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 FOREWORD 

 

The main objective of this paper is to correctly define electrical equivalent circuits with 

nullors. Lately, the use of nullors has intensified in the generation of equivalent circuits for 

electronic devices, and as a result, it has been necessary to develop new and efficient methods 

for analyzing these circuits in their different operating regimes. 

It has been proven that, according to the principles of symbolic analysis, the Nodal Analysis 

Method (NAM) is restrictive because the admittance matrix must contain only the elements 

compatible with the classic Nodal Analysis (NA). This problem can be easily solved by the 

Modified Nodal Analysis Method (MNAM), adding a row and a column for each element that 

is not compatible with the classical nodal analysis method, [23, 26]. One of the problems 

generated by this type of approach is related to the size of the admittance matrix. This matrix 

will become larger depending on the structure of the circuit and the types of its elements. 
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When it comes to the models used in analog circuit analysis, the requirement of high 

accuracy could lead to complicated calculations and then compact models are preferred during 

circuit analysis, mainly for the use of much simpler equations [1 - 25]. These models are more 

efficient for optimizing modeling and simulation time during the analysis process. From this 

point of view, the nullor has already proven its effectiveness in modeling active devices. Also, 

in models based on the nullor element, all parasitic elements can be included to analyze their 

contribution to the analog circuit response. 

Nullors are very useful for modeling analog circuits because the circuit topology can 

be represented with two-terminal components such as resistors, capacitors, nullators, shunts, 

and independent current sources. It can also be pointed out that all controlled sources can be 

represented with equivalent circuits using bipolar elements and nullors. Therefore, the system 

of equations, for the equivalent circuit based on nullors and bipolar circuit elements, will be 

developed according to the classical method of nodal analysis. The nullor will be one of the 

basic components for models of active electronic devices, considering that the model must be 

developed in the simplest way, and the accuracy of the simulation of the circuit behavior must 

be within acceptable limits. According to this approach, problems related to small-signal 

models of active electronic devices that have been developed with nullors will be presented. 

 Another objective of this PhD thesis is to correctly define Thévenin, Norton and 

Hybrid equivalent circuits. These circuits allow the linear portions of electronic circuits to be 

separated from the non-linear ones and in this way the process of polarizing electronic devices 

becomes much more efficient. A special type of H ~ model is also introduced, called the 

nuliffied H ~ model, or simply the H ~ model; and many properties of H patterning are 

investigated, including circuit energy management. It is shown that H-models are not limited 

to single-port networks, but also cover multiports. A major property of H patterning is the local 

biasing of the transistors. The proposed strategy separates the linear and non-linear portions of 

an analog circuit and takes more control over the non-linear portions. At the end, this leads to 

a new technique for biasing non-linear electronic components. This separation of portions 

(components) within the circuit is achieved by introducing a new port patterning that cancels 

the non-linear device ports. 

     A particular attention was paid to the development of new methods, specific to the analysis 

and simulation of switching circuits with inconsistent initial conditions. Circuits with switch-

controlled topology containing semiconductor elements are of high interest in power 

electronics and communications. This domain includes both externally controlled (clock) and 

internally controlled (state) circuits. Modeling switching circuits (circuits with switched 

capacitors or switched current circuits, DC-DC converters, switched modulators, etc.) with 

idealized models (short-circuited or open-circuited elements) very often leads to discontinuities 

of the variables at times switching. 
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LIST OF ABBREVIATIONS 

VCVS - voltage controlled voltage source 

VCCS-voltage controlled current source 

CCVS - current controlled voltage source 

CCCS- current controlled current source 

MNAM- modified nodal analysis method 

TM- table method 

NAM- nodal analysis method 

NA- nodal analysis 

Voltage-Mirror - VM 

Current-Mirror - CM 

CGDM - Current Graph Description Matrix 

VGDM- Voltage Graph Description Matrix  

KCL - Kirchhoff current law 

KVL - Kirchhoff voltage law 
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1. INTRODUCTION 

 

1.1 STRUCTURE OF THE DOCTORAL THESIS 

As a consequence of the accelerated development of computing techniques and increasingly 

powerful hardware and software equipment, problems related to the design, simulation and 

analysis of electrical systems have largely moved from the test laboratory to the personal 

computer. Optimum sizing, stress tests, the degree of demand of some components, all these 

are currently carried out with the help of specialized programs that offer results and solutions 

in a short time and with material savings. 

In this doctoral thesis, high-performance procedures for the simulation and analysis of 

complex electronic circuits with nullors were presented. New algorithms and computer 

programs dedicated to the analysis of analog circuits with nullors have been developed. 
 

The chapters of this research are presented as follows: 

 

The First chapter – Introduction – presents a brief introduction of the whole thesis, the 

importance and actuality of this research topic, the aims and objectives of the choice of the 

topic used to develop this topic and the structure of the thesis together with the actuality and 

practical importance of studying this research topic, and at the end, a presentation of the 

publications developed during the preparation of this thesis. All this was based on a rich and 

rigorous documentation of the published publications in the field. 

 

Second Chapter  - Description of the procedures for analyzing analog circuits with nullors 

- active devices are described through equivalent circuits containing voltage controlled voltage 

sources (VCVS - voltage controlled voltage source), voltage controlled current sources (VCCS 

-voltage controlled current source), current controlled voltage sources (CCVS - current 

controlled voltage source) or current controlled current sources (CCCS - current controlled 

current source). These are very useful for designing circuits based on specialized software (eg 

SPICE). Using this type of software applications, many types of active circuit devices can be 

built with high precision. 

 

In Chapter 3 – – Thévenin, Norton and hybrid equivalent circuits – The objective of this 

chapter is to introduce such a guided design procedure for polarization. Our strategy separates 

the linear and nonlinear portions of an analog circuit and takes more control over the nonlinear 

portions. This separation of portions (components) within the circuit is achieved by introducing 

a new modeling of ports (gates) that nullifies the ports of nonlinear devices. This, in turn, leads 

to a new polarization technique for nonlinear components. The result is the replacement of 

regular DC sources with alternative sources that are attached directly to nonlinear devices. It is 

shown that a unique and very strong additive property is engaged in carrying out this operation 

of polarization of components. Another useful property that uses this strategy is the elimination 

of nonlinearity in the design of the polarization process. This is achieved because, being locally 

polarized, nonlinear components can be replaced by their linear models operating at those Q 

points; therefore, the design of the polarization of the circuit is completely linear. 

Thévenin, Norton, hybrid and nuliffied hybrid equivalent circuits are used for local 

polarization of analog circuits, [1 - 15]. Several illustrative examples are presented that 

highlight the veracity of the procedures elaborated. 
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In Chapter 4 – Analysis of switched networks with inconsistent initial conditions – In this 

chapter is presented a simple method for the analysis of complex networks with switches 

considering that the ideal switch avoids these problems. This approach is based on modified 

nodal analysis, when time-varying resistors are used to model ideal switches.  

In Chapter 5 – The application of fixator-norator pairs in the design of analog circuits- 

This chapter describes a new theory of modeling and simulation of electronic devices with the 

help of fixator-norators pairs.  

For the polarization of analog circuits, a different strategy was introduced. This paper 

introduces a new circuit element concept, the Fixator-Norator (FNP) pairs, which is the center 

of our strategy for designing the polarization of electronic circuits. Fixators and norators are 

used in pairs and are effective tools to perform effective polarization of electrical circuits. It is 

shown that these pairs are very useful in matching the critical polarization specifications with 

the DC power at the input. 

These procedures can be easily implemented in dedicated programs for simulating complex 

analog circuits with nullors. We present some important examples that prove the validity of 

models for nullors. 

In Chapter 6 - Conclusions and Original Contributions  - are summarized the results 

of the scientific activity carried out during the elaboration of the thesis, the main original 

contributions made, as well as subsequent directions of research. 

  IN THE ANNEXES are described: the listings of the programs used in this PhD thesis, 

the results obtained from the running of the programs and the comparison between these results, 

obtained with different programs, in order to validate their accuracy. 

 

2.   PROCEDURE DESCRIPTIONS FOR THE ANALYSIS OF ANALOGUE 

CIRCUITS WITH NULLORS 

 

2.1  INTRODUCTION 
 

Usually, active devices are described by equivalent circuits containing voltage controlled 

voltage sources (VCVS)), current controlled voltage sources (CCVS) or current controlled 

current voltage sources (CCCS). They are very useful for designing circuits based on 

specialized software (e.g. SPICE, CADENCE, SYSEG, SYTFG; ADS, ANSYS, etc.). Using 

this type of software applications, many types of devices with active circuits can be built with 

high precision [23 – 25]. Also, these equivalent circuits are used to develop systems of analog 

circuit equations based on various methods, such as the NODAL ANALYSIS (NA- nodal 

analysis) method, the MNAM (modified nodal analysis method) and the table method (TM). 

It has been shown that, according to the principles of symbolic analysis, the Nodal Analysis 

Method (NAM) is restrictive because the admission matrix must contain only the elements 

compatible with the Nodal Analysis (NA). This problem can be easily solved by the Modified 

Nodal Analysis Method (MNAM), adding a row and column for each element that is not 

compatible with the classical method of nodal analysis (MNAM), [23, 26]. One of the problems 
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generated by this type of approach is related to the size of the admission matrix. This matrix 

will become larger, depending on the structure of the circuit and the types of its elements. 

Nullors are very useful for modeling analog circuits because circuit topology can be 

represented with two-terminal components such as resistors, capacitors, nullors, norators and 

independent voltage and/or current sources. It can also be pointed out that all controlled sources 

can be represented with equivalent circuits using nullors. Therefore, the system of equations, 

for the equivalent circuit based on nullors, will be developed according to the classical method 

of nodal analysis. Nullor will be one of the basic components for active device models, given 

that the model must be developed in the simplest way, and the accuracy of the simulation of 

the circuit behavior must be within acceptable limits. According to this approach, this chapter 

will present the problems related to the small signal models of the active devices that have been 

developed with nullors. 

The norator can be defined as an ideal two-terminal circuit (Fig. 2.1.b), which is characterized 

by random values for the current (i) and voltage (u) at the terminals. In other words, the norator 

has no defined relationship. The current and voltage have values that are only affected by the 

external circuit that controls the norator. 

The nullator can be defined as an ideal two-terminal circuit, which is characterized by zero 

values for current and voltage, at the terminals. The symbol used for its graphic representation 

is shown in Figure 2.1.a.  For this type of circuits can be defined two relationships. 

 

A nullator and a norator together form a normal deport circuit called nullor (Fig. 2.1. c), which 

has the number of definition relationships equal to the number of ports. 

 

 
 

(a) 

 
 

(b) 
 

(c) 

 
(d) 

 
 

(e) 

Fig. 2.1.  a) The symbol of the nullator; b) The norator symbol; c) The symbol nullor d) Current 

mirror; e) Voltage mirror. 

 

Table 1 shows the behavior of nullators, norators and nullors in terms of voltage, respectively 

of current, in Gv - the voltage graph and, respectively, Gi - the current graph. 
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Tabel 1 

S y m b o l  Definitions Voltage graph Gv Current graph Gi 

 

Nullator

v1
i1

v2 i2  

v1 = v2 

i1 = i2 = 0 

 

𝑣1 =
𝑣2 ⇒ 𝑛1 ≡ 𝑛2 

any i1 = i2 

 

any v1, v2 

i1 = i2 = 0 

 

Norator

v1
i1

v2 i2  

any v1, v2 

any i1 = i2 

 

any v1, v2 

i1 = i2 = 0 

 

𝑣1 = 𝑣2 ⇒ 𝑛1 ≡ 𝑛2any i1=i2 

 

Nullor

 

i 1 = i 2 = 0  

v1=v2 

any v3, v4 

any i3 = i4 

 

𝑣1 = 𝑣2 = 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 ⇒ 

⇒ 𝑛1 ≡ 𝑛2, 𝑎𝑛𝑦 𝑖1 = 𝑖2, 

 i3 = i4 = 0, any 43 vv   

 

any 21 vv  v1, i1 = i2 = 0; 

𝑣3 = 𝑣4 ⇒ 𝑛3 ≡ 𝑛4 

any i3 = i4 

The input port of the nullor is modeled by the nullator which is characterized by two 

equations: 

  v1 = v2 = arbitrary,  i1 = i2 = 0. 
(2.1) 
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So, the nullator is simultaneously one open in Gi current graph and short-circuit in Gv voltage 

graph. The output port of the nullor is modeled by the norator where both, the voltage and 

current can be assumed to have arbitrary values: 

v1   v2 = arbitrary,  i1 = i2 = arbitrary. 
(2.2) 

The nullor is a two-port element and it is known as universal active element [20 - 22]. This 

concept means that the nullor along with capacitors and resistors can be used to design a 

maximum number of functions with the minimum number of active devices. That is, if a suitable 

set of linear and nonlinear passive elements is available, then no active element other than 

nullors are needed to implement any linear or nonlinear circuit function. So, nullators, norators, 

resistances, along with capacitances can synthesize a complete set of linear or linearized 

equations. 
 

 

2.2 EQUIVALENT CIRCUITS WITH NULLORS 

 

The most widely used equivalences of the combinations between nullators and norators for 

when assembling networks that contain nullors and impedances are shown in figure 2.2. In 

figure 2.2, a, if the current flows from node a, cannot flow to b, since the current through the 

nullator is zero. It means that a series connection between a nullator and a norator is equivalent 

to one open-circuit. In figure 2.2, b, the current flows from a to b through the norator. The 

voltage between a and b becomes zero, due to the nullator properties, so that a parallel 

connection of the nullator and norator is equivalent to one short-circuit. The remaining 

connections have equivalencies according to the nullator and norator i=f(v) characteristics. 

  

  

 
 

Open circuit Short circuit 
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Fig. 2.2. Equivalences between sections of circuits assembled with nullators and norators 

 
 

Fig. 2.3. Nullor and grounded resistor-based VM (a) and CM (b). 

 

Furthermore, nullors can be combined with grounded resistors in order to be able to obtain 

output voltage/current signals with opposite polarity with respect to the input ones. This feature 

cannot be acquired intrinsically by nullators or norators [11 - 22]. One can mention the ideal 

unity-gain Voltage-Mirror (VM) (fig. 2.3, a) and the Current-Mirror (CM) (fig. X.3, b), as 

examples of active devices with inverting properties. Each of them can properly modeled 

utilizing the nullor [1 - 10].  

Each of the circuits VM (fig. 2.3, a) and CM ( fig. 2.3, b)  represented above, with the 

inverting feature achieved, is described by distinct voltage/current equations, VM by (2.3), 

respectively CM by (2.4).  

v2 = -v1 = arbitrary, 

i1 = i2 = 0. 

 

(2.3) 

 

v2   v1 = arbitrary, 

i1 = i2 = arbitrary. 

 

(2.4) 

 

 The VM and CM nullor based models may include parasitic elements [1, 30-31]. In such a 

situation, any possible network can be equaled to a combination of nullators, norators, CMs, 

VMs and impedances, in the same manner as for the nullor. 

 If eventually, one of the v1 or v2 terminals from figure 2.3, a is grounded, the application of 

the equivalences shown in figure 2.2 reduces VM to a nullator. In a similar manner, if any 

terminal from figure 2.3.b is grounded, the application of the equivalences shown in figure 2.2 

converts CM into a norator. 

Due to the peculiarities presented by the ordered sources, the extension of the matrix analysis 

to the study of non-reciprocal electrical circuits requires to associate with the circuit two 

connection graphs: one of current,
iG  and another voltage, 

uG . The two graphs contain the 

same number of independent sides, vertices, and loops. They differ in the positions they occupy 

within them the command and ordered sides (ports) of the four types of sources ordered by the 

carrier, simulated by dipole elements. 
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(Tabel 2). 

       Tabel 2 

CCVS – Current Controlled Voltage Source 

 

For DC circuits:. 

𝑈𝐶 = 0  ∀𝐼𝐶; 𝑈𝑐 = 𝐸𝑐 = 𝑅𝑐𝐶𝐼𝐶  , in general 𝑅𝑐𝐶 = 𝑅𝑐

 For AC circuits and for operational circuits: 

.ZZIIZEUIU ccCcCcCccCC ====  general in  ;   ;  0  

 

 

 

VCCS – Voltage Controlled Current Source 

 

For DC circuits:. 

𝐼𝐶 = 0  ∀𝑈𝐶; 𝐼𝑐 = 𝐽𝑐 = 𝐺𝑐𝐶𝑈𝐶   ∀𝑈𝑐;  in general 𝐺𝑐𝐶 = 𝐺𝑐

 For AC circuits and for operational circuits: 

.YYUUYJIUI ccCcCcCccCC ====  general in ;   ;  0  
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VCVS – Voltage Controlled Voltage Source 

 

cCcCccCC IUAEUUI ===    ;  0

 The voltage-controlled voltage source can be equated to a voltage-controlled current 

source connected in cascade with a current-controlled voltage source, as follows: 

 

Equivalent scheme for two inhomogeneous controlled sources connected in cascade 

 

 

 

For DC circuits:. 

 

mCcmcCCmCcmmcmccmmCmCm GRAUGRIRUEJIUGJ ======  ;  ,  

For AC circuits and for operational circuits: 

mCcmcCCmCcmmcmccmmCmCm YZAUYZIZUEJIUYJ ======  ;  ,  

 

CCCS – Current Controlled Current Source 

 

cCcCcCC UIBJIU ==      ,   0  

The current-controlled current source can be equated to a current-controlled voltage 

source connected in cascade with a current source controlled in voltage, as follows: 
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Scheme equivalent to two inhomogeneous controlled sources connected in cascade 

 

 

For DC circuits:. 

 

mCcmcCCmCcmmcmccmmCmCm RGBIRGUGIJEUURE ======  ;  ,  

For AC circuits and for operational circuits: 

.ZYBIZYUYIJEUUZE mCcmcCCmCcmmcmccmmCmCm ======  ;  ,

 Observations: 

1. Resistors, coils, capacitors and independent sources of voltage and current have the 

same position in 
iG  and 

uG ; 

2. To describe graphs 
iG  and 

uG  a matrix with 4 lines and l columns is used (l is the 

number of graph sides), called the current graph description matrix (CGDM) and 

voltage graph (VGDM - the voltage graph description matrix). Each column in the 

CGDM (VGDM) contains the initial node, the final node, the type and weight (in the 

case of calculating circuit functions) of the side; 

3. Because any branch short-circuited in 
iG  or in 

uG  causes the elimination of a node, 

in order to keep the enumeration of the nodes in a natural order (which is 

advantageous in applications), all the indices larger than the index of the removed 

node are reduced by a unit; 

4. Magnetic couplings are shaped by inductors and CCVS [9]; 

5. The above modeling technique of the four controlled sources leads to two directed 

graphs having only conductance branches (admittances); 

6. The two graphs have the same number of knots, branches and loops. They differ only 

in the location of the control and controlled branches of the four types of controlled 

sources; 

7. Since any contraction of the branches in the two graphs causes a node to be removed, 

the number of vertices in the Gi and Gv is lower than in the initial circuit with the 

number of CCVS: 𝑛𝐺𝑖 = 𝑛𝐺𝑣 = 𝑛 − 𝑛𝐶𝐶𝑉𝑆. 
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2.3  KIRCHHOFF'S LAWS APPLIED TO DC CIRCUITS 
 

Kirchhoff's theorems can be specified as an array as a matrix as: 

0=i
b

i
iA (KCL- TIK), 

 (2.5) 

 

0=v
b

v
uB  (KVL-TIIK). 

 (2.6) 

 

Where Ai (Bv) is the low-impact matrix at sides-nodes in the current graph (the impact matrix 

of the sides-loops in the voltage graph, and i
bi  ( v

bu ) is the vector of currents (voltages) in the 

current (voltage) graph. 

For DC linear circuits, Kirchhoff's laws have the following developed forms: 
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(2.7) 

 

The Kirchhoff equations have, for AC linear circuits, in harmonic mode in the complex, the 

form:  
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KVL:  ∑ (𝑍𝑘𝐼𝑘
𝑖 + ∑ 𝑗𝜔𝐿𝑘𝑝𝐼𝑝

𝑖
𝑝=1
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𝑣 ) =𝑏𝑘∈(𝑙ℎ
𝑣) ∑ (𝐸𝑘

𝑣 + 𝐸𝑐𝑘
𝑣 )𝑏𝑘∈(𝑙ℎ

𝑣)  ,  ℎ = 1, 𝑙𝑣 . 

 

 

(2.8) 

 

The operational form of the Kirchhoff equations have, for linear circuits, the structure: 
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(2.9) 

In equations (2.9) the ( )sE v
ek  includes also the initial conditions at the time of t0 = 0,  
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Observation 1 

Taking into account the behavior of nulles (see Table 1) from the point of view of current, i.e. 

voltage, Kirchhoff's theorems, loop current equations, modified nodal equations, semi-state 

equations, state equations and side constituent equations for linear and/or nonlinear circuits 

with nulls, regardless of the operating regime of the circuit analysed,  they can be formulated 

directly on the initial scheme of the circuit, without the need to generate the current and voltage 

graphs respectively (see examples). 

To describe the algorithm for applying Kirchhoff's theorems to null electrical circuits, the 

continuous current circuit in Figure 2.4(a) is considered. 

 

 

 

 

(a) 

 

 

                                (b) 

 

                                (c) 

 

Fig. 2.4. a) Diagram of the initial circuit; b) Current graph Gi; c)Voltage graph Gv. 

 



CONTRIBUTIONS REGARDING THE ANALYSIS OF ELECTRICAL CIRCUITS 

WITH NULORS 

 

18 

 

Step 1. Taking into account the behavior, from the point of view of current, respectively 

tensiuns, nulls and clouders respectively (see Table 1), the two graphs are built, the current 

graph – figure 2.4 (b) and, respectively, the voltage graph – figure 4 (c). The sides of the two 

graphs shall be oriented in the same direction as the direction of the currents and the 

independent loops corresponding to the current and voltage graph respectively shall be 

identified; 

Step 2. The first Kirchhoff law is written in the ni – 1 nodes in the current graph: 

(𝑛1
𝑖 ):   𝐼8

𝑖 − 𝐼9
𝑖 = −𝐽1;   (𝑛2

𝑖 ):   𝐼10
𝑖 = 𝐽1; 

(𝑛3
𝑖 ):   − 𝐼5

𝑖 − 𝐼7
𝑖 − 𝐼8

𝑖 − 𝐼10
𝑖 = 0;   (𝑛4

𝑖 ):   − 𝐼6
𝑖 + 𝐼7

𝑖 = 0; 

(𝑛5
𝑖 ):    − 𝐼4

𝑖 + 𝐼5
𝑖 + 𝐼6

𝑖 = 0;   (𝑛6
𝑖 ):   − 𝐼11

𝑖 − 𝐼3
𝑖 = 0; 

(𝑛7
𝑖 ):   𝐼9

𝑖 + 𝐼11
𝑖 = −𝐽2;; 

 

 

(2.10) 

Step 3. Equations corresponding to the second Kirchhoff law, written on those lv Independent 

loops of the voltage graph, have the structure: 

( ) ( )
( ) ( )
( ) ( ) .0      ;   

;      ;  

;0     ;   

113326455335

81199467766553

1077281011

=−+=+−

=−=++−

=−−=+

vivviiv

viviiiv

vvvvvv

UIRU:lEIRIR :l

EUIR:lEIRIRIR :l

UI R:lEUU:l

 

 

(2.11) 

Step 4. Solve, with an appropriate algorithm, the system of equations (2.10) and (2.11) in 

relation to the unknowns: 𝐼3
𝑖 , 𝐼4

𝑖 , 𝐼5
𝑖 , 𝐼6

𝑖 , 𝐼7
𝑖 , 𝐼8

𝑖 , 𝐼9
𝑖 , 𝐼10

𝑖 , 𝐼11
𝑖 , 𝑈1

𝑣, 𝑈2
𝑣, 𝑈10

𝑣 , and 𝑈11
𝑣 . With the 

characteristic equations of the circuit elements, all currents and all voltages of the circuit sides 

in Figure 2.4(a) are calculated. Obviously, the sizes associated with the nullators are null  I12 = 

0 A, I13 = 0 A,  U12 = 0 V, şi   U13 = 0 V;  

 

Step 5.  Check the power balance, i.e. the relationship, PG = PR, where:  

 

.IRIRIRIRIRP

;IUIUIEIEIEJUJUP

R

G

2
99

2
77

2
66

2
55

2
33

111110108866442211

++++=

−−+++−−=
 

 

(2.12) 

Since everywhere the rule of association of the reference meanings from the receivers has been 

adopted, the powers generated by the current sources, independent and/or ordered, and those 

given by the norators are calculated with the "minus" sign in front. 

Taking into account the definitions of null and norators, the Kirchhoff equations can be 

formulated directly on the initial circuit in Figure 2.4. (a). These equations have the structure 

of: 

𝑇𝐼𝐾 

(𝑛1): 𝐼8 − 𝐼9 = −𝐽1; (𝑛2): 𝐼10 = 𝐽1;  (𝑛3): − 𝐼5 − 𝐼7 − 𝐼8 − 𝐼10 = 0; (𝑛4): 𝐼7 − 𝐼6
= 0; 

(𝑛5): − 𝐼4 + 𝐼5 + 𝐼6 = 0; (𝑛6): − 𝐼3 − 𝐼11 = 0;  (𝑛7): 𝐼9 + 𝐼11 = −𝐽2; 

𝑇𝐼𝐼𝐾 

(𝑙1): 𝑈1 + 𝑈10 = −𝐸8; (𝑏2): 𝑅7𝐼7 − 𝑈10 = 0;  (𝑏3): − 𝑅5𝐼5 + 𝑅6𝐼6 + 𝑅7𝐼7 = 𝐸6;  

(𝑙4): 𝑅9𝐼9 − 𝑈11 = 𝐸8;  (𝑏5): − 𝑅3𝐼3 + 𝑅5𝐼5 = 𝐸4; (𝑏6): 𝑈2 + 𝑅3𝐼3 − 𝑈11 = 0.  

 

(2.13) 
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For the following numerical values of the circuit in Figure 4. (a): J1 = 2 A, J2 = 4 A, R3 = 100 

Ω, E4 = 200 V, R5 = 100 Ω, R6 = 200 Ω, E6 = 200 V, R7 = 100 Ω, E8 = 200 V, R9 = 100 Ω, the 

solutions are obtained; 

U1=-342.857143; I1=2.000000; U2=-600.000000, I2=4.000000; I3=0.285714; I4=3.714286 

I5=2.285714; I6=1.428571; I7=1.428571; I8=-5.714286; I9=-3.714286; 

U10=142.857143; I10=2.000000; U11=-571.428571; I11=-0.285714. 

Step 6: A suitable algorithm can correctly solve equation systems (2.10), (2.11) with respect 

to the variables below:𝐼3
𝑖 , 𝐼4

𝑖 , 𝐼5
𝑖 , 𝐼6

𝑖 , 𝐼7
𝑖 , 𝐼8

𝑖 , 𝐼9
𝑖 , 𝐼10

𝑖 , 𝐼11
𝑖 , 𝑈1

𝑣, 𝑈2
𝑣, 𝑈10

𝑣 ,  şi 𝑈11
𝑣 .  Then all currents and 

voltages become readily available for all sides of the circuit. Currents and voltages associated 

with nullators I12, I13, U12, U13 have only zero values. In the power balance, the power generated 

PG must be equal to the power dissipated by the Joule effect PR. While adopting the receiver's 

convention, the DC powers generated by independent and/or controlled current sources, as well 

as the power transferred by the nulls, appear as negative in (2.12). 
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(2.14) 

 

2.4  LOOP CURRENT METHOD IN DC CIRCUITS WITH NULLORS 
 

The loop current method is based on the introduction of loop currents as intermediate quantities 

that satisfy the KCL and that can be determined by applying KVL to the independent loops in 

the electrical circuit. The constituent equations of all elements of the circuit are written as 

relationships between currents Gi and voltages Gv. Here's the following algorithm: 

 

Step 1: Electronic devices and multipolar and/or multiport circuit elements are replaced by 

equivalent intermediate circuits containing only dipole elements and controlled sources. Then 

the newly obtained circuits are replaced with equivalent schemes based on nullors. 

Step 2: The circuit obtained at the previous step, in its final form is associated with two graphs: 

the current one Gi and the voltage one Gv. Independent loops are selected inside the graphs. 

For each independent loop, it is assigned a reference direction and a current, called a 'loop 

current'. 

Step 3: Currents in the branches of the current graph Gi are expressed as functions of the loop 

currents as follows: 

( )
 ,1  , b,kii

i
k

i
h

lb

i
h

i
k == 
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sau ( )  ,
t i

l
ii

b iBi =  

    

 

(2.15) 
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For the circuit in Figure 2.4, the initial current equations are given by (2.13) 
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(2.16) 

` 

Step 4: When KVL is applied over the attached loops to Gv, the currents in the branches of Gi 

are expressed as functions of the loop currents according to (2.15). In order to obtain all the 

independent equations, the currents in the graph Gi, circulating through independent sources, 

as well as currents through nullators (that is, all of them are equal to zero) are expressed 

according to the loop currents of the same Gi. The currents of the controlled sources are 

expressed as algebraic sums of the loop currents of the current graph Gi, resulting in as many 

independent equations as the unknown variables. 

Step 5: The voltages and currents of the sides are finally determined by applying (2.15) and 

the characteristic equations of the circuit elements. The equations, in terms of loop currents, 

for the circuit in Figure 2.4. (a) have the following structure (2.17). 
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(2.17) 

 

2.5 MODIFIED NODAL ANALYSIS IN DC CIRCUITS WITH NULLORS 

 

The unknown variables of this method are represented by (n-1) electrical potentials 

corresponding to the circuit nodes, with the exception of node n whose potential is equal to 

zero (reference). Vector i
mi  which contains the currents of the incompatible elements of the 

circuit, is expressed with the classical nodal method. It is said that a circuit element is 

incompatible with the classical nodal method if the current through it cannot be expressed using 

its parameters and node potentials. A clear example is represented by norators whose currents 

are treated as independent variables. These unknowns satisfy the TIIK-KVL for any circuit 
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loop. The calculation of these unknowns is based on writing the TIK-KCL in (n-1) nodes in 

the current graph and the expression of branch current currents using the constituent equations 

of the branches. The following algorithm is in place: 

 

Step 1:  Absolutely identical to step 1 in the previous section. 

Step 2:  The circuit obtained at the previous step, in its final form, is associated with two 

graphs: the current one Gi and the voltage one Gv. The branches of the graphs are oriented in 

the same direction as the currents crossing them, identifying (n-1) the independent vertices and 

(l = b – n + 1) independent loops. 

Step 3: Tensions of the sides belonging to the graph Gv are expressed according to the 

potentials of nodes such as: 

 

 ,1  , b,kvvu v
k

v
k

v
k =−= −+ or ( )  ,1

t v
n

vv
b −= vAu   (2.18) 

 

The voltages of the sides belonging to the graph Gv are expressed according to the potentials 

of nodes such as: 
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(2.19) 

 

 
 

2.6 KIRCHHOFF'S LAWS APPLIED ON AC CIRCUITS 

 

For linear AC circuits operating in harmonic mode, Kirchhoff's laws show the following 

general expressions (2.20), (2.21). 

 

∑ 𝐼𝑘
𝑖 =

(𝐴)

𝑏𝑘∈(𝑛𝑗
𝑖)

− ∑ 𝐽𝑘
𝑖(𝐴)

𝑏𝑘∈(𝑛𝑗
𝑖)

 , 𝑗 = 1, 𝑛𝑖 − 1 (TIK-KCL) 
(2.20) 
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O The very simple method for solving the systems of equations represented by (2.20), 

(2.21) is to convert these equations into operational form. Following the application of the 

Laplace transformation term by term, the operational form of Kirchhoff's equations can be 

described according to the relationships (2.22), (2.23) as follows: 

( )
( ) ( )
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 (2.22) 

(KCL) 

 

( ) ( ) ( ) ( ) ( )
( )

( ) ( )( )
( )

.l,h,sEsE

sUsUsIsLsIsZ

v

lb

v
ck

v
ek

lb

v
j

v
j

i
p

b

kp
p

kp
i
kk

v
hk

v
hk

ckk

1   

1

=+=

=

















+++



 





=

  

 

(2.23) 

(KVL) 

 

Equation (2.20) includes the initial conditions, recorded for the time being t0=0, 

incorporated inside the term 𝐸𝑒𝑘
𝜈 (𝑠), and expressed by (2.24): 
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(2.24) 

2.7 MODIFIED NODAL ANALYSIS APPLIED TO ALTERNATING CURRENT 

CIRCUITS WITH NULLORS 

 

The unknown variables of this method are represented by (n-1) electrical potentials 

corresponding to the circuit nodes, with the exception of node n whose potential is equal to 

zero (reference). Vector i
mi  which contains the currents of the incompatible elements of the 

circuit, is expressed with the classical nodal method. It is said that a circuit element is 

incompatible with the classical nodal method if the current through it cannot be expressed using 

its parameters and node potentials. A clear example is represented by norators whose currents 

are treated as independent variables. These unknowns satisfy the KVL for any circuit loop. The 

calculation of these unknowns is based on writing the KCL in (n-1) nodes in the current graph 

and the expression of branch current currents using the constituent equations of the sides. The 

following algorithm is in place: 

 

Step 1:  Absolutely identical to step 1 in the previous section. 

 

Step 2: The circuit obtained at the previous step, in its final form is associated with two graphs: 

the current one Gi  and the voltage one Gv. The sides of the graphs are oriented in the same 

direction as the currents crossing them, identifying (n-1) the independent vertices and (l = b – 

n + 1) independent loops. 

 

Step 3: Tensions of the sides belonging to the graph Gv are expressed as functions of node 

potentials as: 
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 ,1  , b,kvvu v
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v
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t v
n

vv
b −= vAu     

(2.25) 

 

Step 4: In Gv, all elements found incompatible with classical NAM are highlighted, while their 

currents in Gi are considered to be independent variables. Then the KCL is applied to 

independent nodes (n-1) of the Gi: all the currents of the sides, now compatible with NAM are 

functions of the parameters of the sides and the potentials of the nodes in Gv. To complete the 

set of independent equations, it is necessary to add the characteristic equations to the sides in 

the Gv. These equations refer to circuit elements that are incompatible with NAM. The currents 

relating to CCVS and CCCS, respectively the electromotor forces relating to VCVS and VCCS, 

are expressed as functions of the control variables. Latter are themselves expressed as functions 

of independent variables. The general procedure outlines a number of equations equal to 

unknowns. 

Step 5: Currents and voltages are obtained by the MNAM equations and the characteristic 

equations of the elements. 

 

 

2.8 EXAMPLES OF ALTERNATING CURRENT CIRCUITS WITH 

NULLORS 

 

Example 2:  The circuit in Figure 2.7(a), contains two operational amplifiers and two passive 

elements of the circuit, resistors R1, R2 and the capacitor C. 

 

 
 

 

Fig. 2.7. a) Capacitive multiplier, b) Equivalent circuit of the operational amplifier built with nullors, 

c) Scheme of the capacity multiplier using nullors 

 

In harmonic behavior, this circuit plays the character of a capacitive multiplier relative 

to the input terminals marked as 4 and 5. 
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While the replacement of operational amplifiers with nulls (see Figure 2.7(b)), the final 

circuit representation is shown in Figure 2.7(c). 

For the equivalent circuit shown in Figure 2.3(c), KCL was applied for the harmonic 

mode. Based on the nullity properties of voltage and current, equations can be obtained (2.30.( 

a-d)). 

( )  0 : 411 =− IIn  
(2.30,a) 

( ) 0 : 212 =+− IIn  (2.30,b) 

( ) 0  : 5323 =−+− IIIn  (2.30,c) 

( ) .0  :
834 =−− JIn  (2.30,d) 

The KVL equations for l=4 have the following form (2.31, a-d) 

( )  0   : 485151 =−−− UUnnnl  

(2.31,a) 

( ) 0  : 41152152 =+−−− UI Rnnnnl  (2.31,b) 

( ) 0  : 52253253 =−−−− UI Rnnnnl  (2.31,c) 

( ) ( ) 0   : 853353254 =−+−−− UUCj/Innnnl   (2.31,d) 

  

The complete solution once the equation systems (2.30 (a-d)) and (2.31) have been solved, 

respectively. a-d))) is given in (2.32 (a-j)). 
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The complex input impedance is given by the relation (2.16): 
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(2.33) 

A sensitivity to input impedance in relation to the conductance G1 is: 
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(2.34) 

For pasive elements with values C3 = 10 pF, R1 = 100 Ω  si  R2 = 100 kΩ,  the 

result is equivalent capacity: 
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(2.35) 

 

This value representing the equivalent capacity is about a thousand times the capacity C3. This 

circuit is used in integrated circuit technology to obtain high values for capacities. Due to 

miniaturization, integrated circuit technology usually produces capacitors with low capacity 

values. The capacity multiplier effect is called the Miller Effect for Capacities, [4, 14, 21]. 
 

2.9 CONCLUSIONS 
 

In this chapter, the concepts of nullator, norator and nullor have been introduced along 

with well-defined properties. Next, a few DC models based on nullors have been introduced. 

A DC circuit is equivalent to three circuits based on nullors, applying the laws of Kirchhoff, 

the loop current method, respectively the modified nodal analysis method (MNAM): three 

modes of solving the initial DC circuit are suggested in the paper. 

Many models of circuits based on nullors have been generated. MNAM itwas applied 

to solve ordinary AC circuits with multiple sources, using nullors. Current and voltage graphs 

were used to formulate the set of equations that characterize the operation of the ac circuit in 
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harmonic mode. The proposed modeling procedure applied to the controlled sources in the two 

graphs is simple, straightforward and based on the properties of the nullors. Equivalent circuits 

based on the functional schemes with nullsmodel both the control port and the controlled port 

by admitting placed in different positions in the two graphs. The two graphs obtained in this 

way contain the same number of branches, knots and loops. Moreover, the MNAM was used 

to determine the performance of two circuits based on operational amplifiers: the capacity 

multiplier, respectively the universal filter. In general, equations describing analog circuits can 

be generated directly, starting from the initial circuit configurations. This last statement applies 

to all types of operating regimes. 

 This chapter describes a new modeling of active devices based on nullors at the 

abstraction circuit level. After a brief description of the concepts of nullator, norator and nullor 

and their properties, we proceed to the modeling of active devices not only to the voltage mode, 

but also to the current mode and to the mixed mode of operation from the point of view of the 

circuit with two ports and four terminals are described in some details. 

 In general, for the simulation of the four biport-controlled sources with nullors and, 

in general, for the modeling of multiport circuit elements with equivalent circuit circuits formed 

by bipolar circuit elements and taking into account the behavior of nullors in terms of current 

and voltages, two graphs of current are associated, for the systematic formulation of Kirchhoff 

laws, two graphs one of current Gi and another voltage Gu. The two graphs have the same 

topology (the same number of: sides, knots and independent loops) and the sides are 

characterized by identical parameters, they differ in the positions of bipolar circuit elements 

(sides) simulating the four sources ordered by the carrier. Kirchhoff's first theorem and the 

equations of bubble currents are formulated on the current graph Gi, Kirchhoff's second 

theorem and nodal equations (modified) are formulated on the voltage graph Gu , and in the 

characteristic equations (constituents) the currents (voltages) from the sides of the current 

(voltage) graph are used. 

 By simulating the nullators by ideal current-independent sources with the current 

intensity j = 0 A and the norators with ideal voltage-controlled sources ec(uC) with the transfer 

factor (amplification) in voltage A with very high values (theoretically infinite), all types of 

equations, in any operating regime, can be formulated directly on the circuit with the nullors 

without the need for the current and voltage graphs. The voltage control voltages of the voltage-

controlled voltage sources are those at the norator terminals – the nullors are biport circuit 

elements with the input side formed by a nullator, and the output side consists of a norator.  

 Numerous models of circuits based on nullors have been generated. The current and 

voltage graphs were used to systematically generate, in completely symbolic, partial-symbolic 

and numerical form, all the transfer functions with the help of generalized topological formulas 

with homogeneous parameters, based on the enumeration of the common sides in the two 

graphs. For the analysis of linear and/or nonlinear analog circuits linearized on portions with 

nulli, all methods of analysis of normal electronic circuits have been successfully used (method 

based on Kirchhoff's laws, loop currents method, classical nodal method, modified nodal 

method, state equation method and semi-state equation method). The variety as a structure of 

analog circuits with the analyzed nullors confirms the special usefulness of using nullors 

models of complex electronic devices. 

 The examples presented in detail validate the described models for analog circuits 

with nullors. 
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3. THÉVENIN, NORTON AND HYBRID EQUIVALENT CIRCUITS 

3.1. INTRODUCTION 

 

 In current high-speed technology, analog and mixed signal integrated circuit 

technology occupies an important and decisive place in communication and signal processing. 

In particular, with CMOS technology quickly embracing the field, designing analog circuits 

has become more difficult than ever [1–11]. Other technological developments, such as: lower 

supply voltages, lower power consumption, complexity and performance, and large number of 

transistors, have substantially increased the demand for new design methodologies and 

techniques. 

 A major difficulty in treating analog circuits is the polarization of DC - obtaining the 

desired operating points (operation) with rapid convergence; and the problem is getting worse 

with the advancement of technology, which is due to the increase in the size and complexity of 

the circuit. The analysis can even lead to several operating points in DC or instability at 

operating points caused by positive feedbacks [3, 12, 13].. 

 The objective of this chapter is to introduce such a guided design procedure for 

polarization. Our strategy separates the linear and nonlinear portions of an analog circuit and 

takes more control over the nonlinear portions. This separation of portions (components) within 

the circuit is achieved by introducing a new modeling of ports (gates) that cancels the ports of 

nonlinear devices. This, in turn, leads to a new polarization technique for nonlinear 

components. The result is the replacement of ordinary DC sources with alternative sources that 

are attached directly to nonlinear devices. It is shown that a unique and very strong additive 

property is engaged in carrying out this operation of polarization of components. Another 

useful property that uses this strategy is the elimination of nonlinearity in the design of the 

polarization process. This is achieved because, being locally polarized, nonlinear components 

can be replaced by their linear models operating at those Q points; therefore, the design of the 

polarization of the circuit is completely linear. 

Paragraph 3.2 defines the equivalent Thévenin and Norton circuits, specifying the 

conditions necessary and sufficient that a linear uni-port circuit (one port) can be substituted 

by an equivalent Thévenin or Norton circuit. Paragraph 3.3 sets out the necessary and sufficient 

conditions for a linear uni-port circuit to be replaced by an equivalent hybrid circuit. 

Thévenin, Norton, and hybrid equivalent circuits are used in the construction of 

Nullified Hybrid equivalent circuits (Nullified Hybrid equivalent circuits). Thévenin, Norton, 

hybrid and zero hybrid equivalent circuits are used for local polarization of analog circuits, [1 

- 15]. Several illustrative examples are presented that highlight the veracity of the preocedies 

elaborated. 

3.2 THÉVENIN AND NORTON EQUIVALENT CIRCUITS 

 

  

 Un uni-port N with a single port (with a single gate) is well defined, in relation to that 

gate, unless it contains any circuit element that is connected, electrically or non-electrically, to 

a physical variable outside N: for example, controlled sources that depend on an external 
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variable of N , transformer windings magnetically coupled to an external winding, a 

photoresistor coupled to an external light source, etc. 

 Any  resistive, linear, time-invariant, well-defined uni-port N which meets the 

following single solvency condition  may be replaced by an equivalent uni-port without 

affecting the solution of any external circuit (not necessarily linear or resistive) connected to 

uni-port N. 

 

 

3.2.1 Thévenin Neq equivalent circuit  for a uni-port 

 

 Figure 3.1(a) represents a linear resistive circuit with two terminals, N, with both 

independent and internally dependent sources. 

 Unique solvency condition for a uni-port Thévenin circuit equivalent to Neq.  A uni-

port circuit N (fig. 3.1 (a)) obtained by connecting an ideal source independent of current j to 

terminals A, B of N (oriented from node B to node A) has a unique solution for any current 

value j. 

 

Fig. 3.1.  a) A linear resistive circuit with two access terminals to which the resistor is connected RAB;         

b) Thévenin equivalent circuit. 

If the N  circuit in figure 3.1(a) satisfies the single solvency condition above, then the N 

circuit  may be substituted by the equivalent voltage generator with  Ee = UTh = UAB0  and Ri = 

Req = RAB0 - called uni-port equivalent circuit Thévenin Neq (fig. 3.1 (b)). If between terminals 

A, B connects the resistor with the resistance RAB, then the current IAB has the expression: 

𝐼𝐴𝐵 = −𝐼 =
𝑈𝑇ℎ

𝑅𝑒𝑞 + 𝑅𝐴𝐵
, (3.1) 

where: Req = RAB0 is the equivalent resistance in relation to terminals A, B (when 𝑅𝐴𝐵 = ∞) of 

the  passivated N circuit (all t.e.m.  e (all currents j) of (ai) voltage-independent sources (current 

equal to zero) – called Thévenin equivalent resistance; UTh = UAB0 represents the voltage 

between terminals A and B when idling (when 𝑅𝐴𝐵 = ∞).  

 

3.2.2 Norton Neq equivalent circuit  for one-port 

 

 Unique solvency condition for a Norton uni-port circuit equivalent to Neq.  A uni-port 

circuit N (fig. 3.2 (a)) obtained by connecting an ideal voltage-independent source e to 

N- circuit rezistiv liniar care 

contine: R k, e k, j k , 

e c (i c ),j c (u c ),e c (u c ),j c (i c )

+

R AB R AB

- -

N- circuit rezistiv liniar care 

contine: R k, e k, j k , 

e c (i c ),j c (u c ),e c (u c ),j c (i c )

(a) (b)

UTH

IABA

B

VAB

I
ReqNeq

UAB

AI IAB

+ +

-
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terminals A, B of N (oriented from node B to node A) has a unique solution for any value of 

t.e.m.  e. 

 

Fig. 3.2.  a) A biport linear resistive circuit; b) Circuitul echivalent Norton. 

When the N  circuit in Figure 3.2(a) satisfies the unique solvency condition 

corresponding to the Norton equivalent circuit, then the circuit N can be substituted by the 

equivalent current generator with Je = Isc and Gi = Geq called the equivalent uni-port circuit 

Norton Neq (Fig.3.2(b)). If between terminals A, B connects the resistor with the conductance 

GAB, then the voltage UAB can be calculated with the formula: 

 

𝑈𝐴𝐵 =
𝐼𝑠𝑐

𝐺𝑒𝑞 + 𝐺𝐴𝐵
, (3.2) 

where: Geq = GAB0 is the equivalent conductance in relation to terminals A, B (when ) of the 

𝑅𝐴𝐵 = ∞ passivized N circuit (all t.e.m.  e (all currents j) of voltage-independent sources 

(current equal to zero) – called Norton equivalent conductance;  Isc = IABsc is the short circuit 

current between terminals A and B when a resistance RAB = 0 Ω  is connected between these 

terminals. 

 Before demonstrating the above theorems, let's first consider some interpretations and 

applications of these theorems: 

1. The main value of Thévenin's theorem, as well as the Norton theorem, is that it allows 

us to replace any part of a circuit that forms a single linear resistive port (but which is 

of no interest in a given situation) with only two circuit elements, without affecting the 

solution of the rest of the circuit; 

 

2. Either , 𝑅𝑒𝑞 ≠ 0. If we short-circuit the equivalent Thévenin Neq circuit and solve 

the circuit thus obtained in relation to current I, it is obtained (see fig. 3.1): 

𝐼𝑠𝑐 = −𝐼𝑠𝑐 = 𝐼𝐴𝐵𝑠𝑐 =
𝑈𝑇ℎ

𝑅𝑒𝑞
 (3.3) 

 

3. When 𝑅𝑒𝑞 ≠ 0 şi 𝐺𝑒𝑞 ≠ 0, the uni-port N circuit  has, according to the independent 

real source equivalence theorem, a Thévenin equivalent circuit as well as a Norton 

equivalent circuit. Equivalence relationships have the expressions: 

 

 

N- circuit rezistiv liniar care 

contine: R k , e k ,   j k , e c (i c ), 

j c (u c ), e c (u c ) , j c (i c )

+

R AB G AB

-

N- circuit rezistiv liniar care 

contine: R k , e k ,   j k , e c (i c ), 

j c (u c ), e c (u c ) , j c (i c )

(a) (b)
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Thévenin parameters: {
𝑅𝑒𝑞
𝑈𝐴𝐵0 = 𝑈𝑇ℎ

                                                  

⇒ parameters Norton : 

{
 
 

 
 𝐺𝑒𝑞 =

1

𝑅𝑒𝑞

𝐼𝑠𝑐 = 𝐼𝐴𝑏𝑠𝑐 =
𝑈𝑇ℎ
𝑅𝑒𝑞

; 

 Norton parameters: {
𝐺𝑒𝑞
𝐼𝑠𝑐 = 𝐼𝐴𝐵𝑠𝑐

  ⇒ parameters Thévenin : 

{
 
 

 
 𝑅𝑒𝑞 =

1

𝐺𝑒𝑞

𝑈𝑇ℎ =
𝐼𝑠𝑐
𝐺𝑒𝑞

. 

 

 

 

(3.4) 

 

4.  When a uni-port N is equivalent in relation to two access terminals A, B to both a 

Thévenin equivalent circuit and a Norton equivalent circuit, its input characteristic 

(of the operating point) is defined by the relationships: 

 

𝑈𝐴𝐵 = 𝑅𝑒𝑞𝐼 + 𝑈𝑇ℎ = −𝑅𝑒𝑞𝐼𝐴𝐵 + 𝑈𝑇ℎ  sau  𝐼 = 𝐺𝑒𝑞𝑈𝐴𝐵 − 𝐼𝑠𝑐 . (3.5) 

 This feature of the operating point (input) consists of a straight line with a slope Geq 

and the intersection with the ordinate in the plane UAB – I is Isc, as shown in figure 3.3, a, or 

with a slope Req and the intersection UTh in plane I-UAB. 

 

Fig. 3.3. a) Characteristic of the triggering (input) point of N with Ubone = UTh > 0 and    Geq > 0; b) 

Function point (input) feature with UAB = UTh and Req = 0; c) Function point (input) characteristic with 

I = -Isc and Geq = 0. 

The feature of the operating point in Figure 3.3(a) is drawn for the case where Geq > 0 , Uoc = 

UTh > 0 and Isc > 0. 

5. The limiting case Req = 0 is shown in Figure 3.3(b). A Thévenin equivalent circuit in 

this case consists only of an ideal independent battery voltage source of 

Uoc = UTh volts. A corresponding Norton equivalent circuit does not exist because             

Geq =∞. Indeed, the single solvency condition fails in this case – the Kirchhoff second 

theorem (TIIK) is not valid when a voltage source is applied. The limit case "dual" Geq 

= 0 is shown in Figure 3.3 (c). A Thévenin equivalent circuit does not exist in this case, 
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while the Norton equivalent circuit degenerates into an ideal current-independent 

source with a current intensity equal to Isc; 

6.   A uni-port N which does not allow, in relation to terminals A, B, any Thévenin 

equivalent circuit or a Norton equivalent circuit is shown in Figure 3.4(a). The 

characteristic UAB – IAB is defined by the equations 

 

𝑈𝐴𝐵 = 0      𝐼𝐴𝐵 = 0, (3.6) 

and therefore consists only of a point located in the origin. We must bear in mind that 

the "virtual short circuit" that characterizes the entrance gate of an ideal operational 

amplifier, which works in the linear region, has this property. Such a gate is called a 

nullator. 

 

Fig. 3.4. A uni-port characterized by a point in plane UAB -IAB - origin. 

Because the function point feature for both the equivalent ports of Thévenin and Norton 

consists of a straight line, it is clear that the null does not have a single port equivalent to 

Thévenin or Norton. Indeed, both "unique solubility conditions" are violated by this single port. 

We note that we can only drive N with a 0-V voltage source or a 0-A current source. 

From the above observations it can be found that if the biport N is not controlled in the 

current, then this circuit  does not possess an equivalent Thévenin circuit. Dual, if N is not 

voltage controlled, then the N circuit  does not possess an equivalent Norton circuit. So, in 

applying the Thévenin or Norton theorem, one can ignore the verification of the "single 

solvency condition – unique solvability condition" because this generally makes checking the 

determinant of the associated T-array matrix  a difficult test. Instead, one can simply proceed 

to calculate Req or Geq. Failure to obtain a single value for Req (respectively, Geq) could imply 

that the N circuit  does not have an equivalent Thévenin (respectively, Norton) circuit. 

Examples 3.1: Determine the Thévenin and Norton equivalent circuits for the bipolar circuit 

shown in Figure 3.5(a). To calculate the parameters Req and Geq , the simplified circuit in Figure 

3.5 (b) is used. For any voltage U applied to terminals A, B, current I1 = U/R, and from the first 

theorem Kirchhof results I1 = -4I1. So, ( ) R/VI 4−= .  
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Hence 

𝑅𝑒𝑞 =
1

𝐺𝑒𝑞
= −

𝑅

4
 . 

(3.7) 

Since both Req and Geq are finite numbers, we can conclude that the circuit N in Figure 2.5, a 

has a bipolar circuit (one-port) equivalent to Thévenin and Norton respectively. 

 Analyzing the circuits in figures 3.5(c) and 3.5(d) with the SCAP program [3] we obtain: 

 

𝑉𝑇ℎ = 𝑉𝑜𝑠 =
4𝐸 + 𝐽 ⋅ 𝑅

4
  si  𝐼𝑠𝑐 = −

𝑅 ⋅ 𝐽 + 4 ⋅ 𝐸

𝑅
 . 

(3.8) 

 

 

Therefore Req = 1/Geq = UTh/Isc = - R/4. So, the same results are achieved as above. 

 
Fig. 3.5. a) Uni – port N; b) Uni – port N simplified with a single port, obtained by passivation of all 

independent sources inside the uni-port N; c) Circuit used to calculate the voltage UTh = UAB0; d) 

Circuit used to calculate the current Isc. 
 

 

3.2.3 Thévenin and Norton theorems demonstration 

 

 Only the Thévenin theorem will be demonstrated, as the Norton theorem can also be 

demonstrated. The N circuit  is discovered in two subcircuits connected in cascade (see Fig. 

3.6 (a)), one denoted N, purely resistive, contains linear resistors invariant invariant in time and 

all types of independent and/or controlled sources, and the other denoted NL which can be linear 

or nonlinear resistive.  

 
Fig. 3.6. a) Partitioning of the arbitrary circuit N into a linear resistive uni-port N and a uni-port 

circuit NL which does not necessarily have to be linear or resistive; b) The circuit N is fed through the 

terminalel A and B  with an ideal source independent of current, having the intensity J of the current. 
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Since the N circuit  is purely resistive, it is completely specified by the operating point 

characteristic at each moment of time, in relation to terminals A and B. Therefore, with regard  

to the NL circuit, its solution depends only on this feature of the operating point. It is therefore 

sufficient to demonstrate that the circuit N is equivalent, in relation to terminals A and B, to a 

Thévenin circuit that has the same operating characteristic. 

 Supply the N circuit  with an ideal source independent of current, having the intensity 

J = I of the current (fig. 3.6 (b)). The N circuit is considered  to have within it nE voltage 

independent sources with voltage.E1, E2, ..., EnE and nJ independent current sources J1, J2, ..., 

JnJ. It follows from the 'single solvency condition' that the resistive circuit in Figure 3.6(b) has 

a unique solution for all values of independent sources. So, the superposition theorem can be 

applied  and according to this theorem the voltage U = UAB from terminals A, B of the circuit 

N has the expression 

𝑈 = 𝑈𝐴𝐵 = 𝑅𝐴𝐵_𝐴𝐵𝐽 +∑𝐴𝐴𝐵_𝑘𝐸𝑘 +

𝑛𝐸

𝑘=1

∑𝑅𝐴𝐵_𝑘𝐽𝑘

𝑛𝐽

𝑘=1

 , 

(3.9) 

Where 𝑅𝐴𝐵_𝐴𝐵 =
𝑉𝑈𝐴𝐵

𝐽
|𝐸𝑘=0 for all 𝑘
𝐽𝑘=0 for all 𝑘

= RAB0 = Req is the equivalent resistance in relation to 

terminals A, B (when) of the 𝑅𝐴𝐵 = ∞ passivized N circuit (all t.e.m.  e (all currents j) of (ai) 

sources independent of voltage (current) within the interor of the circuit N – called the 

equivalent resistance Thévenin;  UTh = UAB0 is the voltage between terminals A and B when 

idling (when ).  𝑅𝐴𝐵 = ∞ is the starting point or resistance to entry into N according to all 

independent sources on the insided  N; 𝐴𝐴𝐵_𝑘 =
𝑈𝐴𝐵

𝐸𝑘
|𝐸𝑚=0 for all 𝑚≠𝑘
𝐽𝑘=0 for all 𝑘,and 𝐽=0

represents the transfer 

factor (amplification) in the voltage from the side lk to the voltage UAB și 𝑅𝐴𝐵_𝑘 =
𝑈𝐴𝐵

𝐽𝑘
|𝐸𝑘=0
𝐽𝑚=0  𝑚≠𝑘,şi 𝐽=0

is the transfer resistance from side lk to side lAB. 

If J = 0 , the voltage U is, by definition, U = UAB0 = UTh. So, the last two sums in 

equation (3.9) represent the voltage UAB0 = UTh. In accordance with the above arguments 

equation (3.9) can be written in the form: 

𝑉 = 𝑅𝑇ℎ𝐼 + 𝑈𝑇ℎ . (3.10) 

 calculate the current I. 

 

Example 3.2: Figure 3.7(a) shows a simplified small signal equivalent circuit of a single-storey 

BJT amplifier with virtual polarization sources included. The Thévenin model for the amplifier 

viewed from the output port is shown in Figure 3.7(b). Figure 3.7(c) shows the characteristic 

port curve (one line), indicating the linearity of the circuit. The figure also shows how we can 
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move from the Thévenin model, specified by the point T(2.5V, 0), to the Norton model, given 

as a point N(0, 1.25mA) on the characteristic line. 

 

Fig. 3.7. a) An equivalent simplified small signal circuit of a single-storey BJT amplifier; b) The 

Thévenin equivalent circuit; c) The characteristic curve of the port, indicating the linearity. 

 

However, despite their simplicity, there is a rigidity involved in the representation of the 

port by either the Thévenin equivalent circuitry or the Norton circuits. As shown in Figure 

3.7(c) the Thévenin or Norton model occupies only one point on the characteristic line, where 

the line meets one of the axes.  

The complexity of the circuit created in this way may not be so obvious for a single-

port connection, but for several ports the complexity can become quite significant. There are 

other cases in which circuits on both sides of a port have to engage in some exchanges (sources 

or components); therefore, a more dynamic port modeling may be required. Examples can be 

found in the transformation of the source, the modeling of the noise source and the cases of 

power transport. Port cancellation is another example that uses hybrid modeling, as discussed 

below. 

 

3.3 HYBRID EQUIVALENT CIRCUIT 

 

 Either a linear resistive circuit containing resistors, independent sources of voltage and/or 

current and all four types of biport-controlled sources. We extract from the terminals (nodes) A 

and B of the circuit the resistor with the resistance RAB, as in figure 3.8. The circuit to the left of 

vertices A, B in Figure 3.8 shall satisfy the conditions for the equivalence of this circuit to the 

Thévenin equivalent circuit and the Norton equivalent circuit respectively. In order for a linear 

resistive circuit to be substituted, in relation to terminals (vertices) A, B, with an equivalent 

Thévenin circuit, voltage UAB must exist and be unique to any value J of the current of an ideal 

source independent of current, when the resistor RAB is replaced by such a source. Similarly, if 

the resistor RAB in Figure 3.8, is substituted by an ideal voltage-independent source with t.e.m.  

E, the resistive linear circuit to the left of terminals A, B can be replaced by a Norton equivalent 

circuit if the current IAB exists and is uniquely determined for any E value  of t.e.m. of the ideal 

independent voltage source. 
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Fig. 3.8. Hybrid equivalent circuit. 

 

A hybrid equivalent circuit, or simply an H~ model, of a two-terminal network is a generalized 

version of the equivalent Thevenin or Norton circuit; for resistive circuits it consists of a 

voltage source UH, a current source IH and an equivalent resistance, Req, which is identical to 

that of the Thévenin or Norton model (Fig. 3.8). It turns out that here one source, VH or IH, can 

be selected arbitrarily, and the other source is determined by the equation (3.12).  

We assume that the circuit to the left of the resistor RAB in Figure 3.8 satisfies the 

conditions for the existence of the equivalent ciruites Thévenin and Norton.   According to the 

Thévenin  theorem, the current IAB has the expression: 

𝐼𝐴𝐵 =
𝑈𝑇ℎ

𝑅𝐴𝐵 + 𝑅𝑒𝑞
, (3.10) 

 

where 𝑈𝑇ℎ = 𝑈𝐴𝐵0 = 𝑈𝐴𝐵|𝐼𝐴𝐵=0 is the voltage at terminals A, B of the active circuit, when   IAB 

= 0, and 𝑅𝑒𝑞 = 𝑅𝐴𝐵0 =
𝑈𝑇ℎ

𝐼𝐴𝐵𝑠𝑐
 the equivalent resistance of the passivated circuit in relation to 

terminals A, B (IAB = 0). Applying the Kirchhoff theorems to the hybrid equivalent circuit in 

Figure 3.8, the result is: 

 

 

KCL:  𝐼𝑒𝑞 = 𝐼𝐻 − 𝐼𝐴𝐵 = 𝐼𝐻 −
𝑈𝑇ℎ

𝑅𝐴𝐵 + 𝑅𝑒𝑞
, 

 

KVL:  𝑈𝐻 = 𝑅𝐴𝐵𝐼𝐴𝐵 − 𝑅𝑒𝑞𝐼𝑒𝑞 = 𝑅𝐴𝐵
𝑈𝑇ℎ

𝑅𝐴𝐵 + 𝑅𝑒𝑞
− 𝑅𝑒𝑞 (𝐼𝐻 −

𝑈𝑇ℎ

𝑅𝐴𝐵 + 𝑅𝑒𝑞
) 

(3.11) 

From equations (3.11) it follows: 

𝐼𝐻 = 𝐼𝑠𝑐 −
𝑉𝐻

𝑅𝑒𝑞
 sau 𝑈𝐻 = 𝑈𝑇ℎ − 𝑅𝑒𝑞 ⋅ 𝐼𝐻, 

(3.12) 

where 𝐼𝑠𝑐 = 𝐼𝐴𝐵𝑠𝑐 =
𝑈𝑇ℎ

𝑅𝑒𝑞
. It turns out that here one source, UH or IH, can be selected arbitrarily, 

and the other source is determined by equations (3.12). 

 

 We must bear in mind that, like the Thévenin or Norton models, only two 

measurements are needed here to obtain all the parameters of the H~ model. For example, for 



CONTRIBUTIONS REGARDING THE ANALYSIS OF ELECTRICAL CIRCUITS 

WITH NULORS 

 

36 

 

a selective value of current IH and two measurements of voltage UTh and current IN = Isc, 

equations Req = UTh/Isc și (3.12) can be used to obtain the resistance Req and the voltage VH for 

the model. Now, we consider two circuits (networks) N1 and N2 connected by port j (Uj, Ij), as 

shown in Figure 3.9 [1]. There are two types of H~ models for the linear (linear) circuit 

(network) with two terminals N1. Model H~ of type 1 is shown in Figure 3.10 (a). To find this 

pattern, first open the port where Ij = 0. If we refer to Figure 3.10, a and consider the equation 

(3.12) is obtained: 

 

𝑈𝑗 = 𝑈𝐻 + 𝑅𝑒𝑞𝐼𝑁 = 𝑈𝑇ℎ                                                  (3.13)                           

 

Fig. 3.9. Two circuits (networks) N1 and N2 connected by a port j (Uj, Ij). 

 

Fig. 3.10. A hybrid equivalent circuit with two terminals for circuit N1:  

a) Type 1 representation; b) Type 2 representation; c) Location on the characteristic curve of the port. 

 

From equation (3.12) it follows: 

 

𝑈𝐻 = 𝑈𝑇ℎ − 𝑅𝑒𝑞𝐼𝑁 = 𝑈𝑇ℎ − 𝑅𝑒𝑞𝐼𝑠𝑐. (3.14) 

 However, the sources of model H~ of type 2 remain the same as those of type 1, but 

instead of calculating the equivalent resistance Req, we leave the N1 circuit  to remain 

unadulterated, except that all its DC sources are removed, as shown in Figure 3.10(b). The term 

"DC power removed" means that all dc-independent sources are removed from the N1 circuit, 

including the charges on the capacitors and the currents through the coils. The type 2 H~ model 

is useful in a number of applications, such as moving DC sources from a circuit to its port-type 

terminals, without disrupting the internal structure (topology) of the circuit (network). 

 We must bear in mind that, due to the fact that it has two sources instead of one, an 

H~ model represents an axis of freedom that acts as a tool in the dynamic modeling of a port. 

As shown in Figure 3.10(c), a model H~- covers a full and continuous range of equivalent 
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circuits for a network with two terminals. It is evident from equation (3.12) and Figure 3.10 (c) 

that both the Thévenin and Norton models are two special cases of an H~ model. 

3.3.1. Nullified hybrid equivalent circuit  

 A null (cancelled) hybrid equivalent circuit, called the H-model, is a special case of 

an H~-model; where, the values of the voltage and current sources in the model are identical 

to the corresponding values of the port voltage and current. This means that the sources in an 

H-model represent the polarization situation of the corresponding port. For example, we take 

the case from Figure 3.9, where the circuit (network) N1 provides the voltage Uj and the current 

Ij to polarize the circuit (network) N2. The two models for this example are shown in Figure 3. 

18, (a) and 3.18, (b). Note that figures 3.18, (a) and 3.18, (b) are identical to figures 3.10, (a) 

and 3.10, (b), unless the model sources represent port values. We also note from figure 3.18 it 

is obtained, as a result of the modeling H, another port, k (Uk, Ik), is created on N1, where both 

Uk and Ik are zero. Port k (Uk, Ik) is called a "nullified" port, and the process of creating it is 

called "port cancellation", as will be discussed below. 

 

Fig. 3.18. An H model for a terminal N1 with two terminals; a) Representation of type 1; b) 

Representation type 2, [1, 2, 15]. 

Theorem 1 introduces an important property of an H model that deals with the distribution of 

power in a network [1, 2, 15]. It adds additional dimension to the analysis and segmentation of 

power in a network. 

Theorem 1: We consider a circuit (a network) N2 connected (connected) to another circuit (to 

another network) N1 through a port j (Vj, Ij), as in Figure 3.9. Replacing N1 with model H of 

type 1 or type 2 reduces energy consumption to zero, while energy consumption in N2 remains 

unchanged, [1, 2]. 

Demo: Consider the H~ model in Fig. 3.10, (a) or 3.10, (b). Both sources, IH and VH, provide 

power to the networks N1 and N2. The power delivered to the subcircuit N2 is fixed and is 

calculated with the ratio P2 = Uj*Ij; while in model H~ of type 1 the power consumed in 

subcircuit N1 (Fig. 3.10, a) is P1 = Req(IH – Ij)
2 . Therefore, the power P1 in the subcircuit N1 

becomes zero if IH = Ij, which also results in equality VH = Vj. However, for model H type 2, 

we note from figure 3.14, (b) that the N'1 subcircuit has no DC source from which to obtain 

power, in addition its port is also nullified. Therefore, all currents and voltages inside the N'1 

subcircuit must be zero, resulting in zero energy consumption. 

Port cancellation: A circuit (network) N2 connected to another circuit (to another network) N1 

via a port j (Vj, Ij) is taken into account, as shown in Figure 3.19. One way to cancel port j is to 

increase the port from both sides (N1 and N2) with current sources.  Ij and voltage sources Uj 

as shown in Figure 3.18. The result is the creation of another port k (Uk, Ik) which, by definition, 

is a null port, i.e. both Ik and Uk are zero, [1, 2]. 
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Fig. 3.19. A simple port cancellation procedure without any changes required N1 or N2, [1- 8,15]. 

However, there is an alternative method of creating a null port when two circuits (networks) 

N1 and N2 are connected by a port (through a gate) j (Uj, Ij), shown in Figure 3. 9. Here we can 

simply replace the N1 circuit  with its model H Type 1 or Type 2 and create the null port k (Uk, 

Ik), as shown in Figure 3.18. As a result of the nullified port procedure, shown in Figures 3.18 

and 3.19, an extensive network, N'2, is created, which contains the N2 circuit and in addition 

contains the sources belonging to the model H. Similarly, another N'1 network is created, on 

the left side, when the model H loses its sources. As we can see later, these extensive networks 

are of particular importance in the polarization of circuits. It should be noted that the 

characteristic curves of gates (ports) j and k are identical, with the exception of the 

displacements of U and I, the coordinate axes, from the origin to the point Qj (Uj, Ij). This 

causes the operating point Qj (Uj, Ij) to move to the origin, creating a new operating point 

Qk(0,0) for port k, shown in Figure 3.20. This simply means that for any pair of networks, N1 

and N2, connected by a j port, it is always possible to cancel the port and change the N1 and N2 

circuits to the N'1 and N'2 circuits, where N'1 and N'2 are identical to N1 and N2 , with the 

exception of the coordinates axes U and I which are at the point of operation (operation of the 

port). This is mentioned in Property 1. 

 

Fig. 3.20. The I-U coordinate axis  has moved from (0, 0) for port j to a new position, Qj(Uj, 

Ij), for port k, [15]. 
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Property 1: Either two circuits (two networks) N1 and N2 connected via a port j, as shown in 

Figure 3.9. If the port j is null, then the characteristic curve I - U of the port, viewed in relation 

to either of the two networks, passes through the origin, and the origin is the operating point of 

the port. If port j is not null, it is always possible to cancel the port in order to obtain the 

corresponding networks N'1 and N'2 with a zero port k, as shown in Figure 3.18, [1, 2]. 

Although the characteristic I-U curve  of the port j (associated with both networks) does not 

pass through the origin, the one that port k does (property 1). In addition, point Q of port k is 

located at the origin, as expected. Note that: i) the N'1 network, on the left, is still linear and ii) 

the new port k has a characteristic curve I - U  passing through the origin, and the origin is also 

the point Q for the port. This simply means that the Thévenin equivalent circuit of N'1, looking 

from port k, must be a resistance with no source attached. 

 

4. CONCLUSIONS 

          The chapter presents the necessary and sufficient conditions to be satisfied by one-

port linear circuits to be substituted for Thévenin, Norton, and Hybrid equivalent circuits. 

These circuits are widely used in the analysis of analog circuits. It is simply demonstrated, 

based on the superposition theorems, the Thévenin and Norton theorems. 

 The main value of Thévenin's theorem, as well as the Norton theorem, is that it allows 

us to replace any part of a circuit that forms a linear resistive port, a linear circuit in synnosoidal 

mode, or a linear circuit in operation (but not of interest in a given situation) with only two 

circuit elements without affecting the solution of the rest of the circuit. 

 A new modeling technique, called H~, is introduced for single-port networks. It is 

shown that H~ models are more dynamic compared to Thévenin or Norton equivalent circuits 

and have the ability to describe port behavior more accurately 

         Thévenin, Norton, and hybrid equivalent circuits are used in the construction of 
Nullified Hybrid equivalent circuits. Thévenin, Norton, hybrid, and zero hybrid equivalent 

circuits are used to locally polarize analog circuits. 

 Another objective of this work is to introduce a guided design procedure for 

polarization. Our strategy separates the linear and nonlinear portions of an analog circuit and 

takes more control over the nonlinear portions. This separation of portions (components) within 

the circuit is achieved by introducing a new port modeling that cancels the ports of nonlinear 

devices. This, in turn, leads to a new polarization technique for nonlinear components. 

 The use of Thévenin and Norton equivalent circuits in the simulation of nonlinear circuits 

with a small number of nonlinear circuit elements leads to a reduction in the calculation time 

and an increase in the accuracy of the results obtained. 

 The main value of Thévenin's theorem, as well as the Norton theorem, is that it allows 

us to replace any part of a circuit that forms a linear resistive port, a linear circuit in synnosoidal 

mode, or a linear circuit in operation (but not of interest in a given situation) with only two 

circuit elements without affecting the solution of the rest of the circuit. 
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4. NETWORK SWITCHING ANALYSIS WITH INCONSISTENT INITIAL CONDITIONS 

 

4.1. INTRODUCTION 

 

 Circuits with topology controlled by switches containing semiconductor elements are 

of great interest in power electronics and communications. This domain includes both 

externally controlled circuits (i.e. by clock) and internally controlled circuits (i.e., by state). 

The modeling of switching circuits (circuits with switched capacitors or with switched circuits 

in current, DC-DC converters, switched modulators, etc.) with idealized models (elements in 

short circuit or in open circuit), very often leads to discontinuities of variables at switching 

times. 

 The details of the rapid changes of the signal during switching, provided by the 

complete models, are not relevant for circuit analysis, since the integration operations in those 

moments consume most of the calculation time [9, 10]. Accordingly, many tools for analyzing 

switching circuits consider idealized models of switches (short circuit or open circuit - empty) 

and treat the switch itself as an instantaneous event. 

 It is well known that this approach leads to circuits with excess storage elements and 

inconsistent initial conditions (CIIs) that in turn determine the discontinuity of network 

variables at times of switching. If we use ideal switches, we can overcome such a transition, 

but there are problems that arise from initial inconsistent conditions. 

Modeling of switching circuits often leads to discontinuities of circuit variables at times 

when the switch changes state. This phenomenon is called with initially inconsistent conditions 

(CII), [1 – 13, 18, 19, 24]. 

The problem of the initial inconsistent conditions arises only for ideal circuit breakers, 

when, after switching, the circuit contains excess elements (loops consisting of independent 

and/or voltage-controlled capacitors or sources; nodes in which coils or independent and/or 

current-controlled sources meet), [1-17]. 

 

It is necessary to solve two major problems arising in connection with the initial 

inconsistent conditions, namely: 

1. Find consistent initial conditions after switching to 𝒕 = 𝒕𝟎+, knowing the initial 

inconsistent conditions before switching to  𝒕 = 𝒕𝟎−; 

2. Calculation of the surfaces of Dirac pulses that occur at the time of switching. 

Numerical, symbolic, and numerical-symbolic methods are used to find the correct 

initial conditions and to calculate the areas of impulses. For large circuits, the method of state 

variables [5] is not recommended. 

If after switching the circuit has no excess elements and if the parameters of independent 

sources are known at any time in the time interval of interest, the condenser voltages and coil 

currents are continuous time functions. Therefore, the values of the state variables at t0- and t0+ 

are the same and there is no inconsistency.  

Recently, considerable attention has been devoted to the development of methods that 

conveniently deal with the problem of initial inconsistent conditions, [1-9, 12, 17]. Numerical, 

symbolic, or mixed analyses are used to find the correct initial conditions and to calculate the 
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areas of dirac pulses. Although the most commonly used method in the simulation of switching 

circuits is modified nodal analysis, the array method brings smaller numerical errors, while the 

method of state variables is considered less suitable for large circuits. 

In the symbolic analysis of switching circuits, these problems were recognized and 

solved using the analytical approach, both in the time domain and using the Laplace transform. 

In this chapter is presented a simple method for analyzing complex networks with 

switches considering that the ideal switch avoids these problems. This approach is based on 

the modified nodal analysis, when time-varying resistors are used to model ideal circuit 

breakers, as shown in Figure 4.1.. Switching duration (𝑡′ − 𝑡0) is considered less than or equal 

to the pitch size,[18]. 

 

 
 

Fig. 4.1. Modeling of ideal switches by variable resistors: 

a) Circuit breaker open at t = t0; b) Circuit breaker closed at t = t0. 

 

For time analysis of electrical switching circuits, the default Euler medota can also be 

used. The switching time is considered to be .0t  In this way, the initial consistent conditions 

at 
+0t are automatically set in accordance with the initial inconsistent conditions at .0−

t  In order 

to calculate the dirac pulse areas for the condenser currents and/or the coil voltages, we have 

to multiply these variables by the size of the integration step h, at the times when the switches 

change their state. 

 The main topic of this chapter is related to well-formulated, but improperly excited 

circuits. This type of circuit has one of the following equivalent characteristics: 

 – They are not excited per se, not having classical solutions, for any classical 

excitation (their solutions contain distributions, generalized functions, such as Dirac impulses, 

when the excitations have discontinuities of time); 

 – Have excess reactive elements (first kind): C loops of capacitors and possible 

independent and/or controlled ideal sources of voltage and/or Lj inductor sets and possible 

independent and/or current sources; 

 – Pathological circuits, in which the state variables (inducing currents) and the 

voltages of the capacitors have jumps at the initial moment of time and, therefore, the energy 

balance is not observed. 
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The explanation for this behavior is the switching that occurs at the initial moment of time, 

which changes the topology of the circuit, causing the initial conditions not to conform to the 

Kirchhoff equations. 

 Before presenting the procedures used for the analysis of pathological circuits with 

inconsistent initial conditions, the essential elements for the analysis of analog circuits in the 

dynamic state are briefly presented. 

 

4.2 SOME KEY ISSUES CONCERNING THE ANALYSIS OF ANALOG 

CIRCUITS IN THE TIME DOMAIN 

 

4.2.1 Introduction 

 

 The state of operation in which the electrical circuit reaches a certain state of 

equilibrium, that is, its response has the same shape and variation in time as the applied 

excitation (input) quantities, is called the stationary state. Unlike resistors, coils and linear 

capacitors have characteristic time-dependent equations, so they are referred to as dynamic 

circuit elements. In circuits containing such elements, the stationary state is not established 

instantly, since it would involve a finite transfer of energy (accumulated in coils and/or 

capacitors) in a nil time, which is obviously impossible to achieve. 

 The operating equations of these dynamically elemental electrical circuits are 

obtained using Kirchhoff's theorems and the characteristic equations of the circuit elements 

that completely describe the behavior of the circuit. The presence of coils and capacitors in 

the circuit introduces into these equations terms containing derivatives from time, respectively 

integrals in relation to time: 

 

𝑖𝐶(𝑡) =
𝑑𝑞𝐶

𝑑𝑡
= 𝐶 ⋅

𝑑𝑢𝐶

𝑑𝑡
, 𝑢𝐿(𝑡) =

𝑑𝜙𝐿

𝑑𝑡
= 𝐿 ⋅

𝑑𝑖𝐿

𝑑𝑡
. (4.1) 

 Therefore, the behavior of the circuit will be described by a system of integro-

differential equations that are linear, inhomogeneous, with constant coefficients. This system 

can still be processed as a system consisting only of differential equations. By successive 

eliminations, this system can be reduced to a single differential equation of order n. Since only 

the coils and capacitors each introduce a differential element, and if the circuit does not contain 

excess elements [30] it follows that the n-order of the equivalent equation is equal to the sum 

of the number of coilse nL and the number of capacitors nC in the circuit. The solution of the 

differential equation of order n has the form: 

 

𝑥(𝑡) = 𝑥𝑝(𝑡) + 𝑥𝑡(𝑡), (4.2) 

 

where: ( )txt  is the general solution of the homogeneous equation (corresponding to the 

passivation of sources) and contains a number of constants of integration equal to the order of 

the equation. These constants are determined on the basis of initial conditions (values at the 

time t0=0 or different from zero) which must be met by the complete solution and which refers 

to the initial values of the currents through the coils and to the voltages at the terminals of the 
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capacitors. This component is due solely to the accumulation of electromagnetic energy in the 

dynamic elements of the circuit and, consequently, its duration corresponds to the time interval 

necessary for the irreversible transformation of this energy into heat in the elements of the 

dissipator circuit. Since it is independent of the sources of excitation and its duration is limited, 

this component is called a free component or a transient component  of the solution, and ( )txp  

it represents a particular solution of the inhomogeneous equation. Its corresponding expression 

is determined by the mode of variation in time of the function that represents the free term of 

the equation, corresponding to the excitation quantities that give this component; that is why 

this solution is also called a forced or permanent component. 

 The transient state occurs at the time of t0 and is greatly influenced by the previous 

operating conditions of the circuit. In this state the free solution has important values in relation 

to the values corresponding to the forced solution. 

 Formulating the problem of initial conditions is necessary to determine the n 

integration constants of the transitional component. These constants are determined on the basis 

of the values at moment t0 of some of the characteristic dimensions of the circuit, values that 

represent the initial conditions of the transient state. 

Since it is the dynamic elements of the circuit that determine the integro-differential nature of 

the circuit equations, and the currents of the coils, respectively, the condenser voltages can be 

expressed using the following relationships: 

 

𝑖𝐿(𝑡) =
1

𝐿
∫𝑢𝐿(𝑡) 𝑑𝑡 =

1

𝐿
∫ 𝑢𝐿(𝜏)
𝑡

𝑡0
𝑑𝜏 + 𝑖𝐿(𝑡0),  (4.3) 

respectively 

𝑢𝐶(𝑡) =
1

𝐶
∫ 𝑖𝐶 (𝑡)𝑑𝑡 =

1

𝐶
∫ 𝑖𝐶
𝑡

𝑡0
(𝜏)𝑑𝜏 + 𝑢𝐶(𝑡0),  

(4.4) 

it follows that these initial conditions refer to the initial values  of the coil current and the 

condenser voltage. As a consequence, we have a total number of nL+nC initial conditions, 

necessary to determine all n constants of integration, it follows that these initial conditions refer 

to the initial values of the inductor and the capacitor. Consequently, we have a total number of 

nL+nC initial conditions, necessary to determine all n constants of integration. 

For the case of real circuits, the values ( )0tiL , respectively ( )0tuC  are obtained from 

the state of continuity of the inducing currents and of the capacitor at the moment t0: 

( ) ( )
+−

= 00 t i ti LL , respectively ( ) ( )
+−

= 00 t utu CC  -  for linear circuits,  

𝜙𝐿(𝑡0−)  =  𝜙𝐿(𝑡0+), respectively 𝑞𝐶(𝑡0−) =  𝑞𝐶(𝑡0+)   for nonlinear circuits
 

 

(4.5) 

 If the needleis not imposed, at the time t0, infinite variations in the coil voltages 

andcondensate currents will appear in the circuit. 

Values ( )
−0tiL , Respectively ( )

−0tuC , are calculated from the stationary state prior to the 

transient state. For the case of idealized circuits with finite energy, used to emphasize only a 
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few important aspects of the behavior of such circuits, one can also imagine an ideal switching 

that can produce steep variations in the sizes iL and uC, thus infinite variations of the currents 

through the capacitors andof the voltages at the terminals of the coils . In this situation, the 

initial conditions are determined using the general total magnetic flux preservation theorem for 

each loop that does not contain any ideal independent and/or controlled current source and the 

total electric charge preservation theorem for each section (section surface) that does not 

contain any ideal source of independent and/or controlled voltage:  

 

( )
( )

( ) ( ) ( )
( )

( ) ( ) b,h,tiLtiLtiLtiL
l
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(4.6) 

 

respectively, 

( )
( )

( ) ( )
( )

( ) 'n,jtuCtuC Ckk
l

ACkk
l

A

jkjk

100 == +


 −


,  

(4.7) 

 

where b' - represents the number of loops that do not contain any ideal  independent and/or 

controlled current source, and n' is the number of  independent sections that do not contain any 

ideal  independent and/or controlled voltage source. 

These relationships result from the condition that the magnetic energy (electrical energy) 

accumulated in the magnetic field of the coils (in the electric field of condensatotheirs) has 

only finite variations. 

 

4.2.2   Operational equations of linear electrical circuits 

 

 In order to formulate the equations of the circuit directly in algebraic form, 

avoidingthe formulation of the integro-differential equations, one can use, for the analysis of  

the electriccircuits e lineare in transient regime (in the time domain), the symbolic method of 

the Laplace transformation [11 – 13, 18, 30]. Next, it will be studied how transfomata Laplace 

affects the constituent relationships of the elements of the circuit. 

For the linear resistor, the characteristic equation is ( ) ( )tiRtu RR = . By applying the Laplace 

transform, the following relationship is obtained: 

 

( ) ( )sIRsU RR = . (4.8) 

The constitutive equation (characteristic), in variable mode, of a linear coil is 

( )
( )
t

ti
Ltu L

L
d

d
=  and by applying the derivative theorem in operational, the following are 

obtained: 

( ) ( ) ( ),LisIsLsU LLL −−= 0  (4.9) 

suggesting a model in the field of s - consisting of an operational impedance  sL in series with 

a voltage source of c onected value ( )−0LLi as shown in Figure 4. 2. If the Laplace transform of 

the current is extracted from equation (4.9), it follows: 
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𝑰𝑳(𝒔) =
𝑼𝑳(𝒔)

𝒔𝑳
+
𝒊𝑳(𝟎−)

𝒔
, 

(4.10) 

 

suggesting a Laplace circuit equivalent to the current source connected in parallel with the 

operational admitance 1/ ( ) s/iL −0 sL (fig. 4.2). 

For a  linear capacitor, the variable-mode constituent equation is𝑖𝐶(𝑡) = 𝐶 ⋅
𝑑𝑢𝐶(𝑡)

𝑑𝑡
. By applying 

the Laplace transform to this equation, one obtains: 

 

( ) ( ) ( )−−= 0CCC CusUsCsI , (4.11) 

 

corresponding to the operational model in Figure 4. 3, with the current source in parallel with 

( )−0CCu  

iL(t)

L
uL(t)

£

£- UL(s)

sL

-

+

IL(s)

φL(0_)=LiL(0_)

UL(s)
1

sL

iL(0_)

s

 

Fig. 4.2. Laplace models equivalent for an ideal linear coil. 

𝑼𝑪(𝒔) =
𝑰𝑪(𝒔)

𝒔𝑪
+
𝒖𝑪(𝟎−)

𝒔
, 

(4.12) 

 

suggesting the alternating pattern with the voltage source in series with impedance ( ) s/uC −0

sC/1  

C

iC(t)

uC(t) UC(s) +

-

IC(s)

uC(0_)
s

UC(s)

1
sC

1
sC

IC(s)

q(0_)=CuC(0_)£
£-

 
Fig. 4.3. Laplace models equivalent to an ideal linear capacitor. 

For two magnetically coupled linear coils, the variable equations have the structure: 

( )
( ) ( )

( )
( ) ( )

t

ti
L

t

ti
Ltu

t

ti
L

t

ti
Ltu

d

d

d

d

d

d

d

d

2
2

1
212

2
12

1
11

+=

+=

. (4.13)    
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Applying the Laplace transform to equations (4.13) results: 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )



+−+=

+−+=

−−

−−

00

00

12122221222

21211212111

iLiLsIsLsIsLsU

iLiLsIsLsIsLsU
. 

 

(4.14) 

 

 

4.2.3  Dirac impulse 
 

 

Function defined by relationship ( )t : 

𝛾(𝑡) = {
0  𝑓𝑜𝑟 𝑡 < 0
1  𝑓𝑜𝑟 𝑡 ≥ 0 

, (4.15) 

 

it is called the unit step function  (Heaviside function). This relationship is the mathematical 

model of a signal that changes suddenly, for example by turning off a switch, and that is 

equivalent to the sudden application of a continuous signal. For a circuit with zero initial 

conditions ( ) ( )( )00sau00 == −− LC iu , the effect of applying the signal consists in introducing 

the response of the circuit to a continuous excitement to ( )t sell the value equal to the unit. 

 If the signal is applied at the time 0 , the following function is defined:  

 

𝛾(𝑡 − 𝜏) = {
0  𝑓𝑜𝑟 𝑡 < 𝜏
1  𝑓𝑜𝑟 𝑡 ≥ 𝜏

, 
(4.16)  

 

called the phased unit step function (offset) with  . Functions ( )t  and ( ) −t  can be used 

for mathematical modeling of other discontinuous functions, such as impulses. 

For example, the pulse function applied at the time 0=t is obtained prin the overlap of a 

positive unit step function ( )t  with a phase unit  step function with   negative ( ) −− t , and 

the impulse function applied at the time =t  results from overlapping the function ( ) −t  

with function ( ) −t .. 

For ( ) →→ 0 , so that the pulse area is equal to the unit, a unitary pulse is obtained or the 

Dirac impulse, denoted by ( )t . 

Function ( )t  has a singularity in ( )== tt 0 , being zero for the rest of the range, i.e.: 

 

𝛿(𝑡) = {

0  𝑓𝑜𝑟 𝑡 < 0
∞   𝑓𝑜𝑟 𝑡 = 0
0   𝑓𝑜𝑟 𝑡 > 0

, (4.17) 

respectively 
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𝛿(𝑡 − 𝜏) = {

0  𝑓𝑜𝑟 𝑡 < 𝜏
∞   𝑓𝑜𝑟 𝑡 = 𝜏
0   𝑓𝑜𝑟 𝑡 > 𝜏

. (4.18) 

The function thus defined originates from the (in =t ) an infinite value, which is symbolized 

by an arrow, but is infinitely narrow, so as to ensure an area equal to the unit, so: 

 

𝐴𝛿 = ∫ 𝛿(𝑡)𝑑𝑡 = ∫ 𝛿(𝑡)𝑑𝑡 = 1
0+
0−

∞

0−
 . 

(4.19) 

At the same time, for everything    ,21 t,t 210 tt   

 

∫ 𝛿(𝑡 − 𝜏)𝑑𝑡 = ∫ 𝛿(𝑡 − 𝜏)𝑑𝑡 = 1
𝜏+
𝜏−

𝑡2
𝑡1

, (4.20) 

 

changing the integration limits is possible because ( ) −t  is zero for all this range except for 

the moment =t . 

Taking into account the last relationship, it follows that for everything  21 t,t , 

210 tt   

 

∫ 𝑓(𝑡)𝛿(𝑡 − 𝜏)𝑑𝑡 = 𝑓(𝜏)
𝑡2
𝑡1

. (4.21) 

Between the unit hatch function and the Dirac momentum there is the 

following relationship: 

 

 

𝛿(𝑡) =
𝑑𝛾(𝑡)

𝑑𝑡
. 

 

(4.22) 

 

Therefore, the response of the linear circuit to impulse excitation can be determined by its 

response to stepped excitation, by derivation. The physical effect of signal application ( )t  
consists in injecting an energy that induces the natural response of the circuit. The duration of 

the Dirac pulse occurs instantaneously in relation to the time constant of the circuit. 

 The two functions introduced in this paragraph allow the analysis in the time domain 

of a circuit in case the excitation signal has a variation in step or momentum time or, being 

determined experimentally, can be expressed by overlapping simple distributions. The circuit 

response is determined using the superposition theorem, by breaking down the input semnal 

into  the ptaor momentum functions and knowing the circuit's response to such excitations. 

 

 

4.3. DESCRIPTION OF THE METHOD 
 

4.3.1  Introduction 
 

 In order to find the correct initial conditions and to calculate the pulse areas for the 

analysis of analog switching circuits (in switching), numerical, symbolic and numerical-
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symbolic (mixed) methods are used. These methods allow to find the correct initial conditions 

and can calculate the areas of momentum. For large circuits, the methods of state variables are 

not recommended. 

 Numerical methods that preserve magnetic flux and electric charge, for example the 

default Euler Formula (EBF), are used to integrate equations of switching circuits, but the 

problem is given by how the integration stage should be controlled. The error of the EBF 

method increases as the integration time increases. When the step is too small, due to 

inconsistent initial conditions, the error may increase prohibitively. Modified nodal equations 

are commonly used to simulate switching circuits, but the array method brings in smaller 

numerical errors [1 – 29]. 

 In this paragraph, the methods of numerical-symbolic analysis are introduced. The 

size of the integration pitch h is only a symbolic variable. This allows to detect the exact values 

of the Dirac pulses and calculates the initial conditions after switching avoiding errors of pure 

numerical methods. The algorithm, at all its stages, consistently processes only polynomials in 

h. 

 In practice, it has been found that the most effective method of modeling the states of 

circuits in the switch is their modeling by using open circuits (open state) and short circuits 

(closed state). 

 If the switch occurs to 00 =t , then, due to a possible change in the topology of the 

circuit, the values of the circuit variables at += 00t , required by numerical procedures, may be 

different from those corresponding to the moment .00 −=t  In this case, Impulses Dirac appear. 

A general solution for the circuit x(t) variable for 0t , is as follows: 

 

 

𝑥(𝑡) = 𝜒(𝑡) + 𝛼0𝛿(𝑡) + 𝛼1𝛿
(1)(𝑡) + ⋯+ 𝛼𝑘𝛿

(𝑘)(𝑡). 
(4.23) 

 
 

where ( )t  is x(t) for 0t , and 
( )( )tl is the derivative of the order l of the Dirac impulse. 

It is assumed that the switching time is zero. The analysis of the time domain is valid. Two 

conditions are required that need to be solved for a correct integration of the circuit equations: 

1. Determine whether or not pulses occur during switching; 

2. Dermination of the initial conditions immediately after switching. 

           To meet these conditions apply semi-symbolic analysis. In circuit theory, the term semi-

symbolic usually refers to the analysis in the frequency domain, when all the parameters of the 

circuit have numerical values except for the frequency which is considered to be the only 

symbol. 

In the following, the word semi-symbolic refers to the analysis in the time domain when 

it is considered as a symbol only the step of integration h. The size of the time step by the 

nature of the analyzed circuit and the standard simulators of symbolic analysis have difficulties 

in solving the problems mentioned above.  

          For symbolic analysis, a general mathematical program can be used, but for the control 

of the solving process we must develop dedicated software. 
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 The result of semi-symbolic analysis is a rational function of h. Semi-symbolic analysis 

would allow the detection of pulses in the circuit response (coefficients i from the equation 

4.23), determination of the highest order k of the terms that depend on the impulse  and the 

calculation of the initial condition at += 0t . 

 Unlike pure numerical methods, the semi-symbolic method is accurate and the only 

errors are due to the finite accuracy of the computer. 

 The switched circuits change their topology during switching and the previous results 

cannot be used to continue the calculation process. So, it is necessary to find a method of 

numerical integration that will restart during switching. Furthermore, the formula should be 

able to cope with inconsistent initial conditions. Two numerical methods are useful for this 

purpose. One of them - the Euler formula (EBF) is the simplest integration formula in the 

categories of the inverse method. The order of integration of this method is one and, 

accordingly, special precautions should be taken to cover all possible situations that may arise 

for switched networks. The advantage of EBF is that it can be used for both linear and nonlinear 

circuits. The second method is the Laplace numerical inversion, which is equivalent to a high-

order integration method. 

 To calculate linear circuits with inconsistent initial conditions, one can use the 

modified nodal equation in the dynamic state (semi-state equations) in operational [11 – 13, 

30], given the initial conditions of the moment. 

The modified nodal equations have, operationally, the following matrix form, [12 – 30]: 

(𝑾𝑠 + 𝑮)𝑿(𝑠) = 𝑩𝑼(𝑠) +𝑾𝒙(0−) (4.24) 

According to the regressive Euler formula (with the default Euler algorithm) the first-

order derivative in relation to time of the variable x, at the time tj+1 = tj + h (h being the step of 

integration), has the expression: 

 

𝑥̇𝑗+1 =
𝑥𝑗+1−𝑥𝑗

ℎ
. (4.25) 

By replacing the first-order derivatives with the formula (4.25), with respect to time, the semi-

state equations of a linear circuit are obtained from the semi-state equations of a linear circuit:  

 

where: 𝑿(𝑠) = [
𝑽𝑛−1(𝑠)

𝑰𝑚(𝑠)
]- is the vector of independent variables in; W and G – have matrices with 

the dimensions (n-1+m)x(n-1+m) and ( )sU  represents the Laplace transforms (images) of the input 

size vector (excitation) 𝑼(𝑠) = [
𝑬𝑛𝑒(𝑠)

𝑱𝑛𝑗(𝑠)
]. Matrix B is a selection matrix that has as elements 

(inputs) the numbers 1, 0 or 1.− 
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(
𝑾

ℎ
+ 𝑮)𝒙𝑗+1 = 𝑩𝒖𝑗+1 +

𝑾

ℎ
𝒙𝑗. (4.26) 

The matrices corresponding to equation (4.26) are identical to those in equation (4.24), in which 

the variable s was substituted by the variable 1/h. If the formula (4.25) is applied to the 

calculation of the derivative of the unit step function for the circuit in Figure 4.5 (a), considering 

the time step consisted, h, the results shown in Table 1 are obtained. 

Tabel 1 

Time t h 2 h 3 h 4 h 5 h 6 h 

( )
( ) t

d

d
1 


==

t

t
v  

1/h 0 0 0 0 0 

( )( ) t1
2 =v  1/h2 -1/h2 0 0 0 0 

( )( ) t2
3 =v  1/h3 -2/h3 1/h3 0 0 0 

( )( ) t3
4 =v  1/h4 -3/h4 3/h4 -1/h4 0 0 

( )( ) t4
5 =v  1/h5 -4/h5 6/h5 -4/h5 1/h5 0 

  

 The first derivative of the unitary step function, the Dirac pulse, is represented by an 

impulse of height of 1/h and the area equal to the unit. All derivatives of the high order have 

alternating signs. The coefficients of these derivatives have values such that the sum of their 

corresponding areas is always zero, and the numerical values of these coefficients are given by 

its coefficients ( ) j
x−1 , where j is the order of the derivative. It is important to emphasize that 

after a number of steps, depending on the order of the derivative, the EBF (AEI) gives correct 

results. This value is not affected by consecutive steps. It implies that the even derivatives of 

Dirac pulses are treated correctly. 

 In certain situations, the initial conditions are required after switching. In principle, 

for these, there are two possibilities.  

 The first possibility is based on the observation that the Dirac impulse influences the 

result only at the moment t = 0. So, we can make the following assumption: 

 

𝑟1 = 𝑥(ℎ) +
𝑎

ℎ
; 𝑟2 = 𝑥(2ℎ); 𝑟3 = 𝑥(3ℎ), 

(4.27) 

where the contribution due to the Dirac impulse is expressed by the a/h function  and the normal 

part of the result is marked by x(ih). The normal part can be further developed in taylor series, 

like this: 

 

𝑟(ℎ+ 𝜏) = 𝑥(ℎ) + 𝜏𝑥(1)(ℎ) + 𝑂(𝜏2). (4.28) 

Putting h=  and keeping the first two terms from Taylor's series development, one can 

write: 
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𝑟1 = 𝑥(ℎ) +
𝑎

ℎ
;  𝑟2 = 𝑥(ℎ) + ℎ𝑥(1)(ℎ);  𝑟3 = 𝑥(ℎ) + 2ℎ𝑥(1)(ℎ).. (4.29) 

The value of unknowns at  t = 0+  is estimated as a Taylor series development with a nonnegative 

step out of the solution at the moment t = h. 

 

𝑥(0+) = 𝑥(ℎ) − ℎ𝑥(1)(ℎ) = 3𝑟1 − 2𝑟3. (4.30) 

 The second possibility is given by the consideration of a progressive step, followed 

by the same regressive step that uses a negative step h. For small values of h, this method gives 

better results than the previous procedure. 

 Numerical methods use BEF at the same time as the Taylor series to find the initial 

conditions after switching. When using the first term in the Taylor series, the precision obtained 

is ( )2hO  and values ( ) ( )21 += k,,j,jhx̂   are required to execute the algorithm. The method 

error is a function in h that is monotonous but has a fixed minimum. This behavior can be 

explained using network terms. The method uses a final generalization in the Taylor series and 

the sum of the currents for Kirchhoff's first theorem (TIK) or the sum of the voltages for 

Kirchhoff's second theorem (TIIK) are equal to the corresponding residual, but is not zero. The 

error of the method is: 2hh + , with a minimum of 3 2 =h . Constants , depend on the 

structure of the circuit, the type of equations and the type of variables. The calculation effort 

required to estimate these constants is too great for any practical purpose. 

 

4.3.2  Semi-symbolic analysis of circuits with inconsistent initial conditions 

 

Circuit elements such as linear resistors, linear coils, linear capacitors, current sources 

and voltage-controlled current sources that can enter directly into the formulation of the 

analysis are called circuit elements compatible with nodal analysis. When the circuit contains 

circuit elements that are not compatible with the nodal analysis, such as the ideal voltage 

independent sources, the voltage-controlled sources, the voltage controlled sources, the current 

controlled current sources, the magnetic couplings, these elements will be transformed into 

equivalent models that can be manipulated in the modified nodal analysis method [10,11-15]. 

The advantage of consistently using the same simple nodal formulation is affected by 

the need to transform the models efficiently. A different approach in solving the problem of 

admitting all the desired circuit elements is the modified nodal method. In this approach, the 

variables of the currents in the branches are introduced in addition to the variables of the 

voltages in the nodes. The basic principle regarding this approach is the use of the matrix of 

nodal conductances (admitances) for the circuit elements compatible with the nodal analysis 

and the magnification of this matrix with an extra line and column for each circuit element that 

is incompatible with the classical nodal analysis. 

By replacing each capacitor, respectively each coil (magnetically coupled or not) by a 

discrete resistive circuit model associated with a previously chosen implicit numerical 

integration algorithm, the transient analysis of the linear dynamic circuit can be reduced to the 

analysis of a sequence of linear circuits, [14, 16]. 

For a linear circuit containing any type of independent or coupled circuit elements, the 

discrete resistive circuit equations associated with the regressive Euler formula at 
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htt kk +=+1  (where h is the time step that does not have to be uniform) corresponding to the 

modified nodal analysis method, have the following form: 

 

[
𝑮𝑛−1,𝑛−1
(𝑘+1)

𝑩𝑛−1,𝑚
(𝑘+1)

𝑨𝑚,𝑛−1
(𝑘+1)

𝑹𝑚,𝑚
(𝑘+1)

] [
𝒗𝑛−1
(𝑘+1)

𝒊𝑚
(𝑘+1)

] = [
𝒊𝑠𝑐,𝑛−1
(𝑘+1)

𝒆𝑚
(𝑘+1)

]  ,  
(4.31) 

where: 𝑮𝑛−1,𝑛−1
(𝑘+1)

 represents the matrix of nodal conductances, including the conductors 

corresponding to the discrete resistive models of the dynamic circuit elements, corresponding 

to the n–1 independent nodes of the circuit;𝑩𝑛−1,𝑚
(𝑘+1)

 is a matrix size (n-1)xm whose elements 

are: 1, 0, +1 and the current transfer factors (amplification) of current-controlled current 

sources− ( )Cc iĵ ;
)1(

1,

+

−

k

nmA  represents a matrix size )1( − nm  containing the elements –1, 0, +1 

and the voltage transfer factors (amplification) of the voltage-controlled voltage sources 

( )Cc uê ; 𝑹𝑚,𝑚
(𝑘+1)

 is the square matrix mxm having the elements composed of: the transfer 

resistances of the current-controlled voltage sources ( )Cc iê  and the resistances of the discrete 

models of the magnetically coupled coils; 
)1(

1

+

−

k

nv  is the vector of nodal voltages corresponding 

to the n-1 independent knots; 𝒊𝑚
(𝑘+1)

 represents the vector of the currents of the circuit elements 

(sides) incompatible with the classical nodal method and has, at the moment 11 +=+ kk tt ,  the 

following structure: 

𝒊𝑚
(𝑘+1) = [(𝒊𝐸

(𝑘+1))
𝑡

, (𝒊𝐸𝑐
(𝑘+1))

𝑡

, (𝒊𝐸𝐶
(𝑘+1))

𝑡

, (𝒊𝑗𝐶
(𝑘+1))

𝑡

, (𝒊𝐿
(𝑘+1))

𝑡

]
 𝑡

, 
(4.32) 

where: 𝒊𝐸
(𝑘+1)

 is the vector of the currents of ideal sources independent of voltage; 𝒊𝐸𝑐
(𝑘+1)

 is the 

vector of the currents of the controlled sides of all controlled voltage sources; 𝒊𝐸𝐶
(𝑘+1)

 is the 

vector of the currents of the control sides of the voltage sources controlled in the current; 𝒊𝑗𝐶
(𝑘+1)

 

represents the vector of the currents of the control sides of the current controlled current 

sources; 𝒊𝐿
(𝑘+1)

 is the vector of the currents of the magnetically coupled coils.  

Vector 𝒊𝑠𝑐,𝑛−1
(𝑘+1)

  - is the vector of the injected short-circuit currents at the time tk+1, in those            

n − 1 independent circuit nodes (including currents resulting from the simulation of coils and 

capacitors with discrete resistive circuit models), and 
)1( +k

me – represents the vector 

corresponding to the t.e.m. of the sides formed only from ideal sources independent of voltage, 

at the time tk+1. 

In equation (4.31) the upper index represents the order of the time step. 

For the numerical calculation of switching circuits, nodal equations modified in 

dynamic mode (semi-state equations) can also be used [10 13, 30]. If the default Euler 

algorithm is used for the numerical integration of the semi-state equations, with the integration 

step h, then the matrix form of these equations, corresponding to the moment tk+1 = tk + h, has 

the structure of: 
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{
𝑾 ⋅

𝒙(𝑘+1) − 𝒙(𝑘)

ℎ
+ 𝑮𝒙(𝑘+1) = 𝑩𝒖(𝑘+1)

𝒚(𝑘+1) = 𝑳𝑡𝒙(𝑘+1)
 

(4.33) 

 

in which: 𝒙(𝑘+1) = [
𝒗𝑛−1
(𝑘+1)

𝒊𝑚
(𝑘+1)

]- is the vector of independent variables at the time tk+1 = tk + 

h with the initial conditions ( ) 00 xx = ; W and G - are array size (n-1+m)x(n-1+m), and 

𝒖(𝑘+1) represents the vector of input quantities (excitation) 𝒖(𝑘+1) = [
𝒆𝑛𝑒
(𝑘+1)

𝒋𝑛𝑗
(𝑘+1) ]. Arrays B 

and L are selection matrices that have as elements the numbers: -1, 0 or 1. 

 

 Este evident că metoda nodală modificată, prezentată mai sus, acceptă și rezistențele 

variabile în timp care modelează întrerupătoarele ideale (fig. 4.1). Metoda nodală modificată a 

fost implementată într-un program de calcul numit ACAP - Analogue Circuit Analysis 

Program. Software-ul ACAP permite analiza circuitelor analogice liniare/neliniare, [10  13, 

30]. 

 

4.3.3 Examples 

 

Example 4.1: It is considered the circuit in the figure 4.4, (a) where 𝐿1 = 2 mH, 𝐿2 = 1 mH, 

𝑅3 = 𝑅5 = 1 𝑘𝛺 şi .E V24 =  At the initial phase 𝑡 = 0 currents 
1
i  and 

2
i  are: 𝑖1(0) =

0, 𝑖2(0) = 0. Then the circuit switches to phase 1, when the switch 
6

S  is closed (short circuit) 

and the switch 
7

S  it is open (open circuit). At the time 𝑡0 = 20 𝜇𝑠, the circuit switches to 

phase 2, the switch changing its state as in figure 4.4 (b). We will study the dynamic behavior 

of the circuit. 

 
Fig. 4.4. a) The initial scheme of the circuit; b) Operational scheme of the circuit after the start of the 

transitional regime (𝑡 ≥ 𝑡0); c) Diagram of the circuit to the left of the circuit in figure 4.4, a with the 

intercartor S6 closed and the circuit breaker S7 open to be numerically analyzed for 𝑡 ∈ [0, 20𝜇𝑠]; d) 

Diagram of the circuit on the right of the circuit in figure 3.4, with the intercarder S6 open and the 

intercarrier S7 closed, when considering the initial conditions at the time 𝑡0+, to be numerically 

analyzed for  𝑡 ∈ [20𝜇s, 40𝜇s ]. 

Numerical analysis: 
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Modified nodal equations corresponding to the step htt
kk
+=

+1
 for this circuit are: 
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( ) ( ) ( ) .Evvb kk
4
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5

1
44 : −=− ++

 
(4.39) 

 

By opening the switch and closing the switch at the time of
6

S
7

S  𝑡0 = 20 𝜇𝑠. The area 

of type L section, composed of coils and appears (figure 3.4, (b)). So the initial inconsistent 

conditions at 
1

L
2

L
−0

t  are: 

( ) ( ) mA0mA2
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2
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4
01 ====

−−
ti,

R

E
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(4.40) 

şi condiţiile iniţiale consistente the 
+0

t  they can be obtained by preserving the magnetic flux 

on the surface resting on the loop b (fig. 4.4 (a)). 

 

𝐿1𝑖1(𝑡0−) + 𝐿2𝑖2(𝑡0−) = 𝐿1𝑖1(𝑡0+) + 𝐿2𝑖2(𝑡0+)    (4.41) 

with 

𝑖1(𝑡0+) = 𝑖2(𝑡0+) (4.42) 

 

From the relationships (4.11) and (4.12)  

 

𝑖1(𝑡0+) = 𝑖2(𝑡0+) =
𝐸4
𝑅5

𝐿1
𝐿1 + 𝐿2

=
2

1

2

2 + 1
=
4

3
 mA . 

 

 (4.43) 

First for the integration of equations (4.34) - (4.39), using the program ACAP 

(Analogue Circuit Analysis Program), [12, 30], for 𝑡 ∈ [0,40 𝜇𝑠] with uniform pitch size ℎ =

0.2 𝜇𝑠, replace the two circuit breakers S6 and S7 with the models shown in figure 4.1 and 

considering 0=ONR  and M50=OFFR . In Figure 4.5, the variations in voltages over time 

are obtained 𝑢𝐿1_1(𝑡) = 𝑢1(𝑡), 𝑢𝐿2_1(𝑡) = 𝑢2(𝑡) și in Figure 4.6 variations in currents with 

time 𝑖𝐿1_1(𝑡) = 𝑖1(𝑡), 𝑖𝐿2_1(𝑡) = 𝑖2(𝑡). 

Also, the circuit in figure 4.4(a) can be analyzed numerically, using the ACAP program, 

in two stages, as follows:  

1. In the first step, numerically analyze, with the modified nodal equations method, the 

circuit in figure 4.4 (c), on the interval 𝑡 ∈ [0, 20𝜇𝑠]; 
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1. Considering the initial conditions at the time 
+0t (relations (4.12)), calculate 

numerically the circuit in figure 4.4 (d).  

Figure 4.5 shows the variations in voltages over time 𝑢𝐿1(𝑡) = 𝑢1(𝑡), 𝑢𝐿2(𝑡) = 𝑢2(𝑡) 

and in figure 4.6 variations in currents in time 𝑖𝐿1(𝑡) = 𝑖1(𝑡), 𝑖𝐿2(𝑡) = 𝑖2(𝑡). 

Using the initial conditions at the time 𝑡0− , the circuit in Figure 4.4(a) can be analysed 

analytically, after triggering the transitional regime, and with the Laplace transform method. 

For this, the operational equivalent scheme in Figure 4.4(b) shall be used. 

 

 
Fig. 4.5. Variations in voltages over time vL1 and 

vL2 (R3 = 1kΩ). 

 
Fig. 4.6. Variations in currents over time i1 = i1 

= iL1 and i2 = iL2 (R3 = 1kΩ). 

Analytical solutions for coil currents and voltages for 𝑡 ≥ 𝑡0 are: 

𝑖1_𝑎𝑛(𝑡) = 𝑖2_𝑎𝑛(𝑡) =
4

3
𝑒−

𝑡−20
3 mA,  𝑡 ≥ 20 μs 

(4.44) 

𝑢𝐿1_𝑎𝑛(𝑡) = 𝑢1_𝑎𝑛(𝑡) = −
4

3
𝛿(𝑡 − 20) −

8

9
𝑒−

𝑡−20
3 𝑉,  𝑡 ≥ 20 μs 

(4.45) 

𝑢𝐿2_𝑎𝑛(𝑡) = 𝑢2_𝑎𝑛(𝑡) =
4

3
𝛿(𝑡 − 20) −

4

9
𝑒−

𝑡−20

3 𝑉,  𝑡 ≥ 20 μs. (4.46) 

For the three switching circuit analysis procedure in Figure 4.3, (a) variations in time of coil 

currents 𝑖𝐿1(𝑡) = 𝑖1(𝑡), 𝑖𝐿2(𝑡) = 𝑖2(𝑡) and coil tensions 𝑢𝐿1(𝑡) = 𝑢1(𝑡), 𝑢𝐿2(𝑡) = 𝑢2(𝑡) 

shown in Figure 4.5 and Figure 4.6 respectively. 

It can be seen in figures 4.5 and 4.6 that the values of the coil currents obtained 

numerically are identical to those obtained analytically (4.14), and the coil voltages of the coils 

𝑡0+𝑢𝐿1(𝑡), 𝑢𝐿2(𝑡) at the 𝑡0 Dirac impulse in the range −4 3⁄  𝑉 and 4 3 𝑉⁄ , respectively the 

equations (4.15) and (4.16). 
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The energy balance of the circuit during its transition is checked: 

 

𝑊110𝑢𝑠 =
𝐿1 (𝑖1(𝑡0+))

2

2
=
16

9
𝜇𝐽;    𝑊220𝑢𝑠 =

𝐿2 ((𝑡0+))
2

2
=
8

9
𝜇J;   

𝑊140𝑢𝑠

=
𝐿1𝑖140𝑢𝑠

2

2
= 0J; 𝑊240𝑢𝑠 =

𝐿1𝑖240𝑢𝑠
2

2
= 0 𝜇J;  

 

𝑊𝑅3 = ∫ 𝑅3(𝑖1(𝑡))
2

40

20

𝑑𝑡 = − [1 ⋅
16

9
⋅
3

1
𝑒−

(𝑡−20.0)
3 ]

 0

 ∞

=
8

3
 𝜇J; 

 

𝑊1_20𝑢𝑠 +𝑊2_20𝑢𝑠 = 𝑊1_40𝑢𝑠 +𝑊1_40𝑢𝑠 +𝑊𝑅3 = 8/3 𝜇𝐽. 

 

 

 

(4.47) 

 

The simple circuit in figure 4.4(a) after the moment 𝑡 ≥ 𝑡0, it can be analyzed without any 

difficulty, both in the field of frequency and time. However, the difficulties have increased 

when the resistance of R3 tends towards zero. 

 

 

Fig. 4.7. Variations in voltages over time vL1 and 

vL2 (R3 = 0Ω). 

 

Fig. 4.8. Variations in currents over time i1 = i1 

= iL1 and i2 = iL2 (R3 = 0Ω). 

 

 At the limit, a pathological circuit is obtained, having the coils connected both in 

series and in parallel, which means that they are in excess of both the first and second orders, 

[12, 13]. Operational equations, when R3 = 0.0Ω, of this circuit have the following solution: 
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(4.48) 
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Asymptotic values have the following expressions: 
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(4.49) 

 

The solution in symbolic form, in the time domain, of the circuit in Figure 4.4(b) is: 

 

𝑖1(𝑡) = 𝑖2(𝑡) =
𝐿1𝑖1(0−)

𝐿1 + 𝐿2
𝑒−𝑡/𝜏;  𝑢1(𝑡) = −

𝐿1𝐿2𝑖1(0−)

𝐿1 + 𝐿2
𝛿(𝑡) − 

−
𝐿1
2𝑖1(0−)

𝐺(𝐿1 + 𝐿2)2
𝑒−𝑡/𝜏;  𝑢2(𝑡) = −

𝐿1𝐿2𝑖1(0−)

𝐿1 + 𝐿2
𝛿(𝑡) +

𝐿1𝐿2𝑖1(0−)

𝐺(𝐿1 + 𝐿2)2
𝑒−𝑡/𝜏, 

 

(4.50) 

with 𝜏 = 𝐺(𝐿1 + 𝐿2) and G = 1/R5. 

 

Considering the numerical values of the circuit parameters, the expressions (4.50) become: 

 

𝑖1(𝑡) = 𝑖2(𝑡) = −
4

3
𝑒−𝑡/3;  𝑢1(𝑡) =

4

3
𝛿(𝑡) +

8

9
𝑒−𝑡/3; 𝑢2(𝑡) =

4

3
𝛿(𝑡) −

4

9
𝑒−𝑡/3. (4.51) 

 From the expression (4.51) we can note that at t = 0+, both voltages u1(t) and u2(t) 

have Dirac pulses with areas of 4/3, while the currents are without such impulses. At t = 0+, 

u1(0+) = 8/9 V and drops exponentially to zero for high t , while u2(0+) = -4/9 V and grows 

exponentially to zero. 

This time, the energy balance(s) shall also be checked: 

𝑊10 = 𝐿1(𝑖1(0+))
2
/2 = 16/9 J;    𝑊20 = 𝐿2(𝑖2(0+))

2
/2 = 8/9J;   

𝑊1∞ = 𝐿1𝑖1∞
2 /2 = 16/9J; 𝑊2∞ = 𝐿2𝑖1∞

2 /2 = 8/9J;  
𝑊10 +𝑊20 = 𝑊1∞ +𝑊1∞ = 8/3 J. 

 

(4.52) 

  

 The higher-order derivatives of the Dirac pulses can be generated using the circuit in 

Figure 4.9. If the capacitor capacities and transresistances corresponding to the current-

controlled voltage sources are equal to the unit, then each voltage uj is derived from the 

previous potential. If the input signal is the unit step function 𝛾(𝑡), then 𝑢1(𝑡) = 𝛿(𝑡) - Dirac 

impulse, 𝑢2(𝑡) = 𝛿
(1)(𝑡) is derived by the order 1 of the Dirac impulse, and in general, 𝑢𝑗(𝑡) =

𝛿(𝑗−1)(𝑡). Consequently, the circuit in Figure 4.9 can be used to calculate the higher-order 

derivatives of the Dirac momentum. 
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Fig. 4.9. The circuit that generates the sequences of the derivatives. 

 

4.4 CONCLUSIONS 

  

A very simple and very precise method of analyzing dynamic circuits with inconsistent 

initial conditions is presented. This approach is based on the modified nodal method, modeling 

the ideal circuit breakers through time-varying resistors having 𝑅𝑂𝑁 zero and 𝑅𝑂𝐹𝐹 very high 

(much higher than the lowest resistance in the circuit). 

Time-varying resistors have linear variation during switching (𝑡′ − 𝑡0) considered less 

than or equal to the size of the pitch. 

The regressive Euler formula is used to integrate switching circuit equations. The 

switching time is assumed to be 𝑡0 . In this way, the initial consistent conditions at 
+0

t  are 

automatically set in accordance with the initial inconsistent conditions at 𝑡0− . For the 

calculation of the dirac pulse areas for the condenser currents and/or the coil voltages, we must 

multiply these variables by the size of the integration step h at the time when the circuit breakers 

change their state, and after the switching the initial inconsistent conditions appear. 

The analyzed circuit can be linear or nonlinear. In the case of a circuit with nonlinear 

elements there is a restriction: the circuit equations with nonlinear elements must be algebraic 

and the variables of these equations must not depend on impulses. 

The described algorithm was implemented in the general program for rapid analysis of 

real switching circuits. 

This chapter presents a simple and very precise method of analyzing dynamic circuits 

with inconsistent initial conditions (CII). The approach is based on modified nodal analysis, 

modeling the ideal switches through time-varying resistors with 𝑅𝑂𝑁 zero and 𝑅𝑂𝐹𝐹 very high 

(much higher than the lowest resistance in the circuit). 

Time-varying resistors have a linear variation during switching, and the duration of 

switching ( )0tt −  is less than or equal to the size of the integration step. The Euler Regressive 

Formula (FRE) (the default Euler integration algorithm) is used to integrate equations of 

switching circuits. It is assumed that the switching time is t0. In this way, the consistent initial 

conditions (CIC) at 
+0

t  are automatically set in accordance with the initial inconsistent 

conditions at 
−0

t . For the calculation of the dirac pulse areas for the condenser currents and/or 

the coil voltages, we must multiply these variables by the size of the integration step h at the 

time when the circuit breakers change their state, and after the switching the initial inconsistent 

conditions appear. 
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The easiest method of analyzing linear circuits with excess elements and CII is based 

on the Laplace transform. This procedure has the advantage that it converts integro-differential 

equations into algebraic equations (in which the coefficients of algebraic equations contain the 

symbolic variable s (complex frequency)) and includes the initial conditions in the equations 

to be solved, implicitly treating them as independent sources. For the calculation of the dirac 

pulse areas for the condenser currents and/or the coil voltages, we must multiply these variables 

by the size of the integration step h at the time when the circuit breakers change their state, and 

after the switching the initial inconsistent conditions appear. 

The easiest method of analyzing linear circuits with excess elements and CII is based 

on the Laplace transform. This procedure has the advantage that it converts integro-differential 

equations into algebraic equations (in which the coefficients of algebraic equations contain the 

symbolic variable s (complex frequency)) and includes the initial conditions in the equations 

to be solved, implicitly treating them as independent sources. Therefore, in the operational 

method, the circuit is considered not only in its transition over the time interval (0, ∞), but also 

in its transition in (0-, 0+), in the vicinity of origin. Implicitly take into account the singularities 

that appear at t = 0. 

As shown in work [1], if for the voltages of linear capacitors and for the currents of 

linear coils, the initial conditions at the time of the CII are considered to be automatically 

regularized. Therefore, the correct use of the initial conditions in the Laplace equivalent 

schemes of linear electrical circuits leads to minor risks in the analysis of these transient 

circuits. Because inconsistent initial conditions automatically adjust with this method, the risk 

of errors is generated by the wrong initial conditions. The operational representation of 

electrical circuits allows transient analysis, without any difficulty in both the (semi-)symbolic 

and numerical approaches. 

For the analysis of static power converters, the technique of mediation of the state space 

was briefly presented. 

The validity and effectiveness of methods for the analysis of CII pathological circuits 

and switching circuits are proven by the variety of circuits given as examples. 

 

 

 

5. APPLICATION OF FIXATOR-NORATOR PAIRS IN THE DESIGN OF 

ANALOG CIRCUITS 

 

 This chapter describes a new theory of null modeling, based on active devices, from 

a circuit point of view. After a brief introduction about the concept of nulls and its properties, 

the modeling of active devices is presented not only for the voltage mode, but also for the 

current mode and for the mixed mode of operation using the topologies of circuits with two 

ports and four terminals. By simulating nullors through voltage-controlled voltage sources, ec 

= Ac_C uC, with the control port an ideal independent power source, jC = iC = 0.0 A, and with 

the transfer factor (amplification) in voltage (voltage gain) Ac_C very high (theoretically 

infinite), analog circuits with nullors can be analyzed by using any of the existing simulation 

programs. Thus, all types of equations, which describe the behaviors of the circuit, can be 

formulated simply, regardless of whether the analyzed circuit contains nullors or not. 
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 For the polarization of analog circuits, a different strategy was introduced. This paper 

introduces a new circuit element concept, the Fixator-Norator (PFN) pairs, which is the center 

of our strategy for designing the polarization of electronic circuits. Nullators and norators are 

used in pairs and are effective tools to perform effective polarization of electrical circuits. It is 

shown that these pairs are very useful in matching the critical polarization specifications with 

the input DC power. 

 These procedures can be easily implemented in dedicated programs for simulating 

complex analog circuits with nullors. We present some important examples that prove the 

validity of models for nullors. 

 

 

5.1. INTRODUCTION 

 

 

When using circuit models in the analysis of analog circuits, high-precision requirements 

can lead to complicated calculations, and therefore compact models are preferred during this 

process, mainly for the use of much simpler equations, [1 – 12]. These models are more 

efficient for optimizing the modeling and simulation time during the analysis process. From 

this point of view, nullors has already proven its effectiveness in modeling active devices. Also, 

in models based on the nullor element, all parasitic elements can be included to analyze their 

contribution to the analog circuit response [12 -21]. Nullors are very useful for modeling analog 

circuits because the topology of the circuit can be represented with components with two 

terminals, such as resistors (resistors), capacitors, nullators, norators and independent sources 

of voltage and/or current. It can also be pointed out that all controlled sources can be 

represented with equivalent circuits using nullors (nullor elements), [1 – 15]. Therefore, the 

system of equations, for the equivalent circuit based on the nullors (nullor elements), will be 

developed according to the classical method of nodal analysis. Nullor will be one of the basic 

components for models of active devices, given that the model must be developed in the 

simplest way, and the accuracy of the simulation of the circuit behavior must be within 

acceptable limits, [6, 11 – 17]. According to this approach, this chapter will present the 

problems related to the small signal models of the active devices that have been developed with 

nullors. 

The nullator can be defined as an ideal two-terminal circuit, which is characterized by zero 

values for current and voltage, at the terminals. The symbol used for its graphic 

representation is shown in Figure 5.1,(a). For this type of circuits can be defined two 

relationships. The norator can be defined as an ideal circuit with two terminals (fig. 5.1(b)), 

which is characterized by random (arbitrary) values for current (i) and voltage (u) at 

terminals. Strictly speaking, the norator has no defined relationship. The current and voltage 

have values that are only affected by the external circuit that controls the norator. 

 

 

 

 

(a) 

 

 

 

(b) 

 

(c) 

 

 

 

(d) 

 

 

 

(e) 

Fig. 5.1. a) The nullator symbol; b) The norator symbol; c) The symbol of the nullor; d) Current 

mirror; e) Voltage mirror, [1,2]. 
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A nullator and a norator together form a deport circuit called nullor (fig. 5.1, (c)), which has 

the number of definition relationships equal to the number of gates. 

 

Fig. 5.2. Simulation of nullor by an ideal operational amplifier, [1,2]. 

 

 The nullor is a two-gate circuit comprising a nullator as input and a norator as an 

output (fig. 5.1, (c))). The number of definition relationships for this circuit is the same as the 

number of its gates. Also, this type of circuits can be assimilated with an ideal operational 

amplifier for which the current is zero (an ideal independent source of current with j = 0A) and 

the output gate is simulated with an ideal source of voltage controlled by the input voltage with 

a very high (theoretically infinite) transfer factor (amplification) (fig. 5.2). 

 Theoretically, a nullor is just a two-gate circuit comprising a nullator as input and a 

norator as output (fig. 5.1, (c)).  

 The analysis and development of linear and/or nonlinear circuit (linearized in 

portions) were performed using the nullator and norator as active theoretical devices, [1 – 13]. 

Tellegen was the first to present the theory of the ideal operational amplifier, and later, in 1964, 

Carlin attempted to consider the nullators and norators as unique active devices in circuit 

analysis, [3, 4]. He believed that these active devices could not be physically built. Tellegen 

also took into account that these devices should only be regarded as mathematical models 

without any physical support. Again, Carlin proposed the combination of nullator and norator, 

which resulted in a useful physical device, nullor [4 - 21]. 

 In [1, 2, 12] the behavior of nullators, norators and nullors in terms of voltage and 

current is presented, in Gu – voltage graph and, respectively, Gi - the graph of the current. 

The input gate of the nullor is modeled by a nullator which is characterized by two equations: 

 

 

u1 = u2 = arbitrary, i1 = i2 = 0. 

(5.1) 

 So, the nullator is simultaneously an open circuit in the current graphGi and a short 

circuit in the tension graph Gu. The output port of the nullor is shaped by a nullator, where it 

can be assumed that both voltage and current have arbitrary values: 

 

u1   u2 = arbitrary, i1 = i2 = arbitrary. (5.2) 

Fixator-norator (NFP) pairs are pathological components that help design analog circuits for a 

given specification set. It is important to note, however, that NFPs are temporary and do not 

remain in the circuit after the circuit is designed. Before we go through the design 

methodologies, we need to enter the NFP and its properties. 

Fixator: A fixator is similar to a nullator, the difference lies in the fact that a fixator represents 

a fixed current source, respectively a fixed voltage source. In fact, a nullator can be considered 

as a special case of a fixator, when both current and tense are void. Figure 5.3 shows two 

versions of a fixator that depend on: (1) whether the voltage source Uj consumes (or supplies) 

power in the fixator and the current source Ij  remains at rest or (2) when the power source Ij 

consumes (or provides) power in the fixator and the voltage source Uj remains at rest. In Figure 

5.3, (a) the voltage source consumes energy and its symbolic representation is shown in Figure 
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5.3, (b). In Figure 5.3, (c) the power-consuming source is eliminated (omitted), and  Fx(0, Ij) is 

a current fixator.  Figures 5.3, (d), (e) and (f) are similar to Figures 5.3, (a), (b) and (c), the 

difference is that the current source now consumes power and Fx(Uj, 0) represents a voltage 

fixator. 

 

Fig. 5.3.Fixators: (a) and (b) The voltage-supplied fixator and its symbol;  (c) The current fixator;  ( d) 

and (e) The current-supplied fixator and its symbol; (f) Voltage fixator, [3.5,13,22]. 

In a circuit, a fixator must always be paired (coupled) with a norator, since the fixator sets 

both port variables according to the design specifications, while the paired norator provides the 

required conditions for the fixator to work.   

A fixator is a combination of a current source and a voltage source; therefore, the rules must be 

satisfied by both sources. For example, a serial current source with a fixator violates Kirchhoff's 

first theorem, a section of fixators with or without current sources can violate Kirchhoff's first 

theorem (TIK), and a loop of fixators with or without voltage sources can violate Kirchhoff's 

second theorem (TIIK). In a section of norators with or without current sources and fixators not 

all section elements are independent and on a loop of norators with or without voltage sources 

and fixators not all loop elements are independent. 

From the above you can also deduce the following properties of fixators: 

➢ A fixator Fx(U, I) consumes power, and the power consumed has expresia  P = U*I; 

➢ An R  resistance in series with a Fx(U, I) is absorbed by the fixator and the fixator 

becomes  Fx(U1, I); where U1 = U + R*I. An R resistance  in parallel with a Fx(U, I) is 

absorbed by the fixator and the fixator becomes Fx(U, I1); where I1  = I + U/R; 

➢ A power source IS in parallel with a fixatorr Fx(U, I) is absorbed by the fixator and the 

fixator becomes Fx(U, I1); where I1  = I + IS; 

➢ A voltage source US in series with a fixator Fx(U, I) is absorbed by the fixator and the 

fixator becomes Fx(U1, I); where U1  = U + US; 

➢ A serial current source with a norator absorbs the norator without any change 

(modification); and a voltage source in parallel with a norator absorbs the norator 

without any change (modification). Additionally, a current source parallel to a norator 

is absorbed by the norator, and a voltage source with a norator is absorbed by the norator; 

• A resistance in series or in parallel with a norator is absorbed by the norator;  
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➢ A serial norator with a fixator Fx(U, I) becomes a power source I; and a clouder in 

parallel with a fixator Fx(U, I) becomes a source of voltage U. 

Now we have to show that a fixator cannot exist alone in a circuit. In general, any element 

(component) of the circuit is identified by its two variables, current and voltage.  As a rule, a 

circuit element (component) specifies one of its two variables, the other variable is deduced 

from Kirchhoff's theorems (TIK and TIIK) in a circuit analysis. However, this is not the case 

with a fixator. Here, both variables are specified and the only way to be able to include them 

in a circuit is to find a component that does not have any of its variables specified. This 

component is a norator. This is why a fixator, like a nullator, must always be accompanied by 

a norator. We can think of this pair as an ideal controlled source, but there are major differences 

between the two. The gain or degree of dependence in a PFN is unlimited while in an ordered 

source it is limited. 

The second major difference between the two is that in the case of multi -ordered 

sources, each pair of command source and commanded source must be specified in the 

circuit analysis, but this situation does not happen in the case of multi -fixator and 

multi-norator pairs. In the latter case, any pair works as long as the dependence 

(sensitivity) is valid. 

As shown in [3-Esteban], in a related circuit a bipolar component is based on one of 

its two variables, and the other variable (voltage or current) results from the 

characteristic of the component. However, in the case of both variables of a fixator are 

specified by itself, and in the case of a norator both variables rely on the circuit to be 

specified. So, any pair of a fixator and a norator, as long as they are mutually sensitive, 

they satisfy the conditions for circuit analysis, it does not matter how they mate. It is 

summarised as follows: 

The number of fixator must be equal to that of the norators; a norator must be sensitive 

(coupled) with at least one fixator and vice versa. 

The following will show how the fixator-norator pairs are used in the correct polarization 

of electronic devices. The fixator will always be modeled in with the equivalent circuits 

shown in figures 5.3, (a) and (d), since the circuit elements existing in these circuits are 

accepted by most analog circuit simulation programs. 

Next, we focus on designing polarization, focusing on individual devices. It shows 

how nonlinear devices, mainly diodes, BJT and MOS transistors, are linearly and 

nonlinearly shaped by fixators. 

 We will then cover the application of the NFP in the design of gains, input impedances 

and output impedances. One of the problems that we commonly face is when both polarization 

(cc) and performance (ca) models conflict with the values of some components of the circuit, 

usually resistances. The problem is how to assign two different values to a single component in 

two different cases. In integrated circuits the problem is solved by using current mirrors and 

active loads. Fixators and norators are used for the design of active tasks and current mirrors. 

These components are classified into three types, which are the types L, R and H for MOS 

transistors, as well as the same types for BJT in this paragraph. Design for analog VLSI circuits 

are also discussed. Again, PFNs are very essential in this app. The difference between the design 

for concentrated circuits and integrated circuits is clarified here. In circuits with concentrated 

parameters, polarization design and performance design is possible by using coupling capacitors 

and bypasses to separate the power and signal paths. Since this is not allowed in the design of 

integrated circuits (IC). The way we manage the separation of the two here is to use active tasks 

and current mirrors. 

The following analysis is dedicated to the use of nullors in the design of bandwidth 

amplifiers. Because of the complexity and frequency dependency of the results, such projects 

should always be guided by a model circuit. It is assumed that this circuit model is given or built 
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synthetically to produce the desired output feature and the required bandwidth. The role played 

by a nullor here is double; one to make the circuit response follow the response in the model 

circuit and two, to make the necessary changes to adequately respond to the desired output 

feature. Since model circuits are for simulation purposes only, they can be built from ideal 

components such as ideal controlled sources and can even be built quite modularly. 

There are numerous examples developed and simulated to support the theory. 

 

5.2  FIXATOR-NORATOR PAIRS 

 

Taking in considaration two circuits N1 and N2, connected by gate (Um, Im), as shown in 

Figure 5.4, (a). To cancel (repeal) the gate m (Um, Im), add to both sides of the two circuits 

sources of current and voltage with equal values, according to figure 5.4, (b), so that the gate k 

is a void gate. Now, since gate k is a void gate (Uk = 0 and Ik = 0) we can separate the two 

circuits and connect to each circuit a nullator, as shown in Figure 5.5. Obviously this operation 

does not affect (does not change) any current and no voltage inside the two circuits. In addition, 

the operating point of the m gate (Im and Um) was fixed so that whatever the internal changes 

inside the two circuits N1 and N2 were, a change in the Q operating point of the gate (the 

operating point of a device, also known as the polarization point). The operating point of a 

device, also known as a polarization point, quiet point, or Q point, is a stationary state (of DC) 

of the voltage or current of a specified terminal of an active device, such as a transitor to which 

no signal is applied. This allows us to substitute the m gate with a fixator. 

 
 

Fig. 5.4. Procedure to nullifie a gate, [12,13,22]. 

 
Fig. 5.5. Two circuits (networks) N1 and N2 disjointed at port k (Uk, Ik) and each 

completed by a nullator, [12,22]. 

 
Fig. 5.6. Substitution of a fixator for the N1 polarization circuit, [13, 22]. 

 



CONTRIBUTIONS REGARDING THE ANALYSIS OF ELECTRICAL CIRCUITS 

WITH NULORS 

 

65 

 

Property 1: A bipolar component, linear or nonlinear, in a circuit that is polarized by a current 

I and exposed to a voltage at terminals U can be replaced by an Fx(I, U) fixator without causing 

any change in the currents and voltages inside the rest of the circuit. 

An important conclusion from Property 1 is that fixators not only help to fix the technical 

specifications for polarization purposes, they also linearize a circuit by replacing all nonlinear 

components with fixators that are constructed of linear components. In addition, fixators 

increase the stability of the project by conducting a controlled approach (research) on design 

criterias.  

   Using fixators for the design and stability of the gate, we notice that for each fixator used 

we must have a norator in the circuit as a pair. It follows that fixator-norator pairs are an effective 

tool to perform the polarization procedure. This method shows how, by using fixator-norator 

pairs, we can solve the problem of distributed feeds, generated due to local polarization. In fact, 

it shows how a pair can be used to solve the design of polarization with a support power supply, 

and if the power supply is already specified in the project, the solution is an energy-conducting 

component. We must bear in mind that a fixator provides a solution and its norator pair finds, 

through analysis, the necessary resource for the solution. In this way, when used together, the 

pair will perform Kirchhoff's theorems.  In short, when a polarization condition is required in a 

project, a fixator maintains this fixed condition and a norator provides, given in an arbitrary 

location, the source necessary for the requirement. This is, of course, only possible if the fixator 

can control the norator, and conversely, the fixator also has to react to changes in the norator. If 

a designated current source is already installed for the design, the norator can be placed at a 

designated location for a power-conducting component, for example a resistor, and then find the 

value by numerical resolution. 

There is also another important interpretation of the fixator-norator pair. In general, each 

component of the circuit is identified by two variables, voltage and current. Of these, usually a 

single variable is specified, such as voltage in a voltage source or current in a current source; 

alternatively, the two can be linked as is the case with a resistor. This indicates that one of the 

two variables must be found from the Kirchhoff theorems, applied to the analyzed circuit. On 

the contrary, fixators and norators are different, that is, in a fixator both component variables 

are specified, but in a norator neither is specified. Therefore, none of them can be alone in a 

circuit; that is, when paired they complement each other; that is, in general, the two carry two 

specified variables and two are left for the circuit to find them. This behavior of the fixator-

norator pairs suggests that the pair is no longer limited to DC operations and can be used in any 

operating mode of the circuit, including linear and AC circuits. So, we can conclude that in any 

type of circuit (linear or nonlinear) and in any mode of operation (DC or AC) some circuit 

variables can be fixed in exchange for values of the components. We can conclude that fixator-

norator pairs change a circuit analysis procedure into a design procedure that meets certain 

design specifications, if possible. The reason is that in circuit analysis we are generally given all 

the values of the components and resources necessary to analyze a circuit; Whereas in a design 

procedure there are certain component values or resources to be determined in exchange for 

obtaining design specifications; 

 

5.3  EXAMPLES 

 

Example 5.1: To show how the process works, we start with a simple diode 

circuit shown in Figure 5.7, (a) with an unspecified supply voltage U1. Suppose that 

the design requirement in this example is to find the value for U1 so that the diode 

current is 1 mA. 
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                      (a) 

 
                    (b) 

Fig. 5.7. a) A diode circuit with an unspecified supply voltage U1; b) Arrangement of 

the circuit with diodes using a null to meet the design criteria ID = 1 mA, [3, 5, 22]. 

 

Figure 5.7, (b) shows the circuit arrangement for this project using a fixator-norator pair to 

meet the design conditions. The added fixator - a current source ID = 1 mA in parallel with a 

nullator forces the current assigned through the diode. Since the voltage on the current source 

is kept at zero, the added fixator has no effect on the overall operation of the circuit. A nullator 

is replaced by the unknown supply voltage U1. We simulate the circuit and obtain a voltage of 

U1 = 2.2 V on the norator with a current I1 = 1.2 mA through it. This shows that although we 

have aimed for the voltage source U1 to replace the norator, we still have two options to do: 1) 

we replace the norator with a current source I1 = 1.2 mA, or 2) we replace the norator with a 

resistor R1 = -U1/I1 = -2.2/1.2 = - 1.8 kΩ. However, the last choice of a negative (active) 

resistance is not possible for the design. 

 We can observe that if we replace the power supply U1 = 2.2V (or the current source I1 = 

1.2 mA) with a norator, the fixator-norator pair is removed from the circuit without influencing 

any changes in the operation of the circuit, that is, the current through the diode remains ID = 

1 mA. We note that in the case of replacing the norator with a current source I1 = 1.2 mA, the 

operation of the circuit is not changed, but the circuit structure (topology) can be changed. For 

example, the resistance of 1 kΩ in series with the source becomes redundant and can be 

removed. 

  Next, we shall examine a third option. Suppose that the power supply in the original circuit, 

Figure 5.7, (a), is already assigned to U1 = 2.5 V, but it is still necessary to have ID = 1 mA, as 

a design requirement. This is the case that we have to decide on the value of a "power 

conductor" device. To continue, let's assume that the resistance R2 is the "power conductor" 

device that we must adjust. We replace R2 with a norator, figure 5.8, and simulate the circuit. 

As usual, we replace the norator with a voltage-controlled voltage source with the very high 

voltage transfer (gain) factor (STCT), which is controlled by the fixator. From the simulated 

results we get a voltage of U2 = 1.0 V on the norator and a current of I2 = 0.485 mA through it. 

This simply means that the choice is to replace the norator with a resistor R2 = U2/I2 = 2.09 kΩ. 

 

 
Fig. 5.8. Arrangement of the diode circuit using two pairs of nullors to meet the design 

criteria I1 = 1.5 mA and ID = 1 mA, [3, 5, 22]. 
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 Often, in a circuit, a norator with the calculated voltage U1 and current I1 can be replaced 

by: 1) a voltage source of U1 volts, 2) a current source of I1 amperes or 3) a component such as 

a resistor R = U1/ I1. 

 Before proceeding, we must realize that although our main use of fixator-norator pairs here 

is for polarization purposes, their application goes even further. 

 

 

5.3 DESIGNING THE ORIENTATION OF ANALOG CIRCUITS 

 

5.4.1 Introduction 
 

 A major step in the design of analog circuits is finding polarization points[1 – 3 – Esteban]. 

In large and complex circuits, polarization has always been a great challenge for designers. 

The problems are normally divided into two areas: firstly, in order to minimise the number of 

iterations and to make convergence possible and rapid; secondly, move to the correct operating 

regions for active components (transistors) so as to achieve acceptable performance and the 

output signals are far from distorted or cut during AC operation. Both problems increase in 

complexity as the number of transistors increases, the design requirements become stricter or 

more effective projects are in demand. A difficulty in the traditional approach seems to be the 

lack of separation between linear and nonlinear components, as well as between the nonlinear 

components themselves during the polarization process. Typical polarization techniques deal 

with the entire circuit as a whole, without classification or partitioning of the circuit; therefore, 

the complexity increases rapidly as the size of the circuit increases. In the case of analog 

integrated circuits, where almost all the components of the circuit are nonlinear, the distinction 

between linear and nonlinear components becomes meaningless. Instead, we can classify the 

components into two categories: 1) drivers and 2) support components. In the usual methods 

used for the analysis and simulation of analog circuits, all nonlinear components, regardless of 

their categories and functionalities, are included in a global polarization (cc) analysis. While, 

in more advanced methods, we can distinguish between drivers and those supporting 

components, such as current sources, current mirrors and active loads [4 - 6- Esteban]. Drivers 

are usually located along the path of the signal directly modeling the waveforms at the output. 

They strongly influence design specifications and are more sensitive to signal conditionings. 

Consequently, drivers must be biased with more care and accuracy compared to the supporting 

components in a circuit. 

 

5.4.2  Application of fixator-norator pairs in the design of analog circuits 
 

As can be seen from the previous paragraph, a fixator can model a device with two terminals 

for a fixed polarization condition. For example, for a diode polarized to (ID, UD), the fixator 

that replaces it is Fx(ID, UD), where for positive ID and UD, the diode absorbs power. However, 

due to the fact that the device is not locally polarized (as discussed in the previous paragraph), 

it must receive energy from the sources in the circuit, that is, the global polarization. Property 

1 can also be extended to include devices with multiple ports, such as bipolar transistors and 

MOS. In this case, for a polarization of a fixed component, the original component can be 

removed from the circuit and replaced with fixators that mimic the same polarization; 

therefore, it does not impose any changes for the rest of the circuit. In general, there are two 

types of fixator modeling for nonlinear devices. In the first type, called complete modeling, the 

component is removed entirely from the circuit and replaced by one or more fixators that 

represent the component with their intended polarization. In the second method, called partial 
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modeling, the component remains in the circuit, but one or more fixators maintain their fixed 

polarization to the specified values. We will discuss each type separately. 

From Property 1 we can see that a device (or a circuit (a network)) with two terminals can 

be modeled by a single fixator. Similarly, for a device or network with several ports we can 

model each port separately with a fixator [19-Esteban]. In this way, an n-port device can be 

removed from a circuit and replaced by n fixators with the same currents and polarization 

voltages, without causing changes in the rest of the circuit. For example, a MOS device can be 

modeled completely using three fixators. Figure 5.9 shows the complete fixator patterns for 

nMOS and pMOS transistors, neglecting the substrate effects. Similarly, Figure 5.10 illustrates 

the complete fixator models for npn and pnp transistors. 

 
Fig. 5.9. Models with transistors fixators nMOS (a) and pMOS (b) when polarized 

globally for UGS, [12]. 

 
Fig. 5.10. Models with fixator for npn and PNP transistors when polarised globally for 

the UBE (UEB), THECE (UEC) and the IC [13]. 

 

Once again, the models represent devices with the same voltages (USG), UDS (USD), ID 

and UBS (USB). Both symbolic and developed (extended) versions are displayed, as well as 

the currents they need to be polarized at the specified Q points. Note that two changes occur in 

the circuit after the modeling is made: i) the resulting circuit becomes linear and ii) the circuit 

is frozen in direct current under fixed polarization conditions. What this means is that adding 

(or removing) any source or signal to the circuit may change the conditions of the signal in the 

circuit, but no change is required on the modeled transistors. Therefore, circuits with 

components modeled by fixators are not prepared for analysis in AC. An important property 

of a fixator is to keep the values fixed in DC (voltage and current) when assigned to a port in 

the circuit. We can use this property to polarize transistors in a circuit according to a specified 

operating point (Q). Figure 5.11 shows the polarization patterns of diodes, BJT transistors and 
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MOS using fixators. There are two types of models for each. Figures 5.11, (a), (c) and (e) show 

linearized patterns, while Figures. 5.11, (b), (d) and (f) show the current models with fixators. 

There are some important differences between the two. In the linearized model, we assume 

that both the voltage and the current for each port are known and correspond to the 

characteristics of the transistor. In this situation we are stuck with the type of transistor that is 

specified for the design, and if this transistor is replaced by another, with different 

characteristics, then the fixator model is no longer exact. On the contrary, the current transistor 

model specifies only one variable (voltage or current) for each port, and the other variable is 

found by the operation of the transistor and according to its characteristics. Therefore, any 

modification of the components of the circuit (including different transistors) will keep the 

polarization intact. However, the price we have to pay for using the real model is its non-

linearity, which means that we must go through iterations when simulating the circuit. 

 
Fig. 5.11. Two types of polarization patterns; diodes a and b; c and d BJT transistors; e 

and f MOS transistors, [22]. 

 

Example 5.3: taking in consideration a three-levels BJT amplifier with reaction (feedback), 

shown in Figure 5.12, (a). The amplifier is broadband known as MC1553 [4-Fakfak]. It is 

assumed that all components of the amplifier are given, with the exception of resistors R1 and 

R7, which are kept unknown for polarization design purposes. There are two project (design) 

specifications to consider here. First of all, for proper operation of the amplifier with UCC = 9 

V, we must obtain a maximum variation in the output voltage close to 8 V; therefore, we assign 

UCE3 = 4 V. This is for the collector-emitter voltage of Q3. Secondly, we select to limit to IB1 

= 10 μA, which is the base current of Q1. This current is almost half of the current passing 

through R8 and is enough to provide a stable polarization condition for the first and critical 

stage of the amplifier. Figure 5.12, (b) shows the design configuration using two NFPs. Notice 

that the norators replace the unknown resistors R1 and R7.  

In Figure 5.12,(c), the fasteners were replaced by their equivalent models in Figure 5.3 

because the circuit components of these circuits are recognized by most simulation software. 



CONTRIBUTIONS REGARDING THE ANALYSIS OF ELECTRICAL CIRCUITS 

WITH NULORS 

 

70 

 

 

 
Fig. 5.12. BJT amplifier in three levels (steps) with reaction (feedback), known as 

MC1553: a) The original amplifier; b) Polarization design using PFN; (c) PFN are 

replaced by their equivalent schemes in Figure 5.3., [22]. 

 

 
Fig. 5.13. The transient response of the amplifier in example 3, designed for 

polarization. 

 

 Simulating the circuit in figure 5.12,(c) with spice program we obtain the values for 

unknown resistances. The results obtained are: R1 = 4.332/1.005e-03 = 4.232 kΩ, and 

R7 = 4.077/1.0e-05 = 407.7 kΩ. 

 Our next step is to test the circuit thus designed. To do this, we remove the f ixators, 

which means short circuit for Fx(0, 10 μA) and open circuit for Fx(4V, 0), and replace 

the norators (in Fig. 5.12, (c)) with R1 and R7 that have been found. Then we run the 

circuit for transient analysis, when 𝑣𝑖𝑛 = 0.6 𝑠𝑖𝑛(2𝜋5.104𝑡). Simulation result is shown 

in Figure 5.13, which is almost without distortion. 

           Time 

0s 40us 80us 120us 160us 200us 
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5.5  DESIGNING INPUT AND OUTPUT GAINS AND IMPEDANCES 

 

5.5.1. Fixator-norator pairs in a circuit 

 

As mentioned earlier, one of the conditions for associating a fixator with a norator 

is that there is a reaction from the norator to the fixator. The purpose of this reaction is 

to harness the increase in voltage or current in the mating norator. In fact, because we 

simulate a fixator-norator pair with a voltage-controlled source with very high gain, the 

lack of reaction between them can cause serious instability and cause values to explode; 

that is, it can generate a voltage or current of very high value (negative or positive) at 

the norator location or elsewhere in the circuit. The only way to control this increase is 

to establish a reaction between the two in the pair. The following two examples show 

these reaction effects in the treatment of fixator-norator pairs. 

 

Example 5.4: To see the reaction (feedback) effect between a norator and its pairing 

fixatorr, let's consider the polarization circuit of a BJT amplifier with a simple common 

reaction transmitter (feedback), shown in Figure 5.14, (a). In this example we assume 

that the transistor works linearly in its active region so that we can line the polarization 

circuit accordingly, as shown in Figure 5.14, (b). The common transmitter amplifier 

circuit with the fixator-norator pair is shown in Figure 5.14,(c), where the fixator-

norator has been replaced by its equivalent circuit in Figure 5.3. Table 1 provides the 

component values for the linearized amplifier. 

 

Table 1. Component values for linearized amplifier 

 

 

UCC 

V 

UBB 

V 

UBE 

V 

RB 

kΩ 

RBE 

kΩ 

Ro 

kΩ 

  

5 0.83 0.64 16.7 2 50 120 
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                                                              (c) 

Fig. 5.14. a) The polarization circuit of a BJT amplifier with common jet transmitter; b) 

Linearized polarization circuit for amplifier; c) The joint transmitter amplifier circuit 

with the fixator-norator pair, [3, 5, 12]. 

 

Now in our first step we assume RC = 2 kΩ and we do two experiments with this amplifier. 

In the first experiment we remove the feedback resistance Rf from the circuit (without 

reaction), and in the second experiment we assign Rf = 200 kΩ.  

Table 2 provides the simulation results for the two experiments. 

 

Table 2. Simulation results for the linearized amplifier 

Rf  kΩ V1 V V2 V IB μA 

Open 0.6603 -13.8464 10.16 

200 0.6455 -1.01526 2.745 

 

In the next step we take the case with reaction (Rf = 200 kΩ) and try to find the power 

conductive resistance RC for a fixed IB = 2,745 μA. Figure 5.11 shows the circuit built for this 

situation. As shown, the Fx fixator (UBE, IB) is associated with the RC norator. In Figure 5.11, 

the Fx fixator (UBE, IB) is replaced by its equivalent circuit in Figure 5.3, (a). The simulation 

results for this case provide URC = 3.47412 V and IRC = 1.71486 mA, where the URC and IRC 

are the voltage and current of the RC norator. This brings us to RC = URC / IRC = 2,026 kΩ, as 

we expected. 

 Now we eliminate the reaction (feedback) and repeat the circuit simulation with a fixed IB 

= 10.36 μA, which is slightly different from the previous value. This time, the simulation 

results become surprisingly different. We get URC = 37.32 V and IRC = 5,968 mA, which are 

obviously not correct and are also unstable. Again, the reason for this instability and defective 

result is due to the lack of reaction (feedback) between the RC norator and the Fx fixator(UBE, 

IB). That is, the current changes through the RC and the voltage at its terminals are not 

"noticed" by the Fx control fixator (UBE, IB). 

 

5.6 CONCLUSIONS 

 

 This chapter describes a new modeling of active devices based on nullors at the 

abstraction circuit level. Simulating the nullors with ideal voltage-controlled voltage sources, 

ec = Ac_C uC, with the control gate an independent ideal current source, jC = 0.0 A and with the 

transfer factor (amplification) in voltage Ac_C very high (ideally infinite), analog circuits with 

nullors can be analyzed with any of the existing simulation software. In this way, all types of 

equations that describe the operation of circuits can be easily formulated, regardless of whether 

the circuit contains nullors or not. For the polarization of analog circuits, a new strategy has 
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been introduced. This paper presents a new circuit element, the Norator Fixator Pair (PFN) 

(PFN), which is the main component in the polarization design strategy. Fixators and norators 

are paired as effective tools to perform a targeted influence on the analyzed circuit. It is shown 

that these pairs are very useful in matching the critical polarization specifications with the 

power resources in DC. In general, there are two types of fixators modeling for nonlinear 

devices. In the first type, called complete modeling, the component is removed entirely from 

the circuit and replaced by one or more fixators that represent the component with their 

corresponding (intentional) polarization. In the second method, called partial modeling, the 

component remains in the circuit, but one or more fixators maintain their fixed polarization to 

the specified values. In both cases, the PFNs are simulated with equivalent circuits containing 

(fig. 5.3) devices recognized by most analog circuit simulation software. The given examples 

certify the usefulness of fixator-norator pairs in polarizing analog circuits and in their optimal 

design. 

 The design tools and procedures introduced in this work are new and extensible. The 

proposed tools can be interpreted as the beginning of a new methodology in the design of 

analog circuits. 

 Local polarization minimizes DC consumption in the circuit. In general, the 

methodology can be used to monitor DC consumption in a circuit and direct it so that the power 

can be effectively reduced. 

 By using fixator-norator pairs, a circuit designer can specify and fix the design criteria 

(relevant to polarization) throughout the project. The pair also serves to locate and find values 

for voltage/current sources or components that conduct dc current. 

 All the proposed procedures can be easily implemented in dedicated programs for 

simulations of complex analog circuits with nulls. Many significant examples have been given 

that certify the validity of the proposed models. 

 

6. FINAL CONCLUSIONS, CONTRIBUTIONS, FUTURE RESEARCH 

DIRECTIONS 

The final chapter synthesizes the scientific activity carried out during the elaboration of this 

doctoral thesis, presenting punctually the conclusions and the results obtained. The chapter 

ends with a series of suggestions and recommendations on further research. 

6.1. FINAL CONCLUSIONS 

As a result of the accelerated development of computing techniques and of the increasingly 

advanced hardware and software equipment, the problems related to the design and analysis of 

electrical systems have largely moved from the test laboratory to the personal computer. The 

optimal sizing, stress tests, the degree of stress of some components, all these are currently 

carried out with the help of specialized programs that offer results and solutions in a short time 

and with material saving.  

In this context, there is a need on the one hand to develop performing computing programs, 

often adapted to a certain category of problems, and on the other hand to develop models with 

a certain degree of generality, which would be easy to implement and that would offer results 

as close as possible to the real values, which would be obtained experimentally.  

In the present PHD thesis there were presented advanced procedures for simulation and 

analysis of complex electronic circuits with nullities. New algorithms and computer programs 

dedicated to the analysis of analog circuits with nulls have been developed. 

 In Chapter 2, a new modeling of active devices based on nulls was presented after a 

brief description of the concepts of nullator, norator and nullor and their properties is passed to 
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the modeling of active devices not only to the voltage mode, but also to the current mode and 

to the mixed mode of operation from the point of view of the circuit with two ports and four 

terminals are described in some details. 

 For the simulation of the four biport-controlled sources with nullors and, in general, 

for the modeling of multiport circuit elements with equivalent circuit circuits formed by bipolar 

circuit elements and taking into account the behavior of nullors in terms of current and voltage, 

two graphs are associated, for the systematic formulation of Kirchhoff theorems, one of Gi 

current  and another of Gu voltage . The two graphs have the same topology (the same number 

of: sides, knots and independent loops) and the sides are characterized by identical parameters, 

they differ in the positions of bipolar circuit elements (sides) simulating the four sources 

ordered by the carrier. Kirchhoff's first theorem and the equations of the bubble currents are 

formulated on the Gi current graph, Kirchhoff's second theorem, and the nodal (modified) 

equations are formulated on the voltage graph Gu, and in the characteristic equations 

(constituents) the currents (voltages) on the sides of the current (voltage) graph are used. 

 By simulating the nullators by ideal sources independent of current with the current 

intensity j = 0 A and of the norators with ideal voltage sources controlled in voltage ec(uC) with 

the transfer factor (amplification) in voltage A with very high values (theoretically infinite), all 

types of equations, in any operating regime, can be formulated directly on the circuit with the 

nullors without the need for the graphs of  current and voltage. The control voltages of the 

voltage sources controlled in the voltage are those from the terminals of the nullors – the nullors 

are biport circuit elements with the input side formed by a nullator, and the output side consists 

of a norator.  

 The examples presented in detail validate the models presented for analog circuits 

with nullors. 

          Chapter 3 presents the necessary and sufficient conditions to be satisfied by the linear 

one-port circuits to be substituted for the equivalent Thévenin, Norton and Hybrid circuits. 
These circuits are widely used in the analysis of analog circuits. It is simply demonstrated, 

based on the superposition theorems, the Thévenin and Norton theorems. 

 A new modeling technique, called H~, is introduced for single-port networks. A 

guided design procedure for polarization was introduced in the work. The developed strategy 

separates the linear and nonlinear portions of an analog circuit and takes more control over the 

nonlinear portions. This separation of portions (components) within the circuit is achieved by 

introducing a new port modeling that nulliffies the ports of nonlinear devices. This, in turn, 

leads to a new polarization technique for nonlinear components. 

The use of Thévenin and Norton equivalent circuits in the simulation of nonlinear circuits with 

a small number of nonlinear circuit elements leads to a reduction in the calculation time and an 

increase in the accuracy of the results obtained. 

In chapter 4 is presented a very simple and very precise method of analyzing dynamic 

circuits with inconsistent initial conditions. This approach is based on the modified nodal 

method, modeling the ideal circuit breakers by time-varying resistors having zero 𝑅𝑂𝑁 and 

𝑅𝑂𝐹𝐹 very high (much higher than the lowest resistance in the circuit. 

The regressive Euler formula is used to integrate switching circuit equations. The 

switching time is assumed to be 0t  . In this way, the initial consistent conditions at are 

automatically set in accordance with the initial inconsistent conditions at 𝑡0+ . For the 

calculation of the Dirac impulse areas for the condensator currents and/or the coil voltages, we 

must multiply these variables by the size of the integration step h at the time when the circuit 

breakers change their state, and after the switching the initial inconsistent conditions appear. 

The analyzed circuit can be linear or nonlinear. In the case of a circuit with nonlinear 

elements there is a restriction: the circuit equations with nonlinear elements must be algebraic 

and the variables of these equations must not depend on impulses. 
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 The easiest method of analyzing linear circuits with excess elements and CII is based 

on the Laplace transform. This procedure has the advantage that it converts integro-differential 

equations into algebraic equations (in which the coefficients of algebraic equations contain the 

symbolic variable s (complex frequency)) and includes the initial conditions in the equations 

to be solved, implicitly treating them as independent sources. Therefore, in the operational 

method, the circuit is considered not only in its transition over the time interval (0, ∞), but also 

in its transition in (0-, 0+), in the vicinity of the origin. Implicitly take into account the 

singularities that appear at t = 0. 

 As shown in work [1], if for the voltages of linear capacitors and for the currents of 

linear coils, the initial conditions at the time of the CII are considered to be automatically 

regularized. Therefore, the correct use of the initial conditions in the Laplace equivalent 

schemes of linear electrical circuits leads to minor risks in the analysis of these transient 

circuits. Because inconsistent initial conditions automatically adjust with this method, the risk 

of errors is generated by the wrong initial conditions. The operational representation of 

electrical circuits allows transient analysis, without any difficulty in both the (semi-)symbolic 

and numerical approaches.
−0t  

 The validity and effectiveness of methods of analysis of CII pathological circuits and 

switching circuits are proven by the variety of circuits given as examples. 

 Chapter 5 describes a new modeling of active devices based on nulls at the abstraction 

circuit level. Simulating nullities with ideal voltage sources controlled by voltage, ec = Ac_C uC, 

with the control gate an independent ideal power source, jC = 0,0 A and with the voltage transfer 

factor (amplification) Ac_C very large (ideally infinite), analog circuits with nulls can be 

analyzed with any of the existing simulation software. In this way, all types of equations that 

describe the operation of circuits can be easily formulated, regardless of whether the circuit 

contains nullities or not. For the polarization of analog circuits, a new strategy has been 

introduced. This paper presents a new circuit element, The Norator Fixator Pair – PFN (FNP), 

which is the main component in the polarization design strategy. Fixators and norators are 

paired as effective tools to perform a targeted influence on the analyzed circuit. It is shown that 

these pairs are very useful in matching the critical polarization specifications with the power 

resources in cc. In general, there are two types of fixator modeling for nonlinear devices. In the 

first type, called complete modeling, the component is removed entirely from the circuit and 

replaced by one or more fasteners that represent the component with their corresponding 

(intentional) polarization. In the second method, called partial modeling, the component 

remains in the circuit, but one or more fixators maintain their fixed polarization to the specified 

values. In both cases, the NFPs are simulated with equivalent circuits containing (fig. 4.3) 

devices recognized by most analog circuit simulation software. The given examples certify the 

usefulness of fixator-norator pairs in polarizing analog circuits and in their optimal design. 

 Local polarization minimizes DC consumption in the circuit. In general, the 

methodology can be used to monitor dc consumption in a circuit and direct it so that the power 

can be effectively reduced. 

 By using fixator-norator pairs, a circuit designer can specify and fix the design criteria 

(relevant to polarization) throughout the project. The pair also serves to locate and find values 

for voltage/current sources or components that conduct dc current. 

 All the proposed procedures can be easily implemented in dedicated programs for 

simulations of complex analog circuits with nullors. Many significant examples have been 

given that certify the validity of the proposed models. 
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6.2 MAIN ORIGINAL CONTRIBUTIONS 

In a society where computer technology and programs specialized in solving everyday 

problems are intensively used, the concerns related to the development of new models, 

performant methods of analysis and new procedures to model different linear and/or nonlinear 

analog circuits constitute a permanent activity. Electrical engineering could not be an 

exception. From the need to develop new equipment, to optimize the existing ones or to 

integrate them into complex systems, there was also the need to develop specialized programs 

that would solve these problems or at least ensure an optimal framework for carrying out high-

performance specialized studies. One of the recent challenges is to develop simple models of 

electrical system components, so that they can be used easily and at any time to build more 

complex structures that want to be analyzed and improved. In this context, the topic addressed 

in this doctoral thesis represents a topic of interest for the engineering field. 

The main original contributions made by the author in this doctoral thesis are:  

1. The work begins with a carefully selected and up-to-date documentation regarding the 

analysis, modeling, simulation and design of linear and/or nonlinear analog circuits. It 

presents the main problems that occur in the simulation of complex analog circuits that 

in their composition a great diversity of electronic components. The methods of 

analysis, modelling, simulation and design of existing linear and/or nonlinear analog 

circuits and the most widely used computing programs shall be identified. The results 

are synthesized in a useful manner and thus constitute a useful tool for the development 

of further research in the field; 

➢ The original implementation of some advanced methods of simulation and modeling of 

complex electronic circuits by using new simple circuit elements such as: nullators, 

noratos, nullors and pairs of fixators-norators; 

➢ New and efficient procedures for adapting the existing simulation and analysis 

programs (SPICE, MAPLE, MATLAB, SYSEG, SYTFG, ECSAP, etc.), complex 

electronic circuits with nullors are developed; 

1. Use of the equivalence of the four types of suse ordered with equivalent circuits 

consisting only of bipolar circuit elements and nullors in the symbolic or partial-

symbolic calculation of the circuit functions for complex analog circuits; 

➢ The successful use of all methods for the analysis of normal electronic circuits (the 

method based on Kirchhoff's theorems, the loop currents method, the classical node 

method, the modified nodal method, the state equation method and the method of semi-

state equations) for the analysis of linear and/or nonlinear analog circuits linearized on 

portions with nullors was used. The variety as a structure of analog circuits with the 

analyzed nullities confirms the use of the use of nullors models of complex electronic 

devices; 

➢ By modeling nullor amplifiers and then simulating norator by ideal current-independent 

sources with current intensity j = 0 A  and norator with ideal voltage-controlled sources 

ec(uC) with the transfer factor (amplification) in voltage A with very high values 

(theoretically infinite), allows systematic and particularly efficient analysis of practical 

complex circuits containing operational amplifiers; 

➢ The necessary and sufficient conditions to be satisfied by the one-port linear circuits to 

be substituted for the equivalent Thévenin, Norton and Hybrid circuits are exposed. 
These circuits are widely used in the analysis of analog circuits. It is simply 

demonstrated, based on the superposition theorem, the Thévenin and Norton theorems; 
➢ It introduces a new modeling technique called H~, for single-port networks. It is shown 

that H~ models are more dynamic compared to Thevenin or Norton equivalent circuits 
and have the ability to describe port behavior more accurately. A special type of H~ 

model, called the nullified H~ model, is also introduced, or simple model H; and many 
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properties of H-modeling, including power management in the circuit, are being 
investigated. A major property of H-modeling is the local polarization of transistors. 

Separates nonlinear components from the linear portion of the circuit for faster and 
more efficient polarization of the circuit. Here a designer can take advantage of H-

modeling and the polarization of individual transistors (or in combinations) without 
having to perform normal circuit polarization; 

➢ Develop a guided design procedure for polarization. The developed strategy separates 

the linear and nonlinear portions of an analog circuit and takes more control over the 

nonlinear portions. This separation of portions (components) within the circuit is 

achieved by introducing a new port modeling that nullifies the ports of nonlinear 

devices. This, in turn, leads to a new polarization technique for nonlinear components; 

➢ It is shown how the equivalent circuits Thévenin, Norton and Hybrid can be used, with 
great success, in the simulation of nonlinear circuits with a small number of nonlinear 

circuit elements, This procedure leads to a reduction of the calculation time and an 
increase in the accuracy of the results obtained; 

➢ In chapter 4 is presented a very simple and very precise method of analyzing dynamic 

circuits with inconsistent initial conditions. This approach is based on the modified 

nodal method, modeling the ideal circuit breakers through time-varying resistors having 

ONR  zero and OFFR  very high (much higher than the lowest resistance in the circuit); 

➢ The implicit Euler algorithm is used to integrate the equations of the switching circuit. 

The switching time is assumed to be 0t  . In this way, the initial consistent conditions at 

+0t  are automatically set in accordance with the initial inconsistent conditions at 
−0t . In 

order to calculate the dirac pulse areas for the condenser currents and/or the coil 

voltages, we must multiply these variables by the size of the integration step h at the 

time when the circuit breakers change their state, and after switching, the initial 

inconsistent conditions appear; 

➢ The analyzed circuit can be linear or nonlinear. In the case of a circuit with nonlinear 

elements there is a restriction: the equations of the circuit with nonlinear elements must 

be algebraic and the variables of these equations must not depend on impulses; 

➢ It has been assumed that time-varying resistors have a linear variation during switching, 

and the duration of switching (𝑡′ − 𝑡0) is less than or equal to the size of the integration 

step. The Euler Regressive Formula (ERF) is used to integrate equations of switching 

circuits. In order to calculate the dirac pulse areas for the condenser currents and/or coil 

voltages, we must multiply these variables by the size of the integration step h at the 

time when the circuit breakers change their state, and after the switching the initial 

inconsistent conditions appear; 

➢ It has been shown that the easiest method of analyzing linear circuits with excess 

elements and CII is based on the Laplace transform. This procedure has the advantage 

that it converts integro-differential equations into algebraic equations (in which the 

coefficients of algebraic equations contain the symbolic variable s (complex 

frequency)) and includes the initial conditions in the equations to be solved, implicitly 

treating them as independent sources. Therefore, in the operational method, the circuit 

is considered not only in its transition over the time interval (0, ∞), but also in its 

transition in (0-, 0+), in the vicinity of origin. Implicitly take into account the 

singularities that appear at t = 0; 

➢ The correct use of initial conditions in the Laplace equivalent schemes of linear 

electrical circuits leads to minor risks in the analysis of these transient circuits. Because 

inconsistent initial conditions automatically adjust with this method, the risk of errors 

is generated by the wrong initial conditions. The operational representation of electrical 
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circuits allows transient analysis, without any difficulty in both the (semi-)symbolic 

and numerical approaches. 

➢ For the analysis of static power converters, the technique of mediation of the state space 

was briefly presented. 

➢ In order to highlight the validity and efficiency of the methods of analysis of the 

pathological circuits with CII and of the switching circuits, a large and diverse number, 

as a structure, of IIC electrical circuits were analyzed; 

➢ Development of new methods of modeling active devices based on nullors at the level 

of the abstraction circuit. Simulating nullors with ideal voltage-controlled voltage 

sources, ec = Ac_C uC, with the control gate an independent ideal power source, jC = 0,0 

A and with the voltage transfer factor (amplification) Ac_C very large (ideally infinite), 

analog circuits with nullors can be analyzed with any of the existing simulation 

software. In this way, all types of equations describing the operation of circuits can be 

easily formulated, regardless of whether the circuit contains nullors or not; 

➢ For the polarization of analog circuits, a new strategy has been introduced. A new 

circuit element, the Norator Fixator Pair –(NFP), is presented, which is the main 

component in polarization design strategies. Fixators and norators are paired as 

effective tools to perform a targeted influence on the analyzed circuit. It is shown that 

these pairs are very useful in matching the critical polarization specifications with the 

power resources in DC. In general, there are two types of fastener modeling for 

nonlinear devices. In the first type, called complete modeling, the component is 

removed entirely from the circuit and replaced by one or more fixators that represent 

the component with their corresponding (intentional) polarization. In the second 

method, called partial modeling, the component remains in the circuit, but one or more 

fixators maintain their fixed polarization to the specified values. In both cases, the NFPs 

are simulated with equivalent circuits containing devices recognised by most analog 

circuit simulation software; 

➢ The examples given certify the usefulness of the fixator-norator pairs in the polarization 

of analog circuits and in their optimal design; 

➢ Local polarization minimizes DC consumption in the circuit. In general, the 

methodology can be used to monitor dc consumption in a circuit and direct it so that 

the power can be effectively reduced; 

➢ By using fixator-norator pairs, a circuit designer can specify and fix the design criteria 

(relevant to polarization) throughout the project. The pair also serves to locate and find 

values for voltage/current sources or components that conduct dc current; 

➢ All the proposed procedures can be easily implemented in dedicated programs for 

simulations of complex analog circuits with nullors. Many significant examples have 

been given that certify the validity of the proposed models. 

6.3 FUTURE RESEARCH AND DEVELOPMENT PERSPECTIVES 

 

Starting from the results obtained in this thesis, the following main directions of 

continuing future research can be identified: 

➢ Adaptation of the software presented in the thesis to the current and future needs of 

engineering science related to the analysis of analog and digital circuits;  

➢ Successful use of nullors and pairs of fixators-norators in the simulation of complex 

electronic devices in various operating modes; 

➢ Introduction of new tools (computing tools) by circuit designers that allow them to 

understand and exploit the nonlinearity of circuits for the most useful processing; 
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➢ Extending the use of Thévenin, Norton and Hybrid equivalent circuits to multiport 

electrical circuit analysis; 

➢ Elaboration of new methods of polarization of nonlinear circuits; 

➢ Streamlining the methods of circuit analysis with inconsistent initial conditions; 

➢ Studying the nonlinear behavior of the circuit in a graphical way, facilitating the 

development of a qualitative appreciation for nonlinear analog circuits. 
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