the skeleton of the evaluation. This phase’s goal is to describe experiment details, 

based on the decision made in the first three phases. Experiment details include defining dependent 

and independent variables, the number of participants, type of participants, detailed description and 

justification of control groups, and software usability. 
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4 Intelligent Tutoring Systems in Open Environments. Machine 

Learning in Practice 

4.1 Overview of Teaching Techniques for Intelligent Tutors 

In an intelligent tutoring system, the experience can be achieved through storing past tutoring data 

and using it as a training input for the machine learning model (Dlamini & Leung, 2018). Learning 

over time is called incremental machine learning and this can be achieved through several techniques, 

which will be briefly described further. The main benefits of adaptive tutors are the increase in tutor 

flexibility, reduced cost of building the tutor, and adaptation to new student populations (Woolf, 

2010). 

A recent literature review on intelligent tutoring systems which have implemented machine learning 

techniques for different goals has found 53 relevant studies between 2007 and 2017, all targeting 

cognitive development (Mousavinasab et al., 2018). The review included studies in education, 

training, or educational assistance tools, which have demonstrated the usage of the ITS architecture 

in their systems. The major educational field found in the review was computer programming, with 

55% frequency, followed by medical and mathematics fields. 

The review found several goals for using Machine Learning techniques in the system proposed, from 

adaptive tutor modeling (adaptive feedback, hints, learning path), adaptive student modeling 

(definition, classification of learner’s characteristics), and adaptive domain modeling. The detailed 

list of machine learning techniques purposes with their associated frequency found in the review can 

be seen in Table 2. 

Table 2. The purpose of applying Machine Learning Techniques in ITSs between 2007-2017 (Mousavinasab 

et al., 2018) 

Machine Learning Techniques Frequency (%) 

Defining, classification, or updating the learner’s characteristics 56.60 % 

Adaptive feedback, hint, or recommendation generation 52.83 % 

Learner’s evaluation 45.28 % 

Presenting adaptive learning material or content 41.50 % 

Adaptive learning path navigation 28.30 % 

Presenting adaptive tests and exercises 5.66 % 

Computer programming ITSs found in the literature review used several machine learning 

algorithms to adapt tutoring: Fuzzy-based techniques (20%), condition-action rule-based reasoning 

(20%), case-based reasoning (13.33%), intelligent multi-agent (13.33%), and data mining (13.33%). 
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Health ITSs found in the review used the following machine learning algorithms: Bayesian-based 

techniques (50%), NLP-based and intelligent multi-agent approaches. In mathematics, most ITSs 

implemented condition-action rule-based reasoning. 

Recent advances in adaptive tutoring focus on finding the activities which provide the best learning 

experience to each learner, based on an estimation of student competence levels and progression, 

and with little knowledge about cognitive and student models (Clement et al., 2015). This design is 

based on the following principles: 

• Weaker dependency on the cognitive and student model.  

• Efficient optimization methods.  

• More motivating experience 

The development of such tutors relies on the use of multi-armed bandit algorithms in tutor modeling 

(Clement et al., 2015). Multi-armed bandit addresses a problem in which a fixed limited set of 

resources must be allocated between choices in a way that maximizes the expected gain. The choice’s 

properties are only partially known at the time it is picked, and it becomes better understood as time 

passes. Multi-armed bandits’ algorithm is a classic reinforcement learning problem that exemplifies 

the exploration-exploitation tradeoff problem. Next, common techniques for building intelligent 

tutors with reinforcement learning algorithms are listed. 

Reinforcement Learning is one of the best machine learning approaches for decision-making in 

interactive environments and RL algorithms are designed to infer effective policies that determine 

the best action an agent can take in any given situation to maximize the cumulative reward (Ausin, 

Azizsoltani, Barnes, & Chi, 2019).   

Four core elements characterize the definition of a reinforcement learning problem: the agent, the 

environment, the policy, and the reward function. The environment is defined as the external system 

where the agent, which in this case is the learner, exists, makes actions, and moves from one state to 

another. The agent can depict a long-term successful behavior through rewards, which are provided 

at the end of each action taken. In most cases, the reward is a scalar value that is maximized by the 

agent, and it might represent the degree to which an action or a state reached is desirable. The reward 

function defines the goal of a RL problem (Woolf, 2010). The function maps each pair’s state-action 

of the environment to a number, positive or negative, called reward, which is indicating the 

desirability of that pair. The policy is defined as the agent’s way of behaving at a given time. In some 

cases, it may be a simple function or a lookup table, which checks for previous states and actions 

taken in those states.  
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There are two major categories of RL algorithms – online and offline. Online RL methods learn the 

policy while the agent interacts with the environment. In the offline approach, the policy is learned 

from a pre-collected training dataset (Ausin et al., 2019). Online RL is more suitable for domains 

where the state representation is clear and the interaction with the simulated environment and real 

environment is computationally cheap and feasible. Offline RL is required for more complex 

domains, such as e-learning, where human learning problem is complex, and the process is not fully 

understood. 

A specific class of problems in the reinforcement learning field, in a simplified setting, involving 

learning how to act in only one situation is the multi-armed bandit problem or the k-armed bandit 

problem. The multi-armed bandit problem is encountered when you are faced repeatedly with a 

choice among k different options, which can be defined as actions (Sutton & Barto, 2018). After 

each action, a numerical reward is given from a stationary probability distribution that depends on 

what was the choice selected. The goal is to maximize the cumulative reward across a period. 

If the values per action are known, the problem is trivial – you would always select the action which 

has the highest reward. At a certain step, you will know the rewards for a set of actions that were 

previously selected. One possible future choice would be to choose the one with the highest value, 

from the known actions. This is called greedy action, and choosing an action you already know is 

called exploiting the current knowledge. Exploitation is the right thing to do to maximize the reward 

on one step, but exploration – of new choices, unknown yet – may produce a greater total reward 

in the long run. 

ε-Greedy approach forces the non-greedy actions to be tried, within the ε - factor, but 

indiscriminately, with no preference for actions that are nearly greedy or particularly uncertain. This 

is where the Upper-Confidence-Bound approach may be more efficient. It is better to select among 

the non-greedy actions based on their potential for actually being optimal, based on how close their 

estimates are to being maximal, and the uncertainty in the estimates (Sutton & Barto, 2018). In 

simpler terms, the actions with a lower value estimate or the actions which have been selected many 

times will be less selected by the bandit. The more uncertain the bandit is about a specific arm, the 

bigger chances it will be selected. UCB is not suitable for nonstationary problems, or problems that 

have a large state space. 

In a classic ITS architecture, the tutoring module uses an estimation of the trainee competence levels 

and progression to choose the activities that provide the best learning experience at a certain time. 

The challenge that the tutor faces is to find what is the optimal sequence of activities that maximizes 
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the average competence level, across all targeted skills (Clement et al., 2015). This challenge is driven 

by three main factors, which were tackled by Clement et al. (Clement et al., 2015): 

• Limited time for practicing activities – the tutor cannot test all combinations of sequences, 

nor all activities; 

• Managing motivation is hard – the students will learn efficiently only if they are engaged in 

the activities; 

• Individual differences between trainees make an optimal sequence for a given trainee 

inefficient for another one. 

Clement et al. (Clement et al., 2015) proposed a multi-armed bandits approach used in conjunction 

with the Zone of Proximal Development. ZPD has been defined by an expert, knowledge 

components are in the mathematics field, more precisely numbers decomposition. ZPD will be 

adjusted based on the optimization algorithms, based on the answers, and the students learning 

progress. The results obtained using multi-armed bandit algorithms are comparable and even 

surpass, in certain conditions, the sequences created by expert teachers. 

4.2 Machine Learning Techniques in Psychomotor Development 

The literature and methods related to adaptive ITSs are vast and, in this section, the focus is on the 

implementations related to non-cognitive tasks, namely, psychomotor skills. 

Training individualization is the main condition for its optimization. Sports training literature 

exposes the classical methods for individualization, used by coaches, such as the “model of the 

master” – a theoretical framework that is using the volume and intensity of training to compute the 

load, or by actual training – computing mean values of training means made in a given cycle by a 

group of athletes (Ryguła, 2005). The weak points of these approaches are the lack of 

individualization, by using tables of standards, and the impossibility to generate new training content, 

from the existing one. 

In a recent literature review on intelligent data analysis methods for smart sports training (Rajšp & 

Fister, 2020), the authors challenge the way modern technology is revolutionizing the way athletes 

maximize their performance and compete on a higher level than ever before. They define sports 

training as a pedagogical process where the role of the trainer is one of the teacher and organizer, 

guiding athlete’s activities, and organizing the training sessions. The exercises are defined as tasks 

that require physical effort, and should in some way improve the sports results of the trainee. They 

break down the sports planning process into four phases: planning (prescription of proper exercise 

units), realization (execution phase), control (comparison between exercises performed by the athlete 
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versus the planned exercises), and evaluation (measurement of athlete’s performance). The phases 

are interconnected and have a continuous transition, as can be seen in Figure 4. 

 

Figure 4. The four phases of sports planning. 

The literature review shows that the smart sports training field has been rising in popularity in the 

last 5 years, since 2016, where the studies found were grouped into a taxonomy split into four main 

groups: 

• Computational Intelligence methods (Evolutionary Algorithms, Swarm Intelligent 

Algorithms – Bat Algorithm (BA), and Particle Swarm Optimization, Fuzzy systems, and 

Simulated annealing) 

• Data Mining (conventional Data Mining methods – i.e., Apriori, Machine Learning – 

Decision Tress, adaptive boosting, Random Forests, Gradient Boosting, K-Nearest 

Neighbors, Support Vector Machine, Artificial Neural Networks, hierarchical clustering, k-

means clustering) 

• Deep Learning (Recurrent Neural Networks, Long Short-Term Memory, Convolutional 

Neural Networks), 

• Others (Case-Based Reasoning, Dynamic Time Warping, Bayesian Networks, Naïve Bayes, 

Markov chain, generalized additive models, Gaussian process, Linear Regression, regularized 

logistic regression, linear discriminant analysis, spline interpolation). 
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5 OntoStrength –A Framework to Represent and Inference 

Knowledge in Psychomotor Intelligent Tutoring System 

5.1 OntoStrength’s Design Methodology 

The OntoStrength ontology aims to support the development of a psychomotor ITS dedicated to 

enhancing psychomotor skills and associated bio-motor abilities, such as strength. A 

multidisciplinary team composed of computer scientists and sports scientists developed 

OntoStrength. The Ontology 101 methodology, also known as OD101, (Noy & McGuinness, 2001) 

was used to develop the ontology. 

We used the Protégé software to edit and refine classes, relationships, slots, and facets. GraphDB1 

was considered the semantic graph database for storing and querying the ontology, as well as for 

generating interactive data plots. The SPARQL query language (Prud’hommeaux & Seaborne, 2008) 

was used to test different training scenarios through queries. 

Strength development is the domain covered by OntoStrength. Strength is defined as the maximal 

force or torque (rotational force) that a muscle or muscle group can generate or as the ability of the 

neuromuscular system to produce force against an external resistance (Bompa, 2017). 

First, OntoStrength supports the ITS domain module by providing classes that describe the diversity 

of strength skills. Second, classes on strength development processes support the tutoring module. 

Finally, OntoStrength supports the ITS student module with knowledge about the different 

individual characteristics to consider for the personalization of strength program tasks. The first 

OntoStrength sub-domain aims to describe strength skills. The domain module uses strength skills 

to provide development objectives, the student module uses it to design a student strength 

fingerprint, while the tutoring module generates and monitors training workouts as an input.  

Hence, a strength skill combines a movement skill and a strength type in the OntoStrength ontology. 

OntoStrength considers four movement types: Muscular, Functional, Fundamental, and Specialized. 

The first two movements support the general strength skills. Muscular describes the different types 

of possible contractions for each muscle involved in human body movement. OntoStrength 

describes twenty-four muscles and four contraction modes: eccentric, concentric, isometric, and 

plyometric. Functional is related to actions performed by the human body joints while moving.  

 
1 https://graphdb.ontotext.com/ 
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The OntoStrength strength skills sub-domain includes three hierarchies of classes that can be used 

to describe skills such as “Biceps Eccentric Maximum Strength,” “Hip Flexion Strength Endurance,” 

“Throwing Maximum Strength,” or “Lunge Power.” The classes used to represent the main concepts 

of this domain are the following: “Strength Skill”, “Movement Skill,” and “Strength Property”.  

The second OntoStrength sub-domain supports the description of a strength development program. 

The domain module for a psychomotor ITS can use this knowledge to provide relevant content to 

generate and schedule training workouts. The student module uses this knowledge to update student 

training components when performing workouts. Finally, the classes structure the behavior of the 

tutoring module. This sub-domain centered on strength skill development includes two hierarchies 

of classes: one to describe different periods and one to represent strength development modalities.  

The third OntoStrength sub-domain supports the description of variables used when defining 

strength training development programs adjusted to students’ characteristics. The student module 

from a psychomotor ITS uses this knowledge to provide the tutoring module with specific 

knowledge about each student. In addition, the tutoring module uses this knowledge when defining 

workout content and updates it based on the feedback received from the student. A typology of 

strength fingerprints structures these variables. 

The “General Signature” class contains generic attributes such as the student’s name, age, gender, 

size, or weight. One specific signature is associated with each bio-motor ability. The 

“Anthropometric Signature” refers to body sizes, weight, and body composition. The “Injury 

Signature” includes each student’s history of relevant injuries to be considered when performing a 

strength development program. The “Motor Signature” associates specific levels to the student, for 

each movement skill. Moreover, the ontology includes the level of each strength movement type for 

strength development. 

The “Strength Training Signature” describes the student training history for each workout 

performed, the content, success evaluation, and associated student feedback. Hence, the 

“Personalized Biomotor Development variables” organize all the different signatures in the 

OntoStrength ontology, as can be seen in Figure 5. 

The previously described major class hierarchies support the instantiation of strength development 

programs, from the macro-cycle level to the exercise level. In addition, SPARQL queries were 

implemented to solve specific training tasks – for example, to obtain exercises associated with a 

specific body part (wide triceps push-up, side to side pull-up, feet elevated pike push-up), or to obtain 

generic training templates for a training objective, based on trainee characteristics. GraphDB was 
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used to test the queries and interact with the ontology. Through SPARQL, new data can also be 

added to the ontology. 

 

Figure 5. OntoStrength sub-domain for Personalized Development of Strength Skills 

OntoStrength presents the instantiation of a Macrocycle entity, which has a Mesocycle entity as an 

object property, called hasMesoCycle. The Mesocycle entity has a Microcycle entity, as an object 

property, called hasMicroCycle. The Microcycle has two object properties (hasWorkout and 

hasObjective), whereas the Microcycle is defined as a Push Workout and a Full Body Workout. 

The workouts are initialized with exercises following the rules defined by Bompa (Bompa, 2017), 

for a beginner-level load. Each exercise instance describes a list of functional and fundamental 

movements, together with the muscle contractions involved in the execution. The SPARQL query 

from Figure 6 retrieves all movements involved in a specific Microcycle defined in OntoStrength 

(“os” denotes the prefix specific to the OntoStrength ontology). 

 

SELECT DISTINCT ?movement ?microCycle 

WHERE  

  ?microC os:hasMicroCycle ?microCycle. 

  ?wkout os:hasWorkout ?workout. 

  ?cntBlck os:hasContentBlock ?contentBlock. 

  ?ex os:hasExercice ?exercise. 

  ?ld os:hasLoad ?load. 

  ?mvmnt os:hasMovement ?movement. 

Figure 6. OntoStrength MicroCycle Movements query. 

The inheritance hierarchy can be also visualized in GraphDB. OntoStrength relies on property 

inheritance between classes. Each exercise is represented as a class, which has specific base classes 
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representing the type of movement involved, while the most generic one is the “Movement Skill” 

class. The “Exercise” class is inherited from the “Specialized Movement” class, which includes a list 

of “Functional Movements” to execute (such as “Elbow Extension,” or “Shoulder Adduction”). 

Moreover, “Functional Movements” are composed of a list of “Muscle Contractions”, such as 

“Hamstrings Concentric Contraction,” “Quadriceps Eccentric Contraction,” and “Teres Major 

Isometric Contraction”. 

An instantiation of an “Exercise” class is the exercise itself, with its specific level and description. 

“Feet Elevated Front Plank” from Figure 7 is an example of a named individual of the class with the 

same name, described as a Level 1 exercise, for the Anti-Extension Movement. 

 

Figure 7. GraphDB View of Feet Elevated Front Plank instance and class 

5.2 OntoStrength Usage 

The OntoStrength ontology supports any psychomotor ITS by providing knowledge and 

relationships useful to different modules of the system. To this end, a RESTful API can interact 

with the ITS to provide microservices specific to the domain, student, and tutoring system 

functionalities. The following subsections illustrate the interactions of OntoStrength with a 

psychomotor ITS via the RESTful API. 

The ITS Student profiling functionalities elaborate and refine student signature profiles used to 

personalize the definition of strength development workouts. The OntoStrength RESTful API 

provides queries to support the selection of signature variables used by the ITS, update signature 

variables, and obtain the values of signature variables. 
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The strength individualization signature consists of a level ranging between 1-4 to match the level at 

which exercises can be safely performed, for all strength movement skills. The evaluation of these 

parameters is performed through an initial calibration workout session, which has an incremental 

complexity, until failure. 

For example, “Side to Side Push Up” for upper body area level 1 complexity or “Self-Assisted One 

Arm Push Up” for level 2. This system calibration feature uses the RESTful API to obtain the 

exercises for a given strength movement skill and level, to get the actual student level for a selected 

strength movement skill, and update the student profile after each exercise. Once an initial student 

calibration is performed, a strength development training program is generated and is continuously 

updated after each workout. 

We considered Ontology Development 101 (OD101) for building OntoStrength, a micro-level 

methodology that proposes a practical and explicit guide for developing ontologies. The process, 

based on interdisciplinary teamwork, implied a clear definition of the domain and the scope, the 

reuse of existing ontologies, the definition of classes, and properties, and finally instance creation to 

complete the knowledge base. 

The ontology can be accessed using a microservices architecture, where specific endpoints are 

available to serve multiple queries for sports training purposes, such as exercises targeting a 

movement pattern, by difficulty, warm-up sessions generation, weekly training generic plans, based 

on objectives, and others. The microservices are ready to be integrated into any ITS for psychomotor 

development, where core components (i.e., student, domain, and tutoring models) may rely on the 

knowledge base for conceptualization and basic inferences. 

The current section is the foundation to generate entire training chains, including workouts, micro 

cycles, mesocycles, and macrocycles. Improvements regarding the design of the ontology include 

additional gender dimensions and assessments of injuries while practicing training activities. 

OntoStrength will be published under an open-source license and will be further extended to include 

other psycho-motor abilities, such as Flexibility, Mobility, or Endurance skills. 
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6 Teaching Strategies in a Psychomotor Tutoring System 

6.1 Accounting for Sexual Dimorphism in Psychomotor Intelligent Tutoring 

Systems 

The morphological, cognitive, and physiological differences between males and females impact the 

content development of the training sessions, together with associated risks of injuries and 

psychological disorders. This section briefly describes these differences. 

The difference between women’s and men’s skeleton size and body composition (i.e., density, 

relative fat mass, and lean body mass adjusted by height) varies at different age periods (Kirchengast, 

2010) (Joyce & Lewindon, 2016) (Shephard, 2000). These differences increase at puberty due to 

hormonal differentiation. Adult human males are 7% taller than females, and there is a substantially 

higher amount of body fat and a substantially lower amount of lean body mass among women. 

Women have a smaller thorax, a larger abdomen, a broader and shallower pelvis, shorter legs, and a 

lower relative center of gravity than the male. The distribution of lower body muscle mass is quite 

similar between the sexes, whereas women have less muscle mass in the upper body than males. 

Various theories (Baron-Cohen, Knickmeyer, & Belmonte, 2005) (Liutsko, Muiños, Tous Ral, & 

Contreras, 2020) (Li, 2014) enunciate the difference between women’s and men’s cognitive abilities 

impacting psychomotor skills. In general, women tend to adapt their behavior to their perception of 

another person’s emotions and thoughts. For navigation, they favor an egocentric strategy while 

using street names and building shapes as landmarks. They outperform males in precision and fine 

hand abilities, object location and verbal memory, verbal recognition, and semantic fluency tasks. 

In contrast, men tend to analyze and explore rules that govern a system. In general, they perform 

better on mental rotation and spatial navigation tasks than women. For navigation, they tend to favor 

an allocentric strategy that considers accurate judgments of distance. Men integrate speed and 

precision more quickly than women, and they tend to be better at sensorimotor tasks, including 

aiming, catching, and throwing. 

Women's morphological differences and hormonal variability during the menstrual cycle induce a 

higher risk of injury and, in particular, Anterior Cruciate Ligament (ACL) injury. The prevalence of 

ACL injury for women is 2-10 times greater than in males, for the same psychomotor activities. This 

prevalence causes a lower rate of force development, hamstring activation deficits, and greater ankle 
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dorsiflexion, combined with the valgus position of the knees and external rotation of the hip (Joyce 

& Lewindon, 2016) (Somerson, Isby, Hagen, Kweon, & Gee, 2019). 

Traditionally, the schedule and the design of psychomotor skills training sessions rely on 

physiological temporal variables. The delay between two sessions must be long enough not to induce 

overfatigue and not too long not to induce detraining. The evolution of session load, which is 

computed using Equation 1, follows temporal patterns with progressive development from one 

week to another. 

Equation 1. Session Load Formula 

SessionLoad = ∑ NoRepsEx k * IntensityEx k * RestTimeEx k * NoJointsEx k 

The easiest week is set every three weeks to facilitate learning assimilation – for example, one week 

with easy sessions, one week with medium sessions, one week with heavy sessions, followed again 

by easy sessions. 

Trainee’s performance monitoring and feedback support load adjustment. When scheduling learning 

sessions for women, tutors must follow the same physiological temporal variables. However, when 

designing sessions, they must synchronize with the menstrual cycle to define session content. Table 

3 describes the relationship between session load and the different phases of the menstrual cycle 

according to Pitchers (Pitchers & K., 2019). 

Table 3. Training load adaptation to menstrual phase adapted from Pitchers 

Menstrual 

Phase 

Early  

follicular 

Mid  

follicular 

Late  

follicular 

Early  

luteal 

Mid 

luteal 

Late  

luteal 

Training 

Load 

Light Medium Medium / 

Heavy 

Very 

Heavy 

Medium Light 

Trainee profiling before starting and during a psychomotor skill development program generally 

consists of assessing physical capacities and identifying areas of weakness or pain associated with 

performance (Joyce & Lewindon, 2016). The consideration of female-specific risks of injuries, 

particularly ACL and female athlete triad, requires integrating appropriate tests of assessing the injury 

susceptibility. Results from these tests are used afterward to provide dedicated prophylaxis sessions 

and adjust learning sessions accordingly. 
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6.2 Optimizing Teaching Sequences using Machine Learning. Right 

Exercise at the Right Time (RiERiT) Method 

The tutoring process for a Psychomotor ITS was structured on a four-level maturity scale, which 

includes novice, intermediate, advanced, and expert trainers. Additional temporalities are considered 

in the adaptation process when moving from one level to another. 

The Novice Trainer implements the Multi-Armed bandits’ algorithm for personalizing the training 

sequences in a session. The Intermediate Trainer can personalize a session content; the Advanced 

Trainer personalizes the micro-cycle, while the Expert trainer can create customized mesocycle and 

macro-cycle content for each individual. 

The underlying model relies on templates of training sequences for generating micro-cycles and 

sessions based on trainee input, including the number of sessions to train in the current week 

(associated micro-cycle), time to train for a session, and micro-cycle goals or focus. A sub-list of 

templates used for generating micro-cycles in anatomical adaptation is presented in Table 4. 

Table 4. Micro-cycle Templates Examples for Anatomical Adaptation 

Micro-cycle Template Name 
# of pieces of 

Training 

Recommended Trainee 

Push / Pull / Lower / Upper / Lower  5 Men 

Hip Dominant / Knee Dominant / Upper / Lower / Upper  5 Women 

Upper / Lower / Full / Full / Full  5 Mixed 

The charge level is represented by the number of repetitions (ranging from 8 to 15) and sets (ranging 

from 1 to 5). Targeted areas for exercises are represented by either fundamental or complementary 

movements, and the domain module maps real exercises with movement types and difficulty levels 

(from 1 to 5). Trainee level for each fundamental movement is estimated through calibration 

challenges, which were previously introduced. As such, the Novice trainer’s challenge is to choose the 

right exercise from the list of available exercises (called the Right Exercise at the Right Time - 

RiEaRiT). 

An efficient online method, namely contextual multi-armed bandits (Lu & Pal, 2010) was used to 

explore and optimize different exercises and estimate trainee progress. Such algorithms model a 

situation where a decision is taken in a sequence of independent trials based on a given context, 

which contains side information.  

The context of Selfit is represented by the trainee shape-of-the-day, which is computed using a Borg 

scale (Spielholz, 2006), i.e., a CR-10 (Category Ration-10) scale to measure different body shape 

parameters. The selected algorithms ensure the creation of a personalized learning experience relying 
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only on limited domain knowledge. The goal of the model is to maximize the total pay-off, or reward, 

of the chosen actions. 

The reward of the Multi-Armed Bandit, after choosing an exercise, is computed as the difference 

between external load (EL) – considered exercise charge: number of repetitions and number of sets 

and internal load (IL) – computed from estimated user shape, subjective value. This difference is 

also defined as the number of Repetitions in Reserve (RiR) (Hackett, Johnson, Halaki, & Chow, 

2012) and, for anatomical adaptation training, the best values are positive, as close as possible to 0. 

RiR denotes how many more repetitions a trainee could have performed at the end of a set. 0 means 

the number of repetitions provided is the maximum number of repetitions the user could have 

performed. A positive value reflects the number of potential repetitions that could have been 

performed; nevertheless, this value is subjective. A negative value means the trainee has failed at that 

set; if, for example, the set had 12 reps and RiR was -2, the trainee was able to perform only 10 reps. 

While following a training program, there are specific sessions that require the trainee to reach failure 

(negative RiR). 

The reward is computed based on the formula in Equation 2.  Valid values of RiR are integer values 

in [-10,10] interval. If the reported RiR is either 0 or 1, the reward is 1, the highest value. This means 

the user was able to execute the number of repetitions of that exercise, and it was highly challenging 

also. If the reported RiR is greater than 1, the reward is positive, in the [0.1, 0.5] interval. The higher 

the RiR value is, the smaller the reward.  

Equation 2. Contextual Multi-Armed Bandit’ Reward Formula 

𝑟𝑒𝑤(𝑅𝑖𝑅) =  

{
 
 

 
     1

1

𝑅𝑖𝑅

   
1

|𝑅𝑖𝑅|
− 1

   

   , 𝑤ℎ𝑒𝑟𝑒 𝑅𝑖𝑅 𝑖𝑛 {0,1}    

, 𝑤ℎ𝑒𝑟𝑒 𝑅𝑖𝑅 > 1        

, 𝑤ℎ𝑒𝑟𝑒 𝑅𝑖𝑅 < 0        

 

If the reported RiR is less than 0, this means the user has failed the current exercise. The reward is 

proportional to the RiR variability. The higher the RiR value is, the higher the reward. For this 

branch, the reward is negative, with values within the [-0.9, 0] interval. 
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7 Selfit – A Psychomotor Tutoring System prototype in Open 

Environments 

7.1 Selfit Architecture 

The Selfit Domain model supports the learning process by providing answers to a) requests related to 

learning objectives definition, b) trainee evaluation, c) learning program definition, and d) adaptation 

by answering requests. OntoStrength ontology structures the Selfit domain model. Its core consists 

of the movement skill class, with associated psychomotor profile, movement patterns, and training 

program modalities. The ontology describes the relationships between body muscle chains, joint 

movements, agonist, antagonist, and synergist muscles for strength qualities development. It also 

describes different development modalities with associated load patterns. 

The Selfit Domain encapsulates the logic for the calibration session, used to assess the trainee’s level. 

24 exercises were described, 4 for each movement area, with incremental difficulty and a protocol 

for execution. The domain also has a complete mapping of the movements with the body muscles. 

The trainee has the option to configure a session by specifying the desired muscles to train. The list 

of muscles selected is further mapped to the corresponding movements and based on trainee level 

and current session goal, the desired exercises are proposed. 

The Selfit Student Model contains information about trainees’ psychomotor capacities, especially the 

ones related to the super-compensation cycle status. Moreover, it includes usage statistics. The 

Monitoring module accesses information about how students are using the system and how they 

progress with their training. The module uses this information to modify the training parameters. 

The Selfit Student Model supports the generation of training sessions and the monitoring of trainee 

efficiency to optimize progression while ensuring motivation to practice and progress. More details 

on the student modeling imported from OntoStrength are presented in Error! Reference source not 

found.. 

Selfit Student Module maps information about the trainee’s mechanical status. This includes specific 

events reported by the user – pain, injury, surgery, or others, on one or more body regions: back, 

torso, upper extremity, lower extremity, and head and neck. This data, which can be updated at any 

type by the trainee, are reflected in the training planification. The reported events act as restrictions 

on specific movements and muscles to be used while training. 

Selfit Student Module maps a list of physiological issues, with potential medical risks, which are also 

reported by the trainee. This includes a form the trainee can opt to fill in, which includes the 
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following health risks – hypertension, diabetes, post-cancer, and obesity. The physiological status set 

a list of restrictions on the generation of the training program. Other data specific to the user is a list 

of favorite exercises, which are marked by the user while training and will increase the chances of 

being recommended further. Each user has a list of other trainees they follow, and who follow them 

in the Selfit application. 

The Selfit Tutoring model supports the learning process by providing ML mechanisms to support the 

adaptation of the learning program to the trainee’s characteristics. The tutoring module required 

integration with the psychomotor development domain. Sport training is a complex process, which 

supports adaptation and personalization while considering different temporalities (e.g., exercise, 

session, week, month). 

A multi-armed bandit algorithm supports the definition of training workouts by adjusting the 

template content with inputs related to readiness to train, the effective realization of training tasks, 

and subjective assessment of task effects provided by the user. The sexual dimorphism dimension is 

also considered due to morphological, cognitive, and physiological differences between males and 

females. The design of training sessions relies on physiological temporal variables. 

The delay between two sessions must be long enough to not induce overfatigue and not too long 

not to induce detraining. For men, the evolution of session loads follows temporal patterns with 

progressive development from one week to another. The easiest week is set every three weeks to 

facilitate learning assimilation – for example, one week with easy sessions, one week with medium 

sessions, one week with heavy sessions, followed again by easy sessions. For women, the evolution 

of session loads follows their menstrual cycles by using a specific template. 

Selfit implemented the Right Exercise at the Right Time (RiERiT) method, which has proven efficient 

for adaptation in the psychomotor field, as shown in II.6. The tutor implements the multi-armed 

bandit algorithm for personalizing the training sequences in a session, based on session templates. 

A session template has a list of generic exercises, each of them with a targeted area, charge level, and 

rest time. Selfit proposes exercises most likely to increase the average competence level across all 

psychomotor components using previous trainee performance. 

The Selfit Graphical User Interface supports exchanging information between the trainee and Selfit to 

facilitate the learning process. Students access the interface module through a Progressive Web App, 
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available for cellphones, tablets, or personal computers. Selfit is accessible in the most popular mobile 

stores – Google Play2 and App Store3. 

Progressive Web Application (PWA) development is a novel platform that combines the capabilities 

and experiences of native applications with the reach of the web (Biørn-Hansen, Majchrzak, & 

Grønli, 2017). PWAs are recognized for a set of key features, such as responsive, connectivity-

independent, app-like, safe, or installable. The application acts as the User Interface Module and it 

is responsible for updating the Student Module, through continuous user feedback. 

The interface module is composed of the authentication component, the calibration or assessment 

component, the feedback, and the training session. Selfit does not track and does not store any 

personal user data; user profiles consist of a nickname, password, and a security question managed 

by the Authentication subcomponent. The Calibration subcomponent supports the definition of each 

student's learning motivation by selecting physical qualities to develop.  

For each physical quality, the component provides a testing protocol. For example, the evaluation 

for strength qualities development consists of a challenge aiming to perform four of the six essential 

movements categories (upper body push horizontal, upper body push vertical, upper body push 

horizontal, upper body pull vertical, lower body hip dominant, lower body knee dominant), one 

exercise for every four levels of difficulty. Calibration sessions should be performed regularly to 

adjust the user’s progress while training. 

Feedback is crucial to performing motor skills well (Bilodeau & Bilodeau, 1961). The Dialogue 

subcomponent supports students in providing information before and after training sessions to help 

adapt training sessions to students’ shape and availability. Before starting a session, Selfit asks 

students to self-evaluate their fatigue level, motivation to train, sleep quality, and stress level on a 

scale from one to ten. 

During training sessions, Selfit asks students to self-evaluate at the end of each content exercise and 

answer whether they could perform additional repetitions and, if yes, how many. After the training 

session, Selfit asks the users to input the session difficulty they perceived on a scale from one (very 

hard) to ten (very easy).  

The Training session subcomponent provides learners with a training session description, which 

includes a summary of warmup, content, and cooldown exercises. Training sessions are easily 

configurable; trainees can select train location (home or gym), with many session templates available, 

 
2 https://play.google.com 
3 https://www.apple.com/app-store 
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the training materials available (barbell, elastic band, machine, etc.), and complementary muscles to 

target while training (anterior shoulder, biceps, forearms, thigs, etc.). While training, a video 

demonstrating the movement and details required to accomplish the correct load (i.e., number of 

sets, number of repetitions, rest between repetitions and between sets) is displayed for each exercise. 

7.2 Workout Generation and Monitoring the Training Impact 

The Selfit workout generation engine defines the content of the next workout session by using 

information about students’ characteristics, past performances, and current fatigue levels. The 

tutoring module first identifies the workout target by predicting the most accurate template, based 

on the student’s training history and actual fatigue signature. Once selected, the module generates 

appropriate content using training strategies and students’ personalization signatures. The user can 

also customize training content by modifying his/her preferences about developing muscles, before 

starting a workout. At the end of each exercise, session phase, and workout, Selfit assesses success 

or failure and asks students about their perceptions of the effort. 

The Selfit user interface module updates the ontology with training information updates submitted 

by users, such as the daily fatigue profile, or the perception of effort after achieving a training task. 

An example of the graphical interface inside the training session can be seen in Figure 8 (a), where 

the user subjectively assesses his physical shape before starting a training session; muscle 

development preferences are described in Figure 8 (b). 

 
 

(a) Daily fatigue monitoring interface (b) Muscle development preferences interface 

Figure 8. Selfit Interface – Parameters for Workout Generation 

User feedback after each exercise is stored and the tutoring module improves recommendations 

based on the reported repetitions in reserve. Personalization is perceived at the session level. Before 

starting each training, the user configures the current session parameters’ and then all the exercises 
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are generated. Afterward, the session summary is shown to the user and then the training can be 

started. 

7.3 Psychomotor Assessment using Computer Vision. A Study on Mitigating 

the Risk of Injuries 

A women's ACL injury risk assessment module was developed to support student initial screening 

and injuries risks monitoring. The assessment process is structured into four phases, see Figure 9. 

The first phase consists of capturing one frontal and one sagittal video of the student performing a 

back squat. In the second phase, a human motion recognition module provides a discretization of 

each body joint’s trajectory while performing the back squat. Then, the risk assessment module 

analyzes this model for calculating the ACL injury risk factor. Finally, if risks are detected, the module 

provides instructions to the ITS. 

The two videos allow having a complete perspective of the performed movement and then provide 

information to assess knee valgus and ankle flexibility, two of the essential factors involved in the 

ACL injury risk. 

 

Figure 9. ACL injury risk assessment module process 

In the second phase, a human motion recognition module provides a discretization of each body 

joints' trajectory performing the back squat. The OpenPose 2D pose estimation library (Cao, Simon, 

Wei, & Sheikh, 2018; Simon, Joo, Matthews, & Sheikh, 2017) allows obtaining videos with an added 

overlay containing the body key points and lines and a collection of JSON files, one for each frame, 

containing the position of the essential points, in pixels. A recent study (Ota et al., 2020) 

demonstrates the reliability and the validity of this library results by comparing them to results 

provided by a kinematic measurement by three-dimension motion analysis devices using VICON. 

The risk assessment module analyzes this model for calculating the ACL injury risk factor. The 

monitoring of the medial aspect of either knee passing the medial malleolus from the anterior 

perspective during any phase of the squat supports identifying a valgus (Somerson et al., 2019). The 

module evaluates the distance between "R or L Knee" and "R or L Ankle" when the student 

performs the back squat. 



Intelligent Tutoring Systems for Psychomotor Development 

Selfit – A Psychomotor Tutoring System prototype in Open Environments 

38 
 

The squat movement starts in frame 30 and finishes in frame 150 in Figure 10. At the initial position, 

the distance between the knees and ankles is negative, and the distance between knees and ankles is 

superior to 5 cm, demonstrating the presence of a valgus position before the start of the movement. 

During the movement, the negative distance between the left knee and the left ankle increases, 

demonstrating the valgus position's increase.  

The risk of ACL injury increases if both a valgus and flexible ankles are detected. During the 

ovulation period of the menstrual cycle, hormones maximize the risk. If the risk assessment module 

detects a risk of ACL, it communicates with the Selfit ITS by providing mitigation rules to redesign 

the planned and future learning sessions for considering low-risk tasks. Furthermore, Selfit provides 

additional prophylactic learning sessions to decrease the risk of ACL with specific strength, 

flexibility, and proprioceptive tasks. 

 
 

a) a valgus on the right knee b) no valgus on the left knee 

Figure 10. Illustration of the evolution of the distance between student’s knees and ankles  

with variations between left-and right 

The current chapter introduces a comprehensive description of Selfit, an ITS for psychomotor 

development, alongside encountered design and implementation challenges and architectural 

considerations for the sexual dimorphism dimension. 
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8 Results 

8.1 Simulation-based Experiment 

The efficiency of the Tutoring module was simulated with different contextual multi-armed bandits’ 

implementations. The experiments were conducted in fully virtual environments, and the goal was 

to determine, based on the general sports training methodology, which algorithm converges first, 

and how many training sessions are required. 

The experiment was conducted in an environment configured with 1800 exercises, 300 for each 

movement family, with 10 exercises per level of difficulty. Difficulty levels ranged from 1 to 5. The 

following strategies were implemented to assess performance: (a) random agent – picks a random 

exercise for that movement type and level; (b) multi-armed bandit upper confidence bound (MaB 

UCB1) – the principle of optimism in face of uncertainty, which means the more you are uncertain 

of an arm, the more important it is to explore; (c) multi-armed bandit ε-Greedy (0.1) –explore 

(choose a random action) with probability ε and exploit (choose an action with maximum value) 

with probability 1-ε; and (d) Bayesian multi-armed bandit UCB1 – use the same principles of UCB1, 

but incorporate prior information on the distribution of an arm’s rewards to explore more efficiently. 

For the ε-Greedy approach, the value of 0.1 for ε exhibited the best results for all the simulations. 

Initial competence levels were configured randomly for each movement type of the simulated 

trainees. The response of students after applying an exercise follows the standard Item Response 

Theory (Hambleton, Swaminathan, & Rogers, 1991), where the probability of being able to perform 

an exercise is given by Equation 3. 

Equation 3. Item Response Theory (Hambleton et al., 1991) 

𝑝(𝑠𝑢𝑐𝑐𝑒𝑠𝑠)  =   
𝛾(𝑎)

1 +  𝑒−(𝛽(𝑐
𝑄−𝑐(𝑎)+𝛼))

 

Parameters β and α are constants to simulate different learning rates of the population; γ(a) was 

randomly generated for each competence level of the trainee between 0 and 1, where 0 means the 

trainee cannot perform the exercise. Also, it was considered that after every 30 exercises applied to 

a muscle family, the number of repetitions in reserve for all the exercises for the targeted muscle 

family will increase. The experiment goal was to understand how fast and efficiently the proposed 

algorithms estimate and provide training exercises, using the current state of the trainee. In the 

experiment, a population of 1000 trainees was generated, each with a specific competence level, 

generated randomly per exercise; RIR values were initially estimated per exercise and trainee. 
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The previous population was trained for 2 years, including 384 sessions, using the four conditions 

given by the selected algorithms. The same exercises were applied to a trainee at a certain time, given 

the four strategies. Results can be seen in Figure 11. A data point on the Ox axis represents the 

current training session number, and the Oy axis encapsulates the cumulated training reward. 

 

Figure 11. Training Algorithms Comparison – 2 years timeframe 

The algorithm that provides the best cumulative reward during training is the Bayesian Multi-Armed 

Bandits UCB1: 1175; next was the ε-Greedy strategy (975.8), followed by simple MaB UCB1 (483.3) 

and random (33.1). The Selfit Tutoring model supports the learning process by providing machine 

learning mechanisms to support the adaptation of the learning program to the trainee’s 

characteristics. For the Novice coach, the sessions were generated using a standard calendar plan, 

used by trainers in their daily work, without integrating the gender dimension.  

8.2 Experiment with Real Users 

The goal of an Intelligent Tutoring System is to provide more efficient teaching experiences to 

students (Clement et al., 2015). The current experiment aimed to evaluate both Selfit learning 

improvement and the overall user experience. The experiment has been split into two phases. Selfit 

version 1 was initially tested between January-February 2021, by 18 trainees from France and Romania. 

Few user interface and session exercise selection bugs were reported by the users, and several 

improvement features were proposed in this preliminary feedback. 

The initial testing phase has been followed by a new development phase, between February 2021 

and December 2021, for an improved Selfit version, which was rolled out to production at the end 

of 2021. Selfit Version 2 included several bug fixes, performance improvements, and a set of new 

features, based on user feedback. Features include the ability to customize your profile (set up a 

profile picture, set a motto, birthdate, etc.), an option to pause and resume time-based exercises, an 

improved interface for inputting RIR per exercise, better tailoring of a session by inputting a list of 
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materials available to train, added body areas trained statistics diagram, integrated Google Analytics, 

created a new protocol for pre- and post-tests, and others. 

Selfit Version 2 was tested in the second phase of the experiment, between January-May 2022, by 42 

trainees from France and Romania, which got onboarded in the app on different dates. The goal was 

to validate the software architecture, and the interface, and to assess if it is possible to learn the best 

load over each exercise, so that learners are at their optimal level across a training program. 

Even though the first phase of the experiment should have lasted for 3 months, to also gather data 

about how the tutoring module behaves in practice, based on the user’s feedback and the bugs 

reported, this phase has been paused and the issues were addressed. Selfit Version 2, with several 

interface and performance upgrades, has been released internally, in our research group, in 

November 2021, and released publicly, in the mobile stores, in January 2022. 

The updated version has split the population of trainees in two, both using Contextual Multi-Armed 

Bandits ε-Greedy (0.1) algorithm: 

- the first group has used the Selfit Tutor A – the tutor is using a wider exploration space (the 

bandit arms for a movement area exercise include all the available levels, filtered by the 

available materials); 

- the second group has used Selfit Tutor B – the tutor is using a narrow exploration space (the 

bandit arms for a movement area exercise include only the user’s estimated level, filtered by 

the available materials). 

We expected the Selfit Tutor B to provide more tailored training content overall, due to the smaller 

size of the exploration space. Even considering the current trainee context, which we assumed it 

should impact the training load – difficulty of the exercises provided, we expected more engagement 

and better progress for the participants in Group B. 

Users enrolled in the experiment were exposed to one of the two versions of the tutoring 

component, both implemented using the Contextual Multi-Armed Bandits ε -Greedy 0.1 

(Contextual MaB) session generation – one with a higher exploration space (called further Group 

A), and another one, with a lower exploration space (called further Group B). 

The top 5 performers from Group A have the following number of sessions completed: 30, 27, 25, 

23, and 16, while from Group B the top 5 performers have: 11, 6, 6, 5, and 5 sessions respectively. 

Group A has performed 254 training sessions, while Group B has performed 61 training sessions.  

The calibration challenges’ goal was to classify the user in one of the four-level categories (Beginner, 

Intermediate, Advanced, or Expert), per each movement type: Upper Body (Push Horizontal, Push 
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Vertical, Pull Horizontal, Pull Vertical) and Lower Body (Hip Dominant, Knee Dominant). Users 

can update their levels per movement type only by performing again the challenges, at any moment. 

Based on the calibration test, users are assigned in the corresponding level per movement type and 

future exercises will be provided following the current values. 

Bandit’s recommendations are different between the two groups. Group A, which uses the high 

exploration space, will have more available arms to choose from – the bandit will choose from all 

the levels of that movement area, and be filtered by user restrictions and preferences. Group B, 

which uses the narrow exploration space, will have fewer available arms to choose from than Group 

A. An example of how the algorithm behaves for two users, with the same training profiles, who are 

using Tutor A and Tutor B, after the calibration challenge, can be seen in a simulated scenario in 

Figure 12. 

 

Figure 12. Bandits Exploration Space per each group, based on the Calibration Challenge. 

For the Upper-Body-Push-Horizontal movement type, the current level is Advanced. In Group A 

(Gr. A), exercises provided can be either Beginner, Intermediate, Advanced, or Expert, while in 

Group B (Gr. B), the exercises will be only from the Advanced category. 

8.3 Results of Agent’s Learning 

The experiment’s goal of learning was twofold. First, we aimed to validate the calibration challenges 

protocol and the sport exercises classification. For this, Group A and Group B followed the same 

calibration tests and were classified within corresponding groups. Considering the higher exploration 

space for Group A, we expected, at the beginning of the training program, to expose smaller rewards 

on average than for Group B. RIR values were expected to be closer to 0 for Group B, and farther 

from 0 for Group A for the first mesocycle.  

Second, we aimed to validate the efficacy of the Contextual Multi-Armed Bandits algorithm on 

learning. For this, the average rewards at each step were computed in each group and the bandits’ 
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learning is discussed. This phase also presents the potential noise in a few athletes’ data and describes 

an exclusion protocol for faulty data. 

The 42 trainees involved in the experiment, split among groups – 22 in Group A, and 20 in Group 

B, involved in 315 training sessions. A more detailed view of the number of sessions per user and 

its group can be seen in Figure 13. We can conclude that Group B had many light trainees – 9 users 

with only one training session and 2 with two training sessions, while Group A had many heavy 

trainees – 12 users with more than 12 sessions, and none in Group B. 

 

Figure 13. Number of sessions per user and their corresponding training group. 

Group A, characterized by a wide exploration space from the bandit, required more states than 

Group B to provide a better reward across time. We considered it relevant in Group A, based on 

the simulations presented in 8.1, users who performed more than 12 sessions. The selected interval 

included 12 users and had from 57 to 169 actions taken by the bandit based on the current trainee 

state. The results of the average rewards for top performers in Group A can be seen in Figure 14. 

The figure presents each bandit prediction step, from 1 to 144, and the average reward across users 

tends to increase over time. 

Even though the most active trainee in Group A trained for 169 steps, we considered in the current 

analysis the averages of at least three trainees at each datapoint. This is the reason the number of 

bandit steps in Figure 14 stops at 144, the last step when there were three users with predictions. We 

can state that, at each User ID, the number of trainees at that bandit step is equal to the value of that 

identifier (value of User ID). For example, in step 153, 2 trainees were using the system, and starting 

step 154, only one remained. 
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Figure 14. Average Rewards and Moving Average (window size = 6 steps ≈ 1 session) Rewards per Bandit 

Step for Top Performers in Group A (> 11) 

Same for bandit step 78, 8 trainees were using the system, and starting step 79 to step 81 there were 

7 trainees, and so on. Similarly, for group B we computed the average reward across all trainees at 

each prediction step but, due to the limited data, we looked between 3 to 11 sessions, which covered 

a number of 6 trainees, and considered in our analysis steps where at least 2 trainees are involved.  

The data gathered from Group B is not sufficient to make a strong point on bandit learning from 

the smaller space exploration, even though we see an overall tendency of growth. More data would 

be required to justify the bandit algorithm learning for this group. Tutor A shows, though, promising 

results for the trainees who followed the training program for more than 12 sessions.  

8.4 Results on User Experience 

Selfit Version 2 phase tested lasted for 5 months, between January and May 2022, and involved 42 

trainees, from France and Romania. They got enrolled in the system on different dates and trained 

between 1 and 30 sessions, the median value was 5 sessions. Selfit Version 2 did not store any personal 

data about the user. They enrolled within the system with a nickname, a password, and a security 

question, as a backup for forgetting the password. No real data about the user was required or either 

available to fill in, such as email, phone number, name, or address. 

After each log into the system, users could configure their profile, filling in general information on 

their gender, birth year, bio, or setting up a profile picture. Out of the 42 users, only 10 users filled 

in the optional information in their profiles. Only the bio and the profile picture fields were public 

and visible to the other members enrolled in the system. All the users were involved in the pre-test 

- the calibration challenge performed when they started to train using Selfit. 10 of them also 

completed the post-test, at the end of their training program. 

At the end of May 2022, the trainees received a user experience survey to fill in. The structure of the 

survey was the same as the one described in the previous section, for Selfit Version 1, based on the 

AttrakDiff questionnaire, and included 9 new questions, where we aimed to assess the training shape 
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of the user, involvement in the experiment, and some open questions on the overall perception of 

the user. 21 trainees out of the initial 42 (50%) filled in the questionnaire. Based on our knowledge, 

most of the trainees involved in the Selfit Version 1 experiment also used the new version and trained 

from January-May 2022. We aimed to assess if there is any visible improvement in the overall User 

Experience between the two versions, what were the main pain points and strengths of the system, 

and if there is any link between the motivation to train and user experience. 

The AttrakDiff questionnaire values for Selfit Version 2 can be seen in Table 5. Values in bold mark 

a difference greater than 0.5 on the 7-point Liker scale between the two evaluations. We can state 

that overall user experience has improved in Selfit Version 2, as many hedonists and pragmatic quality 

values are better. The negative differences between the two versions indicate that the users perceive 

the new system as a bit more technical overall and feel like the system does not fulfill their need on 

bringing people together, the social component. 

Table 5. Selfit Version 2 User Experience Feedback based on AttrakDiff questionnaire. 

UX Quality 
M (SD) UX Quality M (SD) UX Quality M (SD) 

Pleasant 
5.90 (1.26) Connective 4.14 (1.64) Human 3.85 (1.38) 

Inventive 
5.76 (1.71) Simple 5.66 (1.65) Professional 6.0 (0.83) 

Attractive 5.19 (1.56) Practical 5.66 (1.42) Likeable 5.95 (1.21) 

Straightforward 5.52 (1.36) Stylish 4.90 (1.44) Predictable 4.66 (1.49) 

Premium 4.76 (1.54) Integrating 4.95 (1.29) Brings people closer 4.05 (1.30) 

Novel 5.47 (1.49) Motivating 5.90 (0.74) Captivating 5.40 (1.39) 

Users involved in the experience survey were asked also to fill in how many trainings they performed 

on average by the week before and during the experiment. 5 users involved in testing Selfit Version 2 

were not training at all before the experiment (23.81%), and, e.g.,  1 user was training every day of 

the week (4.76%). During the experiment, most users were training either 2 or 3 times per week, 5 

users in each category, 3 users trained only one time per week, while the same user as before the 

experiment continued to train 7 times per week. 
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9 Discussion 

9.1 Advantages of our Approach 

RO1: Design an effective knowledge representation model for the psychomotor skills development 

in an Intelligent Tutoring System. 

The current thesis introduces an ontology to model learning in the psychomotor field, called 

OntoStrength. The proposed modeling is dedicated to enhancing psychomotor skills and associated 

bio-motor abilities, with a more comprehensive description of the strength skill. OntoStrength has 

been built by our team with cross-disciplinary expertise, with a background in muscular, 

biomechanical, sports training, and computer science fields. 

It was developed using Ontology 101 Methodology (OD101), SPARQL was used for queries, and 

the views were implemented using the semantic graph database GraphDB. OWL is the formal 

representation language, and the software used for development was Protégé. 

OntoStrength was further integrated and used within an intelligent tutoring system for psychomotor 

development, called Selfit. The knowledge described was mapped to the ITS components. Domain 

module addresses the movement field by first considering the diversity of human movement 

activities – daily life, leisure, or professional – and their description – muscular contraction, human 

body joints movements, or fundamental movements. Second, it includes the movement metabolic 

profile with its duration and intensity. Moreover, the domain is also related to the specific 

development rules and constraints of the different sub-skills used by the development program. 

The student module considers the evaluation domain of psychomotor skills. From this perspective, 

OntoStrength includes performance indicators and associated evaluation rules for each sub-skill 

considered by the development program. The ontology also addresses performance indicators used 

to monitor trainee responses to the training workout and to adjust the planned program to the reality 

of the effects of its application. 

The ontology was mainly developed based on the sports training theory described by Bompa (2017) 

and recent work on the psychomotor field, including the updates of the psychomotor taxonomy 

(Hoque, 2016), and similar work developed for other use cases: Goldberg et al. (2018) – for military 

training, or PRB de Campos (2018)- for learning engineering. Nevertheless, OntoStrength has a central 

role in the current thesis as it grounded the development of effective tutoring and the elements 

rendered in the graphical user interface. 
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RO2: Provide personalized sports exercise’ recommendations for the mass population when training 

in open environments.  

Numerous external factors might influence trainee fitness, fatigue, and willingness to train, such as 

daily life, professional, or other psychomotor activities. External factors which impact the training 

content are the fourth set of characteristics. The consequence is that trainee fitness and fatigue levels 

might be superior or inferior to the state assumed by the tutoring system. In addition, when starting 

a new training session users might be injured and incapable to perform part of the psychomotor 

training tasks. 

On top of these psychomotor field characteristics, the tutor should decide what is the optimal 

sequence of activities that maximizes the average competence level overall skills for each trainee. 

This is difficult to address as the users have a limited time to practice training activities – they cannot 

test all the available exercises to see which are the best for them, and there are individual differences 

between trainees – a learning task that is optimal for one user may be inefficient for another user 

with a similar profile. 

Our initial implementation in a simulated environment shown this personalizing approach is 

efficient, and it provides high-performing learning sequences after six months of continuous 

training. We assessed the effect of Contextual MaB in an experiment with real users, which involved 

42 users who trained for 6 months. The participants used one of two versions of the Selfit system, 

with two adaptive strategies – Tutor A with a wider exploration space (simple and difficult exercises 

shown to the users in Group A), and Tutor B, with a narrow exploration space (only current user 

level exercises shown to the users in Group B). The participants were asked to perform 12 training 

sessions, and also an initial and final calibration session. 

We observed the participants in Group B have quit much faster the trainings – no user performed 

the full training program (11 training sessions for the top trainer in this group), while in Group A 

there were 12 participants who followed the full training program, and also some top trainees – the 

top three performed 30, 27, and 25 sessions. This was a surprise for us, as the initial experiment 

setup assumed similar engagement overall, and even Group B to surpass Group A training time. 

Our findings highlight the importance of the diversity of exercises, through wide exploration, in 

order to maintain the motivation to train and keep the user engaged. The results for top trainees 

showed an increase in the average reward across time and, even though they did not follow the exact 

training planification as for the simulation, the results of the experiments are slowly converging to 

the simulations, which was in line with our expectations. The Contextual MaB method for 

personalizing learning in psychomotor training has shown promising results overall. 
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RO3: Implement an intuitive and effective Communication Module that facilitates the assessment 

of the sport trainee’s progress in open environments. 

Good communication skills are essential for people who work with other people and certainly for 

teachers (Woolf, 2010). Current work introduces a Communication module to support the exchange 

of information between the users and the tutor, to support psychomotor skills development. The 

Communication module interacts with the other three ITS components – domain, student, and 

tutoring modules.  

The Communication module proposed has the following components: (a) Authentication 

component, (b) Trainee Calibration component, (c) Feedback component (self-evaluation – before 

and after session, exercise-level feedback, per each set – acute feedback), and (d) Training workout 

component (video demonstrating the movement, workout setup, workout summary, past workouts). 

Trainees are required to create an account at their first interaction with the Selfit system. No personal 

data is stored in their user profile. 

 Trainee Calibration sub-module is a set of component interfaces that has the role to exchange 

information with the user to estimate his current level across the main movement areas. The 

Calibration module includes a maximum of 24 exercises to execute, 4 per each movement area, 

ranked based on the difficulty (from level 1 to level 4). If a specific level is not passed, the more 

difficult exercises of that category – higher levels – will not be shown.  To pass a specific level, the 

user has to watch the video with those specific exercises, execute the number of repetitions shown, 

and then input the number of executions he was able to execute. Trainee Calibration is required 

before the first session using Selfit, and it will be available at any time for users on the home page. It 

is recommended to redo the calibration challenge after finishing a mesocycle and to be in a good 

shape when performing it. 

Training workout component exchanges information with the learner on the training program and 

includes the setup of the training (location to train, time to train, available materials, preferred 

muscles to target), the training summary page, the past pieces of training list, and the flow of training. 

While training, a video demonstrating the movement and details required to accomplish the correct 

load (i.e., number of sets, number of repetitions, rest between repetitions and between sets) is 

displayed for each exercise. 

The Communication module implemented within the Selfit system has been tested with real users 

and a user experience survey has been conducted using the AttrakDiff questionnaire. 21 users filled 

in the questionnaire and the overall feedback was that Selfit was perceived as pleasant, inventive, 

simple, and professional. 



Intelligent Tutoring Systems for Psychomotor Development 

Discussion 

49 
 

9.2 Limitations 

The dataset obtained during data collection is not fully matching the size of the simulations. 

Simulations performed in the virtual environment have demonstrated the learning of the contextual 

multi-armed bandits’ algorithms. These showed that the users should train for at least 48 sessions to 

have a visible increase in the average reward across sessions, while in the real experiment the top 

performer trained 30 times. 

Even though we published the system on the mobile stores and the Internet, and made it available 

across the world, for free, we had a limited budget to promote it and to reach a high number of 

people (42 trainees engaged). The sports individualization theory applies the same rules based on 

age differences and professions, considering the description of the trainee profile – gender, injuries 

profile, diseases. Our findings support the generalizability of the system up to a certain degree. 

In terms of data collection while training, the measurement of perceived effort per each exercise – 

repetitions in reserve (RIR) has been assessed using the subjective input from the trainee, which can 

be noisy. A more accurate measurement of the perceived effort is monitoring the heart rate while 

training and correlating with the input of RIR. The heart rate variability indicates if the user is training 

or not, and what is the approximate fatigue. It may also be a good indicator of counting the 

repetitions executed. Measuring the heart rate requires an external smart device, such as a smart 

band, smartwatch, or chest strap, which the users involved in the experiment required while training. 

Another limitation we mention is the complexity of the strength psychomotor training field. Even 

though we can conclude we obtained good modeling of the strength field, through OntoStrength, 

which was emphasized by our results, we did not map all the parameters which influence the sports 

training individualization. This was due to both time constraints and limited knowledge of cross-

disciplinary expertise, such as the dietary dimension, where we lacked the required knowledge. 

Also, another limitation is generated by the overarching development of the Selfit system, over the 

last 4 years, which was not heavily tested and may throw bugs in some edge cases. Our team did not 

have a Quality Assurance (QA) engineer assigned to develop test cases and execute them periodically. 

This exposes a vulnerability of the Selfit system overall. An overview of all available flows and edge 

cases should be described for any software, to have a better view of the potential bugs which may 

occur. Based on the Visual Studio4 analytics using Code Metrics Calculator, the current version of 

the Selfit system has 221.873 lines of code. 

 
4 https://visualstudio.microsoft.com 
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9.3 Envisioned Applications 

The first part of the thesis has a more theoretical nature, the objective being to build the foundation 

OntoStrength has a comprehensive description of the psychomotor profile and planification for 

training programs, for each phase – session, micro-cycle, mesocycle, and macro-cycle. Together with 

a database of over 1.000 exercises which are labeled based on muscles involved, movements, joints, 

materials required, videos, and difficulty, OntoStrength will be soon published under an open license 

and the knowledge base will be available for free.  

The work presented for OntoStrength can be used to improve certain learning scenarios. Other 

systems targeting strength training can reuse the OntoStrength modeling and extend the work to 

other psychomotor fields – such as endurance, or flexibility. 

Our approach introduced an algorithm that relies on the empirical estimation of the learning 

progress, called RiERiT – Right Exercise at the Right Time, implemented in Python5. This work can 

be used in other adaptive tutoring scenarios. Other systems which involve an adaptive component, 

in psychomotor training, may use the current approach as a starting point. 

The user interface model has been built as a monolithic system, using Microsoft tech stack – 

ASP.NET MVC6. The code source will soon be published publicly on the GitLab platform7. Specific 

features, such as calibration challenges, wearables integration with the most known providers 

(Garmin8, Fitbit9), session flow, and profile configuration by the users may be reused by other 

researchers in their systems. 

Overall, as the governments are more and more interested in mass population health, and the lack 

of physical activity is a high concern for the more-developed countries, we envision the current work 

as the foundation of a larger-scale research project, over the next years, with focus to digitize the 

sports training field and develop several solutions which aim to improve the lifestyle of both 

beginners and intermediate trainees. We consider the timing is right for such a research project, the 

technological advancements support the required developments, and our core team can provide the 

expertise for leading the development of relevant solutions further. 

 
5 https://www.python.org 
6 https://dotnet.microsoft.com/en-us/apps/aspnet/mvc 
7 https://gitlab.com 
8 https://www.garmin.com/en-US/ 
9 https://www.fitbit.com/ 
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10 Conclusion 

Insufficient physical activity is a global public health concern, affecting millions of people in 

developed and developing countries (Guthold, Stevens, Riley, & Bull, 2018). The social, economic, 

and environmental transitions have led to physical inactivity and large amounts of time spent sitting 

(Owen et al., 2020), which is associated with an increased risk of common non-communicable 

diseases, such as type 2 diabetes, cardiovascular disease, musculoskeletal disability, or the major 

cancers. 

In a society that is more and more interested in global public health (McCuaig & Quennerstedt, 

2018), the goal of the current thesis was to study how and if ITSs may be built and used for training 

psychomotor skills. The work presented is at the crossroad of two main fields, Artificial Intelligence 

in Education (AIED) and sports training. Our approach introduced an ontology in the psychomotor 

field, called OntoStrength, used by the ITS for knowledge modeling. 

Also, based on the user’s training constraints – limited time, fatigue, and volatile motivation, we 

introduced a tutoring personalization approach based on RL contextual multi-armed bandits, which 

was shown previously to be efficient in educational scenarios. Our simulations have shown 

promising results for using this approach in psychomotor training, and an experiment with real users 

has been performed between January and June 2022 which has shown the potential of the proposed 

method, but additional experiments are still needed in this area. The following section describes the 

personal contributions based on the three research questions formulated initially. Afterwards, some 

directions for future research are presented. 

10.1 Personal Contributions 

The development of multiple systems, and the contributions in various research areas – including 

computer science, knowledge modeling, or data science, all converging into a unified approach at 

the crossroad of informatics, educational science, and sports science, are just the highlighting points 

of the current thesis. The goal of our research was to understand which are the main requirements 

and implications for digitizing the psychomotor training using intelligent tutoring systems. Our work 

provides an inter-disciplinary approach, covering: 

- informatics, with emphasis on reinforcement learning as support for adaptive tutoring, and 

computer engineering for the development of the interface and communication modeling; 
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- educational sciences, for the intelligent tutoring systems study-cases, to discuss transferability 

and implications on the psychomotor field; 

- sports science, for grounding the knowledgebase and developing the modeling using the 

ontological approach.  

The preliminary work of this research was a systematic literature review on intelligent tutoring 

systems for psychomotor training which was published at the Intelligent Tutoring Systems 

Conference10 in early 2020 and the work was cited and used by other researchers worldwide in similar 

projects. The thesis proposed further three systems, OntoStrength, RiARiT, and Selfit, which were 

developed by the author, under the direct guidance of both thesis supervisors: Sébastien Travadel 

and Răzvan Rughiniș. In terms of knowledgebase, the strength training field knowledge has been 

developed together with three members of the MINES ParisTech research center – Vincent 

Guarnieri,  holding a master’s in sport sciences and sports training coach, and Eric Rigaud, 

researcher, holding a Ph.D. in computer science and athletics training coach, and Didier Delaitre – 

researcher, doctor in forensic medicine.  

The developed knowledge by the sports specialists was further modeled and integrated within the 

Protégé software by Laurențiu Neagu and Eric Rigaud. The ontology was further exported in .owl 

format, shared across our team, and visualized initially using WebVOWL - Web-based Visualization 

of Ontologies, then using GraphDB. The initial version of the ontology has been published and 

accepted as a full paper at the GIFT Symposium in 202011. An updated version has been developed 

in the years after, also a REST integration layer has been developed in the .NET Core technology, 

using C# programming language, which allows OntoStrength to interact with other systems.  

The second contribution, RiARiT, was a method proposed for personalizing the learning sequence 

in psychomotor training. This method implied using Contextual Multi-Armed bandits’ algorithms 

for providing sports exercise recommendations while training. This is the first level of adaptation 

we envisioned – called Novice Trainer – and is using templates of training sessions which are filled 

in by exercise recommendations. RiARiT has been initially simulated with populations of virtual 

trainees and shown the potential of the approach. This method has been published at the Intelligent 

Tutoring Systems Conference in 202112. RiARiT was further integrated into the tutoring component 

of a system for psychomotor development and tested with real users. 

 
10 https://link.springer.com/book/10.1007/978-3-030-49663-0 
11 https://gifttutoring.org/projects/gift/wiki/Overview 
12 https://link.springer.com/book/10.1007/978-3-030-80421-3 
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The third contribution, Selfit, was built on top of the previous two. Selfit is an intelligent tutoring 

system prototype that uses the knowledge model OntoStrength, and the personalization module 

RiARiT to exhibit the potential of such a system in psychomotor development. The User Interface 

module was developed entirely by the author of the thesis and, using ASP.NET MVC framework, 

and C# programming language. 

Our team of sports scientists developed further a custom calibration protocol, more specific than 

the FMS test, which was implemented in the next version of the Selfit system. Also, in this version, 

users were not required to record themselves while performing the calibration, they could just 

manually input the perceived effort. Also, a computer vision module has been implemented, 

separately from the Selfit system, to assess the risk of injuries for female athletes. This experiment 

used OpenCV13 to track the movement angles and assess the risk of injuries. This implementation 

was not integrated within Selfit, as OpenCV cannot be added to the mobile application directly, and 

it does not work in real-time. It requires recorded, offline videos to make an analysis. For the scope 

of the experiment,  we explored the potential of computer vision on psychomotor assessment, and 

we published our work as a full paper at the Smart Learning Ecosystems and Regional Development 

(SLERD) conference in 202114. 

The final refined version of Selfit, which was tested with real users between January-May 2022, with 

several features enriching the overall user experience (auto-mode, a chart with body area progress, 

home and gym specific training configuration, favorite exercises, roll/change an exercise, and others) 

was published for the third year in a row at the Intelligent Tutoring Systems Conference in 202215. 

To conclude, we consider that the initial goal to assess the requirements and implications of building 

an intelligent tutoring system for psychomotor development has been addressed through the 

multitude of learning tasks implemented and such a system has great potential in the field. 

10.2 Directions for Future Research 

One direction that requires further improvement is the accuracy of user assessment. The method 

implemented in the current thesis for assessing user progress relies on user manual input of the 

perceived effort. The number of repetitions in reserve is directly reported by each user. A method 

that has the potential to be more accurate for assessing the user effort per exercise is through the 

correlation of the Selfit current screen shown and the reported value of the heart rate through a 

 
13 https://opencv.org 
14 http://slerd2019.uniroma2.it 
15 https://link.springer.com/book/10.1007/978-3-031-09680-8 
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wearable. Integration with main wearable manufacturers would be required and synchronization 

within the training session. 

The variability of the heart rate is a good indicator of the perceived effort, both acute and chronic 

(short-term and long-term effects). This method can be used in conjunction with user input. We 

initiated the development for this module which currently permits the integration of Garmin and 

Fitbit data, but does not make the correlation with the actual exercises in the session. Also, this 

module should be optional, and act only as an improvement in assessment accuracy for users who 

have such wearables and agree on sharing this sensitive data with us. 

Another method for user assessment and also an improvement of the overall user experience is 

integrating a computer vision module. This module aims to measure the number of correct 

repetitions executed and automatically start the rest time chronometer and move to the next exercise 

when the required number of executions is completed. The computer vision feature is useful to 

compute the number of repetitions when the trainee performs less than the number of repetitions 

required. If the user can perform more than the number of repetitions shown in the interface, a 

wearable or user’s manual input is required to assess the perceived effort. 

Another area to focus on further is extending tutoring personalization from the Novice trainer to 

the Intermediate and Advanced trainer. The current version of the adaptive tutor can personalize 

the learning sequence at the exercise level, using pre-defined session templates. The Intermediate 

trainer should be able to discover optimal sessions (movements to train and order of exercises to 

train), generated by different sets of rules, but not pre-defined, and it should be used in conjunction 

with the Novice trainer. The Advanced trainer should be able to generate micro-cycles, mesocycles, 

and macrocycles for each user, and not use pre-defined templates. The more advanced 

personalization modules will enable a fully customizable training experience for the users. 

One improvement of the system proposed is the integration of the food dimension. Training 

programs should consider what people eat and drink. Recommendations on meal plans and 

nutrition, based on trainee profile, will improve training overall efficacy. The food dimension will 

require updates on knowledge modeling and the user interface module. 

Selfit is currently used for strength training. Other training directions, such as flexibility or endurance, 

are also of high interest, especially for people with medical issues which prevent them from following 

a strength training program. The development of the new training directions is already our focus in 

future research. The flexibility module is currently under development and will be released in the 

following months. 
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