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Chapter 1

Introduction

Software security is essential for modern systems due to the increasing number of cyber
attacks in recent years. The world has witnessed the rise of cybersecurity attacks in recent
years, as depicted in Figure 1.1. Exploits of in the wild vulnerabilities have cost companies
billions[1], having researchers at the IBM System Science Institute estimate that fixing a
vulnerability costs 100 times more than the development costs[2].

Global Weekly Cyber Attacks per Organization
(2020 - 2021)

1000
900
800
700
600
500

400
2020-Q1 2020-Q2 2020-Q3 2020-Q4 2021-Q1 2021-Q2 2021-Q3 2021-Q4

Figure 1.1: Rise of Global Weekly Cyber Attacks per Organization[3]

The growing number of IoT devices (and their vendors) [4] rises privacy and security con-
cerns. The number of vulnerabilities in computer systems and devices, particularly IoT
devices, is increasing, and this trend is expected to continue in the future due to the growth
in the number of IoT devices[5]. This increase in vulnerabilities presents a significant risk,
as it expands the potential attack surface and makes it more likely that these vulnerabilities
will be exploited by malicious actors[6, 7]. One way to understand this idea is by looking at
the two pieces of evidence provided: Figure 1.2 shows that the number of vulnerabilities is
on the rise, with a lot of them being medium and high severity. Figure 1.3 shows that the
number of IoT devices is expected to double by 2030. These two pieces of information are
related, as the increase in the number of IoT devices will likely lead to an increase in the
number of vulnerabilities, as there are more devices that can potentially be exploited.

To tackle this issue, programming language designers have developed systems program-
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CVSS Severity Distribution Over Time

This visualization is a simple graph which shows the distribution of vulnerabilities by severity over time. The choice of LOW, MEDIUM and
HIGH is based upon the CVSS V2 Base score. For more information on how this data was constructed please see the NVD CVSS page .
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Figure 1.2: Common Vulnerability Scoring System (CVSS) Severity Distribution Over
Time[8]
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Figure 1.3: Number of Internet of Things (10T) connected devices worldwide from 2019 to
2021, with forecasts from 2022 to 2030 (in billions)[9]
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ming languages, such as Rust and D, that are focused on providing providing memory
safety and increasing developer productivity without sacrificing performance, all while
keeping the resulting binary size small. This means that memory safety and fast prototyp-
ing are no longer a feature of high level, resource hungry, programming languages. Those
key properties allow for the development of IoT devices in safer alternatives (to C) that can
prevent vulnerabilities as early as compilation time.

Operating systems are ubiquitous. Any smartphone, laptop, cloud computing machine,
wearable or Internet of Things (IoT) device has an operating system behind the scenes [10].
Due to being such a fundamental component of every device, the operating system must
be safe and secure, as any vulnerability, however small, has the potential to compromise
the entire system [11].

The kernels of most popular operating systems, including Linux, Android, MacOS, iOS,
and Windows [12], are implemented using the C programming language. Virtually any
mobile, desktop, or laptop computer uses the C language at its core. In Linux, the majority
of the source code is represented by device driver implementations [13]. The device driver
is a critical component of the operating system, and, as such, the importance of its security
cannot be overstated [14]. It is very well-known that C is currently the go-to language for
systems programming. But, just as well-known are the potential security issues it exposes,
including, but not limited to, memory-related bugs such as buffer overruns.

One such example is the case of the RTLWIFI driver, built for Realtek Wi-Fi chips, which,
in 2019, permitted a buffer overflow to be triggered inside the Linux kernel, with no user
interaction whatsoever [15]. The highlight here is on no user interaction, suggesting the
flaw was intrinsic to the driver itself.

As device drivers’ code represent the biggest part of the Linux kernel, it also represents a
huge attack surface. We believe that the D programming language can be a great candidate
for writing kernel device drivers in a safe programming language. D is fully compatible
with C and mechanically checks, during compilation, the user code for unsafe behavior.
The language also boasts powerful compile-time features that make it possible to write
highly specific, high performance code. It also has a smooth learning curve and does not
force language features onto the users, allowing them to gradually improve their code base,
as they become more comfortable with the language.

Increasing the security of the Linux kernel automatically increases the security of all the
applications that run on top of it. Lightweight devices, such as sensors, have a firmware
flashed onto them and do not run on top of a kernel. Although that is the case, they are
usually connected to a gateway device that runs on Linux so that they can send the collected
data, over the Internet, for the end user to access. Because of this, we make the case that
a vulnerability in the kernel of the gateway device would affect the entire system. Thus,
increasing the security of the Linux kernel will benefit all the devices.

As previously stated, lots of IoT applications communicate with cloud services. The stan-
dard way of accessing services is through a RESTful API: the available endpoints of a service
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are published using the OpenAPI Specification[16] - a JSON file that describes the endpoint
URI, the methods supported by the URI, the accepted arguments and the expected return
values. To harden the security of the developed applications, secure libraries and API im-
plementations are needed. We aim to provide a way of automatically generating secure
client side libraries based on a given API JSON description.

Testing and validating the security of IoT systems is difficult, due to the fact that most of the
software is proprietary (COTS - custom off-the-shelf - binaries) and the embedded nature
of the system makes it hard to collect data and audit device security. The user is forced to
trust a 3rd party and is not able to validate the software, as they do not have access to the
source code. Fuzz testing is an established automated testing procedure that helps teams
discover untested paths and vulnerabilities in their products. The goal is to implement a
fuzzer that can test COTS binaries, providing IoT users with an audit tool for their devices.

1.1 Thesis Structure

The rest of this summary is structured as follows:

Chapter 2 presents our contributions regarding improving the security of the Linux ker-
nel. It details how the D programming language can be used to write secure drivers
in the kernel ecosystem. We show that C code can be ported with ease to D without
incurring any performance penalties. We also present our work that further eases
the process, by automatically translating the kernel data structure definitions to D
compatible ones.

Chapter 3 presents our contributions with respect to improving the security of applica-
tions. First, it presents our work in developing a new collections framework for the
D standard library. Our collections are able to infer the safety of the operations from
the contained, user provided, type. We show that our implementation may provide
performance benefits of up to 2x compared to the existing standard library implemen-
tations. Next, we present our contribution in building a libraries generator based on
OpenAPI Specifications.

Chapter 4 presents our work on improving the River fuzzing framework. First, it details
the additions that enable the framework to fuzz IoT networks. Next, it presents the
challenges of performing symbolic execution on COTS binaries and the limitations of
current, state of the art, symbolic execution engines, and how our solution overcomes
those.

Chapter 5 concludes, discusses future work and presents the list of publications.



Chapter 2

Improving the Security of the Linux
Kernel

2.1 Safer Linux Kernel Modules Using the D Programming Lan-
guage

The Linux kernel is being used on a large range of devices: servers, supercomputers, smart
devices and embedded systems. Given its popularity, the security of the kernel has be-
come a critical research topic. As a consequence, a wide range of third party tools were
created to detect bugs in its implementation. However, new vulnerabilities are discovered
and exploited every year. The explanation for this phenomenon lies in the fact that the
programming language that is used for the kernel implementation, C, is designed to allow
unsafe memory operations. In this chapter, we show that it is possible to incrementally
transition the kernel code from C to a memory safe programming language, D, by porting
and integrating a device driver. In addition, we propose a series of code transformations
that allow the D compiler to reason about the safety of certain memory operations. Our
implementation increases the security guarantees of the kernel without incurring any per-
formance penalties.

2.1.1 Introduction

The Linux operating system kernel is widely used on a wide range of hardware including
supercomputers [17], servers [18], handheld devices [19], and embedded systems [20],
making it the most popular operating system.

Linux runs in a privileged processor mode (called kernel mode or supervisor mode) with
complete access to system memory and devices. A successful attack on Linux will provide
the attacker full control of the entire system, making it a sought after target. Such attacks
represent a common occurrence. Figure 2.1 highlights the number of vulnerabilities dis-
covered in Linux based on the Common Vulnerability and Exposure (CVE) reports [21],
which is an average of roughly 250 reports per year. There is no way of knowing how
many undiscovered vulnerabilities exist and are being actively exploited.

To protect itself from potential security attacks, the Linux kernel employs a variety of
self-protection mechanisms [22, 23] such as Kernel Address Space Layout Randomization
(KASLR), Kernel Page Table Isolation (KPTI), stack protector etc. However, these vulner-
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Figure 2.1: Number of Common Vulnerability and Exposure (CVE) reports.

abilities appear due to a combination of programmer mistakes and lack of safety support
from the programming language. The Linux kernel is mostly written in C, a fast language
but with minimal safety features. C syntax allows easy access to the program memory, but
it is also the main source of vulnerabilities like buffer overflows, pointers to expired data,
pointers to uninitialized memory.

In this chapter we propose a complementary approach to securing the Linux kernel: the
use of a safe programming language, i.e. a language with features that assist the developer
in writing secure code.

Our choice is the D programming language [24], that has a syntax similar to C/C++ and
provides modern programming and safety features. D aims to provide as many of the per-
formance benefits of the C programming language, with as few of the security downsides as
possible. Thus, we answer the overarching research question: Can critical software compo-
nents (operating system drivers) be rewritten in a safe programming language with reasonable
effort while maintaining performance?.

Rewriting a software component from an older language to a newer one offers the possibil-
ity to use more modern programming features. In our case there are safety benefits such
as: array bounds checking, immutable variables, safe functions, guaranteed initialization,
templates, and more.

In summary, in this chapter we make the following contributions:

« We have shown that it is possible to use a safe language in the kernel by successfully
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porting a Linux network driver to D. Specifically, we ported virtio_net of the virtio
framework [25].

« We design and implement techniques that rely on specific D language features in
order to improve the Linux kernel drivers. The performance costs are negligible with
the security benefits being provided by the D programming language.

« We provide a methodology for porting Linux kernel modules in the D programming
language. Demonstrated by our successful port, the methodology can be used to port
other Linux kernel modules.

2.1.2 Methodology of Porting Modules to D
Introducing D Code into the Linux Kernel

There are two options for extending the functionality of the Linux kernel: (1) statically
linking a new object file directly to the core kernel, or (2) building a loadable module and
dynamically linking it as needed.

The recommended best practice is to enhance the functionality of the Linux kernel through
dynamic loading. This helps preserve the kernel codebase uncluttered and easily main-
tainable. Additionally, using loadable modules allows runtime customization and helps to
keep the attack surface small, reduces vulnerabilities risks and improves security.

Porting a module in the D programming language requires:
« writing the corresponding source code in D
« providing module entry points as C interface functions
« updating the build system files to building the linking the new module

For the 2nd requirement, to allow the kernel to communicate with a module written in D,
a C interface must be created. For it, the goal is to include the bare minimum: registration
macros and the corresponding stubs that call into the D implementation. Finally, the Linux
kernel build configuration must accommodate for the 3rd requirement.

The kernel build system assumes that it is dealing with C source files and it tries to build
the object files accordingly. Fortunately, the build system also accepts pre-built object
binaries, as dependencies, that it will link with the object files it built in order to create
the kernel module. This is done by changing the name of the dependency from module-
file.o to module-file.o_shipped. To link D object files into a kernel module, the D source files
must be compiled with the -betterC switch beforehand, and have their name appended
with the suffix.o_shipped. Once they are built, they can be integrated into the build system
and linked, alongside regular objects, to form a module (.ko kernel object).

Porting Modules to D

Porting the kernel module, we followed five steps, including testing and benchmarking:
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1. Port the data types, such as structs and typedefs, required by the module imple-
mentation so that the layout is consistent between D and C objects. This ensures that
the module will function properly after the porting process.

2. Port the module implementation incrementally: port one routine then run simple
tests that check the module’s functionality. Repeat the process until all the functions
have been ported.

3. After completing the porting process, the first set of benchmarks should be run to
evaluate the behavior of the module. This involves comparing the D version of the
module to the original C version to assess any differences in correctness.

4. Improve the implementation by adding language features: @safe, replace macros
and casts with metaprogramming, and other memory safety features.

5. Benchmark for a second time in order to evaluate runtime performance. Compare
the original module implementation with the raw and improved D variants.

Safety Enhancements

These are series of security enhancements provided by the D programming language. They
are used to implement and build the newly implemented kernel module in D.

Variables are initialized to a default value of their type, removing initialization bugs. Fur-
thermore, local variables marked with the scope keyword are limited to the function scope,
reducing the presence of dangling pointers.

In D, unlike C, the type system does not allow implicit casts from the void* type to any
other type of pointer, as this could lead to silent data corruption bugs. D requires an explicit
cast for converting pointers of different types.

D disallows implicit switch fall-through. D also uses the final switch statement where
the default case is not required nor permitted, useful when the default statement is use-
less. The final switch statement is especially useful when it is applied on an enum type,
as it will enforce the use of all the enum members in the case statements.

Static arrays are by default bounds-checked.

Slices specify a part of an array, via a reference and length information. They are used
to bounds-check dynamically-allocated arrays. Note that this requires knowledge of the
initial size of the dynamically-allocated arrays.

Templates can be used as replacement for C void pointers and macro definitions for generic
programming, thus enabling type system checks.

Safe functions (annotated with @safe) are statically verified against cases of undefined be-
havior. Uninitialized variables, taking the address of a local variable, explicit casts, pointer
arithmetic, calls to unsafe functions and more, are disallowed and will issue a compile time
error.
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Scope, return ref and return scope function parameters are used to ensure that param-
eters do not escape their scope, do not outlive their matching parameter lifetime and are
correctly tracked even through pointer indirections.

2.1.3 Evaluation

To validate our approach we show that: 1) the D code has the exact same behavior as the
C code that it replaces, 2)the safety mechanisms inserted successfully prevent the occur-
rences of memory corruption bugs, and 3) the performance of the replacement software
does not degrade with regards to its predecessor. We created a setup where we provide
both implementations of the virtio_net driver (C and D) and ran similar scenarios to com-
pare functionality, safety and performance.

Functional Correctness. We ran network tools in each virtual machine to check for parity
of functionality. For example, using ping to validate functionality, using wget to download
information from the Internet. Additionally, we check whether the transferred file is the
correct one by comparing its MD5 hash with the expected one.

Safety. To enhance the safety of the ported driver code we modified the code as to use
several D language features: array bounds checking, @safe functions and templates.

From the total number of array accesses inside the virtio_net driver, we were able to en-
able array bounds checking in 88.4% of the cases. The rest of 11.6% represent accesses to
dynamic arrays that have been allocated outside of the ported driver. To test the effect of
adding array bounds checking on the driver, we have added artificial out of bounds ac-
cesses to the code. In 60% of the cases, the C version of the driver has finished execution
gracefully, whereas the D version has stopped with a kernel panic in 100% of the cases.

@safe functions. To enable the D compiler to check the safety of the code, we aimed to
annotate all the functions present in the driver with the @safe keyword. 19% of the func-
tions have successfully compiled without any modifications, whereas 81.2% have failed
compilation due to performing unsafe operations. Most of these functions rely on pointer
operations and casts that are forbidden in @safe code. Additional modifications are re-
quired to bring the code in a @safe state, however, this can be done incrementally after the
initial port of the driver.

Templates. D code may use templated functions that are instantiated at compile time
with the right type. In case of a type mismatch, that will result in a compilation error,
thus making it impossible to have runtime memory corruption bugs. By using templated
functions, we replaced 56% of the total number of void pointer usages. The remaining 44%
could not be replaced because there was no conversion pattern that we could detect and
leverage for our transformation.
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Table 2.1: Comparative Performance

C D Slowdown

vm-to-vin 2.662 2.642 0.88%

TCP (Gbps) Vvm-to-host 2.447  2.502 -2.24%

vim-to-remote 0.934  0.935 -0.1%

vm-to-vin 87677 85285 2.72%

UDP (pkts) vm-to-host 151873 152253  -0.25%

vm-to-remote 135606 135698 -0.06%

Performance

To assess performance, we utilized the iperf3 tool, which sends packets back and forth in
a client-server communication. We used a virtual machine instance running the original
C version of the virtio_net driver and a virtual machine running the D version. Each VM
was allocated 1GB of RAM and 1 CPU. iperf3 was deployed on both VMs.

We devised 3 setups: 1) vim-to-vim One VM is running the server, one VM is running the
client. Both machines are of the same type: either C and either D; 2) vim-to-host The host
is running the server, the VM is running the client; and 3) vim-to-remote Another system
in the host network is running the server, the VM is running the client.

Results are summarized in Table 2.1 and show negligible overhead for the D module im-
plementation compared to the C implementation. Given that parts of the measurements
show a negative slowdown, we consider performance similar and subject to network and
measurement variation.

2.1.4 Key Takeaways

We investigated the possibility of using the D, a memory safe, systems programming lan-
guage, to develop Linux kernel modules in order to increase the overall robustness and
security of the system.

We developed a methodology and applied it to port the virtio_net networking driver to
D, as our Proof-of-Concept. We demonstrated the functional correctness and performance
parity of our ported driver to the original C implementation, and highlighted the added
security benefits.

It is important to note that unsafety inside the kernel is a fact of life. Although one can
use a programming language that uses different mechanics that increase the safety of the
code that a developer writes, at one point the developer will be forced to perform unsafe
actions. Those can come from the need to interact with specific pins on the underlying
hardware or the need to interact with the kernel API. Most of the kernel API core works
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with raw pointers, as such, even though the safe code might implement a sound object
lifetime algorithm, being forced to pass the raw pointer to the kernel will void all the safety
bets and assumptions. In spite of this, we believe that there are two strong arguments that
enable the use of safe languages in practice: 1) the kernel core is extremely stable and robust
as it benefits from 30 years of development and bug fixes, and 2) the kernel API clearly
defines whose responsibility, the kernel’s or the driver’s, is to free allocated resources.

2.2 Automatic Integration of D Code With the Linux Kernel

The D programming language provides built-in features for compiler checked memory
safety and high-level programming concepts as object-oriented programming, metapro-
gramming, and functional programming concepts. It also has native support for interop-
erability with C. However, as seen in Section 2.1, in order to use D in the kernel, one must
manually translate the necessary C header files into D header files, which can be a tedious
and time-consuming process. While DPP is a tool that can automate this task for user-
space C header files, it fails when working with the complex and sometimes convoluted
code of the kernel.

In this chapter, we extend our previous work and enhanced DPP to allow for the translation
of kernel headers to D. This eases the use of D code within the Linux kernel, providing a
means for improving the kernel’s memory safety.

2.2.1 Introduction

As discussed previously, we believe that drivers can greatly improve their security by using
a modern programming language that was designed with memory safety in mind, like the
D programming language [26]. D can automatically perform safety checks (e.g. automatic
array bounds checking, avoiding use after free, double free, avoid pointer arithmetic etc.),
compile to fast and efficient native code and interface with relative ease with C code. To this
end, one is required to declare the function header and the layout (eg. struct declaration)
of the types that are going to used, much like one does inside of C header files. Given
the repetitive, and frankly boring, nature of the task, DPP [27] was developed in the D
community to help developers reuse C code from their D modules. However, DPP does
not work well when used with Linux kernel header files due to the magic constructs inside
the kernel. In this work, we improve DPP to successfuly translate such header files and
facilitate the integration of D, a memory safe programming language into the linux kernel.

2.2.2 DPP

DPP wraps the D compiler in order to support the #include syntax inside a D module. In
other words, DPP is a preprocessor for the D language, generating bindings inside the D
implementation module itself. DPP has many success stories, including the translations
of curlh, Python.h, stdio.h, stdlib.h, and pthread.h. However, DPP struggles with Linux
headers, specifically:
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Figure 2.2: DPP workflow: (1) Write a normal D module, but also #include the desired C
headers, (2) Configure (i.e. clang options are used for the C headers; D compiler options are
discarded if DPP is used only for preprocessing, thus for generating a valid D module), (3)
Run the tool, (4) The output depends on the options DPP was run with: ready-to-compile
D module, object file, or executable file.

Incorrect translations of multiple macros, functions and structures.

Name collisions and correlations not dealt with correctly and consistently.

Crashes when testing with specific headers (i.e. out of bounds indexing).

Abnormal memory consumption (more than 8GB of RAM required).
« Long execution times (multiple headers could even last for more than 30 minutes).

A typical workflow when using the DPP tool is depicted in Figure 2.2. The DPP Black Box
is comprised of four different components, as shown in Figure 2.3. Each component has its
own definite role, some decomposing into further granular modules (e.g. the Runtime and
Translation modules). Note that, in this project, there are three different concepts revolving
the Clang compiler: (1) the libclang library, which offers a C interface for parsing source
code, (2) the libclang D bindings library, which also wraps the libclang library and (3) the
Clang component, which wraps a small part of the libclang D bindings library. The DPP
architecture is highlighted in Figure 2.3.

Figure 2.4 shows how DPP’s components interconnect, the exchange of information be-
tween the components, and the overall internal workflow of the application. Below, we
describe each component.
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DPP Black Box

Figure 2.3: DPP Organization

2.2.3 Implementation

App Component. The App module is the entry point of DPP. It needs to be provided with
an object of type Options, which carries the command line options used for DPP. Based
on the provided options, a Context object is instantiated that is used to track the already
processed AST cursors. Next, the .dpp file is preprocessed by the Expansion component. In
turn, the latter expands all the #include directives inline, translates all the definitions, and
redefines any macros defined therein. Finally, the App component manages the compila-
tion and file I/O operations: creates the output .d file, writes the translated lines of code to
it, runs the C preprocessor, runs the D compiler.

Context Component. The Context module encapsulates the necessary information for the
current translation, avoiding declaring global variables. It solves name clashes and colli-
sions, declares unknown structures (i.e. when a header only uses a pointer to a type, while
not providing a definition for that type). Further, it keeps track of: visited AST cursors,
lines of the output translated so far, information regarding name clashing, collisions and
renaming mappings, all defined macros, aggregates and their fields and other information
specific to C++ code. A Context is instantiated only once by the App module of Runtime,
before starting the translation process.

Options Component. The Options module holds all the command line options passed by
the user: DPP options, Clang options (internally passed to libclang), and D compiler op-
tions. It can stop the execution of DPP after generating the bindings, but before compiling
the resulted source file (i.e. using the preprocess-only option of DPP). This component
is used by the App module directly, and by the Expansion component, indirectly through
Context.
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Options Expansion
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references App
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Runtime D bindings, C++ only)
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Figure 2.4: DPP Internal Components’ Workflow

Expansion Component. The Expansion component is responsible for expanding (e.g.
parsing) the #include directives inline, populating the Context instance with the resulted
D definitions. It uses the custom libclang D bindings to start the parsing of the C headers,
providing the clang options from the Options instance within Context. The result of the
parsing is an LLVM AST. The Expansion component solves the multiple declarations and
tentative definition issues of C, by modifying the cursors of the AST. D does not support
multiple declarations and one definition of a type (i.e. it supports either a declaration, or a
definition, but not both at the same time).

Another function of this component is to iterate over all the cursors in the AST and use the
Translation component to translate them into valid D code.

Translation Component. This component’s goal is to translate every C construct encoun-
tered while ex- panding the headers in the original .dpp input file. This component has
twelve constituent modules:

« Aggregateisused to translate structs, unions, classes, anonymous records, and enums.

+ Dlang deals with D-specific translations (e.g. avoiding using D keywords as aggre-
gates’ names).

« Enum translates only enums which store single-value constants.

+ Exception is an internal module which defines an exception thrown when using C++
concepts with no D equivalent.

« Function is used to translate function declarations and definitions, as well as class
methods, constructors, destructors, move constructors etc.

« Macro is used to handle macros, and their respective definition (i.e. code fragments,
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string representations in hex, octal).
» Namespace and Template handle the C++ specific concepts with the same name.

+ Tokens is an internal module which provides utility functions to help manage tokens
inside cursors.

« Translation is used for translating C AST cursors, provided by the Expansion com-
ponent.

+ Typedef and Variable translate typedef constructs, and variable declarations respec-
tively.

The Translation component also contains a sub-component called Type, which is used to
translate/ map the C/C++ primitive and builtin types into corresponding D types.

2.2.4 Evaluation
Performance

In its previous state, DPP was not able to translate any of the Linux kernel headers, in part
due to multiple bugs and untreated syntax constructs. In addition, DPP’s relatively high
memory consumption was hindering the translation of multiple headers at the same time.

Currently, DPP can successfully translate a module containing all the Linux C headers nec-
essary for the porting of virtio_net.c, listed in Listing 2.1. The resulted translation output file
has 150,000 lines of code and no syntax errors whatsoever, needs no manual interventions
and is ready for compilation.

#include <linux/device.h>

#include <linux/mod_devicetable.h>
#include <linux/workqueue.h>
#include <linux/netdevice.h>
#include <linux/filter.h>

#include <linux/socket.h>

#include <linux/bpf.h>

#include <linux/virtio.h>

#include <linux/virtio_config.h>
#include <linux/virtio_net.h>
#include <linux/cpuhotplug.h>
#include <linux/netdev_features.h>
#include <linux/cpu.h>

Listing 2.1: C Linux headers necessary for porting virtionet.c

As shown in Listing 2.2, the translation of the headers in Listing 2.1 took 17 minutes
and used 4.5GB of memory. This is very encouraging for DPP’s future, considering that
previously it struggled to offer reasonable runtime figures: for a couple of headers, DPP
used to last more than 30-40 minutes and, eventually, run out of memory. Before our
changes, DPP used 6 to 7GB of memory for the netdevice.h header alone.
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User time (seconds):: 992.60

System time (seconds): 30.63

Percent of CPU this job got: 100%

Elapsed (wall clock) time (h:mm:ss or m:ss): 17:03.07

[...]
Maximum resident set size (kbytes): 4780252
[...]
Listing 2.2: /usr/bin/time output
Productivity

The most important metric DPP aims to improve is the productivity of D programmers
who need to interface with C libraries. We identify two aspects of a software engineer’s
productivity: development time, and maintenance time.

We know from our previous work that it took us several months to manually translate only
the needed kernel structures and functions declarations. In the end, our codebase had 8284
lines of code (LoC) and span across 27 files. By contrast, using DPP, the translation time
dropped to 17 minutes and the codebase was reduced to 3821 LoC and just 3 files.

Using DPP, the translation time is orders of magnitude lower, measurable in minutes,
rather than months. This is highly valuable as it enables developers to invest their time on
actual development logic, rather than on the repetitive (and error-prone) task of manually
defining interfaces. Manual translations are by default more error-prone and difficult to
solve than the translations provided by an automated generator. A bug in a manual trans-
lation could mean making changes in multiple parts of the code, while solving a bug in a
generator automatically solves the issues in all parts of the code.

2.2.5 Key Takeaways

The goal of the project was to make DPP robust and capable of translating even the most
uncanny C constructs and syntax, eventually leading to the successful translation of the
Linux kernel headers required to build the virtio_net driver. The strategy was to incremen-
tally test the kernel headers, identify and investigate issues, identify the issues’ patterns
and provide a generic solution that solves them.

We have solved issues ranging from C11 anonymous aggregates not being handled, name
clashes, renaming inconsistencies, and added new functionality to the tool itself. One of
the final blockers that made DPP unusable in the Linux kernel was the excessive memory
consumption. This is no longer an issue and we have proven that DPP works with decent
resources available.

As it stands, DPP can generate bindings for all the functions, structs, enums etc. used by
virtio_net. This result is utterly important and relevant in the field of systems programming,
especially for building operating systems drivers or modules in an inherently safe way.



Chapter 3

Improving the Security of
Microservices and Applications

3.1 A New Collections Framework for the D Programming Lan-
guage Standard Library

D is a general purpose, high level and high performance, programming language capable of
interfacing with the operating system API and system’s hardware. One of the core features
of D is represented by ranges, a powerful and new approach of iterating through a set of
elements. However, being a state of the art feature, ranges are not used in the D ecosystem
at their full potential.

In this work we provide a new collections framework for the D Standard Library that is com-
patible with the existing algorithms and that provides an API similar to the one provided
by ranges. Our implementation enables the collections to infer the safety of the operations
from the contained, user provided, type.

We show that our implementation may provide performance benefits of up to 2x compared
to the existing standard library implementations, when used in conjunction with a custom
allocator.

3.1.1 Introduction

The D programming language [28] aims to provide a fast and effective way of writing
correct, fast and maintainable programs. D implements modern and powerful features,
such as memory safety, function purity and improved code readability, to satisfy the needs
of the continuously growing software engineering industry.

Ranges, as we will elaborate in the next chapter, are the D way of iterating through a set
of elements. A range is capable of the following operations: accessing elements, testing
for emptiness and modifying elements. Ranges provide a great access adaptor for the al-
gorithms in the standard library. This is due to the fact that having a common interface is
simplifying the use of the data structures and allows the user to have reasonable expecta-
tions about collections.

Currently, the D standard library provides users with a set of collections to use, but the
implementation of those predates some of the existing language features. The existing
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collections use the builtin Garbage Collector [29], assume that the underlying user type is
unsafe and don’t work well with the language’s const and immutable type qualifiers.

In this work, we propose a set of general purpose collections (vector, list, map, hashtables,
heaps etc.) that are fast, reliable and compatible with the existing algorithms, while lever-
aging the powerful features of the language. The collections allow the user to choose the
desired allocation scheme, by providing a custom allocator to be used by the data struc-
ture. They do not make assumptions about the underlying user type, instead they infer the
safety and purity of it, all while being able to work in an immutable environment. The end
result of our work is a collections library that has been integrated in the D standard library
that is more efficient, more flexible and safer in terms of memory usage than the existing
alternative solutions.

3.1.2 Iterators

An iterator represents a way of providing access to the elements of a container. Because
pointers represent the fundamental abstraction model used in STL [30], there aren’t many
use cases for a single iterator; you need both the beginning and the ending iterators of the
container in order to safely traverse it. This approach suffers from two shortcomings:

« When working with iterators, the user needs to be careful with the pairing of the
begin and end iterators. Wrongfully pairing two iterators is both a frequent mistake
and a hard bug to discover.

« When implementing algorithms, a user, essentially, needs to provide both iterators
in order to define the range of his container. This leads to clunkier, error-prone and
less maintainable code.

Ranges represent an alternative to iterators that offer all of the benefits, but do no suffer of
any of the shortcomings. The next section will present in detail how Ranges are defined
and how they improve the existing iterators.

3.1.3 RangesinD

Ranges are an abstraction of element access and a core part of D. They provide a new
approach to the problem of accessing the elements of a container. Ranges were introduced
by Andrei Alexandrescu in the On Iteration [31] article, pointing out the weaknesses in
the iterator design, used by the C++ Standard Template Library (STL), and demonstrating
the advantages of the range design.

The range design that was presented by Alexandrescu has been implemented in the D
programming language. For simplicity, we will present the concept of ranges following the
D implementation. Note that other implementations may be slightly different, however,
the core concept remains the same.

In D, any structure that provides access to the elements of a container, in order to be
considered a range, needs to implement three methods:



CHAPTER 3. IMPROVING THE SECURITY OF MICROSERVICES AND
APPLICATIONS 19

« empty() - acknowledges if the range is empty or not.
« front() - provides access to the first element of the range.
+ popFront() - removes the first element of the range, shrinking it’s size by one.

Those three operations define the basic range type, the InputRange. The input range
abstracts the sequential iteration of a container and it adapts well to streams of data, such
as reading from the standard input.

Some containers need to be iterated more than once. Such a scenario makes the Inpu-
tRange not suitable. The ForwardRange adds to the InputRange interface the save() oper-
ation, which returns a copy of the range.

For situations where a reversed traversal is required, the BidirectionalRange adds two
more operations to the ForwardRange interface:

«+ back() - provides access to the last element of the range
« popBack() - removes the last element of the range

Lastly, the most powerful range there is, the RandomAccessRange is providing the opIn-
dex(size_t i) operator, which provides access to the i’th element of the container.

Ranges vs Iterators

Ranges in D programming language are generally considered to be a more convenient and
expressive way to iterate over collections compared to C++ iterators. Some of the reasons
for this include:

« Ranges are more flexible: Ranges can be easily composed and transformed using a
variety of range primitives, such as map, filter, and fold, which makes it easier to
perform complex operations on collections.

« Ranges are more expressive: Ranges provide a more intuitive and readable syntax for
iterating over collections, which can make it easier to understand the intent of the
code.

« Ranges are more efficient: Ranges are implemented in a way that allows them to be
used lazily and avoid unnecessary memory allocations, which can make them more
efficient than C++ iterators in some cases.

» Ranges are safer: Ranges are designed to be safer to use than C++ iterators because
they provide bounds checking and automatically handle iterating over subranges.

Overall, ranges provide a more convenient, expressive, efficient, and safe way to iterate
over collections in D programming language, which is why they are generally preferred
over C++ iterators. Ranges have also been added to the C++ standard library starting
with C++20.
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3.1.4 Implementation

Speed. We want our collections framework to be as fast as possible, given the user con-
straints. To achieve this goal we track the lifetime of a collection using reference counting
and enable the user to use custom allocators [32].

Memory Safety. The type systems guarantees that code annotated with @safe does not
cause memory corruption. However, a collection will interact with user defined types that
may call unsafe functions. As a consequence, no matter how safe the collections code is,
the safety of the whole will be determined by the safety of the contained type.

In order to achieve safety, the following two observations need to be taken into account:
(1) Memory allocation is a safe operation. There should not be anything unsafe here. We
just ask the allocator for a chunk of memory, which he will provide if he has any more
left. (2) Deallocation is an unsafe operation from the allocator’s point of view because it
can not know it there are any more references left to the memory buffer he is about to free.
Deallocations made by the collections, on the other hand, are safe because the reference
counting provides the guarantee that there are no more references to the buffer at the point
of freeing it.

Functional Purity. The concept of pure functions comes from functional programming
[33]. A pure function has two main characteristics that are detailed below. Firstly, a pure
function will produce the same result for the same set of parameters. As a result, a pure
function’s result may be cached and used to elide subsequent calls of the same function with
the same parameters. Secondly, a pure function is not allowed to access global mutable
data. As a consequence, pure functions don’t have side effects. Such functions may be
formally proven to be correct or not. Purity both helps the user to reason about code logic
and represents a powerful optimization enabler for the compiler.

Functional style. D provides the const and immutable type qualifiers, immutability being
an essential part of the functional programming paradigm. Prior to our work, the container
module did not support the use of such qualifiers.

The new collections, on the other hand, support such qualifiers. This enables the imple-
mentation of multithreading algorithms and the use of functional style idioms.

Collection properties

The collections defined in our library have the following properties:
« Provide at least the following methods: empty(), front(), popFront(), save().
« Are usable in safe, pure, nogc, nothrow contexts.

+ Are usable in conjunction with D’s transitive type qualifiers: const, immutable and
shared

+ Are usable with existing algorithms that work on ranges
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« Are optimal in terms of performance, provided that the user constraints are met.

The new collections framework enables constraint driven choice: the user can request a
collection that satisfies certain constraints [34]. For example: if the user desires a collec-
tion that has a key - value mapping with constant insertion and retrieval time, he will be
provided a hashtable. In order to achieve this, the internal implementation of the collec-
tions uses D’s powerful compile-time introspection.

3.1.5 Evaluation

To evaluate our work we have created a synthetic benchmark that is designed to assess the
performance implications of our implementation.

auto getSList(size_t steps, RCIAllocator alloc)

{
SList!size_t a = SList!size_t(alloc);
for (size_t i = 0; i < steps; ++i) {
a.insert (i) ;
}
return a;
}

void benchmark(size_t steps, RCIAllocator alloc)

{
for (size_t i = 0; i < 10; ++i) {
auto a = getSList(steps, alloc);
auto b = getSList(steps, alloc);
auto ¢ = a ~ b;
}
}

Listing 3.1: Benchmark sample

Listing 3.1 highlights a high-level overview of the benchmarking code. We create two
singly-linked lists using a custom allocator. We insert a number of elements (ranging from
10K to 40M) to analyze the implications of using different allocators.

Figure 3.1 exhibits the results of running our benchmark in 3 separate scenarios: (1) using
the standard library implementation of a singly-linked list that uses the garbage collector,
our singly-linked list implementation (tagged as exp) using both (2) the garbage collector
and (3) the malloc-based allocator. Our observations show that as the number of allocated
elements increase, our implementation that uses malloc is the fastest (with a maximum
speed-up factor of 2, given our experimental setup). The difference is explained by the fact
that malloc is a lighter alternative to the garbage collector. What is surprising, however, is
that the standard library implementation is faster than the experimental singly-linked list
implementation that uses the garbage collector. The explanation lies in the fact that in the
first case, the garbage collector has the freedom to decide when memory is allocated and
freed and therefore can optimally apply its memory allocation strategy, whereas, in the
second scenario, calls to the garbage collector are inserted by the collection framework.
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Performance evaluation of singly-linked list using different
allocators
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Figure 3.1: Performance evaluation of singly-linked list using different allocators: std-
Slist is the Standard Library implementation that uses the GC; expSlist is the experimental
framework implementation that uses the GC; expSlistMalloc is the experimental frame-
work implementation that uses the MAllocator (malloc based allocator). expSlistMalloc
shows the benefits of using a custom allocator

This forces the garbage collector to act upon command, without taking into account its
formal metrics.

Our results demonstrate that our singly-linked list implementation can be used in con-
junction with a custom allocator to obtain better performance than the standard garbage
collected implementation.

3.1.6 Key Takeaways

D is a growing language that needs to provide a strong suite of collections. Using the
benefits provided by adhering to the ranges interface, the collections will fit right in with
the algorithms in the standard library without any extra effort.

We have developed a new collections framework that brings together all the important
features of the D Language, while being easy to use and intuitive for the user.

This novel approach of designing collections as ranges with optional primitives has proven
to deliver better performance than the standard garbage collected alternative. Moreover, it
offers flexibility to the user to choose the most suitable allocation strategy.

Additionally, we have successfully updated the allocators module to a safer API without
impacting performance and improved the function attributes of the allocators API. This has
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improved the compile time type inference of the system. We have released dub packages for
the collections framework! and allocators module?; at the time of this writing the libraries
has been downloaded 6916 times, and 1473901 times, respectively.

3.2 Extending Client-Server API Support for Memory Safe Pro-
gramming Languages

Google web applications have become an integral component in the day to day life of
both organizations and individuals alike. These may be accessed through the graphical
user interface (GUTI) or through the application programming interface (API). The latter is
primarily used by programmers to integrate such services into their applications.

Most of the languages used to implement such applications are designed with performance
in mind, often neglecting security. However, security has become a major concern for such
systems thus increasing demand for memory safe languages. Unfortunately, languages
such as D and Rust, known to be memory safe, are lacking support for Google services.

To that end, we develop a methodology of integrating Google services with safe program-
ming languages. We show that the D programming language can easily and successfully
integrate such services bringing a boost in security and productivity.

3.2.1 Introduction

Google APIs is a set of interfaces that offer developers programmatic access to Google
services, including Google Drive, Google Calendar, etc., thus providing the possibility to
integrate them into other applications. Accessing Google APIs by making HTTP requests
to the server may appear like a straightforward method, but it is recommended to use client
libraries that make it easier to access the services from code. Thus, one is not forced to
handle all the requests and errors, those being already part of the library implementation.
By using libraries, the amount of boilerplate code one has to write is reduced and it surely
works as intended because the libraries are periodically tested and updated. Also, client
libraries handle all the details and can be easily installed using a package manager such as
pip, npm, or dub (Dlang package manager).

The D programming language [35] is a modern, high-level and safe programming language
able to interface directly with the operating system’s API and hardware. As it’s name
suggests, D was created as a form of C++ re-engineering, preserving its efficiency and
low-level access while also gaining memory safety and simpler syntax [28]. Also, Dlang
is compatible with C++, meaning that C++ code can be used in D source code. As with
all the modern programming languages, D has a package manager named dub, which
facilitates the addition of the packages one needs to develop an application.

Thttps://code.dlang.org/packages/collections
Zhttps://code.dlang.org/packages/stdx-allocator
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The D programming language does not have client libraries for Google APIs, thus making
it difficult for the Dlang developers to interact with services from Google. Also, the lack of
libraries may be leading to a decrease in popularity, even though D has cutting edge fea-
tures. To interact with Google APIs, one is required to use more than one library, some of
which are fairly heavy libraries, or write all the HTTP requests [36] necessary to authen-
ticate and access the resources, since the APIs expose a simple traditional REST interface
[37]. While offering more control over the code, this approach can lead to many errors or
undesired results. For example, one could use wrong parameters for a certain API call or
try to modify a read-only resource. In an open source environment, it is better to imple-
ment libraries that can be later updated by the community, thus ensuring that every user
has a fully functional and up-to-date.

In this work we implement a client-side library written in the D programming language,
designed to be used to write memory safe, high performance programs that interact with
Google services. We have open sourced our library and made it accessible via Github. By
using our library, the developers can easily and safely write programs without reimple-
menting the same functionality and gaining the advantages of using a robust library.

3.2.2 Google APIs

An Application Programming Interface (API) [38] is an interface between computer sys-
tems or programs. Everything, from the most popular operating system to the banking apps
we use and our favorite streaming service are based on APIs. In the past fifteen years, the
number of public APIs has grown exponentially. According to ProgrammableWeb [39], as
of 2021, there are over 24.000 APIs. The evolution of mobile phones to smartphones and
the web expansion are some of the major factors that impacted the growth of APIs.

Web APIs need a defined standard format for the data they exchange. Javascript Object
Notation[40] is a human-readable format for representing data, based on Javascript object
syntax. It can pack primitive data types, such as strings, booleans, and numbers as well as
arrays and objects, allowing the API to construct a data hierarchy [41].

A RESTful API[42], most commonly known as REST AP, is an Application Programming
Interface (API), characterized by:

« client-server architecture using HTTP requests
« focus on resources[43]
« unconnected requests

Google APIs represent a set of public APIs, mainly RESTful, that allows developers to
interact with Google products and services and integrate them into other products and
services [44]. Common use cases for these APIs include:

« user registration or authentication that allows users to log into third-party services
or applications using their Google accounts
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Figure 3.2: OAuth 2.0 flow: (1) client requests authorization, (2) client receives authoriza-
tion, (3) client requests access token, (4) client receives access token, (5) client requests
resource, (6) client receives resource

« documents storage from various tools, such as draw.io in Google Drive

« custom search that allows websites to embed search boxes thus providing a method
of searching for that website with the assist of Custom Search APIL.

Most of the Google APIs require authorization using the OAuth 2.0 protocol [45][46].
OAuth is an open standard for access delegation, used by users to grant other applications
access to their information securely and without sharing the password. This standard is
not about authentication but authorization. While authentication is the function of speci-
fying access rights/privileges to resources, authorization represents the function of proving
that someone is who it claims to be.

Figure 3.2 highlights the steps that are necessary for a client to access a resource: autho-
rization, authentication and resource acquire.

For a developer to integrate Google APIs in other services or products, details about the API
must be known to interact with it, such as how to authorize the requests, how to structure
the requests and responses, what methods may be used for a resource. Google provided
a solution for this issue in the form of documents that describe each version of each API,
named discovery documents. Discovery documents are files in JSON format that provide
details on how to access the API. The documents include a description of the resources and
methods associated, parameters for the methods, requests, and response structure, as well
as OAuth 2.0 scopes.
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Discovery documents

Google API Discovery Service[47] is an API that provides discovery documents for devel-
opers who intend to implement client libraries and other tools used to interact with Google
APIs. The discovery documents provided by this services have a specific format including
information that split into six main sections:

« Information about the API
« Authentication information - protocol and scopes
+ Resources and models(or schemas for requests and responses)

« Methods for each resource

Other features supported by the API
« Documentation

Listing 3.2 displays a sample of a potential discovery document. It contains the description
for a specific version, including the name of the API, the root URL, the service path and
the protocol that is fixed to "rest”.

{
"rootUrl": "https://www.googleapis.com/",
"servicePath": "drive/v3/",
"version": "v3",
"protocol": "rest",
"discoveryVersion": "vi1",
"name": "drive",
"ownerDomain": "google.com",

"ownerName": "Google"

Listing 3.2: Google Drive API description

3.2.3 Evaluation

In order to validate the generated source code each language had an unit test[48] file,
therefore we decided to write one for D to ensure that the result is structured as we expect.
As an example, Listing 3.3 represents a simple test case used to validate the module path
generated by this tool.

1 def testPackagePath(self):

2 discovery = {

'name': 'foo',
'version': 'wvl',
'packagePath': 'data',
'schemas': {},
'resources': {},

}

gen = d_generator.DGenerator (discovery)

O 0 N O Lt A W

10 gen.AnnotateApiForLanguage (gen.api)
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11 api = gen.api

12 self.assertEquals('Google.Apis.Data.Foo.v1l', api.module.name)

13 self .assertEquals('Google.Apis.Data.Foo.vl.Data', api.model_module.
name)

Listing 3.3: D support unit test

Furthermore, apart from the testing made during the development process, we wrote a set
of functional tests that makes this process easier and faster. For each method of an API,
we implemented a test that executes it and ensures that the results are as we expected. If
the method that is tested alters the setup, it reverts the modifications at the end of the test,
thus the next time the tests will run, failure will be avoided.

The functional testing process is split into two parts, namely setup and the testing itself.
The setup consists in building the service for the API tested and getting the ids of the
resources that will be used in the next part. For example, the Listing 3.4 is part of the
initUtils () used in the tests for Google Drive API and retrieve the id of the file used to
test the replies on comments.

/* Get Replies Test File Id */

auto response = Utils._drive.files()
.list_ Q)
.setQ("name = 'repliesTestFile.txt'")
.execute () ;

assert (!response.getFiles () .empty);
Utils._replies = response

.getFiles () [0]
.getId

Listing 3.4: D init tests

The tests execute the requests and then compare the response with the expected response
using the assert expression. Currently, the only full tested client libraries are those used
to interact with Google Drive and Gmail, with more to be tested in future work. Listing 3.5
highlights how a file from Google Drive can be copied using our implementation.

import Google.Apis.Drive.v3.Drive: Drive;

import Google.Apis.Drive.v3.DriveScopes: Scopes, DriveScopes;

void main ()

{
Drive _drive = new Drive("credentials_file", Scopes.Drive);
auto result = _drive.files().copy(DUMMY_FILE_ID).execute();

Listing 3.5: Retrieving a copy of a file from Google Drive
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3.2.4 Key Takeaways

In this work we have added support for Google API services in the D programming lan-
guage by implementing a library. We have achieved this goal by using a generator for such
libraries maintained by Google as a voluntary effort. A substantial part of the generated
libraries share a common structure with the Java client libraries, making it easier for de-
velopers that used them in other languages to use them in Dlang.

The D programming language community expressed its interest and support in the imple-
mentation of these client libraries, therefore proving the relevance of this project. Google
Drive[49] and Gmail[50] API client libraries, as well as the Google Client Libraries Gener-
ator’s fork with the D support added are available on Github. Thus, the Dlang developers
can easily clone or fork the repositories in order to use the library. Furthermore, to facilitate
the installation process, we intend to provide dub packages for each client library.

Google services expose complex APIs, resulting in a difficult and time consuming testing
process. This is the reason for making only two client libraries available for now. We
managed to fully test Google Drive and Gmail client libraries. As soon as other libraries
will be tested, they will be available on Github and soon after on dub as well.



Chapter 4

Auditing the Security of IoT
Architectures and Applications

4.1 IoT Fuzzing using AGAPIA and the River Framework

As the use of Internet of Things (IoT) systems expands, the security risks associated with
connecting devices from various vendors also increases. It can be challenging to effectively
test and validate the security of IoT systems, as a result of the proprietary (closed-source)
nature of much of the software and the difficulties in collecting data, such as memory
corruptions, due to the embedded nature of the systems. We propose the extension of the
AGAPIA language such that it will enable IoT teams to create more secure applications
that can be audited by fuzzing tools like RiverIoT. This would also allow users to test their
systems, improve overall trustworthiness. We evaluate how small extensions to existing
languages can aid security investigations of IoT systems.

4.1.1 Introduction

The Internet of Things (IoT) is a system of interconnected devices that can collect data
from their surrounding environment and act upon it. IoT has grown significantly in recent
years, helping people to work smarter and improving their quality of life. We can now
find smart devices everywhere, from our homes (smart light bulbs, IP cameras), to our
cars (smart sensors, cameras) and cities (weather sensors, pollution sensors). With the
continuous development of network technologies, such as 5G, the number of IoT devices
will continue to grow [5], bringing even more technology into our lives in a bid to make
everything faster, smarter and more comfortable.

The growing number of IoT devices (and their vendors) rises privacy and security concerns.
In a fast paced world, where the vendors compete with each-other to achieve the best time
to market for device development [4], there is a lot of room for programming errors that
can lead to vulnerabilities and exploits [6] [7]. The typical architecture for an IoT system is
composed of multiple heterogeneous devices, not necessarily from the same vendor, con-
nected through different protocols over the Internet. Most of the devices run proprietary
firmware, with in-house implementations of protocol standards, developed in a memory
unsafe language (such as the C programming language), making them a lucrative target
for attackers.

Given the closed-source nature of the IoT devices code, it is difficult for a 3rd party (user,
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another vendor, etc) to audit and validate the correctness of the implementation. Because
it can not access the code, the 3rd party must rely on black-box testing, combining fuzzing
techniques with functional testing. RiverIoT [51] is an open-source framework that enables
the fuzzing of end-to-end IoT applications. In order to provide efficient fuzzing, RiverloT
relies on a JSON specification of the Input/Output (I/O) of the devices fuzzed. We’ll discuss
this in greater detail in Section 4.1.3.

As previously stated, the programming language used to develop the devices’ firmware
plays a significant role in the security and robustness of the system. IoT systems and their
applications are, in fact, a highly dynamic and modular distributed system. Distributed
programming and synchronization is generally regarded as a non-trivial task. There are
multiple frameworks and high-level languages that address the issue of distributed pro-
gramming. The AGAPIA language [52] attempts to increase the developer productivity
and the language expressiveness by using a transparent communication model and simple
high level statements. AGAPIA expresses distributed applications as modules that expose
a clear, simple and structured I/O interface.

AGAPIA is a Domain Specific Language (DSL) built on top of the C programming language.
Because of this, (we believe that) it can easily be used with existing firmware code to model
the IoT system’s interaction and expose the device’s I/O interface.

We explore the option of expressing IoT devices as AGAPIA modules, and representing the
IoT system’s interactions as relationships between AGAPIA modules. By doing so, we have
a clear, structured, specification of the I/O of a device. We can easily extend AGAPIA to
convert the structured I/O spec to (and from) JSON, so we can easily use RiverIoT to test
both the device and the IoT system.

4.1.2 AGAPIA

There is a real need for developing a unifying programming language that allows develop-
ers to quickly prototype and test their software before deploying it to an IoT device. The
current trend is to write the code in a low-level programming language, like C, that will be
compiled with specialized compilers (like the Arduino IDE) for each IoT device since the
code can be run on different architectures (like PIC, AVR, ARM).

The problem with writing in a low-level programming language is that it is a tedious and
error prone process, since one must carefully implement the basic data structures and com-
munication channels. While this offers a lot of flexibility and control in terms of instruc-
tions granularity, it hinders development. Even when one has access to a powerful IoT
device (like the Raspberry PI) and can write code in a higher-level programming language,
like Python, a problem still persists: it is difficult and time consuming to write correct,
distributed programs.

There are papers that investigate a way to program using visual objects like [53] and [54],
but they fall short on developing for the multiprocessor devices.

AGAPIA [55] is a Domain Specific Language (DSL) that was designed to simplify the devel-
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opment of parallel software using a simpler syntax for spawning new processes via forks
and integrating with Open-MPI [56] to deliver a friendlier distributed and parallel pro-
gramming experience.

The main component of an AGAPIA program is the module that can be thought of a 2
dimensional block (a square) that can receive information from both the north and west
sides and can pass information through both east and south parts (Figure 4.1). The inputs
and the outputs are optional, so one can define modules that generates data (no inputs, only
outputs) or that produce side effects when given certain inputs (only inputs, no outputs).

North input (read)

l

{ read x: int, s: string } m
S w
o 1A
wn
- Qo
5 =1
B — ({listen: nil} {speak: y:int} |——~ 2
— —
% 2
c 8
2 _ ‘ =
{ write t: string } =

South output (write)

Figure 4.1: An AGAPIA module

The main job of a module is to transform the given input(s) into the output(s). The basic
way of defining a module is to define its interface (the inputs and the outputs) and based
on them one can compose modules together.

By defining a module in this way, one can compose modules in three ways: vertically,
horizontally, and diagonally (Figures 4.2, 4.3, and 4.4). One can think of an AGAPIA
program as a two dimensional structure [57], composed of modules that talk to one another
in order to solve a problem more efficiently. The composition model used by AGAPIA is
multiplexed both in space (Figure 4.2) and time (Figure 4.3) [58].

After defining the interface for each module, one can write the code for that module in
either C or C++ language. The user code for each module can contain either pure C/C++
code (called here atomic) or can contain AGAPIA instructions or compositions [59]. The
difference between the two modes is that the atomic code must have access to all the
variables before it is scheduled, whereas when using AGAPIA instructions one can run
code in parallel.

The AGAPIA team is currently working on producing a graphical user interface where one
can easily define the topology of an AGAPIA program and define the interface between the



CHAPTER 4. AUDITING THE SECURITY OF IOT ARCHITECTURES AND
APPLICATIONS 32

modules and after that can write the module’s code.

read(A)
read(A) read(B)
listen(A) — A —— speak(A)
listen(A) — A B — speak(B)
write(A) write(B)
listen(B) — B —— speak(B)
Figure 4.2: Horizontal module composition write(B)
Figure 4.3: Vertical module composition
read(A)

listen(A) — A W

L B — speak(B)
*Ji

write(B)

Figure 4.4: Diagonal module composition

4.1.3 RiverloT

RiverIoT is an integrated testing framework that enables end-to-end fuzzing for IoT sys-
tems. The framework employs guided fuzzing through state of the art methods, like con-
colic execution [60] and Al techniques [61], [62], [62], [63].

There are two major challenges when fuzzing embedded devices: 1) the hardware depen-
dence of the firmware and 2) the closed-source nature of the firmware. Inspired by [64]
and [65], RiverIoT addresses both of those issues with emulation. Using an emulator al-
lows RiverIoT to run the firmware on a general purpose system, without requiring 1) the
physical hardware of the IoT device. When a binary is emulated, the emulator translates
each binary instruction into an intermediate representation before translating it again into
instructions for the host machine architecture. Doing so, RiverloT can dynamically instru-
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ment the binary instructions without needing the 2) source code.

Since an IoT system can be logically represented as a graph of connected components,
RiverIoT can perform fuzz testing at three different levels:

« graph level - changing the nodes and edges inside the deployed IoT system
« node level - fuzzing each device individually

« interconnection of input/output nodes between different nodes and their commu-
nication (i.e., how the input of a node can be influenced by other nodes that are
connected to it, or how the communication channel between nodes can affect their
input).

In order to use RiverIoT, one must provide a description of the graph (nodes and edges) and
the I/0 structure that the applications expect, in JSON format. With this JSON specifica-
tion, the framework can understand the communication between the different components
and it can start mutating the graph and generate inputs for the applications.

RiverIoT expects the graph to be able to handle dynamic configurations at runtime, like
changing nodes and edges. The reason for this is that the framework attempts to simulate
issues like device failures, restarts, repositioning thus testing the resilience of the system
under test.

As it can be seen in the graph specification presented in Listing 4.1, the model is quite
simple and safe-explanatory. One must define the IoT applications ("iot-nodes”) and their
communication channels ("io-edges”). Each application is assigned an ID and a descrip-
tion of it’s input and output buffers, as exemplified in Listing 4.2. Each edge, also identified
by an ID, describes the input and output node (based on the node’s ID) and the buffer spec-
ification used for that node (based on the node’s buffer ID).

{
"configuration-name": "Generic Network",
"iot-nodes": {
"i1": { // Buffer description },
2rs { ...}
},
"io-edges": {
e {
"vout": 3, // Output node
"vin": 1, // Input node
"vout-buffer": 1, // Buffer id sending the data
"vin-buffer": 2, // Buffer id receiving the data
},
2rs { ...}
}
}

Listing 4.1: Compatibility graph specification example
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The example in Listing 4.2 probably contains some more fields than one might be expect-
ing, but most of them are actually there to provide more context to the reader. RiverIloT
is mostly interested in the "token-type” and “byte-size” fields. With those two, it can start
generating inputs for the application under test.

~

"device-name": "An IP Camera",
"optional": "false",
"class": "camera",
"buffers": {
e {
"token-delimitators": " ",
"protocol": "HTTP",
"protocol-setting": "http://192.168.0.112:8080/",
"buffer-tokens": [{
"name": "Camera command",
"description": "Input that selects command",
"token-type": "string",
"byte-size": 256,
"regex-rule": "[a-zA-Z]+=[a-zA-Z0-9]+", // Optional parameter to
guide fuzzer generator
"optional": false

"name": "Camera ISO Value",
"description": "Sensitivity to light",
"token-type": "int",

"byte-size": 4,

"optional": true

3

Listing 4.2: Single device buffers’ specification

With the JSON specification ready, the framework can start the fuzzing process. For each
node, the framework will perform guided fuzzing in isolation, testing each binary program
that can be deployed on a physical device. RiverloT employs a combination of symbolic
execution [60] and genetic algorithms [66] to fuzz the targets in a bid to achieve good code
coverage while keeping the runtime performance and overhead acceptable.
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4.1.4 Key Takeaways

We propose an extension of the AGAPIA programming language with IoT-aware deploy-
ment macros that enables a fast and simple integration with a testing framework, such as
RiverlIoT. The added extensions generate a JSON specification of the entire system under
test (SUT), describing both the graph of connected IoT devices, as well as their I/O commu-
nication interfaces. By doing so, it provides the testing framework with a high level view
of the entire system, as well as the expected input and output of each node. The generated
specification is read by the orchestrating component of RiverIoT which decides if it’s going
to perform input generation or graph mutations for the SUT. In summary, this research
investigates how minor modifications to existing programming languages can enhance the
testing and validation processes for IoT systems.

4.2 Scalable Concolic Execution of COTS Binaries with the River
Framework

Software systems increase in complexity as the time passes and new business requirements
arise. Coupled with the fast pace and increasing demand of software development, this
makes room for bugs and leads to a bigger attack surface. Fuzz testing and symbolic exe-
cution have proven to be successful methods to uncover untested paths and vulnerabilities,
and have been adopted by teams across the globe. Software products regularly use 3rd party
pre-compiled libraries and components. Those custom of-the-shelf (COTS) binaries make
symbolic execution difficult as the fuzzer cannot insert the instrumentation code during
compilation, thus having to resort to dynamic binary instrumentation. We present River,
a concolic execution fuzzer for COTS binaries. We emulate the system-under-test (SUT)
with Triton, a dynamic binary analysis library, and we delegate system and library calls to
GDB. By doing so, we avoid path explosion and the need to manually implement system
and library calls in the fuzzing framework, two problems that KLEE and angr have. We
compare our solution with KLEE by testing on the libraries from Google FuzzBench. After
running libarchive under the two for 30 minutes, River has a branch coverage of 4.56%,
while KLEE has a 1.78% coverage; after 1h30 minutes, River has reached 6.06% compared
to the 2.07% reached by KLEE.

4.2.1 Introduction

Software security is essential to nowadays systems. The world has witnessed the rise of
cybersecurity attacks in recent years, as depicted in Figure 1.1. Exploits of in the wild vul-
nerabilities have cost companies billions [1], having researchers at the IBM System Science
Institute estimate that fixing a vulnerability costs 100 times more than the development
costs[2].

In fields such as IoT and automotive, auditing software security is challenging because the
user receives a piece of hardware with a custom off-the-shelf (COTS) binary that runs on



CHAPTER 4. AUDITING THE SECURITY OF IOT ARCHITECTURES AND
APPLICATIONS 36

it. The user is forced to place his trust in the 3rd party, as he is not able to validate the
software, since he does not have access to the source code.

Fuzz testing can help teams automate the testing procedure, and discover untested paths
and vulnerabilities in their products and 3rd party components. If the source code is avail-
able, the fuzzing framework will add instrumentation code to the generated binary, which
allows the framework to monitor the system under test (SUT) during runtime and improve
the input generation phase of the fuzzer; this is known as white-box fuzzing. When there is
no source code available, the fuzzer generates input (either from scratch or from an initial
corpus) and checks the output (end state) of the SUT to determine if a crash has occured;
this is known as black-box fuzzing. In-between the two methods is gray-box fuzzing: even
though the source code is not available, the fuzzer will instrument the binary instructions
in order to monitor system during runtime and guide the fuzzing process.

Static binary rewriting means being able to modify a compiled binary such that it remains
executable after the changes. Static binary instrumentation would provide the best per-
formance for a fuzzer, but binary rewriting is a hard, active research problem[67][68]
[69][70][71] that has yet to have a sound, cross-architecture solution. Dynamic binary
instrumentation (DBI) modifies the binary execution during runtime. This is a lot easier
to achieve, as it does not depend on complex static analysis and it enables the user to lever-
age runtime information[72][73][74][75][76]. The drawback of using DBI is the runtime
overhead that it incurs, which can range between 1.2x to 5x. When fuzzing, one desires
the smallest instrumentation overhead, as that will allow the fuzzer to try more inputs in
the same amount of time. We plan to compensate the overhead incurred by DBI by using
symbolic execution.

We want to be able to perform efficient gray-box fuzzing on COTS binaries. The problem
with black-box fuzzing is that you don’t know anything about your target: as such, just
testing against random input will not get one very far. Thus, we want to enhance the River
fuzzer in order to perform symbolic execution on binaries through DBI: 1) trace the binary
execution, 2) each time we encounter a branching condition, we save the encountered con-
dition in the form of relations between symbolic variables, 3) the symbolic variables rep-
resent our path constraints and will build an algebraic equation of the current execution
path, 4) so we can provide the equation to a satisfiability modulo theories (SMT) [77][78]
solver, such as Z3[79], to discover if there are any input values that satisfy the constraints
of a given program path. By using symbolic execution, one can quickly discover the inter-
esting” input values that improve the code coverage of a SUT and trigger vulnerabilities;
this is because the constraints equation mathematically represents the different states that
a regular fuzzer might discover by running multiple inputs.

Library and system function calls represent the biggest challenges of performing symbolic
execution on binaries. Figure 4.5 presents a regular application flow, with all the transitions
starting from user space and ending in kernel space. Starting with the program entry point
instruction, we will iterate through the binary instructions until we reach a function call,
eventually translated into a system or library function call.
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Library function calls lead to a huge complicated constraints equation, known in the lit-
erature as path explosion[80]. The equation could undoubtedly become exponential as a
consequence of the number of branches, which greatly increases the time required by the
SMT solver to find equation solutions, to the point that it takes too long to be usable or it
can not find a solution anymore. Even if we would have an ideal SMT solver that is not
affected by the path explosion problem, system calls pose a new challenge: the implemen-
tation of the call resides in kernel space so the fuzzer cannot instrument those instructions
as it does not have access to them. The solution is to either reimplement or emulate such
calls.

user space - kemnel space
S ) S G
library call system call
Source code » Library - > Driver
- - J o\

Figure 4.5: Application Flow: from User Space to Kernel Space

Other symbolic execution fuzzers and frameworks, such as angr[81] and KLEE[82], reim-
plement common library functions (eg. strlen, printf etc.) and system calls (eg. open,
read, write etc.) in order to circumvent the issues briefed above. There are two prob-
lems with this approach: 1) this does not scale as one cannot know all the functions that
will be used by a user in his codebase, thus it requires extensive analysis to implement the
missing stubs so one could fuzz the binary target and 2) the custom implementation might
not behave exactly the same as the original library or system call, thus unwilling modifying
the behaviour of the system under test.

Our proposed solution will use River to dynamically instrument only the instructions that
are part of the analysed binary (no libraries or system calls). We integrate River with GDB
so we can delegate the execution of library and system calls to it. Thus, River will only trace
and symbolically execute the binary instructions of interest.

There are a series of aspects that we have to consider after the GDB executes the system or
library calls:

« must maintain the consistency between memories of every process. The process from
River has to have the same information even after the execution of GDB.

« must restore the function context after the execution of GDB.
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« must keep the consistent symbolic state before and after a system or library function
call.

The significant advantage that we have through our approach is that we emulate system
and library function calls. Thus, the developer does not have the overhead associated with
the implementation of every system call, nor does he have to do anything else in order to
perform concolic execution. We claim that our implementation is scalable as it does not
require the developer to debug the fuzzing tool and implement any missing utilities.

4.2.2 The Architecture of The River Fuzzer

River 3.0

Genetic Guided || Concolic executor
fuzzing using RL

Concolic executor using Generation
Search strategy(SAGE)

Foundation layers
Binary loader Disassembly
LIEF { LLVM support } Capstone
(

LibFuzzer
Dynamic analysis work in progress) Dynamic Tainting
GDB Triton
(ARM32, ARM64, X64, X86)

OS / Hardware Layer

Figure 4.6: River Architecture

River is a cross-platform fuzzer that can run on all common operating systems and sup-
ports the following architectures: X64, X86, ARM32 and ARM64. The fundamental com-
ponents in its architecture are built using the following libraries:

« LIEF[83] serves at loading binary files. Using this tool, we can modify the executable
file, access offsets, sections and the entry point, functionalities used in restoring the
memory, and help to determine the position for necessary instructions.

« Triton[84] used in dynamic symbolic execution. Moreover, its usage in the River is
to create an AST and make a dynamic taint analysis that verifies the security impli-
cations based on the flow generated by the user input. We can access functions from
memory with this in River. This component has two substantial functionalities: the
taint analysis function and the symbolic execution engine. Moreover, we can modify
regions of memory and set symbolic expressions at different memory addresses.

« Capstone[85] is a component in the LIEF library because we can disassemble exe-
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cutable files through it. This is a high-performance framework, designed to provide
the semantics of the disassembled instructions. Moreover, it is a thread-safe tool.

« z3-solver|[79] is a theorem solver. Its usage is in the River and the Triton library to
solve different constraints gathered from the branch instructions. The result after
evaluating such expressions is a valid input that feeds the fuzzer in order to detect
flaws in the system.

« GDBJ86] is a tool through which we emulate the library and system calls and restore
the context. We can inspect the memory at different moments from execution, using
its capabilities of dynamic analysis. We can analyze the content of registers and
acquire information about memory sections.

This framework supports three fuzzing methods, as you can see in Figure 4.6: concolic
execution based on Generation Search strategy[87, 88], Genetic Guided fuzzing, and con-
colic execution using Reinforcement Learning[89, 88]. The similarity is that all of these
methods generate paths based on the instructions from the executable files. Differences
come from the way fuzzers choose paths. Genetic-guided fuzzing calculates traces based
on a genetic algorithm, whereas the concolic execution using RL relies on an algorithm of
Reinforcement Learning.

4.2.3 Evaluation

In order to validate our solution, we evaluated a series of applications that try to meet real-
world requirements. We used a HTTP parser[90] (Figure 4.8) and an application that tries
to parse a JSON object, named Fuzzgoat[91] (Figure 4.7). We choose the former because
it contain regular system and library function calls met in every program, and the latter
because itisintended to be used as a testbench for fuzzers. Another reason is that the fuzzer
covers a significant part of the code in a reasonable amount of time despite the overhead
caused by the emulation.
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Figure 4.7: Line coverage for Fuzzgoat test
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Figure 4.8: Line coverage for http parser test

The HTTP parser has two components: the parser for the request and one for the URL. The
line coverage for this library is that the URL parser has 21%, whereas the other component
has 79%. We choose to test the URL parser since the input is not highly structured as it is
for HTTP request parse. To support highly structured inputs in a reliable amount of time,
River has to generate the data tests based on grammar. The current approach creates inputs
relying on symbolic execution, which will take much more time to build suitable inputs.

Metrics and performances

So far we have evaluated that our functionality requirements are successfully met by our
solution. Next, we compare our approach with similar ones from Klee. We used the Libre
[92] and Libarchive [93] libraries from Google’s Fuzzbench [94, 95]. We also used Fuzzgoat,
previously mentioned, in our data set. The results are shown in the following tables:

TIME RIVER | KLEE TIME RIVER | KLEE
30min 49% 65% 30min 4.56% 1.78%
1h 49% 73% 1h 6.02% 1.92%
1h30min 49% 76% 1h30min 6.06% 2.07%

Table 4.1: Branch coverage for Fuzzgoat ex- Table 4.2: Branch coverage for Libarchive ex-

ample. ample.
TIME RIVER | KLEE
30min 28.9% fail
1h 28.9% fail
1h30min 28.9% fail

Table 4.3: Line coverage for Libre example.
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Our metric to compare both tools is branch coverage because we can get only the branch
and instruction coverage, whereas we have the possibility to analyze the line and branch
coverage in River since the latter tests the coverage using the gcov tool and the former has
an internal mechanism that makes the measurements. So, the shared metric is the branch
coverage.

We can notice from the above results that Klee has a large coverage for the Fuzzgoat exam-
ple, which contains regular functions and library calls. The other two examples are more
complex in terms of system and library calls. Moreover, these applications imply a sub-
stantial number of such calls. Klee fuzzer fails with a SEGFAULT signal for Libre example
because of the lack of implementation for an inline assembly call from the valgrind.cc
file. The error occurs even though the Klee was compiled with support for libc++. A pos-
sible reason is the lack of some implementation for some system or library function calls.
River tries to avoid this issue by emulation such calls through GDB. We can observe from
Table 4.2 that Klee is slower when the application involves a notable number of system and
library function calls. Moreover, the Libre example implies a significant number of system
calls from POSIX. Even though Klee has support for such calls, their approach implies a
substantial overhead for them.

4.2.4 Key Takeaways

We have successfully added support for symbolic execution for COTS binaries in the River
fuzzer. By delegating the execution of syscalls and library functions to GDB, we signif-
icantly reduce the risc of triggering a path explosion. Moreover, the associated overhead
with the reimplementation of such calls drastically diminishes. Moreover, through this ap-
proach, we want to underline the possibility of emulating the system and library function
calls by keeping the concrete and symbolic states consistent.

Restoring the symbolic state is a core aspect of the current approach, since the fuzzer can
otherwise miss specific symbolized values after system or library function calls. To prevent
any errors, we have an "aggressive” approach, restoring the memory and symbolic contexts
after each GDB delegated call. The restore policy could be relaxed in order to obtain better
runtime performance.

Future performance improvements

Our context restoration solution is fully implemented, which is crucial for our approach.
However, the current implementation is very cautious and copies large sections of memory
from GDB into the River process each time a system or library call is made in order to
update the context in the fuzzer. This causes the memory to become a bottleneck because
the performance of the tool is directly tied to the size and number of memory sections being
copied. In addition to optimizing the use of memory, the testing tool could also benefit from
using the functionalities of GDB and leveraging GDB’s signal handler to improve the input
generation process by filtering inputs based on previous data tests that have caused errors
in the system.
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One important factor to consider is how the fuzzer generates its inputs because if it uses
the same path multiple times, it can lead to a decrease in performance. To improve per-
formance, the fuzzer could avoid generating redundant data tests by altering its approach
for input generation. Optimizing this component can lead to a reduction in the amount of
time needed for testing. Thus, the fuzzer could achieve a wider code coverage in the same
amount of time by adjusting its input generation process.

Future emulation improvements

During emulation, the fuzzer aims to guide the concrete execution to achieve the correct
execution. However, as discussed throughout this chapter, the fuzzer also has an internal
representation of the symbolic state, which GDB is not aware of because its purpose is
only to execute the application. In most cases, the fuzzer does not need to consider the
symbolic state when handling system and library function calls because it does not affect
other addresses. This changes when the library calls in case should operate on symbolic
memory, as it must be taken into account by taint analysis. For example, after amemcpy call,
the destination address should have the same symbolic information as the source address,
but the symbolic state of the destination address will not be updated by GDB because it
cannot interact with symbolized information. In this regard, the current solution relies on
hooks of well known, memory altering, functions, but this limits support. To improve this,
we must design a more generic approach to handle these calls that require working with
the symbolic state.



Chapter 5

Conclusions

5.1 Thesis Summary

Chapter 2 presented our contributions regarding improving the security of the Linux ker-
nel. We focused on the use of the D programming language as a way to improve the security
of the Linux kernel. Specifically, we highlighted how D can be used to write drivers for the
kernel that are more secure than those written in other languages, such as C. We demon-
strated that it is possible to easily convert C code to D without any loss of performance.
This is important because it means that developers can use D to write secure drivers with-
out having to sacrifice performance.

In addition to this, we also presented our work on DPP, a tool that automates the process of
translating kernel data structures to ones that are compatible with D. This makes it easier
for developers to use D to write drivers within the kernel ecosystem, and can help to further
improve the security of the Linux kernel. Overall, our contributions aim to make it easier
to create secure drivers within the Linux kernel ecosystem.

Chapter 3 presented our contributions to improving the security of applications. One of the
main areas we focused on was the development of a new collections framework for the D
standard library. This framework is designed to be able to infer the safety of the operations
it performs based on the type of data it contains. For example, if the data type is known
to be safe, the operations performed on it will also be considered safe. Our collections
also support custom memory allocators, the use of which can offer significant performance
benefits compared to the existing standard library collections.

Furthermore, we also discussed our work on building a library generator based on Ope-
nAPI Specifications. This tool is designed to help developers quickly and easily create li-
braries for use in their applications, and it is intended to improve the security and reliability
of those applications.

Chapter 4 focuses on validating the security of Internet of Things (IoT) devices. First,
it explores the possibility of automatically generating a structured description of an IoT
network that could be used by the River fuzzing framework in order to evaluate the network
devices.

Next, it presents the work we have done to improve the fuzzing of proprietary binaries with
the River framework. We addressed the challenges of performing symbolic execution on
COTS binaries. Symbolic execution is a technique used to analyze the behavior of a pro-
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gram by treating certain inputs as symbolic variables, rather than concrete values. This can
be useful for detecting and identifying vulnerabilities in software, but it can be difficult to
perform on COTS binaries because they are compiled and optimized for specific hardware
architectures. We discussed the limitations of current symbolic execution engines and how
our solution was able to overcome these issues.

5.2

Contributions

This thesis has presented several contributions that improve the security of IoT applications
and the process of auditing such applications.

We provided a comprehensive background regarding memory safe programming lan-
guages, past and current proposals for languages, other than C, to be used in the
Linux kernel, and state-of-the-art works related to binary analysis and automated
vulnerability detection.

We presented an approach that employs D in order to improve the security of the
Linux kernel.

We selected virtio_net as our target driver, a medium-sized and actively maintained
component in the Linux kernel. We ported the driver in the D programming language
and highlighted the functional and performance parity to the original C driver and
discussed the security benefits.

We developed a methodology for porting kernel drivers to D in order to improve the
overall safety of a system.

owing to the

We demonstrated that the kernel can leverage D to benefit from safety improvements
in a kernel module, array bounds checking and compile-time polymorphism being
the most important ones.

Using our work, further drivers may be ported to D and thus increase the safety
mechanisms that are present in the kernel.

We improved DPP, a C/C++ headers translation tool, in order to enable it’s use on
Linux kernel headers. Thus, we automate the translation of kernel data structures:
an otherwise manual task that is repetitive, time consuming and error prone.

We validated our work by applying it on our virtio_net D port Proof-of-Concept
(PoC). This allowed us to reduce the driver implementation size by 53%; a reduced
codebase represents a smaller attack surface, thus increasing the overall security.

We improved automatic code generation for the D ecosystem, which leads to in-
creased productivity and reduced maintenance time. All D projects, not only kernel-
related ones, benefit from our work.
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« We have developed a new collections framework that brings together all the impor-
tant features of the D Language, while being easy to use and intuitive for the user.
Our collections enable the use of custom, user provided, memory allocators, thus
allowing for improved performance.

« We have improved the safety of the standard library allocators with respect to multi-
threading applications. Our work is actively being used by the D community.

« We implemented an automatic D library generator for services that describe their
API throught the OpenAPI Standard. The generated libraries adhere to D’s memory
safety rules, enabling applications to safely interact with Internet services.

« We proposed an extension to the AGAPIA programming language with IoT-aware
deployment macros that enable a fast and simple integration with a testing frame-
work, such as RiverloT. The extensions describe the relationships and interactions
between the IoT devices of a network. The description can be leveraged by the fuzzer
in order to discover relationships that may lead to vulnerabilities in the network.

« We have added support for symbolic execution of COTS (commercial off-the-shelf)
binaries in the River fuzzer. This was achieved by using GDB to execute syscalls and
library functions, which reduces the risk of path explosion and reduces the overhead
associated with re-implementing these calls. This approach also demonstrates the
feasibility of emulating system and library function calls while maintaining consis-
tency between concrete and symbolic states.
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