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Chapter 1 

Introduction. Thesis objectives 
 

1.1. Introduction 
The ability to move from one place to another is called locomotion. Flying, swimming, 

and moving on land are all modes of locomotion. To move from one place to another, an 

organism (whether unicellular or multicellular) performs a process called locomotion. 

Walking, running, jumping, crawling, climbing, swimming, flying, galloping, crawling, 

etc. are examples of these actions. 

Walking is the most interesting and complicated type of locomotion in nature, even 

though it is mainly observed in humans. Walking behavior is also influenced by human 

emotions. This means that walking is an intellectual activity that can be used to describe 

human life activity in a certain way. For many, walking is a simple pleasure, but millions 

of others cannot enjoy it because they need rehabilitative or permanent support in the 

form of aids (orthotics or prostheses). These people are unable to lift their foot because 

their ankle muscles are weak or non-existent. Multiple sclerosis, stroke, cerebral palsy, 

and other neurological conditions can lead to flat feet [1]. 

Drop foot can lead to two types of problems. The first is that the patient is unable to 

regulate the fall of his foot after heel contact. As a result, each step is accompanied by a 

loud impact of the foot on the ground. The second problem is that patients are not able to 

clean their toes while swinging. For this reason, many patients have problems with their 

toes when they swing. The goal of this project is to present an orthotic concept that can 

be used in a variety of rehabilitation scenarios. 

1.2. Statistical data about injured people in the world and Iraq 
Insurgent techniques such as suicide car bombings and roadside explosive attacks have 

the potential to significantly disrupt road traffic in conflict zones. Because they are 

among the 10 leading causes of death in Iraq, the health care system must respond to 

variations in frequency. My dissertation focuses on explaining patterns of roadside deaths 

for all demographic categories and types of road users in Iraq during a period of renewed 

insurgent activity. 

Each year, approximately 1.2 million people die as a result of road traffic injuries [1]. 

Injuries, diabetes, TB, and malaria are ahead of traffic-related deaths [2]. Even in 

conflict-affected countries such as Afghanistan, Libya, Pakistan, and Yemen, road traffic 

causes two to eight times more deaths than war and court cases [3]. The WHO estimates 

that the Eastern Mediterranean Region (EMR) has the second-highest rate of road traffic 

fatalities in the world after the African region and that the rate is increasing in many 

countries [1, 4]. Iraq has the second-highest road traffic fatality rate in the EMR [1]. 
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Partner with Iraq to improve road infrastructure and safety. The World Bank approved 

the Transport Corridors Project in 2013 with the Government of Iraq and the Islamic 

Development Bank as partners [6]. The World Bank expects the initiative to reduce 

traffic fatalities worldwide by about 25% [7]. Iraq has also committed to reducing traffic 

fatalities by launching the Decade of Action for Road Safety 2011-2020 [8]. 

 

Figure 1.1. “Age and sex distribution of road traffic fatalities in selected governorates of Iraq, 2010–
2013*±. * Rates include males, females and fatalities of unknown gender. The number of fatalities with 

unknown gender [6 (0.08 %)] is not shown. ± Population data used for rates are 2011 projections from the 
Iraq Central Organization for Statistics and Information Technology (2011) [The World Bank. Iraq - 

Transport Corridors Project. Washington DC: World Bank; 2013. [13] 

 

Understanding the influence of contemporary fighting on other injuries, such as road 

traffic, is vital to public health. Given the global investment in Iraq's road infrastructure, 

accurate and up-to-date RTI fatality numbers are essential. In Iraq, there is a dearth of 

published studies on road traffic injuries [9, 10]. In a recent Lancet letter, Al-Saad and 

Sondorp examined the lack of reliable data on traffic injuries in Iraq. Their request was 

for "more trustworthy cause-specific data" [5]. Other regional experts have noted a dearth 

of injury death statistics from Arab states [11]. 

This study examines the epidemiological pattern of road traffic deaths in Iraq during a 

period of the revival of violence using data from the recently established Iraq Injury 

Mortality Surveillance System. The system offers cause-specific data on traffic deaths, 

which partners may utilize to better focus transportation interventions in conflict-affected 

countries. 
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Figure 1.2. “Share of all deaths caused by accidents, 2017. Health statistics — Atlas on mortality in 
the European Union. Accidents and injuries statistics - Statistics Explained (europa.eu)” 

Chapter 2 

State of the Art of the Mechatronic Devices for Lower 

Limb Rehabilitation 

2.1. Introduction 

In this chapter we want to study type of Rehabilitation support and mechatronic devices 

for exoskeleton rehabilitation. . It is possible to break each of these processes into two 

phases: (i) In the single support phase, one leg is planted on the ground while the other 

leg swings. (ii) The double support phase begins when the swinging leg makes contact 

with the ground and concludes when the supporting leg lifts its foot off the floor. In this 

chapter there were studied different achievements regarding the rehabilitation systems, 

most of them expensive and to be used only in a hospital. The state of art for the 

exoskeleton rehabilitation type was also investigated, with the fundamental conclusion 

that it can be obtained at lower costs and with user friendly design.  

2.2. The types and structures of the orthoses 

2.2.1.  Technology-assisted mobility exoskeleton 

The scientists Leonardo DaVinci, Galileo, Lagrange, and Bernoulli were among the first 

to become interested in applying mechanics to the study of human mobility. 
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Figure 2.1.  Ankle Foot Orthosis (AFOs) : (a) submalleolar, (b) supramalleolar, (c) dynamic thermoplastic 

(OttoBock), (d) thermoplastic semi-rigid, (e) hinged (Costa), (f) thermoplastic rigid, (g) to reduce tone, (h) 

ground reaction, (i) for metatarsus adductus, (j) steel, (k) dynamic movement orthosis and (l) spiral 

Beginning in the mid-1970s [4, 5, 6], the first attempts were made to develop a motorised 

aid. In 1974, Miomir Vukobratovic, a Yugoslav researcher, created one of the most 

technologically advanced models of the time. (See Figure A.) Pneumatic actuators in the 

hip, knee, and ankle of his system provided support in the frontal and sagittal planes [5]. 

In 1978, Ali Seireg of the University of Wisconsin developed a hydraulic orthosis with a 

biaxial hip, biaxial ankles, and uniaxial knees that was used to treat patients with spinal 

cord injuries [7]. 

 

Figure. 2.2. Components of the RAPTOR arm 



Research regarding the development of a mechatronic system for lower limb rehabilitation 

 

8 

 

 

Figure. 2.3. The Lokomat Robotic Gait Orthosis [29]. 

 

2.2.2. Design of highly backdrivable exoskeletons 

In this chapter, we present the mechatronic designs for two generations of powered 

exoskeletons shown in Figure 5.7. 

2.4. Development of Artificial Limbs 

There are many distinct types of prostheses, most of which focus on providing a specific 

"improvement" above the others, allowing the user to do a certain activity more successfully and 

comfortably. Many providers provide a variety of leg, knee, ankle 
 



Research regarding the development of a mechatronic system for lower limb rehabilitation 

 

9 

 

 

Figure 2.8. Three generations of exoskeleton prototypes: (a) the powered ankle exoskeleton (Generation 
Zero; image reproduced from [31]), (b) the powered knee-ankle exoskeleton (Generation One), and (c) the 

powered knee exoskeleton (Generation Two). All prototypes are designed with a combination of high-
torque motors and low-ratio transmissions 

Chapter 3  

Sensors, Actuators, and Instrumentation for Lower 

Limbs Rehabilitation Devices and Systems. 

3.1. Introduction 

This chapter introduces some basic concepts for instrumentation in medicine, focusing on 

sensors and data processing (decoders, microcontrollers, software). There are a lot of 

sensors most of them a large processing which requires expensive equipment and 

software This chapter introduces some basic concepts for sensors in medicine, focusing 

on medical sensors and data processing (decoders, microcontrollers, software). Normally 

in this chapter we study  introduces external and implanted sensors. And the type of 

sensors used 

3.2. Tilt sensors 
The Kinect system (figure 3.1) is based on video data recording and has two parts: 

hardware and software. The first half records the motions, while the second part 

processes the data and extracts information. Microsoft Kinect for Windows [1] and 

Kinect for Xbox 360 [2] are available now. 
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Figure 3.1. “Microsof 
t Kinect from Xbox 360 [2]” 

3.3. Sensors for Muscle Signals 
Several studies have shown the importance of MMG signal properties in skeletal muscle 

research. MMG is the mechanical counterpart of motor unit electrical activity [5]. Motor 

units (MU) are the building blocks of the neuromuscular system [5]. In addition to 

calculating the global firing rate of unfused active MUs, MMG amplitude has been linked 

to motor unit recruitment [6]. That is why it is interesting to compare variations in motor 

control techniques used to adjust force generation during isometric and dynamic muscle 

activity during voluntary [7] and non-voluntary [8] muscle activities. Furthermore, 

variations in muscle fiber geometry reflect slow bulk motion, i.e., lateral oscillations 

created by the muscle at its resonance frequency [9] and pressure waves induced by 

dimensional changes in muscle fibres [10]. 

 

Figure 3.4. Prototype of a volunteer wearing instrument shoes, wearable motion sensors and muscle 
sensors of personal-EMG in the experiment[40] 
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3.4. Switches 

 

Figure 3.5.  9X25 Bock-style Rocker Switch (or equal) Used for direct control of a motor such as a 
powered wrist [41]. 

Switches for Boston Digital Arm systems are used either for the direct operation of a 

motor (live switch) or as mode selector switches (state switch). These types of switches 

are not interchangeable. 

 

Figure 3.6. BE265 - Bump Switch with cable, Bock-Compatible Requires use of BE230 cable above [42]. 

 

3.5. Touch Pads 

 

Figure 3.7. LTI TouchPads [43]. 

3.6. Implantable Sensors- Pressure-Sensing Artificial Skin 
In October 2015, Stanford University engineers announced that they had developed a 

plastic skin that senses how hard it is being pressed and sends that information as an 

electrical impulse that the brain can understand. 
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Figure 3.8. Implant sensor [42]. 

3.8. Non-Optical Systems for motion capture 

 

Figure 3.12. “Xsens Inertial Motion Capture Suit [56].” 

3.11. Series elastic actuators 

 

Figure3.26: Schematic diagram of a Series Elastic Actuator. A spring is placed between the motor 
and the load. A control system servos the motor to reduce the difference between the desired force 

and the measured force signal. The motor can be electrical, hydraulic, pneumatic, or another 
traditional servo system. 
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Chapter 4 

Development of the system active joints 
 

Introduction 

This chapter aims to design a medical rehabilitation system that can be built and made 

easy and inexpensive. Although locomotion is natural and important there are millions of 

people who can not experience it because they have suffered various malformations or 

have suffered accidents that have led to diminishing or even loss of mobility. These 

people require either rehabilitation or permanent assistance in the form of using forms 

that can be added to the human body and called orthoses or prostheses. For this reason, 

the system is in line with current trends because rehabilitation is needed because the 

recovery of these people is important to both of them (to have a better life) and to society 

(for social integration, to reduce social costs). Starting from the requirements derived 

from the development of the adequate active joint of an exoskeleton for a child, a new 

series elastic actuator was proposed, based on a smart servo actuator, commercially 

available. This is the key idea for achieving an affordable device, even for a larger scale 

one, to be used by an adult, due to the extended Dynamixel series of smart servos. 

Another novelty of the development is the spring intercalation between the smart servo 

and the worm gear, which provides the leg segment positioning. This way, the use of a 

big and stiff spring was avoided. 

A simplified analysis of the closed loop system with proportional controller was made, in 

order to determine the spring stiffness and to verify if the force control approach  is  

suitable for the load dynamics.  

The limits of the proportional controller were pointed out, when the output is the 

necessary torque for positioning of an inertial load. For fixing this issue, an inner velocity 

loop of the servo is foreseen, as the servo XL430-W250-T is able to implement it. 

4.2. Correlation between body mass (inertia) and lengths of 

the body parts 

The scale factor, which allows for extending the research results obtained for low mass 

and dimensions of the patient to bigger ones, is based on the condition to have the same 

dynamics of the both devices. Generally, the equation which governs the angular 

movement is: 

��� + ��� + �� + �	 = ��                                                (4.1) 

where: J - inertia of the moving part; θ - position of the moving part; c – viscous 

coefficient of the moving part; TL – load torque; Tm - motor torque. 
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In order to analyze the contribution of each term from equation (4.1) to the moving part 

acceleration, it is useful to write this one in the following form: 

�� = �

� −  �

� �� − �
� � − ��

�                                                  (4.2) 

The same dynamics means the same acceleration and the simplest way to obtain the same 

result is to have the same terms in the right side of the equation, i.e. 

�
�
��

= �
�
��

;        ��
��

= ��
��

;          ��
��

=  ��
��

;           ���
��

= ���
��

                            (4.3) 

From (4.3), it results: 

�
�
�
�

= ��
��

= ��
��

= ���
���

= ��
��

                                                        (4.4) 

It is known that each part of the body has proportional dimensions with the person’s 

height [1], while the mass of these body parts is expressed as percentage of the entire 

mass of the person [2]. This way, the inertias ratio can be calculated as: 

��
��

= ���∙�����
���∙�����

= ���                                                       (4.5) 

Where: ��,� – person’s mass; !��,� – mass of the body part; h1,2 – person’s height; β h1,2 

- length of the body part; � =  ��/�� - mass scale factor; � =  ℎ�/ℎ� – dimension scale 

factor. 

 

 

Figure 4.1. Position of the gravity centers of the different body parts [5] 
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4.3. Angular positions of the body parts and forces during 

gait cycle  
In order to determine the necessary motor torque for accelerating the leg and for 

overcoming the load which is the moment of the weight forces of this one, the most 

disadvantageous positions have to be considered from figure 4.5, which represents the 

phases of the gait cycle [6]. 

 

 Figure 4.5. Phases of the gait cycle [6] 

 

Figure 4.6.  Positions of ankle, knee and hip during normal gait cycle [7] 

Due to the poor experimental conditions during pandemic of COVID19, common 

hardware and software resources were used. Moreover, the subject was equipped with a 

passive exoskeleton, attached to his thigh and calf, both for bringing closer to the assisted 

gait and for having landmarks which help for the angle measurement. The experiment 

was very simple: a person’s gait was filmed and the movie was split into frames, by use 
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of Free video to jpg converter. Then, iPhoto Plus from Ulead Systems Inc. was used to 

measure the angles of thigh and calf from images. The processed frames are presented in 

figure 4.9. The experiment has also the advantage of knowing the time period between 

consecutive frames (1/25 second). 

 

 

Figure 4.9. Captured images of the gait with measured angles between the thigh and calf with respect to a 
virtual vertical line 

 

The results of the measurement and calculation of the angular positions, velocities ($�) and 

accelerations (%�), which are involved in the dynamic model described by the equations (4.21) - 

(4.33), are presented in the table 4.7. 

For identification of the captured image used, the first number is the row position and the second 

is the column one. The calculation was numerically performed with the data from the table 4.7, 

by use of the equations: 

��&,� = '
�() ∙ *+,,-�.*+,,/�

�∆�                                                          (4.34) 

��&,� = *� +,,-�.*� +,,/�
�∆�                                                              (4.35) 

where i=1,2; k=1…27 and ∆� = 0.044. 
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Table 4.7. The position, velocity and accelerations of the hip and knee joints 

Image 

No. (k) 
56 

[°] 

57 − 56 

[°] 

57 

[°] 

5� 6            

[rad/s] 

5� 7         

[rad/s] 

5� 6            

[rad/s2] 

5� 7           

[rad/s2] 

1.1 (1) -5 26 21 - - - - 

1.2 (2) -6 27 21 -0.436 -0.218  - -  

1.3 (3) -7 27 20 -0.436 -0.218 -5.454 -2.727 

1.4 (4) -8 28 20 -0.218 0.218 2.727 5.454 

2.1 (5) -8 29 21 0.000 0.873 5.454 13.636 

2.2 (6) -8 32 24 0.655 1.964 10.909 21.817 

2.3 (7) -5 35 30 1.745 1.745 21.817 10.909 

2.4 (8) 0 32 32 1.964 3.709 16.363 21.817 

3.1 (9) 4 43 47 1.309 4.582 -5.454 35.453 

3.2 (10) 6 47 53 1.309 2.400 -8.181 -16.363 

3.3 (11) 10 48 58 1.309 1.309 0.000 -40.907 

3.4 (12) 12 47 59 0.873 -0.218 -5.454 -32.726 

4.1 (13) 14 43 57 0.436 -0.873 -10.909 -27.271 

4.2 (14) 14 41 55 0.655 -0.436 -2.727 -2.727 

4.3 (15) 17 38 55 1.091 -0.218 8.181 8.181 

4.4 (16) 19 35 54 0.655 -0.873 0.000 -5.454 

5.1 (17) 20 31 51 0.655 -1.527 -5.454 -16.363 

5.2 (17) 22 25 47 1.091 -1.309 5.454 -5.454 

5.3 (19) 25 20 45 0.655 -2.182 0.000 -8.181 

5.4 (20) 25 12 37 -0.218 -3.491 -16.363 -27.271 

6.1 (21) 24 5 29 -1.527 -3.709 -27.271 -19.090 

6.2 (22) 18 2 20 -0.873 -1.745 -8.181 21.817 

6.3 (23) 20 1 21 0.000 0.000 19.090 46.361 

6.4 (24) 18 2 20 -0.436 -0.218 5.454 19.090 

7.1 (25) 18 2 20 -0.436 -0.218 -5.454 -2.727 

7.2 (26) 16 3 19 -0.436 -1.309  - -  

7.3 (27) 12 2 14 - - - - 

Looking at the curves from figure 4.6, showing the angular positions of the hip and knee and to 

the values of the same quantities from table 4.7, as well in the figure 4.10, there are differences of 

up to 10°, but the actual experiment was for a slower velocity than 0.5 m/s and it was performed 

with a passive exoskeleton, while the curves from figure 4.6 were raised for normal gait. 

Moreover, the data from table 4.7 are positions at time instants and allow time derivatives for 

finding out the angular velocities and accelerations, as calculated in the table 4.7.  

If the frame 7.2 is considered to be the transition from double support to single support, during 

the stance phase, the data for this position are used to calculate the terms from the equations (3.1) 

– (3.13). They are:    �� = 18°; ��� = −0.436 =>?/4; ��� = −5.454 =>?/4� and   

                   �� = 20°; ��� = −0.218 =>?/4; ��� = −2.727 =>?/4�.   
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The weight forces of the body parts are calculated as CDE = �DE ∙ F, where g=9.81 m/s2 is the 

gravity acceleration. The values used in the above mentioned equations are: CD =
216.31 G, where CD is the body weight without the leg one;  CL = 27.08 G MthighQ; C� =
12.36 GMcalfQ; CV = 3.73 GMfootQ.  For the inertia of the thigh and calf, equation (4.16) is used, 

obtaining �XL = 8.424 ∙ 10.� G�  for the thigh and �[� = 3.5 ∙ 10.� G�  for the calf. 

The equations (4.28) – (4.33) become: 

\
\L ] ^	

^*� �_ = −1.359 G�                                                     (4.28*) 

\
\L ] ^	

^*� �_ = 1.242 G�                                                        (4.29*) 

^	
^*�

= 23.46 G�                                                              (4.30*) 

^	
^*�

= 2.804 G�                                                              (4.31*) 

In the equations (4.32) and (4.33), the distance, d, between the center of the mass of the entire 

body and the vertical line of the hip is not known, but its bounds can be estimated. The idea is the 

projection of the center of mass should be in the feet area, which, for the considered child, is 

about 0.02-0.1 m. The equations (4.32) and (4.33) will be different for each limit value of d: 

�*� = −17.54 − �X                                                             M4.32*Q 
�*� = −0.23 − �X                                                             M4.32**Q 

And                                                     �*� = −17.14 + �[                                                          M4.33*Q 
�*� = 0.16 + �[                                                                M4.33**Q 

The results of (4.28*)-(4.33**) are introduced in (4.25), in order to calculate the motor torques of 

the hip and knee joints (Th and Tk). For the lower limit of d (0.02m): 

�X = 7.28 G�    and     �[ = 15.55 G�                                     (4.25*) 

And for the upper limit of d (0.1m): 

�X = 24.66 G�    and     �[ = −1.72 G�                                 (4.25**) 

The impedance/mobility diagram of this physical model, based on the rules for building the 

impedance networks is presented in the figure 4.14. 

 

Figure 4.14. Mechanical mobility diagram of the system from figure 4.13 
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Kirchhoff ’s equations of the network are: 

�cde = �f + ��                                                          (4.51) 

�g = �f ∙ hf = �i
fj                                                            (4.52) 

�g − �	 = �� ∙ h� = �,
�                                                        (4.53) 

�	 = �� ∙ h� = �k
�j�                                                            (4.54) 

�� = �� + �	                                                             (4.55) 

From equation (4.53): 

�� = *l.*k
m,

= �M�g − �	Q                                               (4.56) 

From equation (4.51): 

�cde = n4�g + �M�g − �	Q                               (4.57) 

After introducing (4.56) in (4.55): 

�o�g − �	p = �4��	 + �	                                 (4.58) 

For the beginning, it is assumed that the system does not act on an inertia (J=0) and  �cde is a 

reference torque, �q. It results from (4.47) and (4.58) that  

�g = �r.��
fj = [l

j M�q − �	Q                                            (4.59) 

where sg = n.�. The simplest way for a closed loop control of the torque provided by the spring, 

�	 , is to use a proportional controller, with the gain K, as in the figure 4.15. 

 
Figure 4.15. Closed loop proportional control of the SEA 

According to fig. 4.15, 

�	 = �o�g − �	p = � tsM�q − �	Q [l
j − �	u                          (4.60) 

The output torque, �	, results from (4.60): 
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�	M4Q = �[[l�rMjQ.�j*�MjQ
jv�[[l

                                          (4.61) 

The equation (4.61) has 2 inputs for obtaining the output torque, which are �q  and �	.  For a 

certain fixed position of the load, the velocity 4�	 = 0, and (4.61) becomes: 

��MjQ
�rMj = �[[l

jv�[[l
                                               (4.62) 

The equation (4.62) is typical for a first order system and it has the bandwidth:  

$D = �ssg                                                  (4.63) 

The main reason for adding elasticity to the conventional actuators was the resilience to suddenly 

applied loads from the environment with whom interacts. For example, if a sudden load force and 

velocity are applied to the spring output, the output impedance can be expressed as velocity 

function: 

w	x = ��
x�

= .�
jv�[[l

                                                   (4.70) 

4.4.Analysis and design of the series elastic actuator spring 

If the general purpose  of this device development is to achieve an affordable personal   

rehabilitation one, the use of the same SMA, both for the hip and knee joint is a good idea. The 

compliant element of the series elastic actuator has to comply with the torque values resulted 

from (4.25*) and  (4.25**), but also to have a comparable size to the servo, at an adequate 

deflection. On the robotics market, one of the cheapest smart servo from Dynamixel series is 

XL430-W250-T with a stall torque  of 1.5 Nm, at 12V – 1.4A. It needs an additional gear in order 

to obtain the maximum value of the required torque, as it results from the relationships (4.25*) 

and  (4.25**), and a worm gear with a gear ratio of 20 is the adequate one. 

Anyway, the problem of the spring sizing remains, even it is used as the connection element 

between the smart servo and the worm gear, and working, this way, at a smaller torque. The 

proposed solution, which also unloads the servos is to let the patient to use the crutches, which 

can also serve for load sensors, as it is presented in the figure 4.17 [8]. 

A helical torsion spring is loaded with the twisting moment M, oriented along the spring axis 

(figure 4.18). Its main component, hy, causes the bending of the coil, while the torsion caused by 

the component hz is neglected. 

 

Figure 4.18. Geometry of the helical torsion spring  
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When calculating the spring resistance and angular deflection, the whole moment M is used: 

{D = [|c
m                                                                       M4.100Q 

where: {D – bending stress; Z – cross section modulus of the wire and the stress correction factor, 

due to the coil curvature: 

sD = }�.�
}�.}                                                            (4.101) 

where c=D/d is the spring index. 

For the calculation of the angular deflection, a beam fixed at both ends is considered and: 

~ = c	
��  [=>?]                                                     (4.102) 

where: L – spring length; E – Young’s modulus of the spring material; I – inertia of the spring 

cross section. If the ratio between angular displacement and bending stress is calculated, the result 

is: 

�
�|

= 	m
[|�� = �'��

[|�        [rad/MPa]                                     (4.103) 

or                  
�
�|

= ��)��
[|�        [°/MPa]                                             (4.103*) 

where: n - number of spring coils; � = ���; w = �?�/32;  � = �?}/64. If an average bending 

stress, {D ≅ 600 h�>, is assumed for a carbon spring steel with Young’s modulus, E=200000 

MPa, when the twisting moment is M=0.86 Nm, the equations (4.101)-(4.103*) are used as: 

sD = }�.�
}�.}                                                          (4.101) 

? = 2.38�sD�   [mm]                                               M4.104Q 
� = � ∙ ?  [mm]                                                     M4.105Q 

�
� = 1.08�/sD    [°]                                                   M4.104Q 

These equations are used for different values of the spring index, c, with the results in the table 

4.8. 

Table 4.8. The influence of the spring index upon dimensions and unit deflection  

c 6 7 8 9 10 11 12 

�� 1.150 1.125 1.107 1.094 1.083 1.075 1.068 

d [mm] 2.49 2.48 2.46 2.45 2.44 2.44 2.43 

D [mm] 14.94 17.36 19.68 22.05 24.40 26.84 29.16 

�/�[°] 5.63 6.72 7.80 8.88 9.97 11.05 12.13 

n 14.21 11.90 10.26 9.01 8.02 7.24 6.59 
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It can be noticed that the spring index has a weak influence upon the wire diameter, but an 

important one upon the mean diameter of the coil and upon the unit coil angular deflection. Based 

on these results, and by taking into consideration the standard EN10270-1 [9] for unalloyed 

spring steel, a wire with 2.2 mm diameter is chosen, which has the characteristics given in the 

table 4.9. 

Table 4.9. Standard parameters of unalloyed wires for springs [9] 

Nominal 

size [mm] 

Permissible 

deviation 

[mm] 

SL  [MPa] SM [MPa] DM [MPa] SH  [MPa] DH [MPa] 

2.5 ± 0.025 1480 - 1680 1690 - 1890 1690 - 1890 1900 - 2110 1900 - 2110 

For a particular evaluation of the actuator dynamics, when the smart servo Dynamixel XL430-

W250-T is used, the data provided by the producer web page [10] and presented in the table 4.10 

can serve for finding the dynamic model parameters. According to the data from this table, the 

gear ratio N=258.5, and the stall torque and current, at different voltage (9, 11.1 and 12 V) allow 

to determine the torque coefficient, G ∙ �, when the no load curent and standby one are known.  

The stall torques, �j, at 9, 11.1 and 12 V are 1 G�, 1.4 G� and 1.5 G�, respectively, while the 

stall currents, �j, are: 1A, 1.3A and 1.4A. If the friction in bearings and gear train requires 0.15A, 

before starting the motion and the electronics stanby consumes 53 mA (see the table), it results a 

no load current �) = 0.2 �. The torque coefficient is the ratio: 

G ∙ � = ��
&�.&�

≅ 1.25 [G�/�]                                       (4.105) 

For finding the coil resistance, the standby current has to be subtracted from the stall curent, when 

applying the formula: 

                                             � = �
&�/�

 ,         where  �j.j = �j − �jL��\Dz 

The results for � = 9, 11.1, 12� and �j.j = 0.95, 1.25, 1.35 � is � = 9.47, 8.88, 8.89 ≅ 9�  
With these data, and the equations (4.40), (4.41) and (4.59), the coefficient 

sg = �
f = q

M ∙DQ� = 5.76 MG�4Q.�                                  (4.106) 

If the inertial most loaded circumstance is the one specified  in the figure 4.4, when the 

rehabilitation system is used to raise the entire leg of the pacient, by help of the hip joint actuator, 

the transfer function (4.72) can provide  the system dynamics, but the leg inertia has to be 

corrected by its reflected value, because an additional worm gear is interposed between the spring 

and device levers, attached to the patient leg segments. 

Now, it is possible to calculate the controller gain from the equation (4.68): 

s ≤ x�
[l

] �
��
¢£

− �
�¤¥¦

_                                             (4.68*) 
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The no load angular velocity of the Dynamixel XL430-W250-T, presented in the table 4.10 is 

$) = 6.39 §�\
j , and the maximum torque delivered by the smart servo at a maximum current of 

1.4 A, is 1.5 Nm. The controller gain calculated with (4.66*) is, for the maximum load torque 

used before: 

s ≤ 3.845                                                        (4.107)                    

The maximum theoretical velocity of the actuator is derived from the equation (4.66): 

$g ≤ $) ]1 − ��
¢£
�¤¥¦

_ = 5,36 =>?/4                                  (4.66*) 

If a triangular velocity profile is adopted for a back and forth stroke of the actuator (fig.4.19), the 

maximum frequency of this movement depends on the stroke ∆�: 

¨ = �
� = xl

}∆*                                                    (4.108) 

where T is the period of the back and forth actuator stroke. 

Chapter 5 

System structure 

5.1. Introduction 

This chapter describes a medical rehabilitation system, that can be built and made easy 

and it is inexpensive. Although locomotion is natural and important for children, there 

are many children who cannot experience it, because they have suffered various 

malformations or have suffered accidents that have led to diminishing or even loss of 

mobility. These children require either rehabilitation or permanent assistance in the form 

of using means that can be added to the human body and called orthoses. For this reason, 

the system is in line with the current trends, because rehabilitation is needed for the 

recovery of these children, being important both to them, to have a better life, and to the 

society, for social integration and to reduce social costs.  

The exoskeleton built is the result of this research and it is able to help the gait of the 

injured people, not only for the children, but also for the adults, if the concept is kept, but 

the actuators and mechanical structure are adapted to the adequate loads. The use of 

Dynamixel smart servos allow this extension, due to the large range of their dimensions 

and torques. The future of the assistive and rehabilitation technology (AT) will rest on the 

ability to understand and document how two important factors come together. This is 

referred to as "functionality." This blend of medical care and client involvement is 

referred to as " confluence." In the past, medications were used in an attempt to "fix" or 

"intervene" in the injury or disease plateau so that the consumer simply moved on. [2]. 

The International Classification of Functioning, Disability and Health (ICF) has elevated 

medical aids and therapies or technologies to better and more accurately match the 

activity and participation of the person who needs them. 

5.2. General structure  

General structure has the following subassemblies, as can be seen in figure 5.1. 
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Figure 5.1 General architecture of the rehabilitation device 

It is to observe that the system has a simple and cheap structure, consisting of an 

exoskeleton which provides mobility of the patient thigh and calf. For this purpose, the 

hip and knee joints are driven by two Dynamixel smart servos. A control unit, developed 

on an Arduino Uno board and two MPU 6050 tilt sensors, for feedback, are used for 

automatic control. 

5.3. Mechanical structure of the orthosis 

The main component of the structure shown in the figure 5.1 is the exoskeleton 

mechanism, which consists of two active joints and the levers connecting them (figure 

5.2).   

 

Figure 5.2 Mechanical structure of the orthosis 

The patient body can fasten to the orthosis by different means. A possible solution for 

attaching the hip joint to the patient is to use a special belt, which surrounds the body, as 

can be seen in the figure 5.3. 

 

Figure 5.3. Belt for connecting the orthosis to the human body basin 

For attaching the bars that connect the hip and knee joints to the thigh, and the ones 

between the knee joint and the foot support, wide Velcro strap can be used (figure 5.4). 
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Figure 5.4. Connection strap for thigh and calf  

The orthosis for the ill lower limb has two active joints on the level of the hip and of the 

level of the knee, both of them as can be seen in the figure 5.5. 

 

Figure 5.5. Active joint of the ill lower limb orthosis  

Each active joint has a series elastic actuator composed from a smart servo XL430-

W250T, a helical spring and a worm gear (figure 5.6). 

 

Figure 5.6. Series elastic actuator  

Worm gears (figures 5.12 and 5.13) are used to transfer power between non-parallel 

shafts, regularly at 90°. Gear ratios as 200:1 are possible. 
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For these reasons, a worm gear is interposed between the smart servo actuator and the 

exoskeleton joint. 

 

                                                a                 b 

Figure 5.12 “(a) Single enveloping worm gear; (b) Double enveloping worm gear.” 

 

Figure 5.13 Nomenclature of a single enveloping worm gear 

A worm's geometry resembles a power screw and it's rotation replicates an involute rack 

action.  Worm gear geometry is identical to helical gear’s one, but its teeth are bent to 

enclose the worm. This encircling of the gear increases the contact area but needs proper 

attachment. 

A worm's pitch diameter is dependent of its axial pitch, thread number, ©�, and the helix 

lead angle, ª: 

«y� ∙ ©� = �?E�¬>�ª                                                   (5.1) 

A worm gear’s pitch diameter is related to its circular pitch, equal to the axial pitch of the 

worm («y�Q, and the number of teeth, ©�, according to the formula: 

                                                        ?E� = E£�­�
'             (5.2) 

The linear velocities of the worm and gear are perpendicular and related by: 

®� = ®�¬>�ª                                                                 (5.3) 

The worm gear ratio is the one between the angular velocities of the worm and gear, i.e. : 
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= = x�
x�

= �¯�
\°�

∙ \°�
�¯�

= \°�
\°�L��± = ­�

­�
                                                (5.4) 

For a gear ratio, = = 20, a worm with two threads and a gear with 40 teeth were chosen 

5.4. Sensors 

For the aim of obtaining feedback from both the ill and the good lower limb, and 

therefore generating control signals, many sensors are available. In this project, the 

selection of sensors relies on the studies of human gait [2,3 and 6]. In [5], it was chosen 

to use accelerometers and force sensing resistors (FSR). The accelerometers were used 

for fault detection purposes, to work out if the orthosis is on the point of falling. 

 

Figure 5.16. Sensing axes of MPU 6050 [8] 

5.5 Arduino Uno V3 development board 

An Arduino Uno V3 development board was used for data acquisition from the inertial sensor 

and their processing, according to the Kalman algorithm. It was connected to the PC, and the 

processing results are transmitted to this one, in order to issue the adequate commands to the 

smart servo actuators.   

Arduino Uno (figure 5.22) is a development board, based on ATmega328 microcontroller, which 

has 14 digital I/O pins, 6 analog input pins and a 16 MHz clock. 5 digital I/O pins can be used as 

8 bit PWM outputs. It is easy to be connected to a PC by means of the USB port, because the 

connection is managed by the integrated circuit Atmega16U2, which makes the conversion USB 

to serial. The used version of Arduino Uno has also SDA and SCL pins for the connection I2C of 

the inertial sensor MPU 6060. 

 

Fig.5.22. Development board Arduino Uno V3 [11] 
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Chapter 6 

Experiments and controls 

6.1. Introduction 

The previous chapters present the theoretical evaluation and practical solutions for the 

development of the orthosis for one injured leg of a child, as a small scale and affordable 

mechatronic device. A logic measure, confirmed by other exoskeleton developments was to help 

the patient gait with crutches, as shown in figure 4.17, in order to improve the gait stability and to 

lower the joints load, as well. This approach requires a new experiment to measure the angular 

positions of the thigh and calf, due to the presence of the crutches and the device attached to the 

leg.  

A simple therapeutical exercise for knee rehabilitation was modelled, simulated and 

experimented, in order to demonstrate the right approach of the velocity control of the 

smart servos. The previous chapters present the theoretical evaluation and practical 

solutions for the development of the orthosis for one injured leg of a child, as a small 

scale and affordable mechatronic device. A logic measure, confirmed by other 

exoskeleton developments was to help the patient gait with crutches, as shown in figure 

4.17, in order to improve the gait stability and to lower the joints load, as well. This 

approach requires a new experiment to measure the angular positions of the thigh and 

calf, due to the presence of the crutches and the device attached to the leg.  

6.2. Angular positions of the leg segments during walk with crutches 

In order to determine the angular positions of the thigh and calf, the video recorded by the camera 

was split into frames, by use of Free Video to Jpg Converter. For an entire step, 78 successive 

frames were selected and, by taking into consideration the acquisition rate of 30 frames/s, the 

duration of accomplishing one step is 2.6 s. This result confirms the expectation of a slower 

motion, when the crutches are used. Moreover, it justifies the use of less than all the images 

which compose a step. 

 

Figure 6.1. Gait phases when crutches are used  

6.3. Modeling for control of the rehabilitation device 

As it was stated before, the dynamic model of the exoskeleton is a nonlinear one, 

including inertial loads and weight torques, which depend on the joint angular position, in 
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terms of sine and cosine factors. In order to diminish the influence of this variation, and 

by taking into consideration that the torque of XL430-W250T has to be amplified, a 

worm gear was added, but the connection between the smart servo and the worm gear is 

provided by the series spring elasticity. Based on this architecture, the equivalent load 

inertia at the servo’s output shaft axis is 400 M=�Q times lower and the torques developed 

by weight of body parts are 14 (ηr) times lower than the values encountered at the 

exoskeleton joints.  

 

Figure 6.8. Architecture of the closed loop control of the orthosis with 2 joints 

 

Figure 6.9. Architecture of the closed loop control of an orthosis joint 

The diagram in figure 6.9 shows a triple loop control of one joint. The external loop is an 

impedance control one, proposed by Hogan [1], which is based on the simple second 

order dynamic system. The input of the torque controller, provided by the impedance one 

is expressed by:  

²³ = �´M5µ¶ − 5µQ − �¶5� µ                                     (6.13) 

where ²³, 5µ¶, 5µ and 5� µ are column vectors (5 =  [�� ��]�Q, while �¶ and � = t� 0
0 �u 

are square matrices. A feedforward torque, ²µ¶ is meant to compensate the effects of the 

inverse dynamics (gravity torques and inertia one).  
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6.4. Experimental testing of MPU6050 sensor 

The inertial sensors were tested on the rehabilitation device, by comparing  the 

commanded positioning angles of the thigh and calf with the ones measured with a digital 

protractor, mounted on the corresponding robotic arm, like in the figure 6.13. 

 

Figure 6.13. Experimental setup for MPU6050 testing 

 

Figure 6.14. Conections between Arduino and MPU6050 

The experimental setup for verifying the program for reading the data issued by the 

inertial sensor is presented in the picture 6.15.   

 

Figure 6.15. Experimental setup for verifying the program for sensor data reading 
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6.5. Test on a physiotherapeutic exercise 

A simple, but demanding exercise was chosen for testing the rehabilitation device, in the case of 

the knee recovery. It is presented in the photos from figure 6.17 

 
 Figure 6.17. Exercise for knee rehabilitation 

The images suggest the movement of a crank slider mechanism, which  can be obtained if 

the exoskeleton is attached to the leg needing help. The schematic of the mechanism is 

shown in the figure 6.18, where the joints O and O1 are the hip and knee, respectively. 

The point S signifies the contact between the heel and the ground, being constrained to 

slide on the last. 

In the figure 6.18, there are denoted: ·L − thigh length; ·¸¹g − calf and foot  length (up 

to heel); ·ºL − position of the thigh gravity center; ·º� −
position of the calf gravity center; CL − gravity load of the thigh; GÀ −
gravity load of the calf; �X − motor torque of the      servo from hip joint; �[ − motor 

torque of the knee joint;   ~ − �=>��/thigh angular position;  Ä − connecting rod/leg 

angular position; �V − foot mass; �L − thigh mass; �� −
calf mass;    e−excentricity of the ground direction with respect  to Æ axis. There were 

considered only the body parts masses, because the exoskeleton ones are negligible, when 

compared to the body parts. 

A projection of the segment Ç�È on the y axis leads to: 

·L4��~ + É = ·¸¹g4��Ä                                               (6.44) 

Hence:                                             4��Ä = ¸Êj&��v¹
¸ËÌl

< 1                                            (6.45) 

The equation (6.45) shows that there is a maximum limit of the angle ~; 

~��y = 4��.� ]¸ËÌl.¹
¸Ê

_ = 55.9°                                       (6.46) 

where: É = 0.08 �;  ·L = 0.343 �; ·� = 0.319 � (table 4.5); ·�¹¹¸ = 0.045 � and ·¸¹g =
·� + ·�¹¹¸ = 0.364 �. 
The position of the leg is:             Ä = 4��.� Î¸Êj&��v¹

¸ËÌl
Ï                                             (6.47) 
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With a maximum:                        Ä��y = 4��.� Î¸Êj&��
¢£v¹
¸ËÌl

Ï ≅ 90° 

For describing the dynamics of the crank slider mechanism, the inertias of its components 

have to be reduced to the hip joint, by the equivalence of the sum of their kinetic energy 

with the one of a fictional rotating element, as follows: 

�ÐÌÑ�� �
� = �¢ÒÊ�� �

� + �Ê�� �
� + �¢ÒÊ¸Ê��� �

� + �ÒÓ� �
� + �Ò¯ÔÒ�

� + �Õ∙¯Ö�

�                             (6.53) 

The motion equation is, for the first phase (raising): 

�X = �§¹\~� + �V + �LF·ºL�×4~ + ��FM·L�×4~ + ·º� �×4ÄQ                (6.59) 

And for the second phase (descent): 

�§¹\~� + �V = �X + �LF·ºL�×4~ + ��FM·L�×4~ + ·º� �×4ÄQ               (6.60)            

The equations (6.47), (6.48), (6.50), (6.52), (6.53*), (6.58) and (6.60) are used to 

calculate the necessary torque of the hip actuator, if a velocity control is chosen for it, 

during the raising of the thigh from 0 to 30°. The numerical algorithm was developed as a 

block diagram model (figure 6.19), built into the 20sim environment. This model is 

pronouncedly non-linear and the velocity control can be successful only if the associated 

required torque can be provided by the smart servo. 

 

 Figure 6.19.  Block diagram of the system dynamics for a trapezoidal velocity profile 

The trapezoidal velocity profile can be obtained from the acceleration input as two pulses 

of the same duration and opposite signs, as it is shown in the figure 6.20. 
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Figure 6.20. Velocity and acceleration profile of the model in figure 6.19 

If a 40° (0.7 rad) angular displacement of the thigh is considered to be achieved in 10s, and the 

acceleration/deceleration time is ¬� = ¬V − ¬\ = 34, the regime angular velocity is ~�§ = �
LÑ

=
0.1 §�\

j , and the acceleration/deceleration is % = �� Ð
L¢

= 0,033 =>?/4�.  
In the figure 6.23, the blocks which introduce the parameters used in the model equations are 

gains, constants and attenuates, as follows: C>�� = ·L = 0.343 �; Ø×�4¬>�¬ = É = 0.08 �; 
�¬¬É��>¬É = 1/·¸¹g = 2.747 �.�; Ø×�4¬>�¬1 = 1;  C>��1 = ·L = 0.343 �; C>��2 = 

2·L·º� = 0.095�; C>��3 = ·¸¹g = 0.364�; Ø×�4¬>�¬2 = ·L� = 0.118 ��; Ø×�4¬>�¬3 =  

= ���L + �L + ���L·L� = 0.09 �F ∙ ��;  C>��4 = ·º�� = 0.019 ��; C>��5 = �� = 0.03485 

�F ∙ ��; C>��6 = �� = 1,26�F; C>��7 = −·L = −0.343 �; C>��8 = �V = 0.38 �F; 
C>��9 = FM�L·ºL + ��·LQ = 8.166G�; C>��10 = F��·º� = 1.7 G�; C>��11 = ÙV = 0.25G.  
With these values, the time variation of the hip joint torque is obtained from the run of 

the block diagram in figure 6.19 and is shown in the figure 6.21. 

 

Figure 6.21. Simulation output of the block diagram in the figure 6.19 

The maximum necessary torque at the hip joint is 9.85 Nm which corresponds to 0.7 Nm 

(ηr=14) to be provided by the smart servo XL430-W250T. Recalling the equation (6.14), 

the maximum angular velocity allowed for the torque equal to 0.7 Nm is 
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$ = �
¢£.�MxQ
± = 0.88 §�\

j ≫ 0.1 =>?/4                             (6.14*) 

The result of (6.14*) shows the capacity of the smart servo to move the leg for 

performing the proposed exercise, even no muscle of the patient helps the motion. The 

inertia of the exoskeleton was neglected, but it is very small compared to the body parts. 

Additionally, the joint O1 was considered not active, even it could compensate the inertia 

and gravity torque of the calf. 

The control program for this exercise consists of the velocity control of both smart servos 

with trapezoidal profile and the result is recorded as a video, in which, an artificial leg, 

connected to the orthosis is moved like in the figure 6.22, in order to perform the exercise 

from the figure 6.17. 

 

 

Figure 6.22. Exoskeleton movement for the knee rehabilitation exercise from figure 6.17 

Chapter 7 

Conclusions, contributions and future work 
This thesis aims to design and develop a medical rehabilitation system that can be built 

and made easy and inexpensive. Although locomotion is natural and important, there are 

millions of children who cannot experience it because they have suffered various 

malformations or have suffered accidents that have led to diminishing or even loss of 

mobility. These children require either rehabilitation or permanent assistance in the form 

of using forms that can be added to the human body and called orthoses. For this reason, 

the system is in line with current trends because rehabilitation is needed because the 

recovery of these people is important both to them (to have a better life) and to the 

society (for social integration, to reduce social costs). 

A brief description of the physiology and anatomy of the lower limb is made to establish 

the initial conditions imposed on the recovery system to be designed and achieved. 

Relative displacements between segments are strongly dependent on the type of joint 
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between segments and the way the muscle acts (muscle insertion points, length and 

trajectory generated). Human displacement analysis is performed using complex 

theoretical and experimental methodologies that provide detailed information on the 

kinematics and dynamics of human movement 

There is more need in Iraq for such devices because Iraq has suffered from wars and 

crises, and the result of these wars was a lot of birth defects, for which  these children 

often need help. 

Reminding the objectives defined in the introduction, it can be said they were entirely 

attained, with personal contributions as follows: 

1. Study the type of orthoses and what materials used to develop one device for 

rehabilitation system with good materials and low price 

2. Study of the sensors, actuators, and instrumentation for the lower limbs rehabilitation 

devices and systems. There are a lot of sensors most of them requesting a large 

processing, which involves expensive equipment and software, external sensors and 

implant sensors for person which suffered problems in lower limbs. 

3. Starting from the requirements derived from the development of the adequate active 

joint of an exoskeleton for a child, a new series elastic actuator was proposed, based on a 

smart servo actuator, commercially available. This is the key idea for achieving an 

affordable device, even for a larger scale one, to be used by an adult, due to the extended 

Dynamixel series of smart servos. 

4. Another novelty of the development is the spring intercalation between the smart servo 

and the worm gear, which provides the leg segment positioning. This way, the use of a 

big and stiff spring was avoided. 

5. A simplified analysis of the closed loop system with proportional controller was made, 

in order to determine the spring stiffness and to verify if the force control approach  is  

suitable for the load dynamics.  

6. The limits of the proportional controller were pointed out, when the output is the 

necessary torque for positioning of an inertial load. For fixing this issue, an inner velocity 

loop of the servo is foreseen, as the servo XL430-W250-T is able to implement it. 

7. A medical rehabilitation system was developed, that can be built and made easy and it 

is inexpensive. Although locomotion is natural and important for children, there are many 

children who cannot experience it, because they have suffered various malformations or 

have suffered accidents that have led to diminishing or even loss of mobility. These 

children require either rehabilitation or permanent assistance in the form of using means 

that can be added to the human body and called orthoses. For this reason, the system is in 
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line with the current trends, because rehabilitation is needed for the recovery of these 

children, being important both to them, to have a better life, and to the society, for social 

integration and to reduce social costs.  

8. The exoskeleton built is the result of this research and it is able to help the gait of the 

injured people, not only for the children, but also for the adults, if the concept is kept, but 

the actuators and mechanical structure are adapted to the adequate loads. The use of 

Dynamixel smart servos allow this extension, due to the large range of their dimensions 

and torques. 

9. The investigation results of the gait with crutches which served for the data collecting, 

regarding the angular positions of the thigh and calf with respect to the time, were 

improved by use of Neville’s algorithm for finding the polynomial interpolation value at 

a certain point. This way, the thigh and calf velocities and accelerations, when the gait is 

helped by the crutches were more accurately determined. 

10. An inverse dynamic model of the orthosis, when crutches are used, served for the 

calculation of the hip and knee joint torques, at each time instants and the smart servo 

capability to provide them was demonstrated. 

11. Experimental testing of the tilt sensor MPU 6050, which measures the angular 

positions of the thigh and calf was successfully performed, proving the effectiveness of 

the software for data acquisition and filtering. 

12. A simple therapeutical exercise for knee rehabilitation was modelled, simulated and 

experimented, in order to demonstrate the right approach of the velocity control of the 

smart servos. 

Future work lines 

The developed device, thought for helping the children who suffered some problems in 

lower limb, can be modified for adults with greater  sizes and masses, just changing the 

mechanical design and actuators, which are available at different sizes, torques and prizes 

from the Dynamixel range. 

The device capabilities could be improved, by example, with a mechanism for 

dimensions adjustments, which avoids personalized construction. 

Another major improvement can be done for some accessories for fixing the device to the 

body, in a safe and easy way. 

A third joint, for the ankle support, is another direction to work in the future, being 

known that requires the greatest torque. 
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