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A B S T R A C T

The ability to recognize the actions performed by people is fundamental for many practical
applications in various domains. Many of these applications need real-time recognition,
and this aspect imposes special constraints on the proposed solutions. We considered that
in the current context social robots represent one of the fields in which the Human Action
Recognition (HAR) problem demonstrates its usefulness. A robot cannot be considered
social if it is not pro-active, and to fulfil this property it must be able to understand the
actions performed by the humans with whom it interacts. Starting from this motivation,
researchers have already proposed many solutions for the HAR problem, but because the
problem is a complex one that depends on many factors, this direction of research remains
open and represents a hot topic in Computer Vision.

Our goal is to specify what a human action represents in our conception and to propose
solutions for this type of problem. Moreover, we want the proposed solutions to achieve
a trade-off between good accuracy and high inference speed. We analyzed the available
data representation modalities and concluded that the most suitable is one based on the
skeleton detected from the video sequence because it allows us to achieve the proposed
goal and ensures user privacy. To achieve our goal, we designed a series of approaches
based on small-sized deep neural networks which obtain performances comparable to the
rest of the existing solutions for one of the most complex benchmarks, NTU RGB+D.

To validate the possibility of using the proposed solutions for a robotic platform, we
developed a general pipeline that we integrated into the AMIRO framework and tested
using the Pepper humanoid robot. With the help of transformations introduced in the
integration pipeline, we showed that our neural model, trained using a dataset collected
with fixed cameras, can recognize human actions in a real scenario starting from data
provided by the robot’s cameras.

We proposed and implemented multiple solutions for the HAR problem using original
neural architectures. We built these models considering the existing state-of-the-art tech-
niques in the specialized literature. The main requirements we had in mind when we
developed these approaches are high inference speed and good generalization capacity.

There are situations in which the correctness of the prediction offered by the neural
model is fundamental. This aspect applies especially to applications in the medical field.
For this reason, in this thesis we also addressed the problem of explainability for one of the
proposed approaches. The proposed neural model returns, in addition to the probabilities
for each class, a tensor with features based on which we can determine the most important
joints for each frame.

We performed an extensive analysis of the results for the best proposed approaches. This
analysis highlights the classes for which the neural models achieve the best performance,
but also those for which they fail to correctly identify the actions. Following this analysis,
we can conclude that neural models have problems in correctly identifying those actions
for which even humans fail when they rely only on skeletal data.
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1
I N T R O D U C T I O N

The HAR problem represents the task in which we analyzed a temporal sequence describ-
ing an action performed by a human to label it with one of the possible actions. This prob-
lem is a hot research topic in the field of Computer Vision, because it has great practical
applicability. There are two relevant categories of practical problems that require solutions
that integrate a HAR module: human-robot interaction problems and video monitoring
problems. Each category presents a series of particularities, and, in this thesis, we will fo-
cus on some approaches that fulfil the necessary conditions for application to human-robot
interaction problems.

1.1 motivation

The inspiration for the problem of recognizing human actions comes from the human per-
ception of the visual information that the eye transmits to the brain. We cannot identify a
standard algorithm that the human brain applies to analyze the video stream to determine
the relevant information. Therefore, even the applications that could solve by using a HAR
module cannot depend on rules and strict definitions of the gestures, the particularities of
the people acting, the environment, etc. Moreover, the action recognition is sometimes a
difficult task even for humans. The difficulty comes from the fact that many aspects must
be considered when analyzing a sequence that describes an action. Each person may have
a distinctive way of acting. Thus, the same action can differ from one person to another or
from one context to another.

1.2 objectives

The main objective of this thesis is to design a module capable of solving the problem of
HAR that we can easily integrate into frameworks used to solve practical problems. To
achieve this goal, our research has identified the challenges that exist and has been guided
by some key questions that arise when we propose to evaluate such a solution:

• What are the main real-world applications that require the usage of a module capable of
classifying human actions?

• What data sets exist and how do they relate to the approaches proposed up to this point?

1



2 introduction

• What is the appropriate representation to ensure invariance to the environment and the person
acting?

• What are the most suitable types of neural layers that we can use in the design of the neural
network that performs the classification?

• How can we integrate a HAR module into a robotic platform and what performance does it
achieve in a real-time scenario?

• How can we calculate additional features starting from the coordinates of the joints in 3D
space and using mathematical formulas?

• How can a neural model explain or motivate the prediction provided?

• What augmentation operations can we use for skeletal data and how do they influence the
performance achieved by neural models?

We addressed each of these questions in the chapters of this thesis and provided answers
for them motivated by the results obtained or the contributions introduced.



2
S PAT I O - T E M P O R A L H U M A N A C T I O N
R E C O G N I T I O N W I T H R N N A N D T C N

2.1 data processing

An X vector is read from the dataset for each sample, where X ∈ RC×T×V×M (C = 3—
number of coordinates, T—number of frames, V = 25—number of joints, M ∈ {1, 2}—
number of people). For the joint-branch, for each joint, 3 values are added, determined
based on the difference between the coordinates of the joint ji and those of the joint con-
sidered center of gravity jc:

joint_ f eaturesji = (xji , yji , zji , xji − xjc , yji − yjc , zji − zjc)

(the center of gravity was considered the joint with the index 1 – base of the spine). For
the velocity-branch, the differences between the coordinates of the joint at frame t + 2 and
those at frame t were determined, as well as the differences between the coordinates of the
joint at frame t + 1 and those at frame t:

velocity_ f eaturest
ji = (xt+2

ji
− xt

ji , yt+2
ji

− yt
ji , zt+2

ji
− zt

ji , xt+1
ji

− xt
ji , yt+1

ji
− yt

ji , zt+1
ji

− zt
ji)

For the bone-branch, we also have 6 features that include the 3 lengths and the 3 values
of the angles for the X, Y, Z axes:

bone_ f eatures(ju,jv) = (xju − xjv , yju − yjv , zju − zjv , a(ju,jv),x, a(ju,jv),y, a(ju,jv),z)

where joints ju and jv are adjacent, l(ju,jv),x = xju − xjv , l(ju,jv),y = yju − yjv , l(ju,jv),z = zju − zjv

and

a(ju,jv),x = arccos

 l(ju,jv),x√
l2
(ju,jv),x

+ l2
(ju,jv),y

+ l2
(ju,jv),z



a(ju,jv),y = arccos

 l(ju,jv),y√
l2
(ju,jv),x

+ l2
(ju,jv),y

+ l2
(ju,jv),z



a(ju,jv),z = arccos

 l(ju,jv),z√
l2
(ju,jv),x

+ l2
(ju,jv),y

+ l2
(ju,jv),z
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4 spatio-temporal human action recognition with rnn and tcn

.

2.2 methods for rearranging joints

To extract spatial dependencies, we proposed two variants of reorganizing the joints: one
2D (shown in Figure 2.1) and one 1D (shown in Figure 2.2).

The 2D variant was proposed earlier in our paper [1] and is based on a 5 × 5 matrix.
The 2D variant presented in the Figure 2.1 allows the application of a Temporal Convolu-
tional Network (TCN) type layer based on 3D convolutions. This variant of representation
considers the 5 essential parts of the body—left hand, torso, right hand, left foot and right
foot.

24 12 4 8 22

25 11 3 7 23

10 9 21 5 6

19 18 2 14 15

20 17 1 13 16

Figure 2.1: A proposal to rearrange the joints in a 2D format

The second proposed reorganization is a linear one and is inspired by Yang et al. [2]. We
chose as the root for the proposed tree the central joint (the one with index 1), considering
that it has a special importance, reason for which it was also used for the normalization
step. The proposed tree is shown in Figure 2.2 and contains all 25 joints. We also considered
the order in which the sub-trees for the root were added. Starting from this tree, we made
a linear rearrangement of the joints starting from the DFS (Depth-first search) traversal of
the tree. In this way, we made sure that any two nodes that appear side by side in the
arrangement are also adjacent in the skeleton graph.
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Figure 2.2: Transformation of the skeleton into a tree having the root of joint 1 (considered the
centre of gravity). This tree is used for linearizing the skeleton (made based on a depth
traversal applied to the tree).

2.3 tcn-based architectures

j11 j12 j13 j14 . . . j125

j21 j22 j23 j24 . . . j225

. . . . . . . . . . . . . . . . . .

jN1 jN2 jN3 jN4 . . . jN25

Joint-Branch

b1
1 b1

2 b1
3 b1

4 . . . b1
25

b2
1 b2

2 b2
3 b2

4 . . . b2
25

. . . . . . . . . . . . . . . . . .

bN
1 bN

2 bN
3 bN

4 . . . bN
25

Bone-Branch

v1
1 v1

2 v1
3 v1

4 . . . v1
25

v2
1 v2

2 v2
3 v2

4 . . . v2
25

. . . . . . . . . . . . . . . . . .

vN
1 vN

2 vN
3 vN

4 . . . vN
25

Velocity-Branch

ResGCN *M

ResGCN *M

ResGCN *M

Concat
Rearrange
the joints

TCN-
based

modules
Pooling

Mean

Fully
Connected

Prediction

Figure 2.3: The proposed general architecture for TCN-based approaches

The general scheme of the proposed TCN-based architectures is presented in Figure 2.3. For
each branch, M layers of ResGCN type are applied to extract spatial features. This part of
extracting spatial features is inspired by the architectures proposed by Song et al. [3]. After
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spatial features have been extracted for each branch, we concatenate all features. Because
we propose to use a module based on TCN type layers that will be able to extract both
temporal and spatial features simultaneously, it is necessary to perform a rearrangement
of the joints / bones. The proposed rearrangements are detailed in Section 2.2.

To analyse the sequence and extract features from a temporal perspective, we decided
to use TCN layers. Thus, we started by testing several types of blocks based on TCN lay-
ers. Initially, we used a module based on TCN blocks inspired by the models previously
proposed in [1]. Their major disadvantage was that they did not preserve the spatial size,
because the TCN unit was based on 1D convolution. Therefore, we performed the concat-
enation of the extracted features for each joint. Then, we used the resulting 2D tensor as
input for the TCN units.

X = (x1, x2, . . . , x300) ∈ R48×300×49

TCN Unit(48,48,T,S,dropout = 0.2) TCN Unit(96,128,T,S,dropout = 0.2)

TCN Unit(48,48,T,S,dropout = 0.2) TCN Unit(128,128,T,S,dropout = 0.2)

TCN Unit(48,96,T,S,dropout = 0.2) TCN Unit(128,128,T,S,dropout = 0.2)

TCN Unit(96,96,T,S,dropout = 0.2) TCN Unit(128,256,T,S,dropout = 0.2)

TCN Unit(96,96,T,S,dropout = 0.2) Y = (y1, y2, . . . , yt) ∈ R256×t×s

Figure 2.4: T represents the size of the temporal window, and S represents the size of the spatial
window. For the blue blocks, the stride has the value 1, and for the green ones, the stride
has the value 2. 300 represents the maximum number of frames, and 49 represents the
number of analysed joints (results after the linear rearrangement described in Section
2.2). For each TCN type unit, the padding is determined based on the T and S values.

2.4 rnn-based architectures

The architecture used for the Recurrent Neural Network (RNN)-based approach is shown
in Figure 2.5. This architecture is similar to the one previously presented in Section 2.3.

In this architecture, the initial layers were applied independently for each skeleton. In
the end, a mean of the extracted features was computed. Finally, only the features corres-
ponding to the final hidden state for each sample are kept, and they are passed through a
Fully Connected layer to achieve classification.
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25

v2
1 v2

2 v2
3 v2

4 . . . v2
25

. . . . . . . . . . . . . . . . . .

vN
1 vN

2 vN
3 vN

4 . . . vN
25

Velocity-Branch

ResGCN * M

ResGCN * M

ResGCN * M

Concat Reshape Pack Padded

LSTM Unpack
Padded

Mean

Extract final

Fully
Connected

Prediction

Figure 2.5: The proposed architecture for RNN-based approach

2.5 discussion

We tested a similar architectural model based on Long short-term memory (LSTM) to
highlight the importance of our methods based on an extended TCN type unit. Even if
the inference rate is lower for the TCN-based approach, this aspect could be improved
if the parallelization property of this type of neural network were used. Unlike RNN,
where the computations for later timestamps must wait for their predecessors to complete,
convolutions can be computed in parallel even on simple and powerful SIMD architectures
like those found in graphic cards because the same kernel or very similar kernels are
independently used in each layer repeatedly. In contrast, in terms of performance, the best
results were obtained for TCN-based approaches.

In the case of TCN-based methods, for samples that contained less than 300 frames,
the padding operation is applied. In contrast, for LSTM-based approaches, this aspect
is avoided by using specific optimization operations (e.g., Pack padded sequence in Pyt-
orch). This may be one of the reasons why the inference speed obtained for TCN-based
approaches is lower than that obtained when using LSTM.

An important advantage of TCN-based architectures is the ability to change their re-
ceptive field size in many ways. For instance, stacking more dilated (causal) convolutional
layers, using larger dilation factors, or increasing the kernel size are all possible options,
each with its specific advantages and disadvantages depending on the finer details of each
implementation. This allowed us to use different values for the receptive field depending
on the domain. The best performances were obtained when we used a kernel size equal to
5 for the spatial domain and a kernel size equal to 9 for the temporal domain.





3
H U M A N A C T I O N R E C O G N I T I O N I N A M I R O
S O C I A L R O B O T I C S F R A M E W O R K

The integration of a module specialized in the action recognition within a framework rep-
resents a challenging problem. In this chapter, we present the AMIRO robotics platform,
emphasizing how we developed the component for HAR within this platform. Thus, we
describe the general integration pipeline proposed together with two neural models spe-
cialized in the recognition of 8 human actions. These results would not have been possible
without the help of Alexandra S, tefania Ghit, ă.

3.1 amiro framework

RGB-Camera

Depth-Sensor

RGB Frame

Depth map Align RGB+D
Frame

Collect
Frames

OpenPose

Skeletons

HARModule

Prediction

Figure 3.1: The pipeline of the component that recognizes human actions. This component is integ-
rated in the Vision module.

The architecture of the component used for the recognition of human actions is presen-
ted in Figure 3.1. As can be seen, this component comprises 3 important submodules:

1. Data Acquisition Module;

2. Feature Extraction Module;

3. HAR Module.

The first module is the one that collects and processes the data provided by the two
important sensors of the robot: RGB-Camera and Depth-Sensor. Because the robot is not

9



10 human action recognition in amiro social robotics framework

equipped with a single sensor that allows the collection of both types of data, it was
necessary to align the data from a temporal and spatial perspective. After being processed,
this data is collected and, when it becomes sufficient, it begins to be analysed by the next
module. Because the HAR module works with skeletal data, it was necessary to introduce
an intermediate module that aims to transform RGB+D frames into skeletal data.

3.2 general pipeline for action recognition

To have a robot that can interact with humans, the robot must identify the actions per-
formed by the person it is monitoring or to whom it must send a notification. Thus, the
module for recognizing human activities was included in the proposed framework for the
Pepper robot, to obtain a socially assistive robot.

Planning moduleData Acquisition

OpenPose

Convert skeleton

Normalization

Model fine-
tuned on the

proposed dataset

Analysis and pro-
cessing module

Predicted values

Planning module
Based on ROS messages Start prediction?

The selected action

RGB+D Images

3D Skeletons

3D Skeletons

Figure 3.2: The architecture of the complete integration process of the human action recognition
module

3.3 multi-stage architecture

The pipeline of the entire integration process is shown in Figure 3.2 and the network ar-
chitecture used as a human action classifier is presented in Figure 3.3. In the paper [4],
we presented an architecture that failed to correctly differentiate similar actions (such as
drink water and sneeze/cough or hand waving and pointing to something). Thus, we decided
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Figure 3.3: The architecture of the neural network used to recognize human action

to propose a new extended architecture that contains two additional stages that receive
as input the sequence processed with the coordinates of the skeletons but also takes into
account information from the previous stage. Each stage uses a series of linear layers to
extract features from the skeletal coordinate sequence and an LSTM network for analyzing
these temporal sequences. A loss function was applied for each stage. The action classi-
fier used was trained on the NTU RGB+D dataset [5] and then specialized on a dataset
collected using the Pepper robot. The dataset collected with the Pepper robot contains a
subset of 8 actions considered to be relevant and challenging for a robot used as a personal
assistant. Because there are very similar actions (e.g. playing with phone/tablet and typing on
a keyboard), within this subset of selected actions, a complex model was needed to be able
to differentiate the actions correctly. Thus, we proposed an architecture composed of three
stages. After this classifier was trained, the result provided by stage three was used as the
final prediction. The architecture of the classifier is an improved version of a model tested
and analyzed in our previous work [1].

3.4 tcn-based architecture

Another approach used for the human action classifier was based on TCN layers. The ar-
chitecture of this type of classifier is presented in Figure 3.4. Initially, transformations are
applied that ensure data preprocessing. These transformations have two fundamental pur-
poses: the normalization of data and the addition of descriptors related to motion (speed
and acceleration). After the preprocessing steps, the data are passed through some convo-
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lutional layers responsible for extracting relevant spatial information. This information is
analysed, from a spatial and temporal perspective, by TCN type layers. The TCN layers
coloured in blue in Figure 3.4 are the ones that will preserve the dimensions, and the ones
coloured in green are the layers that will change the dimensions (the spatial one - the num-
ber of joints and the temporal one - the number of frames). The features determined after
the application of TCN type layers are passed through a pooling layer and then classified
using a fully connected layer.

X = (x1, x2, . . . , x20) ∈ R32×17×20

TCN Unit(32,32,T,S,dropout = 0.2) TCN Unit(64,128,T,S,dropout = 0.2)

TCN Unit(32,32,T,S,dropout = 0.2) TCN Unit(128,128,T,S,dropout = 0.2)

TCN Unit(32,64,T,S,dropout = 0.2) TCN Unit(128,128,T,S,dropout = 0.2)

TCN Unit(64,64,T,S,dropout = 0.2) TCN Unit(128,256,T,S,dropout = 0.2)

TCN Unit(64,64,T,S,dropout = 0.2) Y = (y1, y2, . . . , yt) ∈ R256×t×s

Preprocessing

X = (x1, x2, . . . , x20) ∈ R9×17×20

Conv2D(9, 16, K=3, P=1)

Conv2D(16, 32, K=3, P=1)

AdaptiveAvgPool2d(1)

Linear(256, num class)

Prediction ∈ Rnum class

Figure 3.4: The architecture of TCN-based classifier. In the case of simple convolutional layers,
K represents the kernel size, and P represents the padding. T is the value used for
kernel_size corresponding to the temporal dimension, and S is the kernel_size value cor-
responding to the spatial dimension.

3.5 robotic perception dataset

Our dataset contains 720 records, approximately 15% of the size of the NTU RGB+D data-
set, with 90 records for each selected action. The actions were performed by 10 participants.
Each action was recorded 3 times, from 3 different angles, to simulate the different angles
from which the robot can see a person. Each set of recordings for action was filmed in 3
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different scenes, the scenes being inside a building, with artificial light. We introduced this
data set in the [4].

3.6 discussion

The proposed evaluation scenario highlights a series of disadvantages presented by the
current version of the human action recognition module. If the robot is too close to the
subject, then the skeleton predicted by OpenPose [6] is incomplete. Moreover, if there are
occlusions with other objects, then the predicted skeleton is incomplete or the coordin-
ates of some joints are incorrectly predicted. Given that the module for recognizing hu-
man activities was trained using samples in which the coordinates for all joints appeared,
in such situations with a partial skeleton poor results are obtained. Also, when the robot
approaches the user, the appearance in the camera may vary, leading to more difficult
activity recognition. This can be mitigated in two ways: by training against a more diverse
dataset, becoming more robust against joint occlusions or observation distance, as well as
by enhancing the activity recognition task to include a forwards–backwards movement of
the mobile base, so as to obtain a similar user bounding box proportion within the frame,
like the ones in the dataset.





4
S PAT I O - T E M P O R A L N E U R A L N E T W O R K W I T H
H A N D C R A F T E D F E AT U R E S

In this chapter, we present the Spatio-Temporal Neural Network with Handcrafted Fea-
tures approach, which consists of a data preprocessing phase followed by a spatio-
temporal neural model to recognize the action. The neural model introduced in this section
is one with multiple input branches based on TCN and GCN layers. In contrast to the ex-
isting neural architectures, our model presents a reduced inference time, obtain results
comparable with state-of-the-art methods, and offers the possibility of determining an ac-
tivation map that can be useful in the explainability process.

4.1 spatio–temporal model

Preprocessing
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Velocity-Branch

ResGCN× 4

ResGCN× 4

ResGCN× 4

Concat Spatio-Temporal
modules

Pooling

Mean

Linear(512, 256)

Linear(256, num classes)

Prediction

Features

Figure 4.1: The structure proposed for the neural model used to solve the Human Action Recogni-
tion problem

The general architecture for the proposed approach is presented in Figure 4.1. To normal-
ize and extend the features resulting from the preprocessing process, we used 4 ResGCN
layers for each branch. We concatenate the data resulting from the application of these
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layers and use the resulting tensor as input for a Spatio-Temporal module. The proposed
architecture returns two types of results: the features obtained after the application of the
Spatio-Temporal module and the final prediction.

X = (x1, x2, . . . , x300) ∈ R96×300×25

GCN TCN Unit(96,96) GCN TCN Unit(128,256, stride = 2)

GCN TCN Unit(96,96) GCN TCN Unit(256,256)

GCN TCN Unit(96,128, stride = 2) GCN TCN Unit(256,256)

GCN TCN Unit(128,128) GCN TCN Unit(256,512, stride = 2)

GCN TCN Unit(128,128) Y = (y1, y2, . . . , yt) ∈ R512×38×25

Figure 4.2: The structure of the Spatio-Temporal module included in the general architecture
presented in Figure 4.1. Layers highlighted in blue use strides with the value equal
to one and preserve both dimensions (spatial and temporal)

For the design of the Spatio-Temporal module, we used GCN–TCN type units. The
architecture of such a block is shown in Figure 4.3. These blocks were proposed by Chen
et al. in [7].

X = (x1, x2, . . . , xn)

GCN Unit(in channel,out channel,A)

Residual(in channel,out channel)

MultiScale TCN(out channel,out channel, stride) +

ReLU

Y = (y1, y2, . . . , yn)

Figure 4.3: Architecture used for GCN–TCN type units. A represents the matrix that describes the
graph. The residual layer is applied only if in_channel ̸= out_channel. This architecture
was proposed by Chen et al. in [7]
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4.2 explaining the network prediction

An explanation as to why this is happening can bring valuable information both for those
who develop applications based on HAR and for future advances on solving this problem.
As opposed to methods that explain network prediction for images, there are quite few
proposals trying to explain HAR, and most are limited to 3D Convolutional Neural Net-
work (CNN) models. Only a recent paper [3] proposes a visualization of skeletons, which
tries to discover the most essential body parts over a whole action sequence, in an attempt
to obtain a more explainable representations for different action sequences. We consider
that explainability of HAR based on a skeleton model is a very promising and sound path
to understanding network prediction and our proposed model was developed starting also
from this premise.

To achieve an explanation for the recognized action, we used the features resulting from
the application of the Spatio-Temporal module and the weights of the last two linear layers.
Starting from these, we determined for each frame which are the most important joints
considered by the network in terms of activations and pictured them in an Activation Map.
We also considered the importance that the network attaches to each frame. Similarly, in
case two new skeletons appear, we checked the importance for each one.

Figure 4.4: Sample from the test subset for the brushing teeth action. The network correctly predicts
this action with a 100% probability

In order to highlight some qualitative results obtained for samples from the test set,
using the protocol for which the network obtained the lowest score, Cross-Subject v2, we
performed the testing from the perspective of 3 actions: brushing teeth (Figure 4.4), drink
water (Figure 4.5) and eat meal or snack (Figure 4.6).



18 spatio-temporal neural network with handcrafted features

We presented in Figure 4.4 some frames from a sample for the brushing teeth action. We
selected these frames using a step of 10 frames. For these frames, we highlight the human
skeleton and choose the colours for each joint according to the importance generated by
the neural model. We coloured the joints considered by the model unimportant in blue,
and, for the rest, we used the red color considering the intensity generated by the model.
The network correctly identifies the key moment of the action. The intensity of the joints
are highlighted in images 4, 5, 6, 7, 8.

Figure 4.5: Sample from the test subset for the drink water action. The network correctly predicts
this action with a 100% probability. We sampled the frames with a step of 5 frames

We highlight in Figure 4.5 an example which highlights an error generated by the Kinect
sensor. For each frame, two skeletons appear, even if a single person performs the action.
The sensor confused the chair in the image with a skeleton, for which it predicts some
distorted data. In our approach, we provide the data from the two skeletons as input for
the network. The network correctly identifies the skeleton of interest, completely ignor-
ing the false one. This example highlights the robustness of our model and motivate the
correctness of the prediction. In all the examples, we distinguish a difference between the
colour intensity for the joints of the hand that performs the action and the other ones.
This is especially visible in images 6 and 7. We also notice that, in the last frames, the
importance associated with the joints decreases because the coordinates do not change
considerably. It is worth to note that for this sample, the model makes a correct prediction
with a confidence of 100%.

In the last selected qualitative example, we presented a repetitive action. As seen from
the frames included in Figure 4.6, the network captures this aspect. In these images the
action eat meal or snack is presented. The model correctly classifies this action with very
high confidence (99.7%) and identifies the frames where the person starts eating. This
time, being a repetitive action, the temporal dimension is the one to which the model pays
more attention. Therefore, only in the last images could a discrepancy be distinguished
between the importance associated with each joint at the same time.
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Figure 4.6: Sample from the test subset for the eat meal or snack action. The network correctly pre-
dicts this action with a 99.7% probability. We sampled the frames with a step of 5 frames

4.3 discussion

In this chapter we proposed a methodology for Human Action Recognition that consists
of a preprocessing stage, in which geometric features and data normalization are used to
achieve a better performance, followed by a spatio-temporal neural network architecture
that combines TCN and GCN layers to capture both the spatial and the temporal dimen-
sion of the action. We showed that our proposed model is able to obtain accuracy results
similar to state-of-the-art ones and has a lower inference processing time, a robust beha-
viour in case of incorrect identified skeletons by the sensors, and the capacity to explain
the recognized action (or the incorrectly identified one) by highlighting the most import-
ant joints considered by the network in terms of activations and the importance that the
network attaches to each frame.

We performed a thorough analysis of the network behavior on the 2 versions of NTU
RGB+D (60 and 120 actions) for all the 4 protocols proposed in the literature, in case
of both correctly recognized actions and incorrect recognized ones, and we linked this
analysis with the explanation capability of the model. We also highlighted the fact that the
errors in classification are generated by very similar actions (some even not discernable by
a human).

Based on the features provided by the model and the weights from the last two linear
type layers, we can generate statistics that present the most important joints considered
by the model and the most relevant frames in the performed action. Thus, we performed
the analysis and visualization of the reasons behind the predictions for actions performed
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by one or two people, for single or repetitive actions, showing how the network gives an
importance to the spatial dimension and/or the temporal dimension.



5
FA S T T E M P O R A L G R A P H C O N V O L U T I O N A L
M O D E L F O R S K E L E T O N - B A S E D A C T I O N
R E C O G N I T I O N

In this chapter, we present the approach proposed for the problem of human action re-
cognition, which consists of a preprocessing stage and a neural model based on various
types of convolutions layers. This approach represents an improvement to the previous
contribution described in Chapter 2.

5.1 temporal graph convolutional model

The complete pipeline designed for our solution is presented in Figure 5.1. It contains
two stages: a stage for calculating the features and a stage for applying the proposed
neural model.

(N, 3, T, V, M) T–number of frames

N–batch size

V–number of joints

M–number of skeletons

I–number of branches

H–dimension of hidden space

Data
Augmentation

Data
Preprocessing

(N, I, C, T, V, M)

Split

(N,M×C×V, T)

Joint-Branch

(N,M×C×V, T)

Bone-Branch

(N,M×C×V, T)

Velocity-Branch

BatchNorm1d ResGCN
Module

(N, C, T, V, M)

ResGCN
Module

(N, C, T, V, M)

ResGCN
Module

(N, C, T, V, M)

BatchNorm1d

BatchNorm1d

Concat (N×M,H, T, V)

TCN-GCN
Module

PoolingMeanDropout(prob)Linear(256, num class)

Prediction

Figure 5.1: The pipeline proposed consists of two fundamental components: the data processing
stage and the convolutional model
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5.1.1 ResGCN Module

In the pipeline proposed within our method, we independently use a module based on
ResGCN blocks to extract spatial or temporal dependencies from the data corresponding
to each branch. In Figure 5.2, we highlight the proposed structure for this module. The
tensor provided as input has the number of channels C = 6, and the module reshapes it to
be applied independently for each skeleton. Thus, the batch size becomes equal to N · M,
where N represents the initial batch size, and M is the number of skeletons.

ResGCN Module
X ∈ RN×C×T×V×M

X1 ∈ R(N ·M)×C×T×V

BatchNorm2d

ResGCN(C,32,Graph,kernel = (9,2), residual = false)

ResGCN(32,32,Graph,kernel = (9,2), residual = true)

ResGCN(32,32,Graph,kernel = (9,2), residual = true)

Y ∈ R(N ·M)×32×T×V

Figure 5.2: The structure of the ResGCN layer-based module

The graph used for these ResGCN-type units is one in which the maximum graph dis-
tance is set to 2. The bottleneck structure used for the spatial and temporal blocks ensures
a model with high inference speed and which requires a low number of epochs for train-
ing. Moreover, the module presents an additional optimization, obtained by changing the
batch size and applying operations in parallel for the two skeletons.

5.1.2 TCN-GCN Module

The spatio-temporal module represents the fundamental part of the proposed neural model,
and its structure is described in Figure 5.3. The basic unit of this module is the GCN-TCN
block proposed by Chen et al. [7]. This block is composed of two of the most relevant types
of neural layers for the human action recognition problem: Graph Convolutional Network
(GCN) and TCN. In our approach, we used a graph in which the neighborhood of each node
contains the entire skeleton graph for these blocks. This module consists of 9 layers applied
sequentially, and each one is a GCN-TCN Unit. Three of these layers halve the temporal
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dimension by using a stride value of 2. The blue colored layers in Figure 5.3 preserve the
temporal dimension.

TCN-GCN Module
X ∈ R(N·M)×96×T×V

GCN TCN Unit(96,64,G1, stride = 2, residual = false) GCN TCN Unit(128,128,G1, residual = true)

GCN TCN Unit(64,64,G1, residual = true) GCN TCN Unit(128,256,G1, stride = 2, residual = true)

GCN TCN Unit(64,64,G1, residual = true) GCN TCN Unit(256,256,G1, residual = True)

GCN TCN Unit(64,128,G1, stride = 2, residual = true) GCN TCN Unit(256,256,G1, residual = True)

GCN TCN Unit(128,128,G1, residual = true) Y ∈ R(N·M)×256×T
8×V

Figure 5.3: The proposed structure for the TCN-GCN module

5.2 experimental results

Table 5.1: Performances achieved by the proposed model for the Cross-Subject protocol (v1—60)
depending on the number of epochs set for training

Method
Total Number

of Epochs
Top 1 Top 5

Best

Epoch

Fast Convolutional

(200 frames, dropout = 0.3, theta = 0.3)
100 89.37 98.25 97

Fast Convolutional

(200 frames, dropout = 0.3, theta = 0.3)
70 89.37 98.17 66

Fast Convolutional

(200 frames, dropout = 0.3, theta = 0.3)
50 89.05 98.20 49

Fast Convolutional

(200 frames, dropout = 0.3, theta = 0.3)
30 87.65 98.09 29

Fast Convolutional

(200 frames, dropout = 0.3, theta = 0.3)
10 82.73 97.13 10

In Table 5.1, we included an analysis of the experimental results achieved by the proposed
model for the Cross-Subject test protocol. We obtained these results by changing the num-
ber of epochs used in the training process. Based on them, we highlighted the fact that the
proposed model does not require a large number of epochs for training. As can be seen,
there is no difference between the Top 1 accuracy obtained for 100 epochs and the one ob-
tained for 70. Moreover, the difference between the Top 5 accuracy for these two training
configurations is insignificant. Due to the small number of parameters and the transform-
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ations proposed in this approach, it is possible to obtain an accuracy of 82.73% using only
10 epochs. In other words, using a larger number of training epochs helps the model dis-
tinguish between similar classes for which it predicts close probabilities. Moreover, we can
see that by introducing augmentation transforms and using a Dropout-type layer with a
probability of 0.3, we managed to obtain a model with a good generalization power that
does not overfit. This observation is certified by the results obtained for 100 epochs which
are not weaker than those for 70.

5.3 discussion

This contribution introduces an approach to the problem of human action recognition
using skeletal data. The proposed method is based on a neural network designed using
some of the most used types of convolutional layers: GCN and TCN. The innovation of
our current approach consists in designing a performant and fast pipeline that augments
the data, determines geometric features and uses a neural network to identify the action.
The neural model included in this pipeline is also innovative and combines the advantages
of previously proposed networks.

The current version represents an improvement to our previous method proposed in the
paper [8]. The current method starts from the same categories of features but by introdu-
cing some optimizations at the level of the structure of the neural model and by applying
augmentation techniques, it improves the inference speed, increases the accuracy achieved
by the model and reduces the number of parameters. The pipeline proposed in the current
version additionally contains the augmentation stage that does not exist in the previous
method. The proposed neural model is also different from those analyzed in the previous
chapter. The TCN-based architecture introduced previously contains a module in which
we integrate only TCN-type layers. For the method described in the current article, we
used a module based on GCN-TCN layers. In the current model, the GCN-type layers
extracted the spatial dependencies, unlike our previous solution in which the TCN-type
layers analyzed the sequence both temporally and spatially. More precisely, this time the
size of the spatial window used by the TCN layers is 1, and, in this way, the network
preserves the spatial dimension until the Polling block is applied.



6
C O N C L U S I O N S

The main goal of this thesis was to construct a robust module for solving the HAR problem.
In this sense, we identified the challenges that characterize this problem and the shortcom-
ings of the existing approaches. Starting from these observations, we developed a series of
approaches focused on the main properties that we considered a solution for a robotic plat-
form must have: generalization capacity, reduced model size, small pre-processing time
and high inference speed. The neural models proposed in these approaches are based
on the most used types of deep neural networks for tackling the HAR problem: Graph
Convolutional Network, Temporal Convolutional Network and Long Short Term Memory
Network.

We used one of the most challenging datasets, NTU RGB+D, to evaluate our models.
The representation chosen for the proposed approaches is in the form of skeletal data, and
the features used are determined using the 3D coordinates predicted by the Kinect sensor.
The proposed solutions achieve performances comparable to the state of the art for all
testing protocols proposed by the NTU RGB+D dataset. Moreover, we have adapted two
approaches to be evaluated using an own collected dataset from a robotics perspective. In
this way, we highlighted the generalization capacity of the proposed models and showed
that we can apply the concept of transfer learning to this problem.

We have carried out a deep analysis of the HAR problem consisting of a presentation
of the main types of modalities used and an overview of the practical applications that
require such a module. For each type of modality, we highlighted some characteristics
and the limitations presented by the solutions based on the respective representation. To
highlight the importance of each field of application, we included some representative
approaches. Starting from all this, we outlined the challenges that exist in this research
area and identified five categories of sub-tasks for the HAR problem.

6.1 contributions

The main original contributions of this thesis are the following:

• In the original paper in which TCN-type networks are introduced, the authors im-
plement these blocks using 1D convolutional layers. In the case of the HAR problem,
the transformation of the sequence into one compatible with 1D convolutions does
not allow preserving the spatial dimension. To avoid this inconvenience, we pro-
posed a modified version for TCN layers that uses 2D convolutions. In addition, we
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suggested extending the concept of dilated convolution to the spatial level. The ob-
tained experimental results demonstrated that this modification is beneficial for the
performance of the model.

• The spatial dimension is fundamental for the HAR problem. That is why we focused
on it by proposing a way to integrate two methods of rearranging the joints. One of
the rearrangement methods is based on a 2D matrix and is proposed by us in [1].
The second method is a 1D type and starts from the human skeleton perceived as a
tree whose root is the joint considered closest to the center of gravity.

• Integrating a human action recognition module into a robotic framework is a com-
plex operation because we must consider many aspects. We designed a general
pipeline integrated into the AMIRO framework and tested using the Pepper hu-
manoid robot. In this pipeline we used the pre-trained OpenPose [6] model to extract
the 2D coordinates from the RGB images, extracted the third coordinate from the cor-
responding depth map and applied an original neural architecture to classify the
actions. We obtained good results in terms of accuracy and showed that this pipeline
works in real-time scenarios. The integration of the human action recognition mod-
ule into the AMIRO framework was done in collaboration with Alexandra S, tefania
Ghit, ă.

• We designed two neural architectures that we tested on a dataset collected from a
robotics perspective. The first architecture is a multi-stage one that uses Linear layers
for extracting features and LSTM cells for analyzing the temporal sequence. This
neural network returns 3 predictions, and we calculate separate loss for each stage.
The main goal we pursued in its design is to improve the prediction from one stage
to another. Thus, stage 2 uses the output resulting from the application of LSTM cells
from stage 1, and stage 3 proceeds similarly to the output from stage 2. The second
architecture is one in which we use 2D convolutional layers to extract features and
then analyze them with the help of a temporal module made up of TCN-type layers.

• Generalization and overfitting are not enough analyzed for the approaches proposed
to solve the HAR problem. That is why we decided to investigate this direction of
research. For this, we used two neural architectures that we trained using the NTU
RGB+D dataset and then tested them on a dataset collected using the Pepper robot.
Thus, we analyzed the concept of transfer learning from the perspective of different
datasets. It was necessary to introduce a skeleton conversion operation from the
format predicted by OpenPose [9] to the format used by the Kinect sensor.

• The features from which the analysis of a neural model starts influence obtained
performances. That is why we focused on this topic and we propose a method to
determine geometric features that can help the neural model to achieve better per-
formance. This method also contains a variant of data normalization.

• We present a spatio-temporal neural architecture, which combines Temporal Convo-
lutional and Graph Convolutional layers, and we report the results of the proposed
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model on NTU RGB+D [5, 10] benchmark, for all the test protocols. This approach is
a non-black-box solution in which the model outputs a feature tensor together with
the results, thus being able to explain predictions.

• Recently, the field of Explainable Artificial Intelligence (XAI) has received a lot of
attention and various methods have been proposed to determine an explanation for
network prediction. In other words, researchers no longer want to perceive neural
models as black boxes. Following this trend, we showed how we can design the
neural model such that it is able to explain the prediction from the perspective of
the importance of each joint. Moreover, we presented some eloquent examples to
highlight the importance of such explanations.

• Data augmentation is a technique by which we can artificially increase the size of
the dataset to obtain a model that performs with better precision. Regarding the
HAR problem, it is complicated to collect enough samples for action like falling. We
also want the trained model to become invariant to the person’s position or physical
characteristics. To reduce these limitations, we designed a pipeline in which we integ-
rated a data augmentation stage. We performed extensive experimental validation of
the approach demonstrating its potentials compared to the state of the art.

6.2 perspectives and future work

We can conclude that the HAR problem is a complex task that cannot be solved using a
classical deterministic algorithm. Approaches based on Deep Learning techniques manage
to partially solve this problem. We consider that this problem remains an open research
topic because the existing solutions are specialized in identifying the subset of possible ac-
tions and present various limitations. Moreover, the integration process of these solutions
in frameworks used to solve real-life scenarios brings additional challenges.

A first improvement that can be achieved at the architectural level consists in trying
to improve the final part of the neural model that deals with classification by proposing
an improved architectural model, possibly based on a multi-stage architecture. For this,
we can build a complex neural architecture consisting of several sub-models, each one
specialized in identifying a subset of actions.

The second direction of research is an attempt to improve the understanding of the
neural model by introducing additional data to provide more context about the envir-
onment in which the subject performs the action. We consider that adding context in-
formation to the process can improve both the performance of the architecture and the
explanation capabilities of HAR models.





A C R O N Y M S

CNN Convolutional Neural Network

GCN Graph Convolutional Network

HAR Human Action Recognition

LSTM Long Short-term Memory

RNN Recurrent Neural Network

TCN Temporal Convolutional Network

XAI Explainable Artificial Intelligence
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