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Abstract

Autonomous driving has become one of the most important challenges regarding to-
day’s research in computer vision and artificial intelligence. In its development the
private companies benefited from the help of the research community in order to develop
better algorithms. An autonomous car will have obvious advantages in the daily life
but for the moment there is still much to do in order to develop a fully autonomous
functional and safe car. A typical autonomous car have a lot of components regarding
scene understanding, decision making and vehicle control. This thesis studies in detail
the scene understanding regarding the autonomous cars and focuses on some of the
most relevant tasks regarding the scene understanding: object detection, object tracking,
semantic and instance segmentation and depth estimation. At the limit between the scene
understanding and decision making is the task of trajectory prediction of the surrounding
cars, which is based on scene understanding but it is useful on the decision making
process. The purpose of the thesis is to analyze the scene understanding tasks and use
them to design a new trajectory prediction algorithm. The novelty is that the trajectory
prediction task is made using video generation - an approach never met in the literature.

The thesis analyzes the tasks of object detection and tracking, semantic and instance
segmentation, depth estimation and trajectory prediction, making a comprehensive
analysis of the most important works and datasets at the moment. For each task, some
of the best existing architectures were tested. Also, for each of these tasks multiple
experiments were made on new datasets recorded in the campus of University Politehnica
of Bucharest, taking into account multiple parameters like the size of the cars or the
time of the day, in order to see which of the tested architectures works best in a real life
scenario. The final purpose is to find the best architectures that can be combined for the
trajectory prediction task using video generation. Finally, for the trajectory prediction
task, the thesis proposes a new method based on object detection, road segmentation,
depth estimation and video generation. Also, it proposes three new video generation
architecture variations with better results for the trajectory prediction task. The biggest
advantage is that even if the video generation task is more complex, it eliminates the
need of a manually annotated trajectory, which can be a very laborious task. Instead,
a video generation algorithm could be trained with any possible driving video, which
could lead to better trajectory predictions in the future, with enough training data.
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Chapter 1

Introduction

Autonomous driving has been one of the most challenging tasks in the latest years in
both industry and academia and it has been in the minds of both researchers and car
manufacturers in the last decade. The advantages of an autonomous car are obvious,
beginning from safety and financial reasons and finishing with the people comfort. If
the safety is discussed, the automation of the cars will lead to a better world if all the
cars will incorporate almost perfect systems that will not make mistakes and will respect
the traffic rules. Most of the accidents nowadays are made because the drivers engage
in dangerous overtakes, they don’t respect the traffic lights or the traffic rules, so a
perfect system will overpass these aspects. Only a small percent of the accidents are
now happening due to car problems or to the weather, so if a perfect algorithm will be
designed for autonomous driving, the number of accidents will be substantially lower.
Regarding the safety, according to a study, over 94% of the accidents are made by
human mistake, the rest of the accidents being related to the failure of the car, the road,
weather, or even unknown reasons. Not only that autonomous driving will lead to a safer
environment, but also a better and cheaper one - people could share cars, even taxis, in
order to go to their destination, being more cheap and also more ecological. Less cars on
the street will lead to faster times to reach the destination. However, currently there is
no perfect autonomous car. An autonomous car involves a lot of components and a lot
of cutting edge algorithms, combining computer vision, artificial intelligence, machine
learning and data science. This thesis aims to tackle some of the most important parts
regarding an autonomous car and to propose a new trajectory prediction system for an
autonomous car, based on video generation, object detection, semantic segmentation and
depth prediction.

1



1.1 Autonomous driving

An autonomous car consists of a lot of different components. There is an acquisition
layer, with some sensors (cameras, GPS sensor, LIDAR, RADAR, IMU, etc). After
that, the car system has a perception layer, where the car recognizes the environment, its
position, the surrounding vehicles, including the tracking of those, the road, the distance
to the surrounding vehicles, etc. After the perception layer, there is a decision layer,
which incorporates data from the sensors or even from the other cars (in a scenario
where there are many autonomous cars on the road).In the decision layer, there are many
components – local and global route planning, behavioral planning (the maneuver that
must be made, for example crossing a lane, also observing what the other participants
do), and motion planning/ path following, to follow the desired action. After all this
layers, the final layer commands the car – given a steering angle and a acceleration or
brake percentage, the actuators must make those commands.

When autonomous driving is discussed and analyzed, there are 5 levels of automation
that were standardized only a few years ago. The first level contains the cars which can
maintain the same speed by themselves or even make an emergency braking. However,
the human driver still controls the car. The second level implies that the software will
take the control over the car, without no intervention from the driver, but the driver
must be very careful in order to take back the control of the car. The third level would
imply that the driver should not necessarily watch the road, but it would have to drive
the car when needed (in forbidden areas, for example). The fourth level will imply
that the human will not need to drive at all, but this facility could be allowed only in
certain spaces or circumstances. The fifth and last level will imply that there is no need
for a steering wheel, because the software controls everything. However, as of 2022,
only Honda (functional only on highway) and Mercedes have launched a level three
autonomous car, with another few companies waiting to launch cars with a similar degree
of automation. Unfortunately, the last two levels will not be seen soon in the market,
which gives the researchers the responsibility of developing better algorithms, in order
to achieve a fully autonomous car. The research area regarding the autonomous driving
is far from being outdated, with new architectures being designed each month.
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1.2 Scope of the doctoral thesis

The purpose of this research is to analyze the core concepts regarding autonomous driving
- object detection and tracking, semantic and instance segmentation, depth estimation and
trajectory prediction. Also, for the trajectory prediction the domain of video generation
is analyzed, which is related to the autonomous driving research. The thesis is focused
on four specific tasks - object detection, semantic segmentation (especially for the road
semantic segmentation), depth estimation and trajectory prediction. For each task there
are described the most relevant works in the field and also the studies that have been made
regarding the field itself, and also for related areas, like video generation. This research
is also relevant for comparing the state of the art studies regarding these topics, and other
review articles and studies are described, in order to show what this thesis brings new
regarding the current reviews. For each task the existing datasets are analyzed and also
new datasets are made, recorded and annotated manually by the team from Politehnica
University and there are compared with the existing ones. The datasets were recorded in
the university campus and took in account factors like the time of the day and the size
of the cars. The dataset construction is also another important contribution regarding
this thesis, by bringing new datasets to the research community. For each task some
experiments are made using the best networks available at the moment. The experiments
were made with the images from the recorded datasets and different statistics were made
regarding the quality of the results, the inference time and the possibility of using the
algorithms in a real time application. For the final task, the trajectory prediction, many of
the previous results were included in order to make a new trajectory prediction algorithm,
which takes into account the semantic segmentation, the depth prediction the object
detection and also has at its core the idea of video generation - an approach that has not
been seen previously in the research literature. Also, three new architecture variations
are proposed by modifying a popular video generation network, some of them obtaining
better results for the trajectory prediction task than the base model.
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1.3 Content of the doctoral thesis

The thesis is structured in 8 chapters. Chapter 1 consists of the introduction and the
presentation of the autonomous driving field and of the thesis. The rest of the thesis
is structured as follows. In Chapter 2 some useful background information is detailed
in order for a regular computer science engineer to understand the thesis - the concept
of the neural networks is described, which is used in all the experiments made. The
neural networks are new architectures that try to simulate the human brain and are now
widely used for computer vision tasks. This is why a short presentation for the neural
networks can be seen as mandatory, in order for this thesis to be better understood. In
Chapter 3, the related work for each of the four tasks that is discussed in the thesis is
analyzed - the object detection, the semantic segmentation, the trajectory prediction and
depth estimation. Some brief information regarding object tracking and video generation
is also included,which is the core concept of the trajectory prediction model. In this
research a new model which predicts the trajectory by using a video generation model
is presented, something which has not been tried previously in the research literature.
Both the related studies are presented and analyzed and the reviews regarding the best
architectures, in order to show what the current thesis bring new related to the other
reviews. The next four chapters present the experiments regarding the studies task. In
Chapter 4 are described the results considering the object detection task, in Chapter
5 are described the results regarding the road semantic segmentation task, Chapter 6
consists in the description of the experiments made for the depth estimation task and,
finally, Chapter 7 consists of the experiments made for the trajectory prediction task and
also described the proposed workflow and presents three new modified architectures
based on a popular video generation architecture. Each of these four chapters have a
similar structure, containing information regarding the most relevant datasets and also
regarding the proposed dataset, the experiments made, the metrics involved and also
the presentation of the results. Chapter 7 also have another section regarding the new
proposed architectures, with their results considering the same task and setup. Finally,
the conclusion and the future work is discussed in Chapter 8.

5



Chapter 2

Background

In this thesis, most of the architectures presented are artificial neural networks (ANN).
The neural networks have been developed in the 1960s, trying to make a simplified
model of the human brain – there are some nodes called neurons which are connected
between them - a very simple architecture copied by the functioning of the human brain.
Even if there are many layers of neurons, only two are visible - the input layer and
the output layer, and the rest of the layers, which called hidden layers from obvious
reasons, and are used in order to compute the weights of the final layer. The connections
between the neurons are labeled as edges. In the ANN model each neuron and each
edge have, generally, a value, called weight. The weight will determine how important is
that specific component regarding the final output. As the model learns by taking more
data to model, the weights of specific neurons can change in value - they can increase or
decrease. Even if the models are not that knew, the usage of ANNs in machine learning,
computer vision and natural language processing has increased only in the last 20 years.
Nowadays, many of the computer vision tasks, natural language processing tasks and
also other machine learning tasks (for example path finding in robots, action recognition,
etc) are made using almost exclusively neural networks. There are many types of neural
networks.

2.1 Neural Networks

2.1.1 Feedforward neural networks

The most simple model, which will be briefly explained here, is the feedforward neural
network. If it contains hidden layers, it is also called nultilayer perceptron (MLP).

This basic model can be further improved by taking data into batches and also by
making different modifications regarding the changes for the weights and bias. There
are different optimization algorithms like RMSProp, Momentum, Adam.

The feedforward neural network shows the basics of any neural network – the number
of layers, the activation functions, the output function, the cost function, the optimization
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method. These parameters can be varied and make an infinite number of artificial neural
networks. Generally, there is no known method for obtaining the best network. The most
important factor that lead to the growth of the ANNs and better results is the variation of
the experiments. The current networks are generally inspired by previous ones – new
layers are added and new changes to the structure are made as long as the results are
better.

2.1.2 Recurrent neural networks

Besides the feedforward neural network, there are now other neural networks that are
used. The feedforward neural network have only connections from a layer to the next one.
The next step was to introduce connections between the same layer or even between a
layer and the previous one. The most simple example is a fully recurrent neural network
(RNN), where each neuron in the network is connected to every other neuron. The basic
RNN only take into account the previous hidden states by concatenating the hidden
states into a bigger vector. However, the most used recurrent neural networks are using
Long Short-Term Memory (LSTM) units or Gated Recurrent Units (GRUs). The most
common networks are using LSTMs, which have been able to tackle some problems that
the feedforward neural networks have, for example the problem of the vanishing gradient
or the exploding gradient, which is why the LSTMs are used for tasks that require time –
for example the prediction of the trajectory of a car. The GRUs are a simplified model of
the LSTM and are used more in natural language processing, but they also have their
usage in computer vision.

2.1.3 Convolutional neural networks

Another type of neural networks are the convolutional neural networks (CNNs). This
type of ANNs obtained the best results for tasks regarding images, due to their properties
of manipulating the space. It can be stated that RNNs are the best when the time has
to be taken into account and the CNNs are the best if the space has to be incorporated.
Some moderns neural networks have both recurrent and convolutional components. A
convolutional neural network is basically a feedforward neural network which have at
least some layers that perform convolutions. The convolution is a special operation that
basically reduce the dimension of the input space (for example, an image).

2.1.4 Variational autoencoders

Besides the RNNs and CNNs, there are also other types of artificial neural networks.
Not an network itself, but a useful architecture, is the encoder decoder model. It is
applied especially regarding recurrent neural networks and it consists of two parts – an
encoder, which takes the input and transforms it into a state of a fixed dimension (a
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multidimensional tensor), and a decoder, which will take the tensor and try to apply
again the transformation. The better the decoder is means that the encoder succeeds in
representing the relevant components of the input. The encoder decoder scheme is used
in computer vision, natural language processing and other machine learning tasks.

One type of neural network which is very used in the latest years is the Variational
Autoencoder (VAE). The Autoencoder itself is used for dimensionality reduction, by
using the encoder decoder scheme. However, the variational autoencoder has another
important usage - it tries to obtain good properties for the result of the encoder, which is
called the latent space, in order to take samples from the latent space and use them for
the video generation task, for example.

2.1.5 Generative adversarial networks

The last neural network presented in this section is the Generative Adversarial Network
(GAN). This network is designed specifically for generation – either new images or
text. In this thesis will be exploited the benefits of the GAN for video generation and
video prediction. The idea behind the GAN is very simple – it consists of two different
networks – a generator and a discriminator.

There are also other types of neural networks, for example the transformer networks,
which are used in natural language processing, or self-organizing map (SOM), another
network for dimensionality reduction. However, they usage in scene understanding
and autonomous driving is still limited, which is why other architectures are no more
detailed.
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Chapter 3

Related work

In this chapter are described the state-of-the-art architectures regarding the most impor-
tant topics for this research and also for autonomous driving - object detection, object
tracking, semantic, instance and panoptic segmentation, trajectory prediction and video
generation. For each of these topics the evolution of the architectures throughout history
is presented, some categories regarding the approaches are made, the best architectures
regarding their results in real life applications are mentioned and also some of the best
review articles regarding the subject are discussed. Instead of just mentioning some of
the best architectures used, this section can be seen as a review and a comparison of the
best technologies regarding some of the most important topics in autonomous driving as
regarding the year 2022 and should be considered as one of the important contributions
of the thesis.

3.1 Related problems

3.1.1 State of the art detectors

The deep learning approaches can be divided in three classes, considering their historical
appearance. There are detectors that operates in a two stage process and detectors that
have only one stage. All of them use anchors to detect objects. The newest networks
don’t use anchors at all, so they can be grouped in another category, anchor free detectors.

3.1.2 Object tracking

The task of object tracking involves identifying the same object in different frames – after
the object detection, the object tracking should link the same object between frames. An
advantage of object tracking is that it can be inferred the position of an object (a person
or a car) if it is known for sure that it appears into a certain frame, but the detection
will fail, because of various reasons (occlusion, blur in the image cause by the motion,
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variations in illumination, resolution, scale, etc).

3.1.3 Segmentation

In the following section, it will analyzed the state of the art regarding semantic and
instance segmentation, and also some related studies that tackle the semantic segmenta-
tion problem, what it was presented and what is improved in this work, regarding the
semantic segmentation and instance segmentation problem. The first discussion is about
some of the most used architectures for object classification, that are used for the feature
extraction in the semantic segmentation networks, then they are analyzed the instance
segmentation task, where the objects are detected, each instance is identified and each
pixel of the object is classified, but the background is not classified, and also the semantic
segmentation, where each pixel of the image is classified, without taking in account
individual instances. It will also be analyzed a new approach, panoptic segmentation,
which combines the two methods. At the end, the related review articles will be analyzed
and what this thesis brings new to the segmentation study.

3.1.4 Instance segmentation

The instance segmentation task is, generally, based on object detection.

3.1.5 Semantic segmentation

This subsection analyzes the semantic segmentation architectures. They are very im-
portant for autonomous driving because they can detect and classify background pixels,
including the road, which is one of the most important tasks in autonomous driving, and
also the subject of the current study. There are many architectures, most of them based
on convolutional neural networks, with different architectures and optimizations.

3.1.6 Panoptic segmentation

In this subsection are described some architectures that do both the instance segmentation
and the semantic segmentation task. This approach is called panoptic segmentation, and
is a very recent way of doing the segmentation, and also it is useful for autonomous
driving.
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3.1.7 Depth estimation

In this section the most important depth estimation networks, as well as the most relevant
review papers regarding depth networks are analyzed and compared to the current study.
The first division regarding depth estimation studies can be made regarding the number
of the cameras that are used. The stereo depth networks use two cameras and are better
in accuracy but also need a more complex system so the monocular depth networks have
their own advantages. In the experiments made there were used only monocular depth
estimation networks, which have the advantage of being easier to train and test and also
they need a cheaper infrastructure.

3.1.8 Trajectory prediction networks

In this section are described the most relevant networks regarding the related tasks for
the experiments made for trajectory prediction. The most relevant networks use LSTM,
RNN, GAN, LSTM-CNN or CNN architectures.

3.1.9 Video generation networks

The task of making frames that form a video can be divided into two different categories
– there are networks that try to generate random frames that could be considered a real
video (without any link with a real one) and also networks that try to predict new frames
given an original video. The tasks of video generation and video prediction are, however,
related and in many cases the two terms can be used in an interchangeable way. The
most relevant networks use LSTM, RNN, GAN, LSTM-CNN or VAE architectures.
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Chapter 4

Evaluating object detection for
autonomous driving

In this chapter are described the most important results regarding object detection and its
related task, object tracking. In the first section are described some classical datasets for
the object detection task and also the dataset used in the current experiments. In the next
section are described the experiments and the metrics used for the object detection task.
In the last section the results are described and analyzed.

4.1 POLI dataset - collecting a new dataset for object
detection

Some of the images from the POLI dataset can be found in Figure 4.1.

Fig. 4.1 POLI dataset images
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Fig. 4.2 CVAT annotation tool

The dataset was recorded on the campus streets, passing many cars and students.
The dataset was manually labeled using an online tool, CVAT , which simplifies the
annotation task, by interpolating the bounding boxes from the frames between two
annotated frames, then the resulting boxes can be manually adjusted to perfectly match
the ground truth. The annotation is one of the most time consuming tasks regarding
computer vision, with a lot of manual work that has to be done in order for the bounding
boxes to be as close as possible to the ideal one. A screenshot with the capabilities of
the CVAT tool can be seen in Figure 4.2.

The dataset consists of 13001 images, containing 60227 objects, from which 90%
are either car or person (41064 objects are cars, 14576 are persons). There are also traffic
signs and bicycles in the dataset. The dataset is a hard one, because there are frames
with many cars annotated in a parking spot where is also seen the crowded road that is
in front of the university, with multiple cars crossing every second. The state-of-the-art
detectors had a hard time regarding this dataset, as it can be seen in Chapter 5, the recall
being smaller than a classical, less crowded dataset.

4.2 Object detection experiments and results

In this section are analyzed the experiments and the metrics made for the object detection
task. To summarize, there were used 4 networks – YOLO v3, RetinaNet, Faster R-CNN
and SSD and tested it against the BDD100K dataset, in order to see their performances
regarding recall and accuracy and how the results vary regarding the time of the day
(daytime, dusk or dawn and night) and also a different statistic was made regarding the
dimension of the objects. The same architectures were tested against the proposed dataset
in the Politehnica University Campus, manually annotated. Also, the same statistics
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Table 4.1 Precision on BDD100K Dataset

DC DO DR DS DSC DSO DSR DSS NC NO NR NS
YOLO AP@.50IOU 0.66 0.65 0.64 0.65 0.65 0.65 0.62 0.65 0.63 0.64 0.61 0.64
SSD AP@.50IOU 0.92 0.93 0.92 0.92 0.94 0.93 0.93 0.93 0.90 0.93 0.90 0.91

Faster R-CNN AP@.50IOU 0.84 0.86 0.86 0.88 0.86 0.86 0.87 0.89 0.82 0.86 0.82 0.83
RetinaNet AP@.50IOU 0.28 0.27 0.32 0.32 0.27 0.26 0.29 0.30 0.31 0.33 0.32 0.34

YOLO MAP 0.56 0.55 0.55 0.55 0.55 0.55 0.53 0.55 0.54 0.55 0.53 0.55
SSD MAP 0.79 0.80 0.79 0.79 0.80 0.79 0.79 0.80 0.74 0.79 0.75 0.75

Faster R-CNN MAP 0.67 0.69 0.68 0.70 0.68 0.68 0.68 0.71 0.64 0.68 0.63 0.65
RetinaNet MAP 0.34 0.34 0.37 0.36 0.34 0.33 0.35 0.36 0.37 0.39 0.37 0.38

Table 4.2 Recall on BDD100K Dataset

DC DO DR DS DSC DSO DSR DSS NC NO NR NS
YOLO AR@.50IOU 0.36 0.37 0.36 0.36 0.35 0.37 0.34 0.35 0.20 0.33 0.18 0.22
SSD AR@.50IOU 0.17 0.17 0.19 0.19 0.16 0.17 0.18 0.19 0.12 0.16 0.11 0.14

Faster R-CNN AR@.50IOU 0.14 0.14 0.13 0.14 0.12 0.13 0.12 0.13 0.05 0.11 0.04 0.06
RetinaNet AR@.50IOU 0.09 0.08 0.10 0.10 0.08 0.08 0.09 0.09 0.06 0.09 0.06 0.07

YOLO MAR 0.30 0.31 0.30 0.30 0.29 0.31 0.29 0.30 0.17 0.28 0.15 0.19
SSD MAR 0.14 0.15 0.16 0.16 0.14 0.14 0.15 0.16 0.10 0.14 0.09 0.11

Faster R-CNN MAR 0.11 0.11 0.10 0.11 0.09 0.10 0.09 0.10 0.04 0.09 0.03 0.05
RetinaNet MAR 0.11 0.11 0.11 0.12 0.10 0.10 0.10 0.11 0.07 0.11 0.07 0.08

were made, in order to see which of the networks have better results and also how the
results will adapt from a large dataset to a smaller, unknown one, that was not used for
fine tuning. This was made in order to see the real performances of the architectures,
without having to deal with overfitting.

4.2.1 Object detection results

The results for the precision can be seen in Table 4.1 and Table 4.3 (only for car and
person) and the results for the recall can be seen in Table 4.2 and Table 4.4 (only for
car and person). The results for the POLI dataset are shown in Table 4.5. Some plots
regarding the precision and recall regarding the car size can be seen in Figure 4.3 and in
Figure 4.4.

Table 4.3 Precision on BDD100K Dataset - only car and person

DC DO DR DS DSC DSO DSR DSS NC NO NR NS
YOLO AP@.50IOU 0.72 0.72 0.74 0.72 0.72 0.72 0.73 0.73 0.72 0.74 0.73 0.76
SSD AP@.50IOU 0.92 0.93 0.92 0.92 0.94 0.93 0.93 0.93 0.90 0.93 0.90 0.91

Faster R-CNN AP@.50IOU 0.87 0.87 0.87 0.88 0.88 0.87 0.89 0.89 0.85 0.88 0.85 0.85
RetinaNet AP@.50IOU 0.28 0.27 0.32 0.32 0.27 0.26 0.29 0.30 0.31 0.33 0.32 0.34

YOLO MAP 0.60 0.60 0.62 0.60 0.60 0.61 0.61 0.61 0.60 0.62 0.60 0.62
SSD MAP 0.79 0.80 0.79 0.79 0.80 0.79 0.79 0.80 0.74 0.79 0.75 0.75

Faster R-CNN MAP 0.69 0.70 0.69 0.70 0.70 0.69 0.69 0.71 0.66 0.70 0.66 0.67
RetinaNet MAP 0.34 0.34 0.37 0.36 0.34 0.33 0.35 0.36 0.37 0.39 0.37 0.38
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Table 4.4 Recall on BDD100K Dataset - only car and person

DC DO DR DS DSC DSO DSR DSS NC NO NR NS
YOLO AR@.50IOU 0.48 0.50 0.50 0.50 0.47 0.50 0.47 0.50 0.30 0.46 0.27 0.34
SSD AR@.50IOU 0.17 0.17 0.19 0.19 0.16 0.17 0.18 0.19 0.12 0.16 0.11 0.14

Faster R-CNN AR@.50IOU 0.20 0.21 0.20 0.21 0.17 0.19 0.17 0.21 0.09 0.16 0.08 0.10
RetinaNet AR@.50IOU 0.09 0.08 0.10 0.10 0.08 0.08 0.09 0.09 0.06 0.09 0.06 0.07

YOLO MAR 0.40 0.43 0.42 0.42 0.39 0.42 0.39 0.42 0.25 0.38 0.22 0.28
SSD MAR 0.14 0.15 0.16 0.16 0.14 0.14 0.15 0.16 0.10 0.14 0.09 0.11

Faster R-CNN MAR 0.16 0.17 0.16 0.17 0.14 0.15 0.14 0.17 0.07 0.13 0.06 0.08
RetinaNet MAR 0.11 0.11 0.11 0.12 0.10 0.10 0.10 0.11 0.07 0.11 0.07 0.08

Table 4.5 POLI results

AP@0.50IOU MAP AR@0.50IOU MAR
YOLO 0.69 0.55 0.59 0.47
SSD 0.79 0.65 0.12 0.10

Faster R-CNN 0.68 0.54 0.16 0.13
RetinaNet 0.17 0.26 0.06 0.09

YOLO (car and person) 0.71 0.57 0.62 0.50
SSD (car and person) 0.90 0.74 0.13 0.10

Faster R-CNN (car and person) 0.80 0.63 0.17 0.13
RetinaNet (car and person) 0.20 0.30 0.06 0.10

Fig. 4.3 Precision regarding object size
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Fig. 4.4 Recall regarding object size
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Chapter 5

Evaluating semantic segmentation for
autonomous driving

In this chapter are presented the experiments made regarding the semantic segmentation
task, with the focus on the road semantic segmentation. The first section of this chapter
describes some of the most relevant segmentation datasets used in the literature, but also
the POLI segmentation dataset, the dataset used for the current experiments. The next
section describes the most important experiments made and also the metrics used for
evaluating the quality of the experiments. The last section shows the results and makes
an interpretation regarding the presented data.

5.1 POLI segmentation dataset - collecting a new dataset
for road semantic segmentation

For the segmentation task, 138 movies were recorded in Politehnica university campus
in different scenarios – during the day, during the night and also at sunrise or sunset,
which was labeled as dusk, similar to the BDD100k annotations. Some of the images
were recorded in the parking area, in front of the building of Automatic and Control
Science, with a view to the moving cars on the very crowned boulevard near the faculty,
with many cars that could be possibly detected. In Figure 5.1 can be seen the parking
area in different light settings - the first two during the day, the third during the dusk and
the last during the night.

The images are taken from the streets inside the Univesity Politehnica of Bucharest
campus. The recordings were in clear weather (no rain or snow). Each movie con-
tains some frames, totaling about 20.000 manually annotated frames, containing the
segmentation for the road. The frames were manually annotated the road using CVAT,
an online tool for ground truth generation, which allows the users to do the segmentation
by making very complex polygons. The annotation work was very complex, considering
that the annotation of the road is not as simple as the annotation of an object, which can
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Fig. 5.1 POLI dataset - the parking area

be drawn only using two points (up left and bottom right). The segmentation of the road
involves a lot of points, considering that the road will be estimated as a polygon with
multiple sides. This is especially difficult when dealing with round shapes, which will
require a lot of points in order to simulate the circular form. An example of the final
segmentation of the road in all the daylight conditions can be seen in Figure 5.2. Also,
an example of the annotation of the road using CVAT can be seen in Figure 5.3.

For the experiments not all the images were used because the segmentation time was
quite big for some networks. Instead, only one frame from 20 was selected in order
to have a good representative set and also to diminish the inference time for the data.
Regarding the type of the pictures, there are 735 images taken in the day, 133 in the dusk
and 165 in the night.

5.2 Road semantic segmentation experiments and re-
sults

In this section are described the experiments and the metrics made regarding the semantic
segmentation. Detecting the road is important from obvious reasons – to avoid crossing
the road limits and to keep the good direction. The road lanes could be an important tool,
also, but not all the roads have it, so a good autonomous driving system should be able
to use only the information regarding the position of the road. The experiments consists
of detecting the road in the proposed dataset using some of the best existing networks
for segmentation and comparing the results by taking into acount the time of the day.
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Fig. 5.2 POLI segmentation dataset examples

5.2.1 Semantic segmentation results

In this subsection are presented the results regarding road semantic segmentation. For
each of the network that was used there are experiments and results for the proposed
dataset regarding the TP, FP, accuracy and IoU in the day, dusk, night and also an average
for the whole dataset. For the autonomous driving scenario, the most important metric
is the IoU. The output of the FCN architecture on some frames and also the manually
annotated road can be seen in Figure 5.5. The results for the all the tested networks can
be seen in Table 5.1. Also, the segmentation time can be seen in 5.4.
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Fig. 5.3 Segmentation of the road using CVAT

Fig. 5.4 Segmentation time
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Table 5.1 Road Segmentation Results

Day Dusk Night Avg
FCN

TP 0.782 0.742 0.572 0.743
FP 0.057 0.051 0.070 0.058
Acc 0.897 0.893 0.835 0.887
IoU 0.673 0.647 0.476 0.638

ENET
TP 0.781 0.725 0.711 0.763
FP 0.218 0.448 0.320 0.264
Acc 0.780 0.597 0.686 0.741
IoU 0.527 0.352 0.393 0.483

PSPNet
TP 0.940 0.947 0.836 0.924
FP 0.048 0.058 0.089 0.056
Acc 0.948 0.943 0.889 0.938
IoU 0.831 0.820 0.676 0.805

Dilation
TP 0.508 0.431 0.958 0.571
FP 0.248 0.176 0.941 0.350
Acc 0.687 0.718 0.299 0.629
IoU 0.338 0.313 0.267 0.324

SegNet
TP 0.955 0.903 0.454 0.868
FP 0.157 0.233 0.028 0.146
Acc 0.872 0.803 0.829 0.856
IoU 0.673 0.558 0.414 0.617

Danet 512
TP 0.651 0.759 0.673 0.668
FP 0.442 0.604 0.312 0.442
Acc 0.584 0.497 0.681 0.589
IoU 0.307 0.294 0.367 0.315

Danet 768
TP 0.770 0.825 0.713 0.768
FP 0.574 0.744 0.325 0.556
Acc 0.518 0.413 0.684 0.532
IoU 0.303 0.274 0.382 0.312
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Fig. 5.5 FCN results and the corresponding ground truth
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Chapter 6

Evaluating depth estimation for
autonomous driving

This chapter proceeds to the analysis of the depth estimation task, which is crucial in
analyzing the distance from the vehicle to the surrounding cars. Following the structure
of the previous chapters, the first section analyzes the most important datasets for depth
estimation and also the datasets used for the current experiments, manually recorded
in the University Politehnica of Bucharest campus. The next section describes the
experiments made for the depth estimation regarding the surrounding cars and also the
metrics used for evaluating the quality of the results. The final section shows the results
and also makes an interpretation of the results.

6.1 POLI depth dataset - collecting a new dataset for
depth estimation

The depth dataset named POLI depth dataset is made for depth estimation and was
recorded using specialized hardware for depth – an Intel RealSense RGB-D camera.
Following the idea from the previous dataset made, the POLI depth dataset is divided
in three different recording – images from the day, images from the dusk/ dawn and
images from the night. This division helped to a better understanding regarding the depth
estimation problems given different kinds of light settings.

The recording of the dataset had some challenges, because not always the depth
map had the same size as the images. Sometimes some depth images were lost, which
required multiple recordings and also an adjustment between the depth map frames and
the real frames. Another problem was that the camera had lower accuracy during the
night.

The RealSense camera is a D435 model, with frames recorded in HD quality –
1280x720 pixels. However, the depth map were only recorded at 848x480 resolution,
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which required a further preprocessing step to match the sizes. Also, some of the depth
estimation models required lower resolution for the images and the images had to be
downsized. The recorded images were obtained with the camera mounted on the center
of the windscreen of the car. Even if only one location have been taken into account for
the recordings, having multiple light settings makes the POLI dataset a good dataset for
testing.

One of the challenges regarding a depth dataset is the sensor used - even if the
RealSense have really good results when testing during the day, the results during the
night are far from being accurate, which added some noise into the results. However,
the camera is almost twice as cheap as compared to the better version, D415, and a full
LiDAR is much more expensive. Considering this financial reason, the D435 sensor was
a good compromise and allowed for the experiments to be made. Some of the depth
images that are in the POLI depth dataset can be seen in Figure 6.1.

The final dataset consists of 516 images recorded during the day, 1039 during the
dusk/ dawn and another 637 images recorded during the night. The final dataset was
obtained by sampling the recorded dataset in order to get different frames from different
times, instead of having consecutive frames with similar structure.

Besides the depth dataset, for the experiments mad there was used the previous
dataset, made for semantic segmentation (POLI segmentation dataset), without a cor-
responding ground truth, in order to see the relative performance of a model regarding
the others. The absolute performance can be observed using the annotated dataset with
depth, then the relative performance is measured on the other dataset.

6.2 Depth estimation experiments and results

In this section are described the experiments made with the reference models and with the
proposed datasets regarding the depth estimation task. As it was mentioned earlier, two
different datasets were used – one dataset is annotated with ground truth and recorded
with an RGB-D camera, and the other one is the POLI segmentation dataset and does
not have a ground truth for depth estimation. However, the ground truth is considered by
taking the result of the best networks from the previous dataset. This helps to study the
relative performance of the networks.
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Fig. 6.1 POLI depth dataset

6.2.1 Depth estimation results

In this subsection all the results made in the current experiments are presented. The six
models that were tested on two datasets are analyzed, all of them containing the RMSE
for day, dusk, night and also the average RMSE. As it was mentioned, the first dataset
contains also the ground truth recorded with the Intel RealSense RGB-D camera and the
second one does not contain a ground truth, but for both datasets the ground truth varied
as being one of the results of the best networks. The RMSE considering only the cars
from the images was also measured, which is more relevant for the autonomous driving
task. For the ground truth the results from the depth camera were considered for the first
dataset but also the results from DenseDepth, Megadepth and Monodepth.Besides this
the inference time was also measured regarding the image size and the RMSE regarding
the object size. In Table 6.1 are shown the results for the first dataset, considering various
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ground truth results. The results for the second set can be seen in Table 6.2.

The most relevant experiments can be seen in Table 6.3 and Table 6.4, where there
are shown the results for the RMSE regarding only the car, which is more accurate for
autonomous driving, where the purpose is to estimate the distance from the ego car to the
surrounding vehicles. The cars were manually annotated and based on the annotations
the RMSE was computed. In Table 6.3 are shown the results for the first set and in Table
6.4 are shown the results for the second set.

The final experiments are regarding the RMSE regarding the car size and the speed
regarding the image size. The car sizes were divided in 14 categories and it was measured
the RMSE for each size. In Figure 6.2 can be found the results for the RMSE regarding
the car size, in Figure 6.3 can be seen the speed regarding the image size and, finally,
in Figure 6.4 can be seen some prediction results for the depth estimation using the
Monodepth network.
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Table 6.1 Depth results - first dataset

Model Day Dusk Night Avg
Ground truth - depth camera

Megadepth 128.12 140.99 139.38 137.59
DORN 72.51 98.46 55.39 82.00
LKVOLearner 98.36 109.63 97.29 103.56
SfMLearner 113.91 126.74 109.32 118.92
Monodepth 122.81 135.66 120.28 128.37
DenseDepth 82.96 83.85 87.65 84.77

Ground truth - DenseDepth
Megadepth 105.37 109.40 90.15 103.19
DORN 90.96 93.09 85.26 90.38
LKVOLearner 80.78 79.69 64.99 75.98
SfMLearner 96.37 100.18 84.74 95.03
Monodepth 111.97 111.97 100.42 108.74

Ground truth - Megadepth
DORN 125.66 130.95 139.30 132.23
LKVOLearner 47.89 54.03 57.44 53.69
SfMLearner 45.13 52.83 60.04 53.38
Monodepth 55.49 64.44 70.30 64.26
DenseDepth 105.37 109.40 90.15 103.19

Ground truth - Monodepth
Megadepth 55.49 64.44 70.30 64.26
DORN 104.46 100.40 114.93 105.76
LKVOLearner 44.49 46.07 51.81 47.46
SfMLearner 42.98 42.74 47.87 44.35
DenseDepth 111.97 111.97 100.42 108.74
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Table 6.2 Depth results - second dataset

Model Day Dusk Night Avg
Ground truth - DenseDepth

Megadepth 52.72 59.24 44.25 52.27
DORN 60.60 67.36 62.29 61.75
LKVOLearner 51.14 58.69 43.84 51.01
SfMLearner 59.87 67.36 46.28 58.84
Monodepth 64.97 74.54 56.72 64.95

Ground truth - Megadepth
DORN 20.12 21.49 25.10 52.27
LKVOLearner 12.13 13.45 13.38 61.75
SfMLearner 15.30 17.41 16.05 51.01
Monodepth 19.95 22.34 20.21 58.84
DenseDepth 52.72 59.24 44.25 64.95

Ground truth - Monodepth
Megadepth 19.95 22.34 20.21 20.30
DORN 13.15 16.75 11.72 13.42
LKVOLearner 15.10 16.81 16.35 15.53
SfMLearner 7.53 9.08 15.33 9.45
DenseDepth 64.97 74.5 56.72 64.95

Table 6.3 Depth results - first dataset (car only)

Model Day Dusk Night Avg
Ground truth - depth camera

Megadepth 47.51 71.74 68.75 65.66
DORN 58.31 84.97 34.84 70.68
LKVOLearner 47.68 69.96 48.25 60.73
SfMLearner 51.33 73.68 41.18 62.75
Monodepth 56.77 84.92 42.34 71.17
DenseDepth 62.80 59.18 71.31 62.79

Ground truth - DenseDepth
Megadepth 52.76 60.23 29.84 53.35
DORN 74.62 75.19 65.95 73.24
LKVOLearner 54.25 56.34 40.38 52.89
SfMLearner 60.48 61.40 50.82 59.13
Monodepth 71.12 75.73 57.89 71.20
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Day Dusk Night Avg
Ground truth - Megadepth

DORN 45.89 30.01 61.68 42.54
LKVOLearner 24.39 17.72 31.53 22.95
SfMLearner 33.71 19.60 43.24 29.74
Monodepth 38.05 27.08 48.93 35.49
DenseDepth 52.76 60.23 29.84 53.35

Ground truth - Monodepth
Megadepth 38.05 27.08 48.93 35.49
DORN 19.61 15.08 25.23 18.77
LKVOLearner 22.75 22.41 24.00 22.83
SfMLearner 20.27 18.65 21.29 19.64
DenseDepth 71.12 75.73 57.89 71.20

Table 6.4 Depth results - second dataset (car only)

Model Day Dusk Night Avg
Ground truth - DenseDepth

Megadepth 99.52 101.37 104.43 100.56
DORN 91.49 92.99 86.44 90.90
LKVOLearner 81.77 82.27 72.82 80.47
SfMLearner 101.46 101.56 88.81 99.56
Monodepth 114.31 115.04 105.41 113.03

Ground truth - Megadepth
DORN 114.81 120.19 126.21 117.40
LKVOLearner 40.10 46.43 51.42 42.94
SfMLearner 38.57 44.07 41.18 39.74
Monodepth 45.79 52.42 59.19 49.04
DenseDepth 99.52 101.37 104.43 100.56

Ground truth - Monodepth
Megadepth 45.79 52.42 59.19 49.04
DORN 104.57 104.59 100.99 104.01
LKVOLearner 39.32 40.10 45.96 40.55
SfMLearner 27.72 28.66 44.76 31.18
DenseDepth 114.31 115.04 105.41 113.03
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Fig. 6.2 RMSE regarding car size

30



Fig. 6.3 Speed regarding image size

31



Fig. 6.4 Depth prediction results
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Chapter 7

Trajectory prediction using video
generation in autonomous driving -
arhitecture and implementation

This chapter describes the most important task of the thesis - the trajectory prediction. For
the trajectory prediction task, a new architecture is proposed, based on video prediction,
object detection and semantic segmentation. The architecture used for this task can be
seen as a link between all the other components of this thesis and can also be seen as its
main purpose - to design a new trajectory prediction model which can be trained without
the need of annotated data, using a video prediction architecture as its core network. The
chapter is organized as follows. The first section describes the most important datasets
used for the trajectory prediction task and also describes the dataset used for the current
experiments. The next section describes the experiments made for this task and also
the metrics used in the evaluation of the results. The next section presents the proposed
architecture for this task and its variations regarding the current experiments. The final
section of the chapter presents and analyzes the results.

7.1 The trajectory prediction dataset

As it was mentioned earlier, a dataset recorded in Politehnica university campus is
used for this task, namely the POLI segmentation dataset. The dataset consists of short
movies recorder during the day, dusk and night. The original dataset was used for the
car segmentation task, as it was already mentioned in one of the previous sections. The
most relevant frames have been chosen, with at least one vehicle in it, in order to test the
trajectory prediction system on these images. For all the existing images, short movies
containing 35 frames were formed. From this number, 30 are considered to be known
and used to feed the neural networks and 5 are to be detected. There are 106 videos that
were recorded during the daytime, 36 recorded during the dusk or dawn and 47 during
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Fig. 7.1 Annotation of both the road and cars for trajectory prediction

the night, so a total of 189 short videos, containing 6675 frames. All the frames are
annotated for road segmentation and car detection - the segmentation was kept from the
POLI segmentation dataset and the annotation of the cars was made especially for this
task, using the CVAT tool. An example of both road segmentation and car annotation
using CVAT can be seen in Figure 7.1.

The frames contain about 4000 annotated cars in the real images only in the frames
that have to be predicted (in about 945 frames), besides the other cars that were in the
first known frames and did not have to be annotated.

7.2 Proposed architecture

7.2.1 A generic model

The architecture proposed for the trajectory prediction involves many networks, one
for each of the tasks described earlier – video generation, depth estimation, semantic
segmentation and object detection. The input of the architecture consists of small videos,
containing about 35 frames – the first 30 are considered to be known and are used in
order to feed the video generation networks, and the last 5 should be predicted. The first
network involved in this process is the video generation network. The video generation
network varied in the experiments made, as it can be seen in the following chapter,
which describes the results. After the video generation step, some predicted frames
were obtained for the given scene. The prediction was made considering only the last 5
frames predicted. The frames are predicted from the same images – the first 30 frames
are used in order to predict the last 5. Some networks add the next predicted frame to the
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Fig. 7.2 Generic proposed architecture for trajectory prediction

real frames in order to predict another one. Once the predicted images are obtained the
frames are going through an object detection network – in the current case, YOLO v4.
The cars were also manually annotated for a better estimation of the generation and also
in order to remove the mistakes made by the detection network. Some of the generated
frames have a low quality and had to be resized to a smaller resolution. Even if a human
could still identify the position of most of the cars in a low resolution picture, the object
detection network will have trouble regarding the detection of the cars, which is why
both the ground truth detection and the YOLO results were tested. After this step, but
independent of it, the images are going through a semantic segmentation network – FCN,
in the current case. This step is required in order to use the road segmentation as an
additional information for the future cars. There is another module that uses the road
segmentation and learns the best way to readjust the car position regarding the road. The
relative position of the car regarding the road is computed with the old position and also
with the new position, then the final position is obtained as an weighted average of the
two positions. Even if the improvement is not big, some improvements were obtained
considering the results without taking into account the road segmentation.

The final step before computing the actual metrics is to put all the predicted frames
and the real frames as an input for a depth estimation network. With these results – the
positions of the cars, obtained by taking into account the road segmentation, and also the
depth of the frames, two relevant metrics can be computed – the RMSE for the locations
and also the RMSE for the depth regarding those locations.

This way, both the distance between the real location and the predicted location
and also the distance between the depths of the real car location and the predicted car
location can be measured. This could be more precise than taking into account only the
distance in pixels. More details about the metrics will be given in the following section.
The generic architecture can be seen in Figure 7.2.

7.2.2 Model-specific architectures

The previous architecture is a generic model, without taking into account the networks
used. The main purpose of the thesis is to study the most important architectures regard-
ing each of the existing sub-tasks from the main model and use the best models in order

35



Fig. 7.3 Proposed architecture for SAVP

to have a competitive architecture.

For the current experiments, YOLO v4 has been selected as the best architecture
regarding object detection, FCN as the most versatile architecture for semantic segmen-
tation and Monodepth as the best architecture regarding the need of the experiments.
Regarding the video generation architecture used, there are three models proposed and
tested.

The architecture for the model based on SAVP can be seen in 7.3. The difference
between the generic model is that the specific network used are also represented in this
figure - SAVP, YOLO, MonoDepth and FCN. The architecture for Segnet can be seen
in 7.4 and the architecture for PredNet can be seen in 7.5. Each of these architectures
was tested using the dataset described in this chapter and the results are analyzed in
the following section. The presented architectures represent one of the most important
contributions of the thesis.

7.3 Trajectory prediction experiments and results

In this section are described the experiments used for the trajectory prediction task, how
the metrics were computed..

7.3.1 Trajectory prediction results

The results obtained on all the experiments made regarding trajectory prediction and
video generation are presented in this section, involving the RMSE for the predicted
location, the predicted depth and also the RMSE regarding the car size and the infer-
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Fig. 7.4 Proposed architecture for Seg2Vid

Fig. 7.5 Proposed architecture for PredNet

ence time regarding the image size. In Figure 7.6 some of the predictions are shown.
There is a prediction from each of the three networks used (PredNet, SAVP and Segnet)
along with the ground truth for each scenario involved (day, dusk and night). In Table
7.1 and Table 7.2 are shown the results for the location and in Table 7.3 and Table 7.4
are shown the results for the depth. Each results are analyzed in the following paragraphs.
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Fig. 7.6 Video generation results

Fig. 7.7 RMSE regarding car size

7.4 An improved model for trajectory prediction

In this section is described three new models proposed as an original contribution in this
thesis, considering the trajectory prediction task. The PredNet network is better analyzed
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Table 7.1 RMSE for location (GT detection)

Day Dusk Night Avg
PredNet

No segmentation 318.20 71.73 94.28 247.91
GT segmentation 317.20 71.10 93.70 247.11

FCN segmentation 317.12 71.24 93.49 247.00
SAVP

No segmentation 294.46 128.88 116.83 233.71
GT segmentation 294.12 128.84 116.34 233.41

FCN segmentation 294.12 128.85 116.15 233.41
Seg2Vid

No segmentation 321.20 148.91 115.27 265.85
GT segmentation 316.06 145.65 113.58 261.67

FCN segmentation 320.19 147.16 114.63 264.91
TraPHic 83.78 54.60 114.27 86.29

Table 7.2 RMSE for location (YOLO detection)

Day Dusk Night Avg
PredNet

No segmentation 280.01 193.69 46.45 269.98
GT segmentation 275.45 157.91 46.40 263.69

FCN segmentation 275.45 158.58 46.40 263.69
SAVP

No segmentation 615.78 568.45 543.74 561.84
GT segmentation 494.61 480.95 322.51 390.35

FCN segmentation 497.73 478.46 323.96 393.00
Seg2Vid

No segmentation 320.88 278.37 103.58 310.92
GT segmentation 306.16 191.44 98.29 287.88

FCN segmentation 306.36 196.98 102.15 289.27

and also three modifications are proposed in this thesis considering the basic model, with
better results regarding the trajectory prediction task.

7.4.1 Proposed architectures

On a higher level, PredNet can be seen as multiple recurrent convolutional layers, whose
output goes through a rectified linear unit (ReLU) activation and a max-pooling layer
with stride 2. Now, regarding the convolutional recurrent layers, they consists of four dif-
ferent layers of convolutions. The first one is a representation layer, which is a recurrent
layer that makes a prediction based on the current representation input. The input and the
prediction represent another two layers of convolutions. The last layer is an error layer
which is computed based on the input and the prediction and it becomes the next input
layer. The representation layer at a given step is based on the representation layer at the
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Table 7.3 RMSE for depth (GT detection)

Day Dusk Night Avg
PredNet

No segmentation 142.08 8.63 23.60 104.78
No segmentation (pred) 142.98 14.02 25.74 105.68

GT segmentation 145.13 8.36 22.89 111.06
GT segmentation (pred) 145.63 13.18 24.13 111.60

FCN segmentation 145.58 8.54 23.46 111.37
FCN segmentation (pred) 146.54 13.92 25.48 112.16

SAVP
No segmentation 141.49 13.34 25.95 103.33

No segmentation (pred) 126.14 18.58 31.47 93.01
GT segmentation 141.97 13.24 25.23 106.49

GT segmentation (pred) 126.38 17.41 31.29 95.68
FCN segmentation 141.98 13.24 25.70 106.49

FCN segmentation (pred) 126.88 18.50 31.30 95.96
Seg2Vid

No segmentation 134.10 18.68 27.52 103.76
No segmentation (pred) 129.25 23.52 32.47 100.62

GT segmentation 138.29 18.57 27.41 110.01
GT segmentation (pred) 132.85 22.54 30.79 106.21

FCN segmentation 138.28 18.66 27.41 110.01
FCN segmentation (pred) 132.84 23.36 32.23 106.20

Fig. 7.8 RMSE regarding image size
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Table 7.4 RMSE for depth (YOLO detection)

Day Dusk Night Avg
PredNet

No segmentation 69.69 20.21 6.87 65.08
No segmentation (pred) 168.77 24.93 0.64 156.86

GT segmentation 62.19 19.58 6.51 58.89
GT segmentation (pred) 165.66 16.27 0.55 154.70

FCN segmentation 65.27 19.58 5.94 61.76
FCN segmentation (pred) 159.33 19.52 0.55 149.27

SAVP
No segmentation 38.66 29.47 32.69 33.45

No segmentation (pred) 81.66 69.23 44.97 57.21
GT segmentation 34.76 31.80 36.41 36.09

GT segmentation (pred) 78.15 49.28 41.71 52.57
FCN segmentation 34.95 31.80 36.41 36.09

FCN segmentation (pred) 70.73 48.20 42.04 52.57
Seg2Vid

No segmentation 62.51 25.72 20.26 56.57
No segmentation (pred) 137.39 40.86 19.79 122.98

GT segmentation 64.13 25.91 19.60 58.77
GT segmentation (pred) 136.17 31.78 14.89 123.16

FCN segmentation 64.10 25.91 19.60 58.75
FCN segmentation (pred) 134.93 32.61 19.78 122.65

previous step, the error layer at the previous step and also on the representation layer at
the next step (which can be obtained initially by using upsampling). The main network
is made in order to predict only a single future frame given an input video, however
the network can also be fine-tuned in order to predict up to five frames into the future.
For the current experiments, the architectures were also fine tuned to predict five future
frames given only the initial video.

This research proposes three different versions of the internal representation of the
convolutional layers. The standard version uses a four layer model with 3x3 convolutions
for the prediction of driving images, as can be seen on their Git repository. The proposed
models are the following:

The P_5_5 simply replaces the 3x3 convolutions with 5x5 convolutions, without
adding any additional layers.

The P_3_5 is a 6-layer model with two extra 3x3 convolutional layers, considering
the previous model, P_5_5. It also replaces the ReLU activation with PReLU, which
instead of zeroing negative values it learns a parameter which is multiplied with the
value for the response, acording to the following equation:
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Fig. 7.9 Proposed convolutional structures

f (x) =

x if x ≥ 0

a∗ x otherwise
(7.1)

Finally, the P_full is also a 6-layer model consisting of only 3x3 convolutional layers
and also using the PRELU activation function.

The modifications can be better seen in Figure 7.9.
The workflow regarding the trajectory prediction is similar to the one shown in 7.5,

with the only difference that the PredNet architecture is replaced with the new variations,
P_3_5, P_5_5 and P_full.

The results can be found in Table 7.5, Table 7.6 and also in Figure 7.10 and in
Figure 7.11. In Figure 7.10 there are some images with the second predicted frame in
different scenarios from each architecture, including the original Prednet architecture
and the ground truth. Table 7.5 contains the NRMSE regarding the location for each of
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Fig. 7.10 Prediction results - modified architectures

the eighteen setups and regarding the time of the day. Table 7.6 contains the NRMSE
regarding the depth for the same setups as in the first table. Lastly, in Figure 7.11 it
can be seen a plot for the NRMSE taking into account the car size, considering the last
setup - the detections from YOLO and the segmentation from the FCN network. In the
tables the segmentation type is described by "no segm", "GT segm" or "FCN segm",
considering that no segmentation was used for improving the results, the segmentation
was used using the ground truth and the segmentation was used using the FCN network
for the predicted images. The detection used is described by "GT det" and "YOLO det",
meaning that the position of the cars were considered by the manually annotated data
and by the results of the YOLO, respectively. Finally, in Table 7.6, if the depth was
computed considering the predicted framed, the abbreviation "pred D" appears.

Table 7.6 Depth NRMSE

Day Dusk Night Avg
PredNet
No segm, GT det 0.555 0.034 0.092 0.409
No segm, pred D, GT det 0.559 0.055 0.101 0.413
GT segm, GT det 0.567 0.033 0.089 0.434
GT segm, pred D, GT det 0.569 0.051 0.094 0.436
FCN segm, GT det 0.569 0.033 0.092 0.435
FCN segm, pred D, GT det 0.572 0.054 0.100 0.438
No segm, YOLO det 0.272 0.079 0.027 0.254
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Day Dusk Night Avg
No segm, pred D, YOLO det 0.659 0.097 0.003 0.613
GT segm, YOLO det 0.243 0.076 0.025 0.230
GT segm, pred D, YOLO det 0.647 0.064 0.002 0.604
FCN segm, YOLO det 0.255 0.076 0.023 0.241
FCN segm, pred D, YOLO det 0.622 0.076 0.002 0.583
P_3_5
No segm, GT det 0.555 0.041 0.083 0.418
No segm, pred D, GT det 0.552 0.046 0.076 0.415
GT segm, GT det 0.559 0.040 0.083 0.436
GT segm, pred D, GT det 0.556 0.045 0.076 0.433
FCN segm, GT det 0.557 0.041 0.083 0.434
FCN segm, pred D, GT det 0.555 0.046 0.076 0.432
No segm, YOLO det 0.293 0.110 0.055 0.263
No segm, pred D, YOLO det 0.699 0.168 0.087 0.623
GT segm, YOLO det 0.264 0.130 0.065 0.246
GT segm, pred D, YOLO det 0.682 0.083 0.066 0.614
FCN segm, YOLO det 0.241 0.116 0.050 0.241
FCN segm, pred D, YOLO det 2.401 0.073 0.070 0.577
P_5_5
No segm, GT det 0.561 0.046 0.063 0.416
No segm, pred D, GT det 0.561 0.048 0.072 0.416
GT segm, GT det 0.565 0.044 0.063 0.432
GT segm, pred D, GT det 0.562 0.046 0.072 0.430
FCN segm, GT det 0.568 0.046 0.063 0.433
FCN segm, pred D, GT det 0.566 0.048 0.072 0.432
No segm, YOLO det 0.271 0.096 0.045 0.246
No segm, pred D, YOLO det 0.633 0.092 0.052 0.568
GT segm, YOLO det 0.254 0.095 0.041 0.235
GT segm, pred D, YOLO det 0.630 0.059 0.052 0.567
FCN segm, YOLO det 0.257 0.095 0.041 0.237
FCN segm, pred D, YOLO det 0.593 0.063 0.052 0.536
P_full
No segm, GT det 0.544 0.036 0.071 0.410
No segm, pred D, GT det 0.541 0.048 0.089 0.409
GT segm, GT det 0.557 0.035 0.069 0.434
GT segm, pred D, GT det 0.553 0.045 0.083 0.432
FCN segm, GT det 0.555 0.036 0.071 0.433
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Day Dusk Night Avg
FCN segm, pred D, GT det 0.552 0.048 0.087 0.432
No segm, YOLO det 0.293 0.110 0.055 0.263
No segm, pred D, YOLO det 0.660 0.129 0.048 0.584
GT segm, YOLO det 0.272 0.116 0.051 0.250
GT segm, pred D, YOLO det 0.680 0.083 0.054 0.610
FCN segm, YOLO det 0.237 0.112 0.046 0.237
FCN segm, pred D, YOLO det 0.640 0.069 0.066 0.574

Fig. 7.11 NRMSE regarding car size
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Table 7.5 Location NRMSE

Day Dusk Night Avg
PredNet

No segm, GT det 0.217 0.049 0.064 0.169
GT segm, GT det 0.216 0.048 0.064 0.168

FCN segm, GT det 0.216 0.049 0.064 0.168
tNo segm, YOLO det 0.191 0.132 0.032 0.184
GT segm,YOLO det 0.188 0.108 0.032 0.180

FCN segm, YOLO det 0.188 0.108 0.032 0.180
P_3_5

No segm, GT det 0.208 0.056 0.061 0.164
GT segm, GT det 0.207 0.056 0.061 0.170

FCN segm, GT det 0.207 0.056 0.061 0.163
No segm, YOLO det 0.218 0.238 0.063 0.216
GT segm,YOLO det 0.215 0.157 0.065 0.210

FCN segm, YOLO det 0.211 0.156 0.062 0.206
P_5_5

No segm, GT det 0.204 0.054 0.046 0.158
GT segm, GT det 0.204 0.053 0.046 0.158

FCN segm, GT det 0.204 0.054 0.046 0.158
No segm, YOLO det 0.225 0.136 0.050 0.210
GT segm,YOLO det 0.208 0.103 0.047 0.193

FCN segm, YOLO det 0.208 0.101 0.050 0.193
P_full

No segm, GT det 0.209 0.057 0.050 0.164
GT segm, GT det 0.209 0.057 0.049 0.164

FCN segm, GT det 0.209 0.057 0.050 0.164
No segm, YOLO det 0.187 0.207 0.033 0.186
‘ GT segm,YOLO det 0.177 0.121 0.028 0.179
FCN segm, YOLO det 0.177 0.122 0.028 0.172

Traffic 0.057 0.037 0.078 0.059
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Chapter 8

Conclusions and future work

The present thesis addresses the most important tasks regarding autonomous driving,
from scene understanding to trajectory prediction for the surrounding cars. The thesis
followed closely four different problems - object detection, road semantic segmentation,
depth estimation and trajectory prediction. Besides these, object tracking, instance and
panoptic segmentation and video generation were also discussed. For each of these tasks
there were described the most important research papers and also review articles and the
corresponding datasets for each task. Also, some of the best networks were analyzed on
some datasets annotated at the Politehnica University of Bucharest campus, taking into
account the time of the day, the size of the cars, the inference time and other statistics,
in order to see how it can be achieved the best performance in a real life application
for autonomous driving. The final goal of the thesis is to propose and implement an
architecture for trajectory prediction, based on the evaluation results for some of the
best architectures in the literature for object detection, semantic segmentation, depth
estimation and video prediction. This approach could be a game changer for the trajectory
prediction task, because it doesn’t involve any annotated data and can be trained using
any possible driving video from the internet. Also, each task is backed up by at least one
research paper, which contain some of the results presented in the thesis. The results are
detailed regarding each of these four individual tasks.

8.1 Most important results

For the object detection task Yolo, Faster R-CNN, SSD and Retina Net were tested.
In the experiments made, Yolo has the best mean average recall but SSD has the best
mean average precision. Also, as expected, the results are better when there were tested
only two categories – car and person, the recall is better in the day than in the night,
but the precision does not have important variations regarding the day time. For the
object detection task a new dataset, which was manually annotated, was recorded in the
University Politehnica of Bucharest campus. Regarding the dataset made in Politehnica
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University, the recall is better than for the BDD100k dataset, because there are less
objects involved, but the precision remained in the same interval. This result shows that
generally the detectors are robust and have the same behavior on both POLI dataset
and the BDD100k dataset. Regarding the object size, the bigger objects were generally
detected, there is an increase in the recall, but the detected class tends to be wrong in
many cases than for the smaller objects, which were poorly detected, but in case of a
detection the class was correctly assigned to the object. Regarding the time needed for a
detection, Yolo had the best results and could perform in a real time scenario (especially
regarding their tiny model, which can perform in real time for 30 fps), with the mention
that a powerful running GPU is needed in order to achieve these results.

For the semantic segmentation task SegNet , ENet, PSPNet, Dilation and DaNet were
tested. The best networks were PSPNet and FCN, which have really good percentages
for the metrics shown, and can be used in real applications, and the worst network tested
was DaNet, which can’t be trusted in a road semantic segmentation without a further
tuning of the network especially for this task. However, the model is limited to the road
segmentation and didn’t include other categories, such as the segmentation of the cars.
A specially designed dataset for this task, Poli segmentation dataset, was recorded in
the university campus. As expected, the results were better in the day and worse in the
night. Unfortunately, regarding the processing time, the networks can’t perform in real
life scenarios, where a segmentation could be needed for 30 frames per second – at most,
they could process only a few images per second. There is still room for improvement
regarding the accuracy, but the biggest problem now is the inference time. With only one
exception, the time for evaluating an image did not had variations regarding the images
size, which is a positive aspect.

For the depth estimation task, two datasets were used – the first dataset was the one
recorded with the Intel RealSense camera and the second one is the previously dataset
made in the Politehnica university campus and used for semantic segmentation, which
was used in order to test the networks against each other, in order to see what are the
advantages of such information regarding an unsupervised learning paradigm. All the
results were analyzed regarding the day, dusk and night. The RMSE was computed for
each of this category and also an average error for all three. The speed of the networks
for different image sizes and the influence of the car size regarding the RMSE was
analyzed and also both the depth error for all the pixels in the image and the depth
error only for the car were analyzed. Unsurprisingly, the error considering only the cars
was significantly smaller. Most of the networks performed in similar times, even if the
size of the images were different, which is a good result taking in account a real life
scenario with full HD or even 4K images. It can also be seen that the precision of the
depth estimation was better for bigger cars, which also was an expected result. From
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the experiments made, the best networks were SfMLearner and LKVOLearner, but also
Monodepth 2 performed well, considering also a manual refinement of the quality of the
results. Given that the RGB-D camera is not as precise as a LIDAR scanner, a qualitative
estimation of the resulting images showed that Monodepth 2 should also be considered.
However, because the experiments were very different for almost every network there
is at least one scenario where the network performed better than the rest of the others,
which could be explained by the imprecise ground truth and also imprecise results of
the networks, in general. The good news is that the networks could be used in real life
applications, due to their speed, and an autonomous system could benefit from their
estimated depth for the surrounding cars. However, without using expensive sensors,
the estimated results could differ a lot for the real depth, especially in the dusk or in the
night. The results vary regarding the network used and the ground truth, but generally
the best results were obtained during the day.

For the final trajectory prediction task, PredNet, Seg2Vid and SAVP were tested and
their results are compared with TraPHic. The POLI Segmentation dataset was also used
here. The most relevant network tested was PredNet when considering the RMSE for the
location with the YOLO predictions for the cars, however SAVP had also good results.
Three new variations of the PredNet models were developed, with the final model,
PredNet_full, obtaining better results than the basic version in almost all the experiments.
Although the results are still not as good as a specialized trajectory prediction network,
the biggest advantage is that a video generation network can be trained on any video,
making the training process easier. With a very good generation network, the trajectories
could be easily inferred. Also, the results showed that the segmentation of the road could
slightly improve the simple detection of the cars in the predicted frames.

8.2 Original contributions

This thesis has several new contributions regarding the object detection, semantic seg-
mentation, depth estimation and trajectory prediction tasks, that could help the research
community in order to develop better autonomous driving algorithms.

The first and the most important contribution is a new trajectory prediction model,
which is based on the video generation and uses object detection, semantic segmentation
and depth estimation. Each of the particular tasks that are related to the final architecture
was deeply analyzed in order to use the best existing networks in the final model. Even
if a dedicated trajectory prediction obtains, at the moment, better results, a model based
on video generation has the advantage that it doesn’t require any manually annotated
training data and can be trained using any driving video that exists on the internet. Three
different architectures based on three different networks were proposed and tested and
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the results were presented in the thesis.

The second contribution consists in proposing three different models for video predic-
tion, by modifying the original PredNet architecture regarding the convolutional layers
and the activation function. Two of the proposed models have generally better results
than the original network, and the last model proposed, P_full, outperforms the original
network in almost any experiment.

The third contribution consists in three new different datasets recorded in the Uni-
versity Politehnica of Bucharest campus and manually annotated. The first dataset was
used for object detection, the second dataset was made for road semantic segmentation
and also for trajectory prediction, containing annotations of the road and the cars, and
the last dataset was collected using an Intel RGB-D camera and was used for the depth
estimation task.

The fourth contribution consists of an extensive testing of different architectures for
autonomous driving considering the light and time of the day for different tasks (object
detection, semantic segmentation, depth estimation, trajectory prediction), an approach
which is not very often considered in the literature . Because generally the networks are
trained on some specifics datasets, the results can vary a lot if the experiments are made
during the day, the dawn or dusk or during the night. From the current experiments it can
be seen that the results tend to be significantly worse during the night. This is due to the
lack of training in dawn or night conditions and should be considered in the developing
of other datasets and in the training of future architectures.

The fifth contribution that can be highlighted is an up-to-date review of the state-of-
the-art architectures regarding the enumerated tasks and a comparative analysis. The
reviews the reviews are discussing architectural aspects and include different tests for
some of the best architectures with different statistics like the time of the day, the car
size, the inference time.

8.3 Future work

For the object detection task, the detection should be improved in the future in order
to trust a network for a self driving car application and the current study can be further
continued by proposing a new object detection architecture. Even if the precision has
decent values, the recall should be improved in order to have more objects detected – an
object which is not detected is a possible cause of an accident, so it is important to have a
better recall in the future networks. Also, the time can be improved, because aside of the

50



detection there are other components that have to run between two frames (segmentation,
vehicle and depth prediction, etc), so better inference time are also needed. In the future,
it would be a good idea to have these models fine tuned for the Politehnica dataset, in
order to see how the parameters will adjust when the networks are trained on the same
dataset. Also, the dataset could be increased regarding the number of the objects and
their diversity.

For the semantic segmentation, the current study should extend the dataset with more
than one class, in order to see the segmentation results at least for vehicles and people.
Also, more networks should be fine tuned in future applications of this study especially
for the road segmentation task (to output only two categories, road or not road), to see
how the results will improve.

For depth estimation, the current study should make a better dataset with LiDAR
sensors made in order to better estimate the estimation error. The errors could also be
lessened if the networks would be trained using the desired dataset, but for this purpose
the dataset should be recorded using stereo cameras, as most of the networks are trained
with stereo datasets and tested with monocular ones.

For the trajectory prediction task, the future applications of this study should specif-
ically develop and train a video generation model especially considering the task of
trajectory prediction. Also, at each step (detection, segmentation, depth estimation) the
corresponding models could be fine tuned in order to work better for a specific dataset
and for the task of trajectory prediction in autonomous driving.
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