
POLITEHNICA UNIVERSITY
OF BUCHAREST

Doctoral School of Electronics, Telecommunications
and Information Technology

Decision No. 937 from 21-10-2022

Ph.D. THESIS
SUMMARY

Ing. Sabin BELU

METODE AVANSATE DE COMPRESIE IN AUTOMOTIVE

ADVANCED DATA COMPRESSION METHODS IN AUTOMOTIVE

THESIS COMMITTEE

Prof. Dr. Ing. Gheorghe BREZEANU
PresidentPolitehnica Univ. of Bucharest

Prof. Dr. Ing. Daniela COLŢUC
PhD SupervisorPolitehnica Univ. of Bucharest

Prof.Dr.Ing. Ioan TĂBUS, RefereeTampere University, Finland
Prof.Dr.Ing. Daniela TĂRNICERIU

RefereeTechnical Univ. “Gh. Asachi”, Ias, i
Conf.Dr.Ing. Daniela FAUR

RefereePolitehnica Univ. of Bucharest

BUCHAREST 2022

Table of contents

1 Introduction 1
1.1 Applying Data Compression on Big Data 1
1.2 Automotive and Big Data . 2

2 Dictionary Based Compression 3
2.1 Introduction . 3
2.2 Dictionary Based Lossless Data Compression 3
2.3 LZ77 algorithm . 5
2.4 Experimental results on LZSS, LZP and ROLZ 7
2.5 ROLZ Conclusions . 7

3 A Fast Canonical Huffman Decoder 9
3.1 The Huffman Process . 9
3.2 Huffman Encoding Optimality . 10
3.3 Our Solution for a Fast Decoding . 10

3.3.1 The Canonical Huffman Algorithm 10
3.3.2 Construction of FCHD decoding table 11
3.3.3 Experiments . 12

3.4 FCHD Conclusions . 12

4 A Quasi-Static Arithmetic Encoding 13
4.1 Arithmetic Encoding . 14

4.1.1 Output Streaming . 14
4.1.2 Decoding Process . 14

4.2 Practical Consideration . 14
4.3 Updating the Statistics in Quasi-Static Encoding 15
4.4 Experimental Results . 15
4.5 Conclusions . 16

5 Software Update in Automotive 17
5.1 Manual ECU Firmware Updates in Automotive 19
5.2 Firmware Over-the-Air in Automotive 19

Table of contents

5.3 FOTA Update Containers . 20
5.4 Data Chuncking Concept . 20

6 Data Differencing using Referential Compression 22
6.1 Software Updates and Data differencing 23
6.2 Referential Compression . 23

6.2.1 Operating Modes of Referential Compression 23
6.3 A New Data Diferencing Algorithm 24

6.3.1 Operating with our Differencing Algorithm 24
6.3.2 Conclusions . 25

7 Data Differencing 27
7.1 Why Data Differencing . 28
7.2 Related Work . 28
7.3 Keops Algorithm . 29

7.3.1 Delta File . 29
7.3.2 Strategies for Buffer Pairing 29

7.4 Experimental Results . 30
7.4.1 Compression Rate . 31
7.4.2 Encoding Time . 32
7.4.3 Decoding Time . 32

7.5 Conclusions . 32

8 Conclusions 33
8.1 Original Contributions . 33
8.2 List of publications . 34

8.2.1 Journal papers . 34
8.2.2 Conference Papers . 34
8.2.3 Doctoral Research Reports . 35

8.3 Future Work . 35

References 36

iii

Chapter 1

Introduction

Data Storage has a story of its own. Since its creation in 1956, hard disk drives capacity
has increased 50-million times. The first hard drive weighted 1 ton and only hold
5Mbytes of data. After 26 years, the first 1 GB (GigaByte) hard drive has been produced
and during 2007 to 2011, hard drive capacities quadrupled from 1 TeraByte (TB) to 4
TB. Within the next ten years, 20 TB hard drives became as common as digital cameras.
Notions like PetaBytes, ExaBytes, ZettaBytes and YottaBytes are common these day.
They represents 1 Million Giga Bytes, 1 Billion Giga bytes, etc.

Our lives are now surrounded by Big Data. This is a concept that we are still trying
to grasp these days, since there is no standard definition of this term. We only know that
Big Data is defined by some characteristics. Big Data is a combination of structured,
semi-structured and unstructured data collected by certain organizations, which can
be exploited for information and can be used in machine learning projects, predictive
modeling, and other applications, such as advanced analysis.

Systems that process and store big data have become a common component of data
management architectures in organizations, combined with tools that support big data
analytic usage. Big data is larger, more complex data sets that are so voluminous, that
traditional data processing software can’t manage them. The advantage of big data is
that it can be used to address business problems that couldn’t be approached before.

Even though big data does not quantify to a specific volume of data, implementations
most often mean terabytes, petabytes, and even exabytes of information that is created
and collected over time.

Big data contains greater variety, volume, velocity, veracity, and value, five keys to
making big data a huge business.

1.1 Applying Data Compression on Big Data

In terms of compressing the Big Data, humanity realized that classic algorithms have
long peaked. Sure enough, applying regular compression on Big Data has its benefits,

but if a compression rate of 90 or even 99 is taken into account, there is 1 left to deal with,
store or transport on different communication channels. And this is a huge challenge.
As the size of a compressed Big Data stream archive could be in the in the range of tens
of petabytes, even if the compression ratio is higher than 98 or 99%.

These kind of compression ’savings’ have zero relevance these days. That being
said, it is necessary to apply a new compression techniques capable of providing an even
greater compression rate than 99.998%.

This method is called differential compression or binary delta compression.

1.2 Automotive and Big Data

The Big Data ’syndrome’ affects more and more industries, and Automotive is one of
them. Car systems and technologies grew to a level of complexity that hasn’t been seen
before. The more complex a system is, the more files, folders and data it processes.
Audio files, movies, maps, general automobile information, other infotainment data, they
all tend to be in gigabytes of data. Processing such Big Data when it comes to flashing
or installing the software on automobile Electronic Devices (ECUs) soon becomes a
burden due to versioning.

Car systems have many versions as compilations are done on a daily basis and new
software versions appear maybe weekly. Dealing with so many software versions and
so much data, requires special algorithms, far beyond the regular classic compression
algorithms.

Automotive has a very strong reason to use binary delta compression
Software UPDATE and why car systems have to stay up-to-date.
These days, car systems and the projects that run them grow at a level of complexity

that has not been seen before. The more complex a system gets, the more prone to errors
it is. Defects or Diagnosis Trouble Codes (DTCs, in Automotive terms) are events in
which the system jumps from a known state of a finite state machine to another state that
has not been taken into account by the architects, developers and test engineers of the
entire system.

If this happens without a warning, a Fault is generated, and depending on its severity,
the display cluster or Kombi, in Automotive terms meaning the Cluster Instrument, could
display this as a Check-Engine lit-up icon.

2

Chapter 2

Dictionary Based Compression

2.1 Introduction

This chapter focuses on dictionary based compression techniques and algorithms. It starts
with the presentation of several well known dictionary based compression algorithms
like Lempel Ziv ’77 [115], followed by its variants LZSS [117] and LZP [113]. The
description of a brand new algorithm is also presented, called ROLZ (Reduced Offset
Lempel Ziv), an undocumented, patent-free dictionary based compression algorithm
reverse engineered from partial descriptions of LZP, LZRW-4 [142] and RKive [112]
compression software.

The original contributions on the subject of dictionary based compression are:

• Back-trace an undocumented algorithm, the RoLZ algorithm, from notes and
descriptions of LZP, LZRW-4 and RKive algorithms.

• Improvements of the RoLZ algorithm over the original version suggested by
Charles Bloom and Malcolm Taylor.

This has been published in the following Conference Paper RoLZ - The Reduced
Offset LZ Data Compression Algorithm [128].

2.2 Dictionary Based Lossless Data Compression

We have written about this ROLZ algorithm as a tribute to the golden age of data
compression. Its unravel was both time consuming in order to deduce the way the
algorithm works and also trying to find if our findings are correct.

Unlike classical Lempel Ziv implementations, ROLZ uses a ’reduced’ subset from
which a possible ’match’ set is chosen and also it minimizes the information needed to
describe this match-length set. The big advantage of such approach is higher compression

ratio, at some decompression speed expense. Our three algorithm embodiment for
LZSS[117], LZP[113] and ROLZ[129] are tested against five types of data, and in all
our tests, the compression ratio of ROLZ is far superior to LZSS’ or LZP’s

The appearance of RKIVE[112] in the early 90’s as de facto one the best data com-
pression tools on the market, created a lot of commotion and rumours in the bbs/online
communities. RKIVE was written by Malcolm Taylor [112], a New Zealand developer
and researcher in data compression. It was soon adopted by researchers and engineers all
over the world, as the algorithm was achieving compression ratios never seen before. This
was a world that has been dominated for years by PkZIP/PkArc[38], LHa/LHarc[122] or
Arj[119] (all trademarks are the property of their respective owners).

Also, during the ’90s and mostly in the Dot-Com boom era, a lot of patents were
issued in Data Compresion. ROLZ, the acronym from Reduced Offset Lempel Ziv, which
was later discovered to be the underlying compression algorithm within RKIVE, is even
today free of patents, to the best of the authors’ knowledge. It is worth mentioning
Robert Jung’s US Patent 5,140,321 [119], also known as the LZ77 Limited Search Patent.

This idea played an important role in shaping ROLZ and it will be discussed later.
Meanwhile, RKIVE was closed-source and its ROLZ algorithm remained undocumented
for years; some clues emerged from the readme file associated with RKIVE compression
package. Within the document, Malcolm [112] acknowledges Charles Bloom for his
noticeable insights and helps on writing his program.

Going back one year, in 1995, Charles Bloom has just invented a new algorithm that
he presented at The Data Compression Conference in Utah, in the following year [113].
This algorithm was called Lempel Ziv Prediction (LZP). In his paper describing LZP,
appears from the first time the following line: ”This algorithm works by reducing the
set of available window position for an LZ77 encoder to match from”. Furthermore,
comparing LZP with LZ77, it turns out that fewer bits are used to indicate a match-length
pair, since only the length is transmitted to output location. Charles Bloom presented
four versions for LZP algorithms: from LZP1, which used a fixed order-3 context 1hash
table lookup and a 16k byte LZ-window to LZP4, which used an order-5 context and no
hashing.

However, not even the best LZP variant could come close to RKive results in com-
pression ratios. It turned out that RKive was a successful combination of compression
methods and heuristics, from solid compression to optimal LZ parsing.

But RKive’s powerful compression algorithm will remained a mistery for many years
to come. Our article’s purpose is to depict the power that lies within this algorithm and
maybe, once for all, re-enact ROLZ towards wider usage within software programs.

1Using a context in a data compression method is explained by I. Witten in his paper [134]. Ian Witten:
In a sophisticated compression system, where predictions are conditioned by a context of preceding
characters or are otherwise drawn from more than one symbol distribution, a context number would also
be passed to index an array of coders.

4

Fig. 2.1 Diagram of the LZ77 algorithm.

2.3 LZ77 algorithm

Lempel-Ziv’s 1977 algorithm [115] is a dictionary compression algorithm. The algo-
rithm’s core functionality is replacing sub-strings of commonly seen successions of
symbols from the input stream into pairs of position and length. As shown in Fig. 2.1,
LZ77 splits the input stream into history and look-ahead buffer; any sub-string portion
of a <match, length > pair points to a copy of it in the history part of the buffer. The
output encoding consists of a triple 〈d, l, s〉 meaning distance, length, symbol, where
symbol is the first literal or unmatched symbol following the match-length pair 〈d, l〉.

Suppose there is a string S, which starts at ith position of the input stream, called
current pointer, see Fig. 2.1. Symbols at current pointer are compared with similar
symbols from the LZ History or symbols that have the same hash value when combined in
a ”string”, a collection of symbols from the used alphabet. There is no context involved
in choosing the LZ-History ”string” to be matched against. Only the current pointer
makes the separation between the LZ-History and LZ-Lookahead partitions, within the
input stream.

• The string Si···i+l of length l has another occurrence P, which starts d positions
earlier in the text, Si−d···i−d+l

• This earlier occurrence of S, should be always less than lmax and should start within
a window Si−dmax···i−1

• The values d and l must satisfy the following constraints: d ≤ dmax and l ≤ lmax

• Strings Si···i+l and Sid···id+l overlap only if d ≤ l, which makes LZ77 a self-
compressible algorithm

• When in greedy mode, LZ77 always try to maximize l from all the possible
occurrences of Pj in history

• The triple ⟨d, l,s⟩ could be further encoded using log2(dmax) + log2(lmax - LZ_MIN_LEN)
bits

5

LZ_MIN_LEN is the minimum encoding length beyond which a match is accepted.
It was until Storer and Szymansky made their LZ77 version famous, with a variant

called LZSS[117]. With LZSS [117], the authors introduced the concept of coding f lags,
used to differentiate a literal from a distance/length pair. This 1-bit flag eliminates the
need to output a triple at each iteration of the algorithm, thus saving a literal for a new
search and possibly, a new match.

The ROLZ algorithm is implemented into 7 distinct steps, of which the first 5 are
derived from LZP:

• 1) In the first step, ROLZ calculates the context value hashIndex for the current
position i, by inserting the previously seen cntxN symbols into a hash function hF.

• 2) In the 2nd step, ROLZ checks this value against a hash table. In ROLZ case, this
value is a pointer to a collision nodes list; if the pointer is null or the list is empty,
ROLZ goes straight to step 4. If the pointer is not null or the collision nodes list is
not empty, ROLZ steps into the 3rd step.

• 3) In the 3rd step, ROLZ performs a match trying to find the longest length of a
possible match between the string at current position i and the string at position
pointed out by collision nodes list’s first node; the length l node1 specifying the
longest match found during this current search is stored.

• 4) In the 4th step, ROLZ tries to maximize the longest match by advancing to the
next node from this collision nodes list; so step 3 is repeated for each node until
the list has depleted or max nodes searched is reached.

• 5) In the 5th step, ROLZ calculates the longest length out of all matches, lmax =

max(l_nodeN , l_nodeN−1, · · · ,l_node1); this lmax is also stored, along with the
index where it was found, named herein nmax;

• 6) In the 6th step, ROLZ inserts the current position, i into the current collision
nodes list;

• 7) In the final step, ROLZ writes lmax to the output location. if lmax is not null,
nmax is also sent to output location. The pseudo code of the complete algorithm
with an order-4 context is in [?].

In the LZP algorithm, the string at the current pointer from LZ-Lookahead buffer’s
ith position is matched only with strings following the same context from the LZ-History.
The longest match is encoded only by its length, l , not by a pair <d,l>. The current
pointer is always written in the hash table. If no match is found, the current symbol, Si,
is written into output location and the current pointer advances to the next location. If
a match of length l is found, l is written into the output stream and the current pointer
advances l + 1 locations.

6

Table 2.1 LZSS, LZP AND ROLZ COMPRESSION RATES

ORIGINAL SIZE
(MiB2)

LZSS
(%)

LZP
(%)

ROLZ
(%)

Executable 701 68.63 65.04 64.43
Formatted Text 135 25.15 23.00 21.87
Object Files 526 43.68 37.87 37.33
Text Files 86 58.95 58.17 54.68
Misc. Binaries 555 56.46 54.84 53.92

Table 2.2 DECOMPRESSION TIMES FOR ROLZ VS LZSS AND LZP

ROLZ
(ms)

ROLZ vs LZSS
(times)

ROLZ vs LZP
(times)

Executable 13,312 1.03 2.55
Formatted Text 1,037 3.02 2.46
Object Files 4,413 2.26 2.08
Text Files 954 2.04 2.26
Misc. Binaries 7,933 3.58 2.40

In the ROLZ algorithm, the string at the current pointer from LZ-Lookahead buffer’s
ith position is matched only with strings following the same context from the LZ-History.
All matches lp are stored and the maximum length lmax is computed. The current pointer
is always added to the collision nodes list. If lmax is zero, no match is found, the current
symbol Si is sent to output location and the current pointer advances to the next location.
If lmax is not zero, it is sent to output and the current pointer advances lmax+1 locations.

2.4 Experimental results on LZSS, LZP and ROLZ

We have implemented LZSS [118], LZP [113] and ROLZ [142] variant. As test results,
we provide data compression ratios and decompression speed timing which are available
from tests performed with applications we have implemented for this article; these
applications are embodiment of LZP [113], LZSS [117] and ROLZ [142] algorithms.
We have used test data sets which we believe to be generically applicable for any data
compression application, as explained in details:

2.5 ROLZ Conclusions

We find ROLZ to be an exceptional algorithm. As compared to LZSS, the output of cntx
bytes allows us to preserve a certain degree of context in the output stream. This implies
that ROLZ output is suitable for a cntxN−order compression modelling, providing even
better compression ratio, once the output is to be further compressed. While LZSS is
usually bound to finite LZ window, LZP and ROLZ can work in an environment where

7

position and distance of matches are infinite in values, with ROLZ providing the best
compression rate, among all three algorithms.

8

Chapter 3

A Fast Canonical Huffman Decoder

This chapter focuses on entropy coders, in particular, the Huffman encoding and its vari-
ant called Canonical Huffman encoding. It starts with the presentation of the ubiquitous
Huffman algorithm, followed by the canonical rules that make up the formation of the
canonical Huffman prefix codes, hence the name of the variant, Canonical.

The description of an original algorithm is also presented, called Fast Canonical
Huffman Decoder (FCHD), which by design, focuses on the creation of a high throughput
decoding algorithm which uses canonical Huffman codes.

The original contributions on the subject of canonical Huffman entropy coding are:

• A novel canonical Huffman decoding method, with the ability to process 8 to 12
symbols in a single decoding cycle.

• New and improved method for creating the classic Huffman tree.

• New and improved method for canonical Huffman codeword lengths storage.

This is an original algorithm not an improvement of any of the previous work art
presented. Thoroughly tested, the algorithm was able to surpass the 2GiB/s decompres-
sion speed mark. The text of this article has been published in the following Conference
Paper: Fast Huffman Canonic Decoder [131].

3.1 The Huffman Process

Huffman codes have been around since 1951 when they were invented by D.A.Huffman
[81]. The problem D.A.Huffman was trying to solve was finding the most efficient
method of representing a symbol to be encoded into a more compact binary form.
D.A.Huffman solved this problem with a simple idea, an idea that brought him the
highest Information Theory rank of underpinning technical achievers of all times.

In theory, Huffman[81] codes approach optimality but when it comes to implementa-
tion, the method is much less optimal especially when fewer symbols are encoded. We
will explain this below.

3.2 Huffman Encoding Optimality

Huffman coding and in particular, the decoding part, uses the exact same information in
order to reconstruct the original input stream; in order to achieve this, step 1 is the hardest
to implement in a optimal fashion due to storing or transmission of such mandatory
information over an information channel.

This is where the classical Huffman coding is far less optimal in practice then
theory. The method proves to be less scalable for larger alphabets, due to the additional
information required by step 1 and 2. Apart from the set-notation of the left node to 0
and right node to 1, the classical Huffman tree and generated codes have no additional
properties we can rely upon for an optimal storage or transmission, or the omission of
such. New progressive codes and coding method had to be found in order to optimally
solve this problem and a new set of Huffman codes that follow certain rules have been
lately proposed.

Such codes are called the Canonic Huffman codes, and they possess unique properties
that will allow us to solve step 1 and 2, the transmission or storage and retrieval of the
information required for reconstruction of the input symbols, in an optimal way. Such
properties define the canonical Huffman codes to be sequential. They will be discussed
in more details during this article, but it is worth mentioning that the most important
property of such codes has dramatically changes the paradigm of Huffman coding.This
code property, called Consecutive Value property, allows most of the canonical Huffman
codes to be automatically generated in sequential order when the number of bits per
codeword is provided.

3.3 Our Solution for a Fast Decoding

Unlike any of the classical implementations that we have surveyed, our FCHD imple-
ments a proprietary algorithm that allows very fast decoding of multiple symbols in one
decoding cycle.

3.3.1 The Canonical Huffman Algorithm

Let s1, s2, . . . , sN be the following source alphabet symbols, sorted according to their
frequency of appearance in the input steam. s1 being the most frequent symbol and sN

being the least frequent. ls1 ⩽ls2 ⩽ . . . ⩽lsN the bit − lengths generated by the classic
Huffman tree.

The pseudo-code for the Canonical Huffman coding canonical rules could be de-
scribed as following:

• Step 1. codewords1 = 0

10

• Step 2: codewords2 = (codewords1 +1)≪(ls2˘− ls1)
1

The algorithm starts with codewords1 = zero, at Step 1. We iterate through all the
input symbols and generate the next codeword by using the formula at Step 2.

3.3.2 Construction of FCHD decoding table

We propose a fast multi-symbol huffman canonic decoding solution implemented using
a single lookup table. It requires minimum time for construction and it will be stored in
the final output file. This lookup table will be further referred to as the FCHD decoding
table.

In order to implement our FCHD algorithm, we partition the huffman binary output
stream in segments that follow two rules: A. The greedy rule B. The limitation rule:
their cumulated codeword length is less or equal to an arbitrary chosen N.

For simplicity of examples, we have chosen to present this algorithm for N = 8.
We use the encoding of the message s0 . . . s3 with the canonical Huffman codes from

Table 3.1.
We then use the segment value to generate the FCHD table index. This index is

generated from a segment and a remainder of bits, if any. The remainder exists only if
the cumulated codeword length is higher than N.

FCHD table index is always of length N bits.
Using FCHD table index, we then store the additional information required for fast

decoding in a location of the decoding table where the FCHD table index points to.
The remainder is a left over from the next instantly decodable codeword which is not

fully used because of rule A
The FCHD table index is formed out of a segment and a remainder of bits, if the

current codeword length is less than N . FCHD table index is always of length N bits.

1left shifting is a bit-wise operation which requires two operands to work, a number and the shi f t_bits
value; the operation result consists in the first operand being multiplied by 2 power shifted-bits (2shi f t_bits).

1ASCII (/æski/ ASS-kee), abbreviated from American Standard Code for Information Interchange, is a
character encoding standard for electronic communication.

Table 3.1 Symbol frequencies and associated codewords

Index Symbol Freq
Code

Length
Canonic

Code
Huffman

Code
0 A 9 1 0 1
1 T 5 2 10 01
2 C 3 3 110 000
3 G 1 3 111 001

11

Fig. 3.1 Computing table indexes from Cbv and Rbv.

3.3.3 Experiments

Our Fast Canonical Huffman Decoder has been tested against different data types such
as nucleotides, bitmap files, text and binary files. Other test files relate to an in-house
LZFG data compression program we have developed, such as literals (uncompressed
symbols), literal runs, lengths, length runs and distances (substring copies coded as back
reference pairs of distance and length tokens). All together, they form some specific test
files that we use in our tests. Short descriptions of LZFG-A markers and tokens

3.4 FCHD Conclusions

Our Fast Canonic Huffman Decoder, FCHD, is extremely suitable for canonic huffman
codes with an average codeword bit length of up to 12 bit. It is an original solution
which addresses the need for high-speed big throughput algorithms. The algorithm was
designed to exhibit a small storage and memory footprint and we find it also suitable for
low resource environments, such as various ECUs 2 from IoT or Automotive. Through
empirical studies, we have learned that our FCHD method is able to decode symbols at
speeds at about 2GB/s and above while processing highly redundant files.

21
2ECU stands for Electronic Control Unit, a small electronic device responsible for controlling specific

functions. In Automotive, Electronic Control Units (ECUs) are small devices located inside vehicles that
control specific functions such as power steering control, windows, seats or even engine parameters.

12

Chapter 4

A Quasi-Static Arithmetic Encoding

This chapter also focuses on entropy coders, in particular, the arithmetic encoding.
It starts with the presentation of the ubiquitous arithmetic data encoding algorithm,
followed by the description of a static version that we have improved.

With this thesis, we are proposing a new architecture for arithmetic encoders called
Quasi-Static. Unlike the classical implementations, the Quasi-Static Encoder buffers
the input stream and uses a static model for encoding the data in the buffer. The big
advantage of such approach is the higher encoding speed obtained however with the
price of slight degraded compression rates.

The text of this chapter has been published in our conference paper The Anatomy of
a Quasi-Static Arithmetic Encoder [129].

Since dictionary based - compression algorithms like Lempel-Ziv [115] contain a
level of redundancy in the output, it is important to reduce that redundancy by using a
different method, other than based on common sub-strings. Therefore, any complete
data compression method must include also an entropy coder.

Arithmetic data compression, as a de facto entropy encoder, has gone through an
ongoing improvement process since its first appearance in the famous article "Arithmetic
Coding for Data Compression" written by Ian H. Witten, Radford M. Neal and John C.
Cleary [109]. This version of arithmetic compression is known as CACM Arithmetic.

One of the utmost difference of an Arithmetic Encoder with respect to most of the
entropy coders, such as Huffman (dynamic, also known as Gallager Entropy Coder or
static variants), Splay encoding, Shannon–Fano etc. [?] is that it encodes the entire
message (buffer or file) into a single big number, that is carefully chosen to be a fraction
q within the initial interval [0.0, 1.0).

0American Standard Code for Information Interchange

4.1 Arithmetic Encoding

A message to be encoded is composed of symbols from a given alphabet. As stated
above, arithmetic encoder takes the message and converts it into a fractional number q
with the condition that q belongs to [0.0, 1.0).

4.1.1 Output Streaming

In practical implementations the codeword is built progressively. For each new encoded
symbol, the encoder can release none, one or more bits of the codeword.

This process is based on the following observation: within the interval [0.0, 1.0) any
number that lies below 0.5 has 0 as MSB (most significant bits) and any number that lies
above 0.5, has 1 as MSB.

When LOW and HIGH endpoints lie on the same side of 0.5, c^ will certainly have
the MSB of that side. Consequently, a bit is released and in order to reproduce this
condition, the binary representations of LOW and HIGH are left shifted.

This is equivalent with a scaling of the interval by 2. The encoding process is
described by the following pseudo code:

4.1.2 Decoding Process

At the decoder, the bit-stream is cut into codewords and for each codeword is identified
the interval that originated it. The decoder must be aware of the statistical model
otherwise the decoding is not possible. After the decimal conversion of the codeword,
the decoder deals with a fractional number.

4.2 Practical Consideration

Considering the interval [0.0, 1.0) and the fast way it shrinks, it looks completely
impractical to use this interval for an implementation of arithmetic coding. Using [0.0,
1.0) gives out two major defects when implementing arithmetic coding.

Where LOWs and HIGHs are the interval endpoints, Cumulated frequencies of
symbols are calculated as the sum of previous symbols frequencies and Value per Unit
defines the ratio between the range and the sum of frequencies. Suppose that for our
example, we want to re-scale the interval [0, 1) to [0, 20). The symbols frequencies and
cumulated frequencies are given in the following table:

The cumulated frequencies are helping us to define the interval assigned to each
symbol. The endpoints of the interval assigned to symbol Si are calculated as follows:

LOW [Si] = LOW0 +VpU ×CumFreq[Si−1] (4.1)

14

HIGH[Si] = LOWi +VpU ×CumFreq[Si] (4.2)

where VpU is in our case 20/10 and LOW0 is the left endpoint of the initial scaled
interval. Here the index i specifies the symbols order in the interval. Without a good
mapping, meaning without the use of VpR, we would have a change of probabilities from
the initial estimation.

The partition after the interval scaling is shown in Fig. ??.
Following 4.1, the fractionally endpoints were mapped to integers: For symbol ’A’,

the interval [0, 0.5) is mapped to [0, 10), for symbol ’B’, the interval [0.5, 0.8) is mapped
to [10, 16), for symbol ’C’, the interval [0.8, 1) is mapped to [16, 20)

When dealing with full 32 bit or 64 bit the upper limit of the re-scaled interval
becomes 4,294,967,295 or 0xFFFFFFFFU (base 16).

The result is much larger intervals to work with: [0x00000000,0x80000000) for sym-
bol ’A’, [0x80000000,0xCCCCCCCC) for symbol ’B’, [0xCCCCCCCC,0xFFFFFFFF)

for symbol ’C’

4.3 Updating the Statistics in Quasi-Static Encoding

It is a known fact that arithmetic coding tends to optimality as long as the source model
probabilities are equal to the probabilities of the symbols to be encoded.

Any difference reduces the compression ratio. In classic implementations the arith-
metic encoder uses a dynamic model that adapts its statistics with each input symbol.
All statistics are computed based on the previously encountered symbols.

Since all previous symbols are already known at the nth encoding step, these statistics
will be updated into the same way by the decoder as well; no overhead for statistics in
needed.

The drawback is its complexity.

4.4 Experimental Results

Tests on the Quasi-Static Encoder has been performed on three types of data.

• The first test series is from Calgary Corpus 1, The size of the first test series is
6,285,846 bytes.

• The second series is a formatted text file. The file size is 11,924,676 bytes.

• The third test series is binary code and consists of a collection of 32bit/64bit
windows PE/PE32+ executable files. The size of this series is 21,742,646 bytes.

15

The larger the buffer becomes the lower the ’stored’ frequency table size is as
compared to the final output size (Fig. ??). Thus, compression savings tend to overcome
to output. This explains the best compression results for 64 and 128kB buffer sizes.
The downside of using an unique frequency table for the entire buffer is a possible
decay of the compression rate because of static model mismatch with the instant symbol
probabilities. An input that is highly non-stationary will be in places poorly compressed.
To evaluate this effect, we compared our Quasi-Static Coder with two dynamically
adapting encoders, the former written by Diperstein [126]

4.5 Conclusions

We believe that this approach to data compression is a viable solution when an entropy
coder is preferred or speed versus compression rate is a big factor. A drastic improvement
on speed with a low impact on compression rate compared to two dynamic Arithmetic
Encoders has been observed during tests, thus, making this approach a viable solution to
any dynamic entropy coder, especially when arithmetic encoding is preferred.

1The corpus was created in the late 80s by Timothy Bell, John Cleary and Ian Witten, in order to be
used in their research paper "MODELING FOR TEXT COMPRESSION" [132] at University of Calgary,
Canada. ACM Computing Surveys published the research paper in 1989; in 1990 the corpus was used in
their book "Text compression"

16

Chapter 5

Software Update in Automotive

Alongside improvements in functionality, a Software Update or a Patch, can provide fixes
to major functionality issues related to various ECUs, ranging from ones that control
non-essential functionalities like PIA (Personal Profile Information) such as individual
chair settings and adjustments for passengers, to Infotainment glitches, e-Call or even
City Stop or Brake Assist related issues. Automotive software is supposed to be 100%
reliable in any situation. Software Update which installs new and improved software
version is the only feature that makes this possible!

Taking out the human factor away from this equation, it could be possible that most
of the issues could have been fixed by Automotive Software UPDATE (Wired or OTA).

Defects in automobiles have tremendous costs. The civil penalties, punitive damages
alongside civil and legal costs exceeded 230M last year, in USA alone:

• During one recent year, 30,000 people died on US highways;

• Every year, it is estimated that traffic collisions cost this country a total of about
$230 billion dollars in medical and insurance costs and lost worker productivity
alone in US only, see Fig. 5.1.

Just like a smartphone, which has the capacity to download the newest OS model
over the GSM network on the air or using wireless connectivity without being physically
plugged-in a network, the same applied to any new automobile model or IoT device,
where a remote management system to handle new software versions is a very demanded
feature but also extremely popular due to a plethora of advantages it offers.

There is a harsh need to successfully download and install the newest software pack-
ages in mostly all the ECUs that make up the entire automobile system. In Automotive
industry, this remote system that manages software update without a hard link connector
to a network or storage device, is entitled Firmware Over-The-Air (FOTA) or simply,
Over-The-Air (OTA) updates. The remote system that uses a hard wired link connector
to a network or storage device, is called Wired (Secure) Software Update.

While we started considering a smartphone and we look at its software abilities to
update the running operating system on the air, we need to consider the fact that the

Fig. 5.1 Recall statistics in US.

criticality of these firmware or software updates is much higher in automotive ECUs. The
impact of OTA software updates in automotive is extremely high. The user experience
from the vehicle owner point of view is constantly upgraded when OTA is involved, since
no dealership visits are required, no other expenses occur if the car is out of warranty,
and when using an OTA, a new infotainment system could be available and ready to use
is less than minutes.

The impact from the absence of OTA is much higher. Critical software updates or
glitches in the system remain unfixed until a new dealership visit take place, following a
prior appointment, which may put a stress on the system and affect the security of the car
occupants. A few examples: in 2015, the Jeep automotive OEM (Original Equipment
Manufacturers) had faced a problem when a hacker infiltrated the car electronic system,
while the car was on the road. The hackers nearly paralyze the cars by disabling brakes
when the car was running on a high speedway interstate road. An analysis of the issue
turned out frightening numbers: the glitch affected 1.4 million vehicles, which had to be
immediately recalled at numerous dealerships around the world. At that moment, the
OEM faced their major crisis and the only cost-optimal solution was given by a masive
OTA campaign which patched the affected automobile software by properly installing
OTA updates into thousands of cars to alleviate the issue.

Another OEM additionally experienced an issue when their vehicle electronic scheme
was hacked by some computer criminals in September 2016. As the OEM has been
working on cryptographic validation of OTA updates for months and also on software

18

update encryption and signing, they had to speed up the roll-out of these options after
the attack.

It could also be that sometimes, OTA updates are not fully tested before they are
rolled out to customers. It happened with another pro-eminent OEM which started
an update campaign affecting millions of car, but the newly installed software started
to reboot the Infotainment’s system (the car head unit display) every minute or so.
Sometimes bad design affects the end users more than the absence of software update,
since in this case, losing the car information which displays on the car cluster instruments
turned out to be a very big problem than an outdated software system, which worked.

From the cost perspectives, a missing OTA update system with a newly launched
car model could be very costly for an OEM, which has to pay an hourly rate for each
dealership which manually installs updates on a car head unit fees.

5.1 Manual ECU Firmware Updates in Automotive

When it comes to a manual firmware update of ECUs in the car, we rely on the fact that
mostly all the ECUs present in a particular automobile, are not interconnected thorough
various network protocols and bus links such as CAN, Ethernet, LIN, FlexRay or MOST.

A manual firmware update also relies on a module, usually called Diagnosis Module,
which interconnects and communicates with almost all present ECUs. The diagnosis
module exports different functionality functions such as Transfer Data, Write Data,
Read Data, Read DTCs (Diagnosis Trouble Codes), Remove DTCs etc. The Diagnosis
protocols used are KWP-2000, OBD or UDS (Unified Diagnostic Services). The UDS
protocol, described by ISO-14229 is now a standard across manufacturers and is used
today in ECUs across most Tier-1 OEMs.

5.2 Firmware Over-the-Air in Automotive

Firmware Over-the-Air is made up of three steps. They combine server-side software
which is meant to create the software update package along with client-side software
that eventually installs the update on the client’s machine. There is also an additional
step which is different from the manual update process, named deployment. Based on
the type of the software update, which could use encryption and/or signature validation,
the software update payload may be deployed on secure or non-secure communication
channels.

19

First FOTA Step

The server running on the server side is the first step in the FOTA Software Update,
because this is the step where and when it is created the software update package. There
are two software versions that are generated in this step:

• The binary difference software that contains the bug fixes and solves any other
issues that may have risen during the software patch development and testing.

• The new software version in a full packaged software container that contains the
bug fix and/or the new software features.

Second FOTA Step

The deployment part comes in as a second step in this process. The secure software
update package containing the binary delta payload is stored into a distribution platform.
The OEM or a specific vendor or supplier controls this entire platform, which has the
role of sending push notifications to all affected head units from the automobiles, to
notify them on the existence of an update targeting their car.

Final FOTA Step

In this final step, the secure software update decoder is running on the client’s head unit
in the automobile and performs the actual new software installation. The software update
package has been already deployed in the cars’ head unit hardware and the connection
with the Diagnosis Module that handles the installation portion of the software has been
initiated.

5.3 FOTA Update Containers

A FOTA process relies on specific packages called Containers. A Software Update Unit,
or Container, in short SWUP or SWFK, from Software Firmware, are required to be
created in order to deliver the SW to any ECU in the automobile.

Each logical Container consists in a pair of configuration files and binary files, the
actual payload. The files are usually called PDX or ODX (open diagnostic data exchange
format or package), but their naming convention depends from one OEM to another.
There is no standard in place for this.

5.4 Data Chuncking Concept

A fresh concept is adopted these days and it is related to the ability of software update
managers to perform the installation in parallel with the download of new data. For this,
to be able to implement in practice, the idea of chunking began to take shape.

20

These installation data chunks could transfer payload data containing either the full
version of the software or the binary delta data or configuration files, and they can span
few megabytes in size. Each chunk must be equipped with its own CRC and Signature
values such that the secure delta decoder or manager verify each individual chunk.

Installation Verification

There are multiple signature and CRC verifications during the update process.

• Signature and CRC32 verification for SWDL (Software Download) Container

• Signature and CRC32 verification for each transferred Chunk

• CRC32 verification for transferred Container modules.

Selective Software Update

The final Container configuration files are generated during the build process based on
the build session type (either Development or Production Build type) and are based on a
configuration template.

A selective update is based on the Head Unit Model type (the M-type) and also on
the hardware sample levels, which are the various hardware types that are shipped by
the Tier 1 supplier. For instance an M625 Variant 3 could be designed for ECE and US
Markets only and comes with a TV-Tuner hardware module (the variant 1 and 2 may not
contain this TV Tuner ECU).

Containers Data Streaming

Some OEMs or Tier 1 suppliers have implemented software update system capable of
streaming data in Chunks for parallel installation and processing.

The Diagnosis Module Controller device send the data to the ECU and the data
is received in chunks and installed on the inactive partition in parallel by the secure
software installer application binary.

21

Chapter 6

Data Differencing using Referential
Compression

This chapter focuses on binary data differencing and, in particular on referential com-
pression (RC) and NCD-based algorithm. It starts with the generic presentation of the
referential data compression, followed by the description of suitable data and use cases
for this technique, the construction of a referential dictionary and possible hack-attack
scenarios.

My contribution to the subject consists in an original algorithm for data differencing
based on the differential compression that plays also the role of a generalized distance
similar to the Normalized Compression Distance (NCD).

By design, this algorithm may be very suitable for low resources environments and
could very well be used in industrial areas such as the Automotive Industry.

The proposed algorithm is innovative under the following aspects:

• It is an generalized NCD-based binary differencing algorithm designed for low
resources environments, suitable for IoT or Automotive industries.

• It implements a new version of LZ77 algorithm, modified such to accommodate
different block sizes and parameterized dimensions of the input stream.

• Features the ability to output an already compressed output stream as the binary
difference between two blocks of data belonging to the two different input streams.

Part of this chapter has been published in the conference paper An innovative algo-
rithm for data differencing [130].

When software does not work according to specifications or when new features are
required and the effort to re-download and re-install an entire application is too high, a
software update is the right solution. A software update is a compact instruction manual
in the form of a downloadable file interpreted by the application installing the update.
It contains simple commands such as ADD / CUT / INSERT / COPY . They tell the

decoder how to reconstruct the original file by starting from the initial file and performing
specific inserts, adds, cuts or copies on the initial byte stream.

6.1 Software Updates and Data differencing

Applying an update improves software not only by updating version information but
by changing its data. Therefore, software updates or patches consists in the sum of
all differences between the old and the improved version of the same software, noted
also as source and target versions. The algorithms that produce these differences are
data-differencing algorithms.

The referential compression is one of the techniques that can be used for binary data
differencing. It has two essential properties that make it suitable for such application. It
relates two different binary sources and outputs the differences in a compressed form.

6.2 Referential Compression

Referential compression is a class of dictionary based compression. A dictionary based
compression ’core’ algorithm functionality is to replace substrings of commonly seen
successions of symbols from the input stream into pairs of position and length. It
usually splits the input stream into history LZ_HISTORY_BUFFER and lookahead
buffer LZ_LOOKAHEAD buffer; any substring portion of a <match, length > pair points
to a copy of it in the history part of the buffer. The output encoding consists of a triple
〈d, l,s〉 meaning distance, length, symbol, where symbol is the first literal or unmatched
symbol following the match-length pair 〈d, l).

6.2.1 Operating Modes of Referential Compression

Referential Compression involves two dictionaries and operates in two modes in both
the encoding and the decoding process. These are the internal and external modes.

An internal dictionary is used when Referential Compression operates in internal
mode. The internal dictionary which starts with no data (empty) builds up inside the
LZ_HISTORY_BUFFER area while the Current LZ Pointer advances (CLZP).

In the external mode, Referential Compression employs a specialized dictionary.
This specialized dictionary, in most of the cases, it is an external dictionary (see Fig.
5.2) which acts as a specialized substrings repository database, but also provides an
encryption mechanism which will be explained below.

Since the decoder must emulate steps from the encoder, in this operation mode,
however, an extra token is required by the decoder to distinguish to which dictionary a
particular substring (match) is referred to. In this mode, the output encoding consists

23

Fig. 6.1 Referential Compression with external Specialized Dictionary.

of a quadruple 〈t, d, l, s〉 meaning token, distance, length and symbol, where token
represents the index of the dictionary which resulted in a successful match.

6.3 A New Data Diferencing Algorithm

Our new Data Differencing algorithm creates a data differencing file from two files given
as parameters in the console command line. The two files are called source and target.
f 1 usually denotes the source file (old file). We also name f 1 the dictionary file. f 2
denotes the target file (new file).

We have designed our differencing algorithm to use the LZ77 sliding window al-
gorithm. As presented above, the CURRENT_POINTER divides the input buffer into
two portions, the LZ-Dictionary and the Lookahead buffer. Moving along with LZ77,
initially, CURRENT_POINTER is zero, since nothing has been encoded in the input
buffer.

Previously processed data, the input data buffer that lies below CURRENT_POINTER
form the LZ_HISTORY. The next data to process that lie beyond form the LZ_LookAhead
buffer. While the CURRENT_POINTER advances incrementally, new sub-strings are
found and encoded.

6.3.1 Operating with our Differencing Algorithm

As noted above, we are devising an algorithm that works on limited resource environ-
ments. To achieve this main goal, the input stream is sliced into buffers or chunks. We
work with two input streams, X and Y where X is the input stream represented by the
source file f 1, while Y, is the input stream represented by the target file f 2. Furthermore,
we need to define a similarity function which in our terms, computes the common
sub-string count between X an Y. We call our function BEST.

24

We define input I, such as

I = xy : x ∈ X ,y ∈ Y (6.1)

and BEST (I) returns the compression rate assuming that buffers xth and yth are concate-
nated and encoded as a single buffer. We rewrite the function BEST, such as BEST (x)
returns an index k where y = kth buffer and BEST (xy) returns the highest compression
rates in the above condition.

We chose LZ77 as the main working algorithm, noted under Z, which further applies a
sliding window mechanism. We replace Z(x|y) with our BEST function, which becomes
thus our similarity function.

We denote BEST (data_bu f f er_k) = i, that is for the kth buffer of file f 2, the most
similar buffer is buffer ith. The higher the similarity of the two buffers, the higher the
compression ratio when compressing the two buffers.

The algorithm proceeds as follows:

• Step 1: Define N and K values;

• Step 2: Split initial stream X into buffers of size K maximum;

• Step 3: Split target buffer into chunks and read the first chunk from Y ;

• Step 4: Calculate BEST (data_bu f er_1) which outputs an index, i, and read the
ith chunk from X ;

• Step 5: Start processing buffer 1 of X ;

• Step 6: Finalize encoding of buffer kth from X with buffer ith from file Y , given
by the function BEST(k) = i;

• Step 7: Repeat Step 6 until Y is depleted;

We have devised a strategy for our BEST function, and in this strategy, we compute
all possible values of similarities between buffer x and y. This is proven by design to
achieve the best possible result, since for any buffer k of file f 2, we try out all possibilities
by applying the similarity function for all chunks of file f 1. In this strategy we analyze
all buffers from file f 2 against other buffers from the same file and also against buffers
from file f 1.

We compare our NCD Algorithm with commercial application including DeltaMAX
(produced by Indigo Rose Corporation) and X3Delta.

6.3.2 Conclusions

Our Differencing algorithm is able to deliver compression rate results even 50% better
than established commercial data differencing software. The results on windows software

25

Table 6.1 How our Differencing algorithm compares with on-the-market binary delta
encoders.

BEST(f1,f2) DeltaMAX X3 Delta
Log Files 0.41 0.35 0.12
Mingw Binaries 30.83 63.96 46.55
SW Packages 54.42 63.07 51.21

package show a 13.72% smaller delta file than Indigo Rose DeltaMAX software. When
applied on mingw compiler binaries, our Differencing algorithm results are with more
than 33% better than DeltaMAX.

26

Chapter 7

Data Differencing

This chapter also focuses on binary data differencing and in particular, on modified
dictionary based compression algorithms suitable for data differencing software. It starts
with the generic presentation of software update scenarios, followed by the description
of server - side software that creates the binary delta file and also the client-side software
that performs the software update installation.

The description of a new and original algorithm based on LZ77 is also presented.
Three methods to create binary data differences are presented, mostly designed to accom-
modate different scenarios starting from faster processing to a scenarios solely designed
to achieve best possible data compression rates.

The original contributions on the subject of binary differencing based on modified
data compression algorithms are:

• An original algorithm for binary data differencing based on modified Lempel Ziv
’77 [115].

• The algorithm has been designed for low-resources environments which make it
suitable for industries like IoT or Automotive industries.

• Faster decoding algorithm in low resources algorithm.

• The development of three working strategies for this algorithm, to accommodate
different use cases of this algorithm.

This is also an original algorithm not an improvement of any of the previous work
art presented under Related Work.

The text of this article has been published in the following Conference Paper: A
Hybrid Data-Differencing and Compression Algorithm for the Automotive Industry
[131].

7.1 Why Data Differencing

The exponential increase in data, also known as big data, within the last decade has made
once-popular data compression unable to fulfill its basic tasks. Compressing big data to
achieve a workable or more feasible form for easier storage or transfer is now one of the
challenges of the century. New technologies are needed to address it, and delta encoding
seems to be one of them.

Most vehicle OEMs (Original Equipment Manufacturers) issue software updates
periodically for a variety of reasons other than bug fixes. For instance, quality patches are
regularly added to improve overall performance, ranging from updating the infotainment
device(s) for a better user experience inside the vehicle, to security-related updates, such
as air-bag deployments or gas -consumption check-up software.

These software updates are must-haves if vehicle computers—and, by default, auto-
mobiles—are meant to function at their expected qualities.

Few publicly available solutions for delta encoding and binary differencing are worth
mentioning. The secure delta binary-differencing engines —developed by AgerSoftware[1]
in collaboration with NetLUP Xtreme Technologies— and XtremeDELTA [5]—are two
of them.

Among other binary differencing engines [51], there is an open-source solution
provided by xDelta.org, although it seems to be part of an abandoned project today [6].
It employs the vcdiff format in RFC (3284) [11], briefly described in Section 7.2. The
last project entry for the engine is dated 23 April 2016.

Our method is an innovative delta-encoding algorithm that embodies data compres-
sion as well. We call it Keops. In contrast with other delta algorithms, Keops creates
binary-differencing fileswith the main advantage that it outputs a compressed stream even
from an initial phase. This is achieved by using a compression distance for comparing
the files [57].

7.2 Related Work

In recent years, different industries began using delta-encoding techniques on a large
scale, from genome-information data storing, indexing and retrieving to source-code
repositories for the automotive, gaming industries or even executable compression[56].

A binary code update based on binary differencing is also used in the automotive
industry.

After carefully reviewing the most important articles, solutions and ideas, we found
that the majority of the publicly available solutions do not address the fact that regardless
of how good the internally deployed delta algorithm is, there will always be some sort of
redundancy the delta algorithm is not addressing.

28

This is simply because by design, a delta algorithm is not a data-compression
algorithm. It is a de-duplication algorithm at the best of its abilities.

7.3 Keops Algorithm

Our innovative Keops algorithm derives from the ubiquitous LZ77 [29] data-compression
algorithm and uses it as a preferred compression method internally. LZ77 achieves
compression by splitting a stream of data to be compressed, also known as an input
stream, into two portions; the data are divided by using a current processing pointer
called the current or compression pointer cp. The two sections are called LZ77 History
and LZ77 Look Ahead, respectively (Fig. 6.1).

7.3.1 Delta File

Inside Keops, the LZ77 encoder acts the same within ‘source’ and ‘target’ windows, but
unlike vcdiff, it instructs the decoder to reconstruct the content of the ‘target’ using the
triplets < d, l,c >. Thus, it achieves compression in the binary delta file. The differences
from the original LZ77 structure are that LZ77 History consists entirely of the old version
of the file and the LZ77 Look Ahead is entirely made up of the newer version.

The delta file created by Keops is a sum of all the LZ77 compression operations
applied to the LZ77 Look Ahead buffer—in a finite number of steps and various history-
buffer combinations. The way the steps are controlled and how the two buffers are
combined will be further explained.

7.3.2 Strategies for Buffer Pairing

LZ77 as applied in Keops is not a distance in the true sense of the word. It is not
symmetrical, it is not null when the History buffer and the Look Ahead buffer are
identical and it does not necessarily satisfy the triangle inequality. It is, however,
greater than zero, disregarding the considered buffers. Consequently, we speak about a
generalized distance.

In the following sections, we present three strategies for pairing the buffers. They are
designed to optimize either the compression time or the compression rate or to balance
them.

One-to-One Strategy (Time Optimized)

When a set of changes is designed to update or improve a software or its associated data
file, it is usually called a patch. Called bug fixes or simply fixes, patches are usually
designed to improve the functionality of a program or fix a coding flaw.

29

Brute-Force Strategy (Rate Optimized)

When differences between the old and the new file are numerous, the one-to-one strategy
cannot offer a good compression anymore. Consider the case in Fig. 6.5, where in
the new file, data are mostly new, but data from the old file are still present. It should
be noted that because of code additions, modifications or substitutions, the one-to-one
mapping is no longer preserved, since in this situation, the files are out of sync.

Flexy Strategy

Within updated code or data which may count numerous differences, the most similar
buffer of the source is usually in the vicinity of the considered target buffer. This is
explained by the fact that the de-synchronization is produced by both removing and
adding code blocks; thus, the blocks’ shift is not accumulated.

7.4 Experimental Results

We tested the Keops binary delta encoder on five types of data. The first test series
comprised the minGW compiler binaries for Windows platform (mingw). We created
binary delta files between versions 4.4 and 4.5 using various sizes for the History and
Look Ahead buffers.

The second type consisted of formatted text files representing software performance
logging files, or trace files, combined together into a single file. For the third test package,
we chose two binary images from a collection of ECU binary images specifically used
in one of our automotive projects. Replay was the fourth test package, which contains
a specific media-related Windows software. We used real instances of this software:
versions 31.2, 31.4 and 31.5.

For the last test package, we chose silezia corpus files, a well-known collection of
English text and binary data files commonly used in data compression tests [35].

Three out of five test packages—ALog, sw f k and Replay—are specific to the auto-
motive environment.

The test packages were chosen to be representative of various or homogeneous data,
low- and high-redundancy files and structured and binary files. The tests were done for
five buffer sizes: 2, 4, 8, 16 and 32 MB. We used equal History and Look-Ahead buffers.
All tests were run on a Windows 10 PC running on an Intel i3-4130 CPU at 3.40GHz
with 8 GB of RAM.

We tested Keops using the three strategies presented in Section 7.2: one to one,
brute force and Flexy. For each of them, we recorded the delta rate, the encoding and
decoding time and the memory requirements. The delta rate was the compression rate in
percentage, expressed as the ratio of the sizes of the targets after the Keops compressions
and before them.

30

Fig. 7.1 Delta rate vs. block size.

For the Flexy strategy, the search of the most similar blocks in the source was
conducted up and down with K positions relative to the current block in the target file,
where K had a value of four by default. We chose this range after having observed
the distribution of the gap of similar blocks in our experimental data (Fig. ??). The
distribution tended to be concentrated around zero, disregarding the file type. For Alog
and silezia, where the newer versions were obtained by using removals, the distribution
was bi-modal with a mode gap of two to six blocks, respectively.

7.4.1 Compression Rate

Concerning the strategies, the plots in Fig. 7.1 show that brute force is generally the best
if the goal is a good compression. However, there are exceptions, e.g., for the Replay
package, for which all strategies gave the same delta rate (the plots were superposed) or
for the Alog package, for which brute force and Flexy behaved identically.

It should be noted that delta-rate curves are convergent as block sizes increase. Thus,
if 32 MiB blocks are used, one should choose the one-to-one strategy, which is time
optimized. There is no reason to do any block search and introduce delays as long as the
compression is the same.

31

Generally, the difference between the delta rate and ZIP rate grew when large history
buffers were used by Keops. For example, Replay shows an improvement in the delta
rate from 22.15 to 1.33% as compared to a 75.78% ZIP rate.

We included the ZIP compression rate results of the new version (target file) in
the tables as well since many software applications, even today, do not have software-
update capabilities at the binary-differencing level. They simply allow users to download
(possibly) a new compressed version of their application. There are many cases in which
users download a ZIP file with an installer that handles a new version, i.e., uninstalls old
versions and installs a newer version of the same software.

Concerning the strategies, the plots in Fig. 7.1 clearly show that brute force is the
best if the goal is a good compression. However, Delta-rate curves are convergent as the
block size increases.

As the results show, the delta ratios of Alog and silezia are very high, surpassing, in
some cases, 99%, i.e., the Delta size (the binary differencing file size) is less than 1% in
size when compared to the Target size.

7.4.2 Encoding Time

As expected, the encoding time depends on the strategy. Brute force and Flexy, which
included a search for similar blocks, demanded longer encoding times. On average, brute
force had four-times longer durations, while the Flexy strategy was only 2.5 more time
consuming. Obviously, the highest encoding times correspond to encoding with small
blocks.

7.4.3 Decoding Time

While the encoding times go from 3.75 s to 1253 s, the decoding is much faster. Depend-
ing on block size, file type and strategy, it may have values between 0.18 s and 10.46 s.
Moreover, we noticed that usually, it goes lower once the block size increases, except
with the 32 MiB blocks. This could be related to the fact that larger buffers tend to allow
for more distant matches, and once matches (or common sub-strings) are further away,
there is a higher probability cache misses and page faults will occur.

7.5 Conclusions

Keops is the best fit for low- to mid-memory environments that need to operate software
updates at high speeds, since we provide, depending on the chosen strategy, the best
possible solution for compression ratios and, ultimately, binary delta sizes.

32

Chapter 8

Conclusions

This thesis presents my research on data compression algorithms, designed for lossless
compression in low resources environments and therefore suitable for the automotive
industry. The research was conducted at two levels: coding algorithm improvements
and design of a complete application for Big data compression by data differencing.
In the first part of the thesis, starting from state of the art Entropy Coding algorithms,
such as Static and Canonical Huffman or Static Arithmetic Compression, we proposed
several original solutions for fast decoding of canonic Huffman codes and a fast solution
for arithmetic encoding, called Quasi Static Arithmetic Encoder. In the second part of
the thesis, we proposed a new method for data differencing that we believe it may be
suitable for low resource environment. While designed for decompression speed as the
first option, we believe this could be a great fit for the automotive industry, yielding
faster decompression results than first two compared commercial products in the market.

The proposed solutions have been thoroughly examined by theoretical analysis as
well as using dedicates software created to validate and produce the expected results.
Each proposed solution was accompanied by a piece of software and exhaustive tests
have been performed with such software. Different test cases with various test files were
used.

The original contributions of this thesis are listed in the next section in details.

8.1 Original Contributions

The original contributions developed in this thesis, referred to the published research
papers, are as follows:

• Backtrace of the undocumented algorithm RoLZ, from notes and descriptions of
LZP and RKive algorithms; improvement of RoLZ algorithm over the original
version suggested by Charles Bloom and Mark Taylor (Section 2.3, Conference
Paper [128]).

• A novel canonical Huffman decoding method, with the ability to process 8 to 12
symbols in a single decoding cycle. It comprises new methods for creating the
classic Huffman tree and for storage of code lengths. It is an original algorithm not
an improvement of any of the previous work art presented (Section 3.2, Conference
Paper [131]).

• An improved algorithm for fast arithmetic coding called Quasi-Static Arithmetic
encoder. The algorithm was designed such to improve the encoding speed by
minimizing the number of divisions needed to process a symbol. (Section 4.3,
Conference Paper [128]).

• A binary differencing algorithm based on an NCD like generalized distance,
designed for low resources environments, suitable for IoT or automotive industries.
(Section 6.3, Conference Paper [130]).

• An original algorithm for binary data differencing for faster decoding in low
resources environments. It includes three working strategies to accommodate
different use cases in IoT and automotive industries (Section 7.3, Conference
Paper [127]).

8.2 List of publications

8.2.1 Journal papers

1. S. Belu and D. Coltuc, "A Hybrid Data-Differencing and Compression Algorithm
for the Automotive Industry", in Entropy, (IF 2.524, Q2), 24(5), 574, 2022,
https://doi.org/10.3390/e24050574, WOS:000803286100001.

8.2.2 Conference Papers

1. S. Belu and D. Coltuc, "Fast Huffman Canonic Decoder". In IEEE 14th Interna-
tional Conference on Communications COMM22, Bucuresti, Romania, 2022.

2. S. Belu and D. Coltuc, "An innovative algorithm for data differencing". In
IEEE International Symposium on Electronics and Telecommunications (ISETC),
Timisoara, Romania, 2020. DOI: 10.1109/ISETC50328.2020.9301053.WOS:
000612681000078.

3. S. Belu and D. Coltuc, "The Reduced Offset LZ Data Compression Algorithm".
In IEEE International Symposium on Signals, Circuits and Systems (ISSCS), Iasi,
Romania, 2019. DOI: 10.1109/ISSCS.2019.8801741. WOS:000503459500013.

34

4. S. Belu and D. Coltuc, "The Anatomy of a Quasi-Static Arithmetic Encoder". In
IEEE 12th International Conference on Communications COMM18, Bucuresti,
Romania, 2018. DOI: 10.1109/ICComm.2018.8484263.WOS: 000449526000029.

8.2.3 Doctoral Research Reports

1. Doctoral Research Report No. 1/2018: "The Anatomy of a Quasi-Static Arithmetic
Encoder", Conference Paper no. 4.

2. Doctoral Research Report No. 2/2018: "RoLZ - The Reduced Ofifsef LZ Data
Compression Algorithm, Conference Paper no. 3.

3. Doctoral Research Report No. 3/2019: "ACHD - Advanced Canoniucal Huffman
Decoder", Conference Paper no. 1.

4. Doctoral Research Report No. 4/2019: "An Innovative Data Differencing Algo-
rithm", Conference Paper no. 2.

5. Doctoral Research Report No. 5/2020: "Analysis and Interpretation of Test Results
for KEOPS, an Innovative Data Differencing Algorithm", 28 May 2020

8.3 Future Work

We identified several future research directions for the improvement of our data compres-
sion techniques and algorithms designed for the automotive industry. We shall continue
on the path of further improving the stand alone data compression algorithms, both in
speed and in compression rates.
Further and more sophisticated Software Update methods to be addressed with new
data structures such as cache-aware hash algorithms and state of the art hash chaining
mechanisms to allow for faster processing of Big Data at reasonable memory usage
levels.
Another special interest will be given to heuristic methods used in our data compression
implementations, specific streaming modes and more sophisticated tune up in the algo-
rithms core, to further improve security and at the same time, compression rate by better
rearranging the output streams.

35

References

[1] SecureDELTA SDK. Available online: https://agersoftware.com/securedelta_sdk.
html (accessed on 13 January 2022).

[2] Guttman, L., A basis for scaling qualitative data, American Sociological Review,
9 (2), 1944, pp. 139–150, doi:10.2307/2086306, JSTOR 2086306.

[3] Jones, D.W, Application of Splay Trees to Data Compression, Communication of
ACM, 18, 1988, pp. 996-1007

[4] Sleator, D.D. and Tarjan, R.E., Self-adjusting binary search tree, Communication
of ACM, 32, 1985, pp. 652-686

[5] SecureDELTA Application with XtremeDELTA Engine. Available online: https:
//agersoftware.com/securedelta_app.html (accessed on 13 January 2022).

[6] xdelta org. Available online: http://xdelta.org/ (accessed on 13 January 2022).

[7] Richard C. Pasco, "Source coding algorithms for fast data compression", Stanford,
CA 1976

[8] J. S. Vitter, Algorithm 673: Dynamic Huffman Coding, ACM Transactions on
Mathematical Software, 15(2), June 1989, pp 158–167.

[9] Donald E. Knuth, "Dynamic Huffman Coding", Journal of Algorithm, 6(2), 1985,
pp 163–180.

[10] Robert G. Gallager, "Variations on a Theme by Huffman", IEEE TRANSAC-
TIONS ON INFORMATION THEORY, Vol. IT - 24, No. 6, Nov 1978

[11] RFC 3284—The VCDIFF Generic Differencing and Compression Data Format.
Available online: https://tools.ietf.org/html/rfc3284 (accessed on 6 April 2022).

[12] Westerberg, E. Efficient Delta Based Updates for Read-Only Filesystem Images:
An Applied Study in How to Efficiently Update the Software of an ECU; Degree
Project in Computer Science and Engineering, KTH Royal Institute of Technology
School of Electrical Engineering and Computer Science, Stockholm, Sweden,
2021.

https://agersoftware.com/securedelta_sdk.html
https://agersoftware.com/securedelta_sdk.html
https://agersoftware.com/securedelta_app.html
https://agersoftware.com/securedelta_app.html
http://xdelta.org/
https://tools.ietf.org/html/rfc3284

References

[13] Falleri, J.R.; Morandat, F.; Blanc, X.; Martinez, M.; Monperrus, M. Fine-grained
and accurate source code differencing. In Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, Vsters, Sweden,
15–19 September 2014.

[14] Gerardo, C.; Luigi, C.; Massimiliano, P. Identifying Changed Source Code Lines
from Version Repositories; RCOST—Research Centre on Software Technology
Department of Engineering—University of Sannio Viale, Viale Traiano - 82100,
Benevento, Italy, 2007.

[15] Zimmermann, T.; Weisgerber, P.; Diehl, S.; Zeller, A. Mining version histories to
guide software changes. In Proceedings of the 26th International Conference on
Software Engineering, Washington, DC, USA, 23–28 May 2004; pp. 563–572.

[16] Ying, A.T.T.; Murphy, G.C.; Ng, R.; Chu-Carroll, M. C. Predicting source code
changes by mining revision history. IEEE Tr. Softw. Eng. 2004, 30, 574–586.

[17] Li, B.; Tong, C.; Gao, Y.; Dong, W. S2: A Small Delta and Small Memory
Differencing Algorithm for Reprogramming Resource-constrained IoT Devices.
In Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), Vancouver, BC, Canada,
10 May 2021.

[18] Christley, S.; Lu, Y.; Li, C.; Xie, X. Human genomes as email attachments.
Bioinformatics 2009, 2, 274–275.

[19] Pavlichin, D.S; Tsachy, W. The Human Genome Contracts Again Bioinformatics
2013, 29, 2199–2022.

[20] Ochoa, I.; Mikel H.; Tsachy W. iDoComp: A compression scheme for assembled
genomes. Bioinformatics 2015, 31, 626–633.

[21] Kuruppu, S.; Beresford-Smith, B.; Conway, T.; Zobel, J. Iterative dictionary
construction for compression of large DNA data sets. IEEE/AMC Trans. Comput.
Biol. Bioinform. 2010, 1, 137–149.

[22] Deorowicz, S.; Grabowski, S. Robust relative compression of genomes with
random access, Bioinformatics 2011, 21, 2979–2986.

[23] Kuruppu, S.; Puglisi, S.J.; Zobel, J. Optimized relative lempel-ziv compression
of genomes. In Proceedings of the Thirty-Fourth Australasian Computer Science
Conference, Perth, Australia, 17–20 January 2011.

[24] Pinho, A.J.; Diogo P.; Sara, P.G. GReEn: A tool for efficient compression of
genome resequencing data. Nucleic Acids Res. 2012, 40, e27.

37

References

[25] Wang, C; Dabing Z. A novel compression tool for efficient storage of genome
resequencing data. Nucleic Acids Res. 2011, 39, e45.

[26] Wandelt, S.; Ulf, L. FRESCO: Referential compression of highly similar
sequences. IEEE/ACM Trans. Comput. Biol. Bioinform (TCBB) 2013, 10,
1275–1288.

[27] Brandon, M.C.; Wallace, D.C.; Baldi, P. Data structures and compression algo-
rithms for genomic sequence data. Bioinformatics 2009, 14, 1731–1738.

[28] Chern, B.G.; Ochoa, I.; Manolakos, A.; No, A.; Venkat, K.; Weissman, T. Refer-
ence based genome compression. In Proceedings of the IEEE Information Theory
Workshop (ITW), Visby, Sweden, 25–28 August 2012; pp. 427–431.

[29] Ziv, J.; Lempel, A. A Universal Algorithm for Sequential Data Compression.
IEEE Trans. Inf. Theory 1977, 23, 337–343.

[30] Yufei, T. Patricia Tries Lecture. KAIST. Available online: http://www.cse.cuhk.
edu.hk/~taoyf/course/wst540/notes/lec10.pdf (accessed on 1 May 2013).

[31] Daelemans, W.; Bosh, A.V.D.; Antal, Weijters, T. IGTree: Using Trees for
Compression and Classification. Lazy Learn. 1997, 407–423

[32] Horspool, R.N. The Effect of Non-Greedy Parsing in Ziv-Lempel Compression
Method, In Proceedings of the Data Compression Conference, Snowbird, UT,
USA, 28–30 March 1995.

[33] Storer, J.A.; Szymanski, T.G. Data Compression via Textual Substitution. J. ACM
1982, 29, 928–951.

[34] Korn, D.G; MacDonald J; Mogul, J.C.; Vo, K.-P. The VCDIFF Generic Differenc-
ing and Compression Data Format. RFC 2002, 3284, 1–29.

[35] The Silesia Corpus. Available online: http://sun.aei.polsl.pl/~sdeor/index.php?
page=silesia (accessed on 10 January 2022).

[36] Zlib Compression Library. Available online: http://www.zlib.org/rfc1950.pdf
(accessed on 13 January 2022).

[37] Chen, X.; Li, M.; Ma, B.; Tromp, J. DNACompress: fast and effective DNA
sequence compression. Bioinformatics 2002, 10, 51–61.

[38] APPNOTE.TXT-ZIP File Format Specification. Available online: https://pkware.
cachefly.net/webdocs/casestudies/APPNOTE.TXT(accessed on 13 January 2022).

38

http://www.cse.cuhk.edu.hk/~taoyf/course/wst540/notes/lec10.pdf
http://www.cse.cuhk.edu.hk/~taoyf/course/wst540/notes/lec10.pdf
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
http://www.zlib.org/rfc1950.pdf
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT

References

[39] Constructing a Binary Difference File. Available online: https://agersoftware.com/
docs/securedelta_app_v2.56/43Creatingabinarydiffdeltafile.html (accessed on 13
January 2022).

[40] Raghavan, S.; Rohana, R.; Leon, D.; Podgurski, A.; Augustine, V. Dex: A
semantic-graph differencing tool for studying changes in large code bases. In
Proceedings of the 20th IEEE International Conference on Software Maintenance,
Chicago, IL, USA, 11 September 2004; pp. 188–197.

[41] Grumbach,S.; Tahi, F. A new challenge for compression Algorithms: Genetic
sequences. Inf. Process. Manag. Int. J. 1994, 6, 875–886.

[42] Cao, M.D.; Dix, T.I.; Allison, L.; Mears, C. A simple statistical algorithm for
biological sequence compression. In Proceedings of the IEEE Data Compression
Conference (DCC’07), Snowbird, Utah, 27–29 March 2007.

[43] Deorowicz, S.; Grabowski, S. Data compression for sequencing data. Algorithms
Mol. Biol., 2013, 8, 1–13.

[44] Deorowicz, S.; Danek, A.; Grabowski, S. Genome compression: A novel approach
for large collections. Bioinformatics 2013, 29, 2572–2578.

[45] Dotzler, G.; Michael, P. Move-optimized source code tree differencing. In Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE), Singapore, 3–7 September 2016; IEEE: Piscataway, NJ, USA
2016.

[46] Fluri, B.; Wursch, M.; PInzger, M.; Gall, H. Change distilling: Tree differencing
for fine-grained source code change extraction. IEEE Trans. Softw. Eng. 2007, 33,
725–743.

[47] Canfora, G.; Luigi, C.; Massimiliano P. Ldiff: An enhanced line differencing
tool. In Proceedings of the IEEE 31st International Conference on Software
Engineering, Vancouver, BC, Canada, 16–24 May 2009; IEEE: Piscataway, NJ,
USA 2009.

[48] Frick, V.; Grassauer, T.; Beck, F.; Pinzger, M. Generating accurate and compact
edit scripts using tree differencing. In Proceedings of the IEEE International
Conference on Software Maintenance and Evolution (ICSME), Madrid, Spain,
23–29 September 2018; IEEE: Piscataway, NJ, USA 2018.

[49] Tsantalis, N.; Natalia N; Eleni S. Webdiff: A generic differencing service for
software artifacts. In Proceedings of the 27th IEEE International Conference on
Software Maintenance (ICSM), Williamsburg, VA, USA, 25–30 September 2011;
IEEE: Piscataway, NJ, USA 2011.

39

https://agersoftware.com/docs/securedelta_app_v2.56/43Creatingabinarydiffdeltafile.html
https://agersoftware.com/docs/securedelta_app_v2.56/43Creatingabinarydiffdeltafile.html

References

[50] Maletic, J.I.; Michael L. C. Supporting source code difference analysis. In Pro-
ceedings of the 20th IEEE International Conference on Software Maintenance,
Chicago, IL, USA, 11–14 September 2004; IEEE: Piscataway, NJ, USA, 2004.

[51] Korn, D.G.; Vo, K.P. Engineering a Differencing and Compression Data Format.
In Proceedings of the USENIX Annual Technical Conference, General Track,
Berkeley, CA, USA, 10–15 June 2002.

[52] Nguyen, H.A.; Nguyen, T.T.; Nguyen, H.V.; Nguyen, T.N. Idiff: Interaction-based
program differencing tool. In Proceedings of the 2011 26th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE 2011), Lawrence,
KS, USA, 6–10 November 2011; IEEE: Piscataway, NJ, USA, 2011.

[53] Müller, K.; Bernhard R. User-driven adaptation of model differencing results.
In International Workshop on Comparison and Versioning of Software Models
(CVSM’14); Köllen Druck+Verlag GmbH: Bonn, Germany, 2014.

[54] Onuma, Y.; Nozawa, M.; Terashima, Y.; Kiyohara, R. Improved software updating
for automotive ECUs: Code compression. In Proceedings of the IEEE 40th Annual
Computer Software and Applications Conference (COMPSAC), Atlanta, Georgia,
10–14 June 2016.

[55] Ni, G.; Yan, Y.; Jiang, J.; Mei, J.; Chen, Z.; Long, J. Research on incremental
updating. In Proceedings of the 2016 International Conference on Communica-
tions, Information Management and Network Security, Shanghai, China, 25–26
September 2016.

[56] Motta, G.; James G.; Samson C. Differential compression of executable code. In
Proceedings of the Data Compression Conference (DCC’07), Snowbird, Utah,
27–29 March 2007.

[57] Belu, S.; Daniela C. An innovative algorithm for data differencing. In Proceedings
of the 2020 International Symposium on Electronics and Telecommunications
(ISETC), Timisoara, Romania, 5–6 November 2020.

[58] Deorowicz, S.; Agnieszka D.; Marcin N. GDC2: Compression of large collections
of genomes. Sci. Rep. 2015, 5, 1–12.

[59] Kuruppu, S.; Simon J.P.; Justin Z. Relative Lempel-Ziv compression of genomes
for large-scale storage and retrieval. In Proceedings of the International Sympo-
sium on String Processing and Information Retrieval, Berlin/Heidelberg, Germany,
13–15 October 2010.

40

References

[60] M. H. Mohammed, A. Dutta, T. Bose, S. Chadaram, and S. S. Mande,
“DELIMINATE-a fast and efficient method for loss-less compression of genomic
sequences,” Bioinformatics, vol. 28, no. 19, pp. 2527–2529, 2012.

[61] Saha, S.; Sanguthevar, R. ERGC: An efficient referential genome compression
algorithm. Bioinformatics 2015, 31, 3468–3475.

[62] Saha, S.; Sanguthevar, R. NRGC: A novel referential genome compression algo-
rithm. Bioinformatics 2016, 32, 3405–3412.

[63] Liu, Y.; Peng, H.; Wong, L.; Li, J. High-speed and high-ratio referential genome
compression. Bioinformatics 2017, 33, 3364–3372.

[64] Lempel Ziv Markov Algorithm. Available online: https://www.7-zip.org/sdk.html
(accessed on 13 January 2022).

[65] Mary Shanthi Rani, "A New Referential Method for Compressing
Genomes",International Journal of Computational Bioinformatics and In Silico
Modeling, Vol. 4, No. 1 (2015): 592-596

[66] Alves F, Cogo V, Wandelt S, Leser U, Bessani A. On-Demand Indexing for Refer-
ential Compression of DNA Sequences. PLoS One. 2015 Jul 6;10(7):e0132460.
doi: 10.1371/journal.pone.0132460. PMID: 26146838; PMCID: PMC4493149.

[67] Yao H, Ji Y, Li K, Liu S, He J, Wang R. HRCM: An Efficient Hybrid Ref-
erential Compression Method for Genomic Big Data. Biomed Res Int. 2019
Nov 16;2019:3108950. doi: 10.1155/2019/3108950. PMID: 31915686; PMCID:
PMC6930768.

[68] Chern, B.G.; Ochoa, I.; Manolakos, A.; No, A.; Venkat, K.; Weissman, T. Refer-
ence based genome compression. In Proceedings of the IEEE Information Theory
Workshop (ITW), Visby, Sweden, 25–28 August 2012; pp. 427–431.

[69] Kraft, Leon G. (1949), A device for quantizing, grouping, and coding amplitude
modulated pulses, Cambridge, MA: MS Thesis, Electrical Engineering Depart-
ment, Massachusetts Institute of Technology, hdl:1721.1/12390.

[70] McMillan, Brockway (1956), "Two inequalities implied by unique decipherabil-
ity", IEEE Trans. Inf. Theory, 2 (4): 115–116, doi:10.1109/TIT.1956.1056818.

[71] Diffie, Whitfield; Hellman, Martin E. (November 1976). "New Directions in
Cryptography" (PDF). IEEE Transactions on Information Theory. 22 (6): 644–654.
CiteSeerX 10.1.1.37.9720. doi:10.1109/TIT.1976.1055638. Archived (PDF) from
the original on 2014-11-29.

41

https://www.7-zip.org/sdk.html

References

[72] Fritz, M.H.Y.; Leinonen, R.; Cochrane, G.; Birney, E. Efficient storage of high
throughput DNA sequencing data using reference-based compression. Genome
Res. 2011, 21, 734–740.

[73] Saha, S.; Sanguthevar, R. ERGC: An efficient referential genome compression
algorithm. Bioinformatics 2015, 31, 3468–3475.

[74] Jarek Duda, "Asymmetric numeral systems: entropy coding combining speed of
Huffman coding with compression rate of arithmetic coding", Center for Science
of Information, Purdue University, W. Lafayette, IN 47907, 2013

[75] Garg, S 32/64 BIT RANGE CODING AND RITHMETIC CODING,
https://sachingarg.com/compression/entropycoding/,March1979

[76] Robert F. Rice , Some Practical Universal Noiseless Coding Techniques, Jet
Propulsion Laboratory, JPL Publication 79—22, March 1979

[77] Golomb, Solomon W., Run-length encodings, IEEE Transactions on Information
Theory, IT–12(3), 1966, pp. 399–401

[78] J. H. Witten, R. M. Neal and J. G. Cleary, ARITHMETIC CODING FOR DATA
COMPRESSION, Communication of the ACM (1987), 30, 1987, 520–540

[79] M. Nelson,Data Compression With Arithmetic Coding,Dr. Dobbs Journal,Nov 4,
2014

[80] P. G. Howard and J. S. Vitter,Practical Implementation of Arithmetic Cod-
ing,Kluwer Academic Publishers,1992,85–112

[81] D. A. Huffman, “A method for the construction of minimum-redundancy codes,”
Proc. of the IRE, Vol. 40, pp. 1098-1101, Sep. 1952.

[82] D. E. Knuth, "The Art of Computer Programming", Vol. 3, Sorting and Searching,
Addison Wesley, Reading, MA, 1973.

[83] R.M. Fano. "The transmission of information", Technical Report 65, Research
Laboratory of Electronics, M.I.T., Cambridge, Mass., 1949.

[84] C. E. Shannon. "A mathematical theory of communication", Bell System Techni-
cal Journal, 27:379–423, 623–656, July, October 1948.

[85] Alistair Moffat, 2019, "Huffman Coding", ACM Comput. Surv. 52, 4, Article 85,
August 2019

[86] Sieminskly, A. “Fast Decoding of the Huffman codes.” Information Processing
Letters 26 (1987/88) pp. 237-241 11 January 198

42

References

[87] Tanaka, H., “Data structure of Huffman codes and its application to efficient
encoding and decoding, “ IEEE Trans. Inf. Theory 33, 1 (Jan 1987), 154-156

[88] Renato Pajarola “Fast Prefix Code Processing”, IEEE ITCC Conference, pages
206–211, 2003.

[89] Alistair Moffat and Andrew Turpin, “On the Implementation of Minimum Redun-
dancy Prefix Codes”, IEEE Transactions on Communications, Vol. 45, No. 10,
October 1997

[90] Daniel S. Hirschberg and Debra A. Lelewer, “Efficient Decoding of Prefix Codes”,
Communications of the ACM, Vol.33, pp. 449-459, 1990

[91] Chung Wang, Yuan-Rung Yang, Chun-Liang Lee, Hung-Yi Chang “A memory-
efficient Huffman decoding algorithm” Published in: 19th International Confer-
ence on Advanced Information Networking and Applications (AINA’05) Volume
1.

[92] Habib, A., Rahman, M.S. “Balancing decoding speed and memory usage for
Huffman codes using quaternary tree”. Appl Inform 4, 5 (2017).

[93] Swapna R. and Ramesh P., “Design and Implementation of Huffman Decoder
for Text data Compression”, International Journal of Current Engineering and
Technology, Vol.5, No.3 (June 2015).

[94] Yann Collet, Huff-0,
https://github.com/Cyan4973/FiniteStateEntropy
Accessed on: May 20, 2022.

[95] Yann Collet, zHuff,
https://fastcompression.blogspot.com/p/zhuff.html
Accessed on: May 20, 2022.

[96] Yann Collet, Zstd,
https://facebook.github.io/zstd/, Accessed on: May 20, 2022.

[97] National Library of Medicine, National Center for Biotech-
nology Information, Bethesda, MD, USA, Available online at:
https://www.ncbi.nlm.nih.gov/genomes/VirusVariation/Database/nph-select.cgi,
Accessed on May 20, 2022.

[98] Edward R. Fiala and Daniel H. Greene, "Data Compression with Finite Windows",
Communications of the ACM, Vol. 32, Issue 4, April 1989, pp. 490-505.

43

References

[99] Yann Collet, Range-0,
http://sd-1.archive-host.com/membres/up/182754578/Range0v07.zip
Accessed on: May 20, 2022.

[100] Yann Collet, Huff-X, https://fastcompression.blogspot.com/p/huff0-range0-
entropy-coders.html, Accessed on: May 20, 2022.

[101] G. N. N. Martin, "Range encoding: An algorithm for removing redundancy from
a digitized message", Video & Data Recording Conference, Southampton, UK,
July 24–27, 1979.

[102] Jean-loup Gailly, Mark Adler, “Zlib library”, Available online at:
https://www.zlib.net/, Accessed on: May 20, 2022.

[103] Wikipedia. Adler-32. http://en.wikipedia.org/wiki/Adler-32

[104] J. G. Fletcher. An arithmetic checksum for serial transmissions. IEEE Transactions
on Communications, COM30(1):247–252, Jan. 1982.

[105] Jarek Duda, "Asymmetric numeral systems: entropy coding combining speed of
Huffman coding with compression rate of arithmetic coding", Center for Science
of Information, Purdue University, W. Lafayette, IN 47907, 2013

[106] Garg, S 32/64 BIT RANGE CODING AND RITHMETIC CODING
https://sachingarg.com/compression/entropycoding/March1979

[107] Robert F. Rice , Some Practical Universal Noiseless Coding Techniques, Jet
Propulsion Laboratory, JPL Publication 79—22, March 1979

[108] Golomb, Solomon W., Run-length encodings, IEEE Transactions on Information
Theory, IT–12(3), 1966, pp. 399–401

[109] J. H. Witten, R. M. Neal and J. G. Cleary, ARITHMETIC CODING FOR DATA
COMPRESSION, Communication of the ACM (1987), 30, 1987, 520–540

[110] M. Nelson,Data Compression With Arithmetic Coding,Dr. Dobbs Journal,Nov 4,
2014

[111] P. G. Howard and J. S. Vitter,Practical Implementation of Arithmetic Cod-
ing,Kluwer Academic Publishers,1992,85–112

[112] Malcolm Taylor, ”RKIVE file archiver”,
http://files.mpoli.fi/unpacked/software/dos/utils/diskfile/rkv190b1.zip/

[113] Bloom, Charles. ”LZP: A New Data Compression Algorithm.” Data Compression
Conference. 1996.

44

References

[114] Kolmogorov, A. (1968). ”Logical basis for information theory and probability
theory”. IEEE Transactions of Information Theory, IT-14:662–664, 1968

[115] Ziv, Jacob; Lempel, Abraham (May 1977). ”A Universal Algorithm for Sequential
Data Compression”. IEEE Trans. on Info. Theory, 23:337–343, 1977.

[116] Jacob Ziv, Abraham Lempel, Compression of Individual Sequences via Variable-
Rate Coding, IEEE Transactions on Information Theory, 24, 5, pp. 530-536,
CiteSeerX 10.1.1.14.2892, doi:10.1109/TIT.1978.1055934, 1978

[117] Storer, James A.; Szymanski, Thomas G. (October 1982). ”Data Compression via
Textual Substitution”. doi:10.1145/322344.322346.

[118] James A. Storer, 1992, ”Method and apparatus for data compression”, US Patent
US5379036A, United States

[119] Robert K. Jung, ”Data compression/decompression method and apparatus”

[120] W.J.Cody et al., Aug. 1984, IEEE standards 754 and 854 for Floating-Point
Arithmetic, IEEE Magazine MICRO, 84 – 100, IEEE

[121] Morrison, Donald R., title=PATRICIA – Practical Algorithm To Retrieve Informa-
tion Coded in Alphanumeric, journal=Journal of the Association for Computing
Machinery, volume=15, number=4, year=October 1968

[122] Okumura, Haruhiko, History of Data Compression in Japan, edu.mie-u.ac.jp,
https://oku.edu.mie-u.ac.jp/ okumura/compression/history.html, 1998

[123] R.Fiala, Edward; H. Greene, Daniel, Data Compression with Finite Win-
dows, Communications of the ACM, 32, 4, April 1989, pp. 490-505,
https://doi.org/10.1145/63334.63341

[124] Kak S., Generalized unary coding, Circuits Systems and Signal Processing, 35, 4,
1419 – 1426, doi:10.1007/s00034-015-0120-7, S2CID 27902257, 2015

[125] Golomb S. W.; Gordon Basil; Welch L. R., Comma-Free Codes, Canadian Journal
of Mathematics, 10, 2, pp. 202 - 209, doi:10.4153/CJM-1958-023-9, 1958

[126] M. Dipperstein, “Arithmetic Code Discussion and Implementation”,
http://michael.dipperstein.com/arithmetic/index.html, 23rd November, 2014.

[127] Sabin B. and Daniela C., A Hybrid Data-Differencing and Compression Algorithm
for the Automotive Industry, Entropy, 24, 5, 2022

[128] Sabin B. and Daniela C., The Anatomy of a Quasi-Static Arithmetic Encoder,2018
International Conference on Communications (COMM),2018

45

References

[129] Sabin B. and Daniela C., RoLZ - The Reduced Offset LZ Data Compres-
sion Algorithm,019 International Symposium on Signals, Circuits and Systems
(ISSCS),2019

[130] Sabin B. and Daniela C., An innovative algorithm for data differencing, 2020
International Symposium on Electronics and Telecommunications (ISETC),2020

[131] Sabin B. and Daniela C.,Fast Canonical Huffman Decoder, IEEE COMMS
2022,2022

[132] I. Witten, T. Bell and John Cleary, MODELING FOR TEXT COMPRESSION,
ACM Computing Surveys, 21, 4, 557–591, December 1989, University of Calgary,
CA

[133] Timothy Bell, John Cleary and Ian Witten, Text Compression, 0-13-911991-4, 1st
edition, February 1, 1990, Prentice-Hall, Englewood, USA

[134] Alistair Moffat and Neil Sharman, AN EMPIRICAL EVALUATION OF CODING
METHODS FOR MULTI-SYMBOL ALPHABETS, 0-13-911991-4, 30, 6, 791-
804, Information Processing Management, 1994

[135] Calude, C.S. (1996). "Algorithmic information theory: Open problems"

[136] “Delta Algorithms: An Empirical Analysis”, James J. Hunt University of Karl-
sruhe, Karlsruhe, Germany and Kiem-Phong Vo ATT Laboratories, Florham Park,
NJ, USA and Walter F. Tichy University of Karlsruhe, Karlsruhe, Germany.

[137] David G. Korn and Kiem-Phong Vo, “Engineering a Differencing and Compres-
sion Data Format” ATT Laboratories – Research 180 Park Avenue, Florham Park,
NJ 07932, U.S.A. dgk,kpv@research.att.com.

[138] James W. Hunt and M.D. McIllroy, “An algorithm for differential file comparison”
Technical Report Computing Science Technical Report 41, Bell Laboratories,
June 1976.

[139] Webb Miller and Eugene W. Meyers, “A file comparison program. Soft-
ware|Practice and Experience” 15(11):1025, 1039, November 1985.

[140] C.H. Bennett, P. Gacs, M. Li, P.M.B. Vitanyi, and W. Zurek, Information Distance,
IEEE Trans. Inform. Theory, IT-44:4(1998) 1407–1423

[141] M. Li, X. Chen, X. Li, B. Ma, P.M.B. Vitanyi, "The similarity metric", IEEE
Trans. Inform. Th., 50:12(2004), 3250–3264". IEEE Transactions on Information
Theory. 50 (12): 3250–3264. doi:10.1109/TIT.2004.83810

[142] Williams R.N., Adaptive Data Compression, Kluwer Academic Publishers, 1991

46

References

[143] Fraenkel, Aviezri S.; Klein, Shmuel T., Robust universal complete codes
for transmission and compression, Discrete Applied Mathematics, Markov
Chains, 64, 1996, ISSN=0166-218X, CiteSeerX 10.1.1.37.3064, 10.1016/0166-
218X(93)00116-H

[144] Markov, Andreı̆ Andreevich, Extension of the limit theorems of probability theory
to a sum of variables connected in a chain, Dynamic Probabilistic Systems,
reprinted in Appendix B of: R. Howard, Markov Chains, 1, 1971, John Wiley and
Sons

[145] Elias, Peter, Universal codeword sets and representations of the integers, IEEE
Transactions on Information Theory, Markov Chains, 21, 2, 194-203, 1975,
10.1109/tit.1975.1055349

[146] Fraenkel, Aviezri S. and Klein, Shmuel T., Robust universal complete codes for
transmission and compression, Discrete Applied Mathematics, 64, 1, 31 – 55,
1996, 10.1109/tit.1975.1055349, 0166-218X

47

	Table of contents
	1 Introduction
	1.1 Applying Data Compression on Big Data
	1.2 Automotive and Big Data

	2 Dictionary Based Compression
	2.1 Introduction
	2.2 Dictionary Based Lossless Data Compression
	2.3 LZ77 algorithm
	2.4 Experimental results on LZSS, LZP and ROLZ
	2.5 ROLZ Conclusions

	3 A Fast Canonical Huffman Decoder
	3.1 The Huffman Process
	3.2 Huffman Encoding Optimality
	3.3 Our Solution for a Fast Decoding
	3.3.1 The Canonical Huffman Algorithm
	3.3.2 Construction of FCHD decoding table
	3.3.3 Experiments

	3.4 FCHD Conclusions

	4 A Quasi-Static Arithmetic Encoding
	4.1 Arithmetic Encoding
	4.1.1 Output Streaming
	4.1.2 Decoding Process

	4.2 Practical Consideration
	4.3 Updating the Statistics in Quasi-Static Encoding
	4.4 Experimental Results
	4.5 Conclusions

	5 Software Update in Automotive
	5.1 Manual ECU Firmware Updates in Automotive
	5.2 Firmware Over-the-Air in Automotive
	5.3 FOTA Update Containers
	5.4 Data Chuncking Concept

	6 Data Differencing using Referential Compression
	6.1 Software Updates and Data differencing
	6.2 Referential Compression
	6.2.1 Operating Modes of Referential Compression

	6.3 A New Data Diferencing Algorithm
	6.3.1 Operating with our Differencing Algorithm
	6.3.2 Conclusions

	7 Data Differencing
	7.1 Why Data Differencing
	7.2 Related Work
	7.3 Keops Algorithm
	7.3.1 Delta File
	7.3.2 Strategies for Buffer Pairing

	7.4 Experimental Results
	7.4.1 Compression Rate
	7.4.2 Encoding Time
	7.4.3 Decoding Time

	7.5 Conclusions

	8 Conclusions
	8.1 Original Contributions
	8.2 List of publications
	8.2.1 Journal papers
	8.2.2 Conference Papers
	8.2.3 Doctoral Research Reports

	8.3 Future Work

	References

