
UNIVERSITY POLITEHNICA OF BUCHAREST
FACULTY OF AUTOMATIC CONTROL AND COMPUTERS
COMPUTER SCIENCE AND ENGINEERING DEPARTMENT HBFX

Computer Science - Logo

Computer Science

Computer Science

& Engineering

& Engineering

Depar tment

Depar tment

PhD Thesis Summary

Number representation systems
in computer engineering

S, tefan-Dan Cioĉırlan

Thesis advisor:

Prof. PhD. Eng. Răzvan-Victor Rughinis,

BUCHAREST
2023



CONTENTS

1 Introduction 1

2 The development of the NRSs Software Library (NRS-SL) 4

2.1 Hidden exponent bit tapered floating-point . . . . . . . . . . . . . . . . . . 4

2.1.1 MorrisHEB(size, g, r) . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 MorrisBiasHEB(size, g, r) . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 MorrisUnaryHEB(size, r) . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Evaluation on software NRSs . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 NRSs Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Unary Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Binary Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.4 Literature Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Insights on number representation systems . . . . . . . . . . . . . . . . . . 13

3 NRS in Scientific Computing 14

3.1 Benchmarks Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Conjugate gradient method benchmark . . . . . . . . . . . . . . . . 14

3.1.2 Simpson’s Integration benchmark . . . . . . . . . . . . . . . . . . . 15

3.1.3 N-body simulation benchmark . . . . . . . . . . . . . . . . . . . . . 15

3.2 Insights on Scientific Computing Results . . . . . . . . . . . . . . . . . . . 16

4 The usage of NRSs for Statistical Methods 17

4.1 Statistical Methods Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Insights on Statistical Methods Results . . . . . . . . . . . . . . . . . . . . 20

5 NRSs impact on Artificial Intelligence 21

5.1 Frameworks Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1



5.2 Insights on Machine Learning Frameworks . . . . . . . . . . . . . . . . . . . 25

6 The developement of the NRSs Hardware Generator Library (NRS-HGL) 27

6.1 FPGA evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2 Insights on Proposed Units Results . . . . . . . . . . . . . . . . . . . . . . 31

7 NRS inside Processors 32

7.1 Processor Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.1.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.1.2 Accuracy and Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 33

7.1.3 Resource Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.2 Insights on Processor Results . . . . . . . . . . . . . . . . . . . . . . . . . 36

8 Conclusion 37

Bibliography 41



ABSTRACT

Mathematical computations are one of the fundamental blocks of humanity. Computers use

number representation systems to emulate mathematical sets and operations. Currently, dig-

ital computers can only represent finite subsets of the infinite sets presented in mathematics,

and this limitation produces errors in computations. Every computer software implementation

uses a particular set of numbers. The obvious thing is to have a specific number representation

system which can produce the best accuracy and efficiency for the application. The current

solution is to use a system which is good enough. This lasted for decades until new number

representation systems were proposed, and significant research was done to see the advantages

and disadvantages compared to the current solution. The discussion might go again into a

”dark age” for a few decades until a new opponent arises. The problem approached in this

thesis is how to keep the discussion about number representation systems alive and engaging.

The proposed solution reduces the discussion’s entry-level and effort by creating a better re-

search infrastructure. The research infrastructure contains a software library and a hardware

generator library. The proposed software library reduces the time and effort of proposing a

new number representation system to implementing the binary representation and the num-

ber constraints. The hardware generator library improves the path from an idea to multiple

hardware prototype units. The infrastructure is used for proposing three new tapered float-

ing point number representation systems: MorrisHEB, MorrisBiasHEB, and MorrisUnaryHEB.

MorrisBiasHEB combines the benefits of the classic floating points and the tapered floating

points, and has the first or second best results on the literature benchmarks. Its hardware

units are one of the fastest, most resource efficient, and most energy efficient. The Kulisch

accumulator unit for 16-bit MorrisBiasHEB has 1.81 times the maximum frequency and uses

23.98% fewer LUTs than the second-best in the respective category. MorrisUnaryHEB is only

defined by its size and has the highest percentage of exact results for addition (37.6%), the

most crowded ’golden zone’, better decimal accuracy on unary operations, and higher dy-

namic range. In addition to these two libraries, the thesis offers a statistical methods library

(14 statistical methods), four scientific computing benchmarks, two low-precision machine

learning frameworks and a complete hardware-software system specific to a number represen-

tation system. The statistical methods show better performance under tapered floating point

systems. The 16-bit Posit offers similar results to its 32-bit counterparts. On the other hand,

16-bit IEEE754 does not offer valid results in 6 methods. The replacement of IEEE754 in

scientific computing is unnecessary, even if Posit has at least one more correct decimal on

N-Body simulation. The low-precision machine learning frameworks reduce the size of a deep

neural network with 66.78%, 75%, and 76.78% with an accuracy degradation lower than 2%

by using different number representation systems. The complete hardware-software 16-bit

Posit (es = 1) offers 18% speedup for convolutional neural network, similar accuracy, and

uses fewer hardware resources than 32-bit IEEE754.

Keywords: Numerical Analysis, Number Representation Systems, Computer Architecture,

IEEE754, Posit, Scientific Computing, Artificial Intelligence, Statistical Methods



1 INTRODUCTION

1 + 1 = 2 might seem a simple, funny and innocent equation, but in some ways is one of

the fundamental blocks of humanity. As a first argument, the entire human mathematical

education is based on it. For most humans, it is the first assumption/operation/equation they

learn. Next, all of the following mathematical concepts are explained from it. For example,

the following simple addition 1 + 2 = 3 is explained as 1 + 1 + 1 = 3. The count of ones

gives the answer. With time, these operations became unconscious, and the number value

is separated from the count of ones. Another example is the multiplication presented as

multiple additions. From transitivity, all of the future mathematical concepts based on these

operations are also based on 1 + 1 = 2. If the mathematical concepts are gathered in a

tree structure based on their dependence, then 1 + 1 = 2 is a root node or at least one

of the closest nodes to the root. The second argument is that most of the current human

technologies are based on or created with the help of mathematical concepts. In schools,

there is a need for proficiency in mathematics to learn more complex science subjects. It is

possible to explain physics without mathematical concepts. Neither less, It can not be argued

that for some complex aspects of physics, the mathematical way is the easiest. A mind game

for the reader is proposed in explaining the electricity (AC/DC 1) without the mathematical

concepts (without 1 + 1 = 2). At the time of the writing of this thesis, artificial intelligence

is starting to become common and familiar to people. Most artificial intelligence models are,

in fact, mathematical constructions. The other important aspect (some consider even more

important than the model) of artificial intelligence is the data used for training. This data is

usually transformed and stored in a numerical form. Similar to artificial intelligence, there are

concepts like digital signal processing, scientific computing, statistics, and economic models,

which were and are a part of the current human technologies based on mathematical concepts.

They also had similar development to artificial intelligence. Even if artificial intelligence will

be replaced as the dominant emerging/used technology, history trains us to predict with a

high probability that the replacing technology will be based on 2 = 1 + 1.

A number representation system is a way how the concept of a number value is represented

and how the basic operations work on the numbers. Simply, it can be how the equation

1 + 1 = 2 is written and understood. Currently, the human number representation system is

decimal. There are ten digits (0 to 9) used, and the result of the addition of two digits that has

a result higher than 9 adds an extra digit to the left. The left-most digit is also considered the

most significant digit. Another system used in the past is the roman number representation

system in which the operation 1 + 1 = 2 was I + I = II. For both, the operation inside the

human mind can be similar or different. The readers can think about the way multiplication

1not the rock band

1



operation has evolved for them in their minds. In the beginning, multiple additions were used,

but in time, the operation improved. It can also have different paths for improvement. The

readers are invited to look at the difference between the Japanese multiplication method and

the Arabic multiplication method. Another difference might be the way the human mind

project the number values. These are the basic concepts of a number representation system:

• the way symbols represent the numbers has two processes: how the symbols are trans-

formed in number values (decoding) and how the numbers are transformed in symbols

(encoding).

• the way the operations for the numbers are done.

Computers are human creations to help with mathematical computation. In the development

of computers, different number representation systems were selected. These systems are

binary and finite. Different from the human mind, their limits are known. These limits

create errors. Somehow the myth that computers are perfect and exact in computations was

created. This myth is false. Number representation systems are the illusions which keep the

myth alive. Neither less, with the increase in the number of computations and the trust of

humans in computer mathematical computations, the illusion starts to break. To overcome

this, new number representation systems were proposed [10, 11]. This thesis started as a

research to find the domains where the Posit number representation system [11] can improve

the illusion. Statistic methods, scientific computing algorithms, digital signal processing,

artificial intelligence and hardware implementation were evaluated. On this journey, the author

proposed three new number representation systems and tested them on the basic operations

against the existing number representation systems. At that moment in time, the problem

was still the errors that might break the illusion, and the research questions were:

• Which is the best number representation system for general computation?

• Are the number representation systems dependable on the specific application?

• Which is the most energy-efficient number representation system?

• What is the trade-off of speed, accuracy, and energy consumption for a number repre-

sentation system?

These questions are answered through the chapters of this thesis, but this was not the end

of the journey or the problem approached by this thesis. The problem is that the discussion

about number representation systems stopped, and humanity accepted the ”good enough”

solution. Given the implication of a number representation system for computer mathemat-

ical computations, this must be avoided in the future. The work in this thesis, in addition

to evaluating the number representation systems implications in multiple domains like statis-

tics, artificial intelligence, scientific computing, and computer architecture, creates a research

infrastructure which makes it easy to keep alive the discussion about number representation

systems. Two libraries are implemented:

2



• A software library whose scope is to reduce the effort of proposing a number represen-

tation system to define the encoding/decoding and the limits of the numbers it can

represent. The second objective of the library is to make effortless the benchmarks on

the proposed number representation systems. This way, researchers and engineers can

test their idea of a number representation system without going through the implemen-

tation of tedious benchmarks. They also get their results in contrast with the existing

number representation systems.

• A hardware generator library whose scope is to generate multiple functional units (FPUs,

KAUs, Binary/Unary Units, accelerators) with efforts similar to the software library

(encoding/decoding and limits). The benchmarks and SoC integration do not need

any effort from the developer. This library is complementary to the software library

proposed. It offers a fast pipeline for a hardware prototype of a new proposed number

representation system.

The contributions of this thesis are:

• The proposed software library can reduce the effort of proposing a new number repre-

sentation system and benchmark multiple number representation systems. It contains

14 generic number representation systems.

• Three new number representation systems by introducing the concept of the hidden

exponent bit.

• Analysis of 14 statistical methods under multiple number representation systems regard-

ing accuracy and storage size.

• Four benchmarks in scientific computing for testing different number representation

systems.

• Two low-precision machine learning frameworks for reducing the deep neural network

size but keeping the accuracy within a threshold.

• The proposed hardware generator library generates functional units (FPUs, KAUs, Bi-

nary/Unary operations modules) for number representation systems. It also reduces the

effort of having a working hardware prototype to implementing only the encoding and

decoding modules.

• The proposed General Floating-Point Unit (GFPU) work simultaneously with different

number representation systems.

• Analysis of an entire hardware-software system for a number representation system on

three-level benchmarks.

• All of the above libraries, frameworks and benchmarks work effortlessly for any new

number representation system added to the proposed software and hardware generator

libraries.

3



2 THE DEVELOPMENT OF THE NRSS SOFTWARE LIBRARY

(NRS-SL)

2.1 Hidden exponent bit tapered floating-point

In this section, the three new representations based on Morris tapered floating-point with a

hidden exponent bit are introduced.

2.1.1 MorrisHEB(size, g, r)

The tapered floating-point introduced by Morris in [16] seems a good concept. Its utilization

was shown under the posit system proposed by Gustafson [11]. The major problem is the

multiple ways of representing the same number. A solution for this is in borrowing the concept

of hidden bit from mantissa. The g field not only represents the G value which dictates the

exponent size but also the position of the most significant bit set in the exponent. If the value

of the exponent size is kept as G+ 1, then the minimum absolute value of the exponent is 2

whenG = 0. The exponent value is exponent = exponent sign×((1 ≪ es)+binaryExponent).

There is a need for having zero as exponent value. A solution for this is to change the formula

for exponent size to es = G− 1. The exponent is now:

exponent =

(−1)exponent sign × (2es + binaryExponent), es ̸= −1

0, es = −1.
(1)

This NRS is called MorrisHEB(size, g, r).

The next formula is used for computing the value of all the three new NRSs binary represen-

tations presented in this section:

value =


0, all bits 0

NR, first bit 1 and the rest 0s

(−1)sign × 2exponent × (1 + f
2fs
), otherwise

(2)

The differences are in the way es and exponent are computed. MorrisHEB(size, g, r) un-

derflows to 0, overflows to NR, and uses TaperedFloatingPoint(size) for implementing the

operations.

The binary representation starts with the sign bit. The next g bits represent the G value in

natural base 2 format. The exponent sign bit follows the g field. The next e bits (es = G−1)

4



or the next remaining bits (whichever is smaller) represent the binary exponent value in natural

base 2 format. If es is greater than the count of remaining bits, the remaining bits represent

the most significant bits of the binary exponent value. The remaining least significant bits of

the binary exponent value will be considered 0. After taking the exponent bits, the remaining

bits are fraction bits and their count represents the fraction size. In summary, the binary

format is:

sfGg-1Gg-2...G0seees-1ees-2...e0f fs-1f fs-2...f 0 (3)

2.1.2 MorrisBiasHEB(size, g, r)

One might argue that the problem of multiple representations is still not solved because even

the exponent may have multiple values (for es = −1 the exponent sign does not matter).

The problem stems from having a bit dedicated to the exponent sign. This is already solved

in IEEE754 by using a bias value. A bias value g is proposed. The exponent sign is the

sign of G and the exponent size is es = |G| − 1. Another issue with Morris and MorrisHEB

representations is that they do not have an order in binary form. A solution for this is to

have the bits of the exponent negated when G is negative. This makes it easy to implement

a hardware compare unit. The NRS with these features is called MorrisBiasHEB(size, g, r),

where the exponent is:

exponent =

signum(G)× (2es + binaryExponent), es ̸= −1

0, es = −1.
(4)

MorrisBiasHEB(size, g, r) underflows to 0, overflows to NR, and uses TaperedFloating-

Point(size) for implementing the operations. The binary representation starts with the sign

bit. The next g bits represent the G value in bias format with bias = 2g−1 − 1. This means

that G = binary G − bias. The next es bits (es = |G| − 1) or the next remaining bits

(whichever is smaller) represent the exponent in natural base 2 format, if the signum(G) is 1.

Otherwise, they need to be negated an the results is the binary exponent value. If es is grater

than the number of the remaining bits, the remaining bits represent the most significant bits

of the binary exponent value. The remaining least significant bits of the binary exponent value

are considered 0. After taking the exponent bits, the remaining bits are fraction bits and their

count is the fraction size. In summary, the binary format is:

sGg-1Gg-2...G0ees-1ees-2...e0f fs-1f fs-2...f 0 (5)

2.1.3 MorrisUnaryHEB(size, r)

Can MorrisBiasHEB(size, g, r) be further improved? From the last standard of posit [11],

the choice for fixing the exponent size to make it depends only on the size and making the

conversion between different sizes easier was taken into account. This can be adapted using

5



a unary representation for the g value (similar to the regime in posit). There is also a need

for the exponent size value of −1, so the formula for the exponent size is:

exponent size =

−k − 1, k < 0

k − 1, k ≥ 0.
(6)

where k is the regime.

MorrisUnaryHEB(size, r) underflows to 0, overflows to NR, and uses TaperedFloatingPoint(size)

for implementing its operations. The binary representation starts with the sign bit. The next

bit represents the first regime bit r0. The next consecutive bits with the same value as r0 are

considered regime bits. The next bit after them, if it exists, has the negated value of r0 and

it is also considered as part of the regime. The regime k is computed as:

k =

−NoC0, r0 = 0

NoC1− 1, r0 = 1.
(7)

The next es bits or the next remaining bits (whichever is smaller) represent the exponent

value in natural base 2 format, if the signum(k) is 1. Otherwise, they need to be negated and

the result is the binary exponent value. If es is grater than the remaining bits, the remaining

bits represent the most significant bits of the binary exponent value. The remaining least

significant bits of the binary exponent value are considered 0. The exponent is computed as:

exponent =

signum(k)× (2es + binaryExponent), es ̸= −1

0, es = −1.
(8)

After taking the exponent bits, the remaining bits are fraction bits and their count is the

fraction size. In summary, the binary format of MorrisUnaryHEB(size, r) is:

sr0r1...rrs-2rrs-1ees-1ees-2...e0f fs-1f fs-2...f 0 (9)

2.2 Evaluation on software NRSs

In this section, the three new proposed NRSs in addition to well-know NRSs from the literature

were evaluated. In the first subsection, we present the NRSs under evaluation and their

characteristics such as minimum absolute value, maximum absolute value, dynamic range, and

density of numbers in logarithmic scale. The second subsection presents the decimal accuracy

of the unary operations for the tested NRSs with CDF graphs. In the third subsection, the

color maps of binary operations are presented. The last subsection goes through some famous

literature benchmarks. The next notation are used for rounding in this section: RZ for

rounding towards zero and RE for rounding to the nearest tie to even. The values presented

in this section are usually truncated to three decimals after the decimal point.

6



Table 1: 16-bit NRSs Dynamic Range

NRS Min(abs(X)) Max(abs(X))/1st Dynamic Range 2nd 3rd

FixedFloatingPoint(5, 10, RE) 3.054× 10−4 130944 9.6322 130880 130816

FixedPoint(8, 8, RE) 0.003 127.996 4.515 127.992 127.988

half-IEEE754/IEEE754(5, 10, RE) 5.960× 10−8 65504 12.040 65472 65440

Posit(16, 2, RE) 1.387× 10−17 72.057× 1015 33.715 45.035× 1014 11.258× 1014

Morris(16, 4, RZ) 9.207× 10−19710 1.086× 1019709 39418.071 5.887× 1019689 3.191× 1019670

MorrisHEB(16, 4, RZ) 4.630× 10−9860 2.159× 109859 19718.668 3.295× 109854 5.028× 109849

MorrisBiasHEB(16, 4, RE) 6.061× 10−39 1.121× 1077 115.267 1.085× 1077 1.049× 1077

MorrisUnaryHEB(16, RE) 9.168× 10−2467 1.090× 102466 4932.075 1.044× 101233 5.809× 10924

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Log10(abs(X))

0

1000

2000

3000

4000

Co
un

t

FixedFloatingPoint(5, 10, RE)
IEEE754(5, 10, RE)

MorrisHEB(16, 4, RZ)
Morris(16, 4, RZ)

MorrisBiasHEB(16, 4, RE)
MorrisUnaryHEB(16, RE)

Posit(16, 2, RE)

Figure 1: Distribution of unique absolute values

2.2.1 NRSs Characteristics

Table 1 presents the NRSs under evaluation with their minimum absolute value, maximum

absolute value, and dynamic range when the total size is 16 bits. The three new NRSs based

on Morris tapered format with hidden exponent bit are compared with the default Morris

representation, fixed point, fixed floating point, IEEE754, and posit.

Tapered floating-point NRSs have a higher dynamic range and can represent higher and lower

absolute values compared to IEEE754 and fixed point. On the other hand, the difference

between consecutive values may be one order of magnitude. Figure 1 presents the count

of unique absolute values for 16-bit NRSs on a logarithmic scale. The added value of the

hidden exponent bit can be seen in the increased count of numbers for Morris-derived NRSs.

An interesting result is the MorrisUnaryHEB(16, RE) “golden zone”: it has 30,201 unique

absolute values in the interval (10−3, 103) versus 26,587 for Posit(16, 2, RE). This, together

with the higher dynamic range, makes it a good competitor for posit in deep neural networks.

Chapter 5 evaluates this.

The difference between the underflow and overflow rules of IEEE754(es, fs, r) and Fixed-

FloatingPoint(es, fs, r) can be seen in the gradual underflow for IEEE754(es, fs, r) and the

7



0 1 2 3 4 5 6 7 8 9 100.0

0.2

0.4

0.6

0.8

1.0
De

ns
ity

x

0 1 2 3 4 5 6 7 8 9 10

ln(x)

0 1 2 3 4 5 6 7 8 9 10

x 1 

0 1 2 3 4 5 6 7 8 9 10
Decimal Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

ex

0 1 2 3 4 5 6 7 8 9 10
Decimal Accuracy

sin(x)

0 1 2 3 4 5 6 7 8 9 10
Decimal Accuracy

3 x

FixedFloatingPoint(5, 10, RE)
FixedPoint(8, 8, RE)

IEEE754(5, 10, RE)
MorrisHEB(16, 4, RZ)

Morris(16, 4, RZ)
MorrisBiasHEB(16, 4, RE)

MorrisUnaryHEB(16, RE)
Posit(16, 2, RE)

Figure 2: CDF of Unary Operations

additional higher values for FixedFloatingPoint(es, fs, r). The usage of a positive regime value

for zero can be seen in the unequal distribution of the values of MorrisUnaryHEB(16, RE)

and Posit(16, 2, RE) in Figure 1.

2.2.2 Unary Operations

Figure 2 presents the CDF of decimal accuracy for the square root, natural logarithm, inverse,

exponential, sinus, and cube root operations. The x-axis represents how many accurate digits

are there in the result. For all the Taylor series functions (ln(x), sin(x), ex), the decimal

accuracy reference is the RationalNumber result after 30 iterations. For a decimal accuracy of

at least three digits, MorrisUnaryHEB(16, RE) is the best NRS. This is because of its unique

absolute values. Note that the exponential is the only function that increases the magnitude

of the result.

2.2.3 Binary Operations

For binary operations, 12 bits NRSs were chosen because 8 bits hold too little information

and 16 bits take too much storage space to keep all the values. The results are presented as

color maps, where black represents an accuracy of 10 or more digits, while white represents

zero or less.

8



000000000000

100000000000

111111111111
FixedFloatingPoint(4, 7, RE) FixedPoint(6, 6, RE) IEEE754(4, 7, RE) MorrisHEB(12, 3, RZ)

00
00

00
00

00
00

10
00

00
00

00
00

11
11

11
11

11
11

000000000000

100000000000

111111111111
Morris(12, 3, RZ)

00
00

00
00

00
00

10
00

00
00

00
00

11
11

11
11

11
11

MorrisBiasHEB(12, 3, RE)

00
00

00
00

00
00

10
00

00
00

00
00

11
11

11
11

11
11

MorrisUnaryHEB(12, RE)

00
00

00
00

00
00

10
00

00
00

00
00

11
11

11
11

11
11

Posit(12, 2, RE)

0

2

4

6

8

10

0

2

4

6

8

10

Figure 3: Color Maps for Addition

000000000000

100000000000

111111111111
FixedFloatingPoint(4, 7, RE) FixedPoint(6, 6, RE) IEEE754(4, 7, RE) MorrisHEB(12, 3, RZ)

00
00

00
00

00
00

10
00

00
00

00
00

11
11

11
11

11
11

000000000000

100000000000

111111111111
Morris(12, 3, RZ)

00
00

00
00

00
00

10
00

00
00

00
00

11
11

11
11

11
11

MorrisBiasHEB(12, 3, RE)

00
00

00
00

00
00

10
00

00
00

00
00

11
11

11
11

11
11

MorrisUnaryHEB(12, RE)

00
00

00
00

00
00

10
00

00
00

00
00

11
11

11
11

11
11

Posit(12, 2, RE)

0

2

4

6

8

10

0

2

4

6

8

10

Figure 4: Color Maps for Division

9



000000000000

100000000000

111111111111
FixedFloatingPoint(4, 7, RE) FixedPoint(6, 6, RE) IEEE754(4, 7, RE) MorrisHEB(12, 3, RZ)

00
00

00
00

00
00

10
00

00
00

00
00

11
11

11
11

11
11

000000000000

100000000000

111111111111
Morris(12, 3, RZ)

00
00

00
00

00
00

10
00

00
00

00
00

11
11

11
11

11
11

MorrisBiasHEB(12, 3, RE)

00
00

00
00

00
00

10
00

00
00

00
00

11
11

11
11

11
11

MorrisUnaryHEB(12, RE)

00
00

00
00

00
00

10
00

00
00

00
00

11
11

11
11

11
11

Posit(12, 2, RE)

0

2

4

6

8

10

0

2

4

6

8

10

Figure 5: Color Maps for Multiplication

The color map of addition is presented in Figure 3. The subtraction is similar to addition.

This plot beautifully shows why FixedPoint(is, es, r) is the perfect NRS for accumulators if the

range of the results is known. The white color space represents the overflow area for positive

and negative values. The similarities between FixedFloatingPoint(es, fs, r) and IEEE754(es,

fs, r) are obvious, but one can also observe the effect of the gradual underflow in IEEE754(es,

fs, r). The black border and the plus lines for IEEE754(es, fs, r) represent NaNs (NaN plus

anything else results in a NaN).

The maps for Morris(size, g, r) and MorrisHEB(size, g, r) are different from the other maps

because the binary representations do not represent ordered values. MorrisBiasHEB(size, g,

r) looks like a mixed between FixedFloatingPoint(es, fs, r) and Posit(size, es, r): it exhibits

tapered floating-point features by having an inverse proportional relationship between accuracy

and absolute values. That is, when the absolute values of the operands increase, the decimal

accuracy decreases. Posit(size, es, r) has a more uniform distribution of the accuracy. Note

that Posit(size, es, r) does not use sign magnitude but uses 2’s complement for negative

numbers, so its map symmetry is different from the other maps.

The results of decimal accuracy for multiplication are presented in Figure 5. The overflow

problem of FixedPoint(is, es, r) is obvious, while gradual underflow helps IEEE754(es, fs, r).

The black borders of IEEE754(es, fs, r) are from the NaN values. MorrisUnaryHEB(size, r),

Posit(size, es, r), and MorrisBiasHEB(size, g, r) exhibit their tapered floating-point proprieties

in waves (or bands) of accuracy. Comparing MorrisUnaryHEB(size, r) and Posit(size, es, r), the

rule for underflow can be observed as the white band in the color map of MorrisUnaryHEB(size,

r). These results suggest that the Posit(size, es, r) rule for underflow might be the best one

to be implemented in an NRS.

The accuracy for division is presented in Figure 4. The effect of gradual underflow in

10



Table 2: Binary Operations (ADD,DIV,MUL) Results

NRS
Exact Average Accuracy Kops

ADD DIV MUL ADD DIV MUL ADD DIV MUL

FixedFloatingPoint(4, 7, RE) 16.4% 2.4% 2.2% 3.3 2.4 2.4 191 374 278

FixedPoint(6, 6, RE) 75.0% 0.9% 0.9% 0.0 2.8 0.5 6535 2551 4117

IEEE754(4, 7, RE) (12.1% NaNs) 28.6% 14.3% 14.4% 3.2 2.7 2.7 362 370 326

Posit(12, 2, RE) 12.4% 4.2% 4.2% 2.8 4.0 2.8 150 206 253

Morris(12, 3, RZ) 20.9% 22.1% 26.4% 4.9 1.5 1.5 145 256 347

MorrisHEB(12, 3, RZ) 14.2% 8.9% 8.8% 5.4 1.9 1.8 185 301 385

MorrisBiasHEB(12, 3, RE) 20.2% 2.2% 2.2% 3.4 2.7 2.9 148 221 261

MorrisUnaryHEB(12, RE) 37.6% 1.9% 1.9% 4.2 3.0 3.0 142 219 263

IEEE754(es, fs, r) can be seen in the bottom-right of the quadrants, in contrast to Fixed-

FloatingPoint(es, fs, r). The black borders of IEEE754(es, fs, r) are from the NaN values.

Posit(size, es, r) and FixedPoint(is, es, r) exhibit the most uniform patters. MorrisUnary-

HEB(size, r),Posit(size, es, r), and MorrisBiasHEB(size, g, r) exhibit their tapered floating-

point proprieties in waves (or bands) of accuracy. Comparing MorrisUnaryHEB(size, r) and

Posit(size, es, r), the rule for underflow can be observed as the white band in the color map of

MorrisUnaryHEB(size, r). These results suggest that the Posit(size, es, r) rule for underflow

might be the best one to be implemented in an NRS. The results of decimal accuracy for

multiplication are similar to the ones for division and are omitted due to space constraints.

Table 2 presents the percentage of exact results, the average decimal accuracy for inexact

results, and the number of (thousands) operations per second (Kops). From IEEE754(4, 7,

RE), one should remove 12.1% of the results because they represent NaNs. The interesting

results in Table 2 are: (i) the high number of exact results for MorrisUnaryHEB(12, RE), (ii)

the relatively good average decimal accuracy on inexact results for MorrisUnaryHEB(12, RE)

and MorrisBiasHEB(12, 3, RE) on all operations, and (iii) the relatively low percentage of

exact results for Posit(12, 2, RE) (this is because of the increased exponent size).

2.2.4 Literature Benchmarks

In Table 3, the results of the evaluations proposed by Gustafson in [10] are summarised. The

proposed evaluations are:

• John Wallis Product: 2×
∏n

i=1
(2×i)2

(2×i−1)×(2×i+1)
for n = 30,

• Kahan series: ui+2 = 111− 1130
ui+1

+ 3000
ui×ui+1

for u30,

• Jean Micheal Muller: E(0) = 1, E(z) = ez−1
z

, Q(x) = |x−
√
x2 + 1|− 1

x+
√
x2+1

, H(x) =

E((Q(x))2) for H(15), H(16), H(17), H(9999),

• Siegfried Rump: 333.74× y6+x2× (11×x2× y2− y6− 121× y4− 2)+5.5× y8+ x
2×y

for x = 77517 and y = 33096,

• Decimal accuracy for r1 from Quadratic formula for a = 3, b = 100, c = 2,

11



Table 3: Benchmarks in [10]

NRS John Wallis Kahan u30 Jean Micheal Muller Siegfried Rump r1 DA David Bailey

32-bit NRSs

FixedFloatingPoint(8, 23, RE) 3.091 100 (0, 0, 0, 0) −63.382× 1028 5.612 (NR,NR)

FixedPoint(16, 16, RE) 3.091 100 (1, 1, 1, NR) NR 3.787 (NR,NR)

IEEE754(8, 23, RE) 3.091 100 (0, 0, 0, 0) −1.901× 1030 5.612 (NR,NR)

Posit(32, 2, RE) 3.091 100 (0, 0, 0, 0) 1.172 5.996 (−4, 2)

Morris(32, 4, RZ) 3.091 99.999 (0, 0, 0, 0.995) 20.282× 1030 4.599 (0, 1)

MorrisHEB(32, 4, RZ) 3.091 99.999 (0, 0, 0, 0.989) 15.211× 1030 4.945 (2, 1)

MorrisBiasHEB(32, 4, RE) 3.091 100 (0, 0, 0, 0) −25.353× 1029 5.612 (1, 0.5)

MorrisUnaryHEB(32, RE) 3.091 100 (0, 0, 0, 0.999) 1.172 5.612 (2, 0)

64-bit NRSs

FixedFloatingPoint(11, 52, RE) 3.091 99.999 (0, 0, 0, 0) 11.805× 1020 14.258 (0, 1.333)

FixedPoint(32, 32, RE) 3.091 100 (1, 1, 1, 1) NR 8.570 (NR,NR)

IEEE754(11, 52, RE) 3.091 99.999 (0, 0, 0, 0) 11.805× 1020 14.258 (0, 1.333)

Morris(64, 5, RZ) 3.091 99.999 (0, 0, 0, 0) 47.223× 1020 14.133 (−1.142, 2.071)

MorrisHEB(64, 5, RZ) 3.091 99.999 (0, 0, 0, 0) 1.172 15.032 (−1, 2)

MorrisBiasHEB(64, 5, RE) 3.091 99.999 (0, 0, 0, 0) 11.802× 1020 15.030 (−1.017, 2.035)

MorrisUnaryHEB(64, RE) 3.091 99.999 (0, 0, 0, 0) 37.778× 1021 15.031 (−1.004, 1.997)

Posit(64, 2, RE) 3.091 100 (0, 0, 51.669× 1014, 84.750× 108) 1.172 15.891 (−1.013, 2)

RationalNumber 3.091 6.004 (1, 1, 1, 1) −0.827 1 (−1, 2)

• David Bailey’s system of equations: 0.25510582×x+0.52746197×y = 0.79981812, 0.80143857×
x+ 1.65707065× y = 2.51270273 solved with Cramer’s rule.

Note that none of the NRSs passes all the evaluations. The problem is with the limitations

of finite representations.

In Table 4, the results of multiple benchmarks from the literature [6, 9, 11] are presented.

These benchmarks are:

• thin triangle area for a = 7, c = b = 7+2−25

2
,

• the formula x = ( 27/10−e

π−(
√
2+

√
3)
)67/16,

• the fraction xn

n!
for x = 7, n = 20 and x = 25, n = 30,

• Planck constant h = 6.626070150× 10−34,

• Avogadro number L = 6.02214076× 1023,

• speed of light c = 299792458,

• charge of e1.602176634× 10−19,

• Boltzmann constant k = 1.380649× 10−23.

The values in Table 4 represent the decimal accuracy of the results compared to the correct

result. The first two benchmarks are favorable to Posit(size, es, r) while the last six are

favorable to IEEE754(es, fs, r). Morris and its derived NRSs exhibit results that are close to

the best NRS for each benchmark. MorrisBiasHEB(size, g, r) has good results for the entire

spectrum of benchmarks.

12



Table 4: Other Literature Benchmarks [6, 9, 11]

NRS Thin Triangle x xn

n!
Planck L c e k

32-bit NRSs

FixedPoint(16, 16, RE) 0 2.289 (0, 0) 0 0 0 0 0

IEEE754(8, 23, RE) 0 4.370 (7.135, 0) 8.727 8.075 7.839 8.004 7.782

Posit(32, 2, RE) 1.204 5.684 (4.339, 0) 0.627 4.091 6.969 4.213 4.037

Morris(32, 4, RZ) 0 5.101 (6.016, 5.604) 6.347 6.429 6.969 7.347 6.480

MorrisHEB(32, 4, RZ) 0 5.098 (6.245, 6.188) 6.680 6.784 7.839 7.347 6.480

MorrisBiasHEB(32, 4, RE) 0 5.682 (6.911, 8.619) 7.053 7.219 7.839 7.347 6.878

MorrisUnaryHEB(32, RE) 0 6.875 (6.017, 5.289) 6.031 5.919 6.969 7.347 5.566

64-bit NRSs

FixedPoint(32, 32, RE) 8.343 7.976 (0, 0) 0 0 ∞ 0 0

IEEE754(11, 52, RE) 16.710 13.030 (16.644, 15.905) 16.952 17.028 ∞ 16.540 16.537

Morris(64, 5, RZ) 16.710 14.221 (16.644, 14.875) 16.172 15.810 ∞ 16.026 15.467

MorrisHEB(64, 5, RZ) 16.710 14.710 (16.950, 15.794) 16.172 16.238 ∞ 16.540 15.807

MorrisBiasHEB(64, 5, RE) 17.341 14.831 (17.263, 16.012) 16.952 17.028 ∞ 16.540 16.197

MorrisUnaryHEB(64, RE) 17.341 15.323 (15.743, 14.942) 16.172 15.458 ∞ 16.026 15.467

Posit(64, 2, RE) 17.835 15.672 (14.018, 8.372) 11.094 13.200 ∞ 14.263 12.974

2.3 Insights on number representation systems

In this chapter, (i) a Scala library that simplifies the adding, testing, and fine-tuning number

representation systems (NRSs) is presented, (ii) three new NRSs, based on Morris tapered

floating-point, are introduced, and (iii) these three proposed NRSs are analysed together with

well-known NRSs such as IEEE754 floating-point and posit.

By adding the hidden exponent bit to Morris tapered floating-point in three different forms,

the resulting NRSs became competitors for IEEE754 and posit. MorrisBiasHEB(size, g, r)

exhibits the best results on literature benchmarks on 32 and 64 bits when compared to the

other NRSs. On the other hand, MorrisUnaryHEB(size, r) is a great candidate for machine

learning computations due to its ”golden zone” population, dynamic range, percentile of exact

results on addition and average decimal accuracy for inexact results on multiplication.

The library exhibits a performance of 200 Kops, which is good enough for testing and

evaluating NRSs, but not enough for real-world applications. In future works, the library will

be integrated with the Aparapi library1 and tested on GPU and used for machine learning

models with Spark.

1https://aparapi.com/

13



3 NRS IN SCIENTIFIC COMPUTING

3.1 Benchmarks Results

For the below benchmarks, the next eleven NRSs were used: 32-bit IEEE754 (8 bits ex-

ponent and 23 bits mantissa) called IEEE754, 32-bit Posit (2 bits exponent) called Posit,

16-bit IEEE754 (5 bits exponent and 10 bits mantissa) called half-IEEE754, 16-bit IEEE754

(8 bits exponent and 7 bits mantissa) called bfloat16, 19-bit IEEE754 (8 bits exponent and

10 bits mantissa) called TF32, 24-bit IEEE754 (7 bits exponent and 16 bits mantissa) called

FP24, 24-bit IEEE754 (8 bits exponent and 15 bits mantissa) called PXR24, 32-bit floating-

point (8 bits exponent and 23 bits mantissa) called FloatP, 32-bit fixed-point (16 bits inte-

ger and 16 bits fractional) called FixedP, infinite precision fixed-point called IP NR FixedP

(FixedPoint(∞)), infinite precision floating-point called IP NR FloatP (FloatingPoint(∞)).

The rounding method used was rounding to the nearest tie to even.

3.1.1 Conjugate gradient method benchmark

For conjugate gradient method benchmark, the reference NRS is 1024-bit FractionalNum-

ber(512, 512, RE) (512 bits integer nominator and 512 bits unsigned integer denominator),

N = 5, MAX POWER = 3. Because several matrix multiplications are executed on every

iteration of the algorithm, the magnitude order of the values used grows fast during the exe-

cution. This is why high-magnitude order numbers were not generated as input. Again, the

advantage of Posit on small numbers can be noticed, but its disadvantage with large num-

Figure 6: Decimal accuracy, decimal error and computation time for conjugate gradient

method benchmark

14



Figure 7: Decimal accuracy and computation time for Simpson’s integration benchmark

bers stands out even more during this test. It can be seen that it loses half of its accuracy

during the test, which makes it even less accurate than PXR24, which uses 8 bits less than

Posit. TF32 shows a behaviour that is harder to predetermine. After multiple iterations of

the algorithms as can be seen in Figure 6, its accuracy does not seem to take into account

the order of the input values. It follows an irregular pattern that increases and decreases with

many exact decimals in general, although for a few runs it kept a constant difference of one

decimal. Regarding the time, the results were pretty predictable. IEEE754 and Posit need the

most time, but they also produce the most accurate results. Regardless of the number of bits

used and the accuracy obtained, the other NRSs had about the same running time range.

3.1.2 Simpson’s Integration benchmark

For Simpson’s integration benchmark the reference NRS is 1024-bitFractionalNumber(512,

512, RE) (512 bits integer nominator and 512 bits unsigned integer denominator) , N = 1000,

[a, b] is [0, 10], and the functions are: x2, x3,
√
x, 3

√
x, 3

√
x2+

√
x

x+7
, ( 5
√
x2 + 34×x3)

3
4 . Being an

algorithm that does not perform so many complex calculations, the accuracy does not differ

too much between the representations with the same number of bits (Figure 7 e.g. Posit,

IEEE754, FloatP). In this test, the computing time becomes relevant because it can be seen

that even though those 3 NRSs using 32 bits got the same accuracy, the difference in time

strongly disadvantages Posit which runs for twice as long as IEEE754.

3.1.3 N-body simulation benchmark

For the N-body simulation benchmark, the reference NRS is 1024-bit FractionalNumber(512,

512, RE) (512 bits integer nominator and 512 bits unsigned integer denominator), N = 5,

M = 10, iteration time step = 1 (second), G = 6.67498 × 10−11. Positions, velocities and

mass were separated in two magnitude order ranges (low and high). For high magnitude order

range, positions x and y of every particle are generated in the interval [−1011, 1011], velocities

x and y of every particle are generated in the interval [30, 5×106] and mass of every particle is

15



Figure 8: Decimal accuracy for N-body simulation benchmark

generated in the interval [1, 6×105]. For low magnitude order range, positions x and y of every

particle are generated in the interval [0, 104], velocities x and y of every particle are generated

in the interval [30, 50] and mass of every particle is generated in the interval [10, 60]. Figure

8 suggests the superiority of Posit by obtaining almost three more exact decimals than the

current standard IEEE754 and one more exact decimal than the second most accurate NRS

FixedP. However, the remarkable performance of Posit and FixedP can be easily explained by

the ranges from which the input data for each particle were chosen. Small numbers for particle

coordinates were chosen to have them close enough to each other so that the attraction force

between them is noticeable. Using high magnitude order values (even outside of the Golden

Zone) made FixedP to return NR.

3.2 Insights on Scientific Computing Results

This current chapter proposed a benchmark for base scientific computing algorithms under

different NRSs. The benchmark used four algorithms: matrix multiplication, solving a linear

system of equations by gradient conjugate method, integration by Simpson’s formula, and

N-body simulation. The algorithm’s input has been varied, so the performance of all eleven

NRSs could be analysed under different circumstances. The results of the simulations offer a

perspective of the trade-off between different NRSs.

The gold zone of Posit [6] has been validated through all experiments. The possibility of

using IEEE754 half-precision in some specific cases, where the number range does not surpass

its dynamic range, is an exciting result. It can be seen as a faster and more energy-efficient

NRS solution for a scientific computing application. If the developers desire a faster solution,

fixed-point NRS can be their option, given the requirements offered in this chapter.

Replacing the current standard with a new NRS may be necessary, given the results presented.

However, the lack of hardware implementation and industry adoption will delay the process.

16



4 THE USAGE OF NRSS FOR STATISTICAL METHODS

4.1 Statistical Methods Evaluation

According to figure 9, it can be noticed that the accuracy obtained by Posit is better than

that of the IEEE754 on the same number of bits. Also, getting valid results on fewer bits,

as seen for Posit in some cases, is a win in terms of both memory and execution speed.

According to the results obtained in 4.1, where the performance of the IEEE754 versus Posit

on elementary mathematical operations was analysed, it can be considered that the difference

in accuracy between Posit, IEEE754 and the actual result was expected. This is because Posit

provides much better accuracy than IEEE754 on a smaller number of bits when discussing

addition and subtraction. Still, its accuracy decreases when variance or radical calculations

are also involved, especially on larger data sets. It can be observed that the precision obtained

0 5 10 15 20

P16

F16

P32

F32

P64

F64

0 5 10 15 20 0 5 10 15 20

Figure 9: Decimal accuracy for Pearson coefficient

on the different number representation systems is close for both one data set and two data

sets. Although Posit is closer to the actual value of the result at any number of bits, the

differences are not extremely large. Nevertheless, it still provides more correct digits than

its counterpart. The Kolmogorov-Smirnov test contains only basic mathematical operations

(addition, subtraction, multiplication and division). So, on average, for data sets with values

greater than 1, the accuracy of the two data types is often similar, and this is also the

case in this example. It should be noted that on 16-bit, the bits used by IEEE754 were

not enough to represent the result. According to figure 11, posit has more identical decimal

digits with the actual result compared to IEEE754. So, the accuracy of the Posit number

representation system still provides several significant decimals and overall a result closer to

the actual value. The Shapiro-Wilk test contains, in addition to the basic mathematical

operations (addition, subtraction, multiplication and division), operations of variance and

raising to powers. Although Posit presents a problem of accuracy in calculating the variance

17



0 5 10 15 20

P16

F16

P32

F32

P64

F64

0 5 10 15 20 0 5 10 15 20

Figure 10: Decimal accuracy for Kolmogorov-Smirnov Test for one dataset

compared to IEEE754, the multitude of the operations in the formula, plus the number of bits

on which the number is represented, made the Posit number representation system have better

accuracy than its competitor still. As the data set grows, the operations’ results become higher

in absolute value, and the 16-bit (5 exponent bits and 10 fraction bits) are no longer enough

to produce a valid result for IEEE754. At the same time, 16-bit Posit continues to provide

relevant results with reasonable accuracy. The mathematical operations for determining the

0 5 10 15 20

P16

F16

P32

F32

P64

F64

0 5 10 15 20 0 5 10 15 20

Figure 11: Decimal accuracy for Shapiro-Wilk test

ANOVA statistic involve, in addition to basic arithmetic, operations for variance. According

to the results of 4.3, Posit gives poorer accuracy results on the variance calculation. However,

all this accumulation of operations led to a similar accuracy between Posit and IEEE754, the

difference being the number of decimals displayed, where Posit wins. It should be noted that

Posit accuracy is still better than IEEE754 for both one-way ANOVA and two-way ANOVA.

According to figure 13, the accuracy of Posit is better than that of IEEE754, it has a higher

number of decimals, and the number of exact decimals is higher than IEEE754. The Kruskall-

Wallis test is a rank test, which means that it has values from 1 to N - the number of values in

the data set. As a result, for small and medium data sets, the representation problem does not

appear even on 16-bit. In addition, the fact that the formula is composed of basic arithmetic

operations contributes to the previous idea. Within Figure 14), it can be seen that Posit has

slightly better accuracy on all tests and shows more correct digits, but the differences are not

18



0 5 10 15 20

P16

F16

P32

F32

P64

F64

0 5 10 15 20

Figure 12: Decimal accuracy for two-way ANOVA

0 5 10 15 20

P16

F16

P32

F32

P64

F64

0 5 10 15 20 0 5 10 15 20

Figure 13: Decimal accuracy for Kruskall-Wallis test

extremely large between the two. Of course, as the number of inputs (including calculations)

increases, the results obtained in F32 have less accuracy. The higher accuracy of P32 may be

due to the maximum number of bits declared for the exponent, compared to F32, which has

a fixed number of bits.

0 5 10 15 20

P16

F16

P32

F32

P64

F64

0 5 10 15 20

Figure 14: Decimal accuracy for T-test for pairs

19



4.2 Insights on Statistical Methods Results

This chapter examined the effect of changing the number representation system within sta-

tistical methods. Although at first glance, a difference of a few hundredths may not seem to

have much impact on the final result, there are fields, such as biostatistics or astrostatistics,

where any extra tenth is considered a piece of significant new information. The statistical

functions implemented were chosen because they are relevant functions within the statistical

domain. Elementary statistical methods were implemented in Python, and correlation, distri-

bution detection, and statistical differences were written in Scala. The Scala language was

used for complex functions because the Posit system in it is more powerful and provides sup-

port for more operations. The following results were observed in the fight between the Posit

number representation system with the already established IEEE754 number representation

system. Observed Results:

• Although the data set on which the test is also performed matters Posit always provides

better accuracy than IEEE754 on the same number of bits, regardless of the statistical

method used.

• Depending on the data set and the statistical method, IEEE754 can not give a valid

result (in this case on 16-bit), while Posit provides a good result on the same number of

bits; this is due to the flexibility of Posit in terms of exponent and fraction, compared

to IEEE754 which has a fixed number (5 bits for exponent and 10 bits for fraction).

• In the case of tests that rely almost entirely on calculating the variance in the formula,

such as the t-test, IEEE754 has better accuracy than Posit.

• In the case of tests that also contain calculus of variance plus other arithmetic operations,

such as ANOVA, the Posit still offers better accuracy, a more significant number of

decimal digits, and better results on fewer bits.

• In Mann-Whitney and Chi-Square, Posit and IEEE754 have a close accuracy, the for-

mula being quite simple from a mathematical point of view, and therefore there are no

significant differences in calculation; however, it can be considered that Posit is better

than IEEE754 because it can provide meaningful results on fewer bits.

Following this chapter, the strengths and weaknesses of the Posit number representation

system within the statistical methods were studied compared to the current IEEE754 number

representation system. The implemented operations were: basic arithmetic, correlations, and

statistical differences. The main reason why Posit is a strong competitor in the fight to replace

the IEEE754 is the fluctuating character of the exponent and the mantissa. This helps to

obtain significant results on a smaller number of bits, thus providing a variant that consumes

less memory and is faster in statistical calculations. Posit can be considered a replacement

for IEEE754 in statistical methods, often performing better. More thorough research is still

needed to see the full power of this new number representation system.

20



5 NRSS IMPACT ON ARTIFICIAL INTELLIGENCE

5.1 Frameworks Results

For the first LPML evaluation, the MNIST data set is used for training a neural network

formed out of two fully connected layers followed by a logSoftmax layer. The learning rate

of 0.01, the batch size of 64, and the number of epochs 3 were used for training. The time

results for forward and backward propagation are presented in Table 5. The total time for Posit

and Fixed-Point was estimated. The software overhead is too high for doing feasible training

using other number representation systems than IEEE754. From this point on Posit and Fixed-

Point were used only for inference and precision optimisation. A consistent improvement of

the software version of Posit or Fixed-Point or a hardware implementation can reopen the

subject of training. The LPML framework is ready for this and can be used.

The IEEE754 resulting network has an accuracy of 93.47%. Uniform precision conversion was

used for the fully connected layers and the results are presented in Table 6. The Fixed-Point

number representation system can show the boundaries of neural networks. The decrease to 4

bits for the fraction part produces an accuracy degradation of 26.26%, incomparable with the

decrease of the integer part to 4 bits (0.19% accuracy degradation). In the tests going to 2 bits

for integer parts degrades the accuracy below 50%. This validates that Fixed-Point is more

sensitive to fraction size than integer size in neural networks. Posit has better results than

Fixed-Point even on this small network with the same precision. The interesting result is that

Posit(32,2) increases the accuracy of the network by 0.15%. Posit(16,1) reduce the memory

used for the fully connected layers by 50% with an accuracy degradation as small as 0.02%.

Posit(8,0) offer a solution for a high reduction of memory (75%) with a cost on accuracy of

1.29%. Given the bad performance of Fixed-Point for LPML even on a small network, but

also in the next experiments their result was omitted. The next LPML experiments present

Number

Representation

system

Precision Forward

Propagation

(one)

Forward

Propagation

(total)

Backward

Propagation

(one)

Backward

Propagation

(total)

IEEE754 32 0.0006s 13.1s 0.0006s 12.6s

Posit 8 43.2s 33.75h 74.5s 58.20h

Posit 16 42.6s 29.25h 73.9s 57.73h

Fixed-Point 4-4 455s 355h 878s 685h

Fixed-Point 8-8 460s 359h 899s 702h

Table 5: Forward and Backward Propagation Time

21



Number representation system Precision Accuracy ∆ Acc Memory reduction

IEEE754(8,23) 32 93.47% +0.00% 0%

Posit(8,0) 8 92.18% -1.29% 75%

Posit(16,1) 16 93.45% -0.02% 50%

Posit(32,2) 32 93.62% +0.15% 0%

Fixed-Point(4,4) 8 67.21% -26.26% 75%

Fixed-Point(4,8) 12 93.28% -0.19% 62.5%

Fixed-Point(8,8) 16 93.42% -0.05% 50%

Table 6: Accuracy and memory reduction for different number representation systems on

simple network

Method Layer Precision Accuracy Memory reduction

Classic 32-32-32-32-32-32-32-32-32-32 94.11% 0%

KD 32-32-32-32-32-32-32-32-32-32 94.98% 0%

KD+PO 32-32-32-16-16-16-16-8-8-32 93.85% 43.47%

Table 7: Accuracy for ResNet18 on different training methods

the usage of Posit and IEEE754.

To test LPML knowledge distillation training and layer precision optimisation the CIFAR-10

data set, the ADAM optimiser, the learning rate of 0.005 and the accuracy threshold of 2%

were used. The deep neural network family is Resnet, Resnet34 is the teacher network and

Resnet18 is the student network. The increase of accuracy for knowledge distillation training

versus classic training is validated in Table 7 with a value of 0.87%. The usage of layer

precision optimisation on the knowledge distillation trained model has an accuracy degradation

of 0.26% compared to the classic training a reduction of memory for fully connected layers

and convolutional layers of 43.47%. Resnet34 has an accuracy of 95.23% classic trained.

The Resnet18 trained with knowledge distillation and layer precision optimisation reduces the

storage size for fully connected layers and convolutional layers with 66.75% for a degradation

in accuracy of 1.38%. The Resnet18 trained with knowledge distillation without layer precision

optimisation reduces the storage for the same layers by 41.19% with degradation in accuracy

as small as 0.25%. The usage of knowledge distillation and layer precision optimisation can

reduce the storage space of a deep neural network by half with a degradation close to 1%.

For the first CPML evaluation, the CIFAR-100 data set is used for training a ResNet18 neural

network. The optimiser used is ADAM coupled with the StepLR learning rate scheduler. The

learning rate of 0.001, the batch size of 128, and the number of epochs 10 were used for train-

ing. First, uniform precision optimisation was used, and the results are in Figure 15. The

accuracy threshold chosen is 1% and is seen as the horizontal bold line. IEEE754 gives us

22



Figure 15: CPML Uniform Precision

32 24 16 12 8 4 0
Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

IEEE754

Legend
es=2
es=3
es=4
es=5
es=6
es=7
es=8

32 24 16 12 8 4 0
Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6 Morris

Legend
g=2
g=3
g=4

32 24 16 12 8 4 0
Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6 Posit

Legend
es=0
es=1
es=2
es=3
es=4

32 24 16 12 8 4 0
Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

MorrisBiasHEB

Legend
g=3
g=4

32 24 16 12 8 4 0
Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6 MorrisHEB

Legend
g=2
g=3
g=4

32 24 16 12 8 4 0
Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6 MorrisUnaryHEB

information about the minimum values. There is a need for at least 3 bits for mantissa. All

the IEEE754 systems with a mantissa less than 3 are under the line. For exponent bits, the

best value is 4. Higher values are unnecessary, and lower values degrade faster in accuracy.

The exponent values are between [−7, 8]. IEEE754 has the smallest size with a value of 8

for IEEE754(4,3). MorrisBiasHEB, MorrisHEB, and Posit follow with a size of 11. What is

interesting for Posit is that es = 1 has the best accuracy on all sizes, but the standard es = 2

is still close. Morris and MorrisUnaryHEB need at least 12 bits to stay within the accuracy

threshold. MorrisHEB improves Morris by 1 bit. MorrisUnaryHEB is beneficial because it does

need extra elements to know its custom form like the other number representation systems.

The smallest size within the accuracy threshold for every number representation system is

chosen to enter the layer precision optimisation process. Figure 16 contains the sizes of every

number representation system used for the layers in the Resnet18. With white on every bar is

written the exponent size for IEEE754 and Posit, and the g value for Morris, MorrisBiasHEB

and MorrisUnaryHEB. The only system which has all the sizes under 8 is IEEE754. The next

best system is MorrisBiasHEB, and the worst system is Morris. IEEE754 shows the exponent

value range for every layer. The only systems to have better results than IEEE754 on some

of the layers are MrrosiBiasHEB and MorrisUnaryHEB. The reader needs to be reminded that

MorrisUnaryHEB does need extra information represented by the white digits. In Table 8

the result of uniform and layer precision optimisation are presented. The initial accuracy is

57.01%. For IEEE754 with an accuracy degradation less than 2%, the storage space is reduced

by 76.68%. The MR (memory reduction) between the uniform precision optimised network

23



0.conv1.weight

0.bn1.weight

0.bn1.bias

0.conv2.weight

0.bn2.weight

0.bn2.bias

1.conv1.weight

1.bn1.weight

1.bn1.bias

1.conv2.weight

1.bn2.weight

1.bn2.bias
0

4

6

8

10

12

16

Si
ze

2 2 2 3 3 3 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 20 0 0 0 0 0 0 0 0 0 0 03 2 2 3 2 2 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2 2 2

Legend
IEEE754 Morris Posit MorrisBiasHEB MorrisHEB MorrisUnaryHEB

(a) Block 1

0.conv1.weight

0.bn1.weight

0.bn1.bias

0.conv2.weight

0.bn2.weight

0.bn2.bias

0.shortcu
t.0.weight

0.shortcu
t.1.weight

0.shortcu
t.1.bias

1.conv1.weight

1.bn1.weight

1.bn1.bias

1.conv2.weight

1.bn2.weight

1.bn2.bias
0

4

6

8

10

12

16

Si
ze

3 2 2 3 2 2 3 3 3 2 2 2 3 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 20 0 0 0 0 0 0 0 0 0 0 0 0 0 03 2 2 3 2 2 3 2 2 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Legend
IEEE754 Morris Posit MorrisBiasHEB MorrisHEB MorrisUnaryHEB

(b) Block 2

0.conv1.weight

0.bn1.weight

0.bn1.bias

0.conv2.weight

0.bn2.weight

0.bn2.bias

0.shortcu
t.0.weight

0.shortcu
t.1.weight

0.shortcu
t.1.bias

1.conv1.weight

1.bn1.weight

1.bn1.bias

1.conv2.weight

1.bn2.weight

1.bn2.bias
0

4

6

8

10

12

16

Si
ze

2 2 2 3 2 2 3 2 2 3 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 20 0 0 0 0 0 0 0 0 0 0 0 0 0 03 3 3 3 3 3 3 3 3 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Legend
IEEE754 Morris Posit MorrisBiasHEB MorrisHEB MorrisUnaryHEB

(c) Block 3

0.conv1.weight

0.bn1.weight

0.bn1.bias

0.conv2.weight

0.bn2.weight

0.bn2.bias

0.shortcu
t.0.weight

0.shortcu
t.1.weight

0.shortcu
t.1.bias

1.conv1.weight

1.bn1.weight

1.bn1.bias

1.conv2.weight

1.bn2.weight

1.bn2.bias
0

4

6

8

10

12

16

Si
ze

3 2 2 3 2 2 3 2 2 3 2 2 3 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 20 0 0 0 0 0 0 0 0 0 0 0 0 0 03 3 3 3 2 2 3 2 2 3 3 3 3 3 32 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Legend
IEEE754 Morris Posit MorrisBiasHEB MorrisHEB MorrisUnaryHEB

(d) Block 4

conv1.weight

bn1.weight
bn1.bias

linear.weight

linear.bias
0

4

6

8

10

12

16

Si
ze

3 2 2 3 32 2 2 2 20 0 0 0 03 2 2 3 32 2 2 2 2

Legend
IEEE754 Morris Posit MorrisBiasHEB MorrisHEB MorrisUnaryHEB

(e) First and last Block

Figure 16: Resnet18 Layer Precision Optimisation

24



IEEE754 Morris Posit MorrisBiasHEB MorrisHEB MorrisUnaryHEB

Uniform Accuracy 56.27% 56.35% 56.48% 56.17% 56.17% 56.55%

Uniform Size (KB) 10957 16435 15066 15066 15066 16435

Uniform MR 75% 62.5% 65.62% 65.62% 65.62% 62.5%

LPO Accuracy 55.38% 55.49% 55.49% 55.24% 55.23% 55.62%

LPO Size (KB) 10217 16412 15035 14662 14763 15688

LPO MR 6.75% 0.14% 0.20% 2.68% 2.01% 4.54%

LPO+Uniform MR 76.68% 62.55% 65.69% 66.54% 66.31% 64.20%

Table 8: CPML Results

and layer precision optimised (LPO) network is less than 10% on all systems (LPO MR). The

overhead of keeping the metadata and processing layer precision optimisation might surpass

the benefits. Suppose the best sizes from all the number representation systems for every

layer are considered for representing the final model. In that case, the size of the network will

be only 1 KB less than the IEEE754 counterpart. The presented results show that IEEE754

uniform precision optimisation is the best choice. It reduces the storage space by 75% by

losing less than 1% in accuracy. This is explained by the fact the initial training and inference

testing are done on 32-bit IEEE754. Future work must analyse the usage of other number

representation systems for training. This is improbable given the lack of specialised hardware.

5.2 Insights on Machine Learning Frameworks

LPML framework offers a way of training deep neural networks with Posit and Fixed-Point.

Given the current software and hardware implementations, this type of training is inefficient

regarding computation time. Posit is five times, and Fixed-Point is six times orders of magni-

tude slower. Fixed-Point might be used for inference and storage on energy-constraint devices.

The results on small networks show an accuracy degradation of 0.19% for a storage size re-

duction of 62.5% for fully connected layers. Posit offers a better trade-off for accuracy. On a

small network with two fully connected layers followed by one LogSoftmax layer, 16-bit Posit

(es = 1) reduces the fully connected size by 50% with a loss in accuracy of 0.02%.

For the deep neural networks, the LPML knowledge distillation training combined with layer

precision optimisation reduces the size of a Resnet34 network by 66.75% with a loss of 1.38%

in accuracy or without layer precision optimisation, a size reduction of 41.19% with a loss of

only 0.25%.

The accuracy increase for knowledge distillation training was validated by 0.87% on a Resnet18

trained with a Resnet34 versus a classic trained Resnet18. The use of layer precision optimi-

sation reduces the size of fully connected and convolutional layers by 43.47% with a loss of

1.13%.

CPML framework offers uniform or layer precision optimisation in six different number repre-

25



sentation systems. The accuracy degradation for layer precision optimisation is less than 2%

with a memory reduction of 76.68% in the best case (IEEE754). All the number representation

systems have over 60% memory reduction on uniform and layer precision optimisation. The

uniform precision optimisation using the IEEE754 has the best results reducing the storage

size by 75% and losing only 0.74% in accuracy. Layer precision optimisation does not show

significant benefits compared to uniform precision optimisation, and the cost of keeping the

metadata for every layer might make the gap even smaller. The interesting aspect of the

results is that an 8-bit IEEE754 (es = 4 and fs = 3) is used in uniform precision. It is the

only number representation system with a uniform precision equal to or less than 8. These

results are influenced by the fact that the training and inference testing is done on 32-bit

IEEE754.

Future work must concentrate on implementing hardware accelerators to make training under

other number representation systems feasible in time. The current work is concentrated on

embedded systems, but given the good results in accuracy, more complex deep neural networks

and data sets can be analysed in the future.

26



6 THE DEVELOPEMENT OF THE NRSS HARDWARE GENERA-

TOR LIBRARY (NRS-HGL)

6.1 FPGA evaluation

The FPGA evaluation has targeted the board Virtex-7 VC709 Evaluation Platform. The con-

ditions are 25C Temperature, Heat sink high, 500 LFM Airflow, and Process type - maximum.

The Xilinx Vivado 2022.1 runs on Windows 11 Education 21H2 22000.1219.

A number of 25 number representation systems (8-bit 5, 16-bit 8, 19-bit 1, 24-bit 2, 32-bit

7, 64-bit 2) are evaluated. Their internal exponent and fraction sizes are in Table 9. The

IEEE754 derivated number representation systems use the same amount of bits for internal

sizes as in their binary representation. MorrisHEB trades one exponent bit for one fraction bit

compared to Morris. MorrisBiasHEB is close to the IEEE754 counterparts. MorrisUnaryHEB

uses the most bits out of all number representation systems of the same size. Morris and

MorrisHEB follow it. The unary/binary operations, TFPU, KAU and GFPU modules are

evaluated on power consumption, hardware resource utilisation, delay, period and maximum

frequency. All the units use only one cycle. The performance has room for improvement. The

results presented must be considered as a baseline.

Starting with 8-bit addition/subtraction modules, the one which has the lower power consump-

tion is Morris. Morris has multiple representations, and it can be a significant amount in lower

bit sizes. MorrisBiasHEB is the most effective regarding frequency, delay, period, and hardware

resources. The internal exponent size is 2, so it can only represent −3,−2,−1, 0, 1, 2, 3 values

for the exponent. The dynamic range might need to be bigger for some applications to be

considered usable NRS. The trade-off of taking one bit of exponent to transform it into one bit

of mantissa is seen in the differences between Morris and MorrisHEB. The number of LUTs de-

creases, and the maximum frequency increases for lower bit sizes. Posit and MorrisUnaryHEB

have almost double the cost of LUTs and a decrease in maximum frequency. Posit has the

highest power consumption out of them. Going to 16-bit, the dominance of MorrisBiasHEB

in speed (maximum frequency, delay, period) is obvious. Posit and MorrisUnaryHEB have al-

most double the amount of LUTs compared to the other number representation systems. The

difference between Morris and MorrisHEB regarding power consumption and LUTs is minimal.

Google’s brainfloat (bfloat16) is better than half-precision IEEE754 in all departments (lower

power consumption, fewer hardware resources, better speed). Regarding speed, IEEE754 are

the slowest in this situation. An interesting result is that the rule of power consumption

and the number of LUTs for trading off exponent bits with mantissa bits change for larger

sizes. A transformation of an exponent bit in a mantissa bit for Posit increases the power

27



Number representation system Internal Internal Accumulator Accumulator

Exponent Fraction Size Fraction

Morris(2, 8, RoundZero) 4 3 62 30

Morris(3, 16, RoundZero) 8 10 1028 516

Morris(4, 32, RoundZero) 16 25 262162 131090

MorrisHEB(2, 8, RoundZero) 3 4 34 18

MorrisHEB(3, 16, RoundZero) 7 11 520 264

MorrisHEB(4, 32, RoundZero) 15 26 131094 6558

MorrisUnaryHEB(8, RoundEven) 6 5 130 64

MorrisUnaryHEB(16, RoundEven) 14 13 32770 16384

MorrisUnaryHEB(32, RoundEven) 30 29 2× 109 1× 109

MorrisBiasHEB(2, 8, RoundEven) 2 5 20 12

MorrisBiasHEB(3, 16, RoundEven) 4 12 66 34

MorrisBiasHEB(4, 32, RoundEven) 8 27 808 296

Half Float(Round Even) 5 10 80 48

Google Brainfloat(Round Even) 8 7 522 266

Nvidia Tensorfloat(Round Even) 8 10 528 272

AMD FP24(Round Even) 7 16 286 156

Pixar PXR24(Round Even) 8 15 538 282

Float(Round Even) 8 23 554 298

Double(Round Even) 11 52 4196 2148

Posit(8, 0, RoundEven) 3 5 26 12

Posit(16, 1, RoundEven) 5 12 114 56

Posit(16, 2, RoundEven) 6 11 226 112

Posit(32, 2, RoundEven) 7 27 482 240

Posit(32, 3, RoundEven) 8 26 960 480

Posit(64, 3, RoundEven) 9 58 1986 992

Table 9: Number Representation Systems Internal Size

Number representation system Power Hardware Delay Period Frequency

(W) Resources (ns) (ns) (MHz)

Morris(2, 8, RoundZero) 1.001 207 LUT 16.213 16.240 61.57

MorrisHEB(2, 8, RoundZero) 1.007 197 LUT 14.731 14.758 67.75

MorrisUnaryHEB(8, RoundEven) 1.01 434 LUT 18.772 18.799 53.19

MorrisBiasHEB(2, 8, RoundEven) 1.006 186 LUT 14.406 14.433 69.28

Posit(8, 0, RoundEven) 1.012 313 LUT 18.210 18.247 54.80

Morris(3, 16, RoundZero) 1.018 674 LUT 17.728 17.755 56.32

MorrisHEB(3, 16, RoundZero) 1.019 678 LUT 17.441 17.468 57.24

MorrisUnaryHEB(16, RoundEven) 1.02 1258 LUT 20.890 20.918 47.80

MorrisBiasHEB(3, 16, RoundEven) 1.021 605 LUT 16.057 16.085 62.16

Google Brainfloat(Round Even) 1.008 541 LUT 22.830 26.855 37.23

Half Float(Round Even) 1.012 678 LUT 26.168 30.193 33.12

Posit(16, 1, RoundEven) 1.024 932 LUT 22.897 22.921 43.62

Posit(16, 2, RoundEven) 1.015 836 LUT 27.740 27.367 36.54

Nvidia Tensorfloat(Round Even) 1.011 641 LUT 25.957 25.984 38.48

AMD FP24(Round Even) 1.01 988 LUT 28.211 31.246 32.00

Pixar PXR24(Round Even) 1.011 874 LUT 28.763 28.790 34.73

Morris(4, 32, RoundZero) 1.034 1680 LUT 19.828 19.855 50.36

MorrisHEB(4, 32, RoundZero) 1.039 1647 LUT 20.524 20.551 48.65

MorrisUnaryHEB(32, RoundEven) 1.039 3302 LUT 23.914 23.941 41.76

MorrisBiasHEB(4, 32, RoundEven) 1.039 1394 LUT 19.226 19.279 51.86

Float(Round Even) 1.017 1611 LUT 39.017 39.044 25.62

Posit(32, 2, RoundEven) 1.036 2098 LUT 29.740 29.807 33.54

Posit(32, 3, RoundEven) 1.031 1943 LUT 31.802 31.829 31.41

Double(Round Even) 1.027 3537 LUT 49.796 53.917 18.54

Posit(64, 3, RoundEven) 1.068 4053 LUT 33.165 33.257 30.06

Table 10: Addition + Subtraction Generators FPGA Results

28



Number representation system Power Hardware Delay Period Frequency

(W) Resources (ns) (ns) (MHz)

Morris(2, 8, RoundZero) 1.002 439 LUT 17.296 17.323 57.72

MorrisHEB(2, 8, RoundZero) 1.003 484 LUT 18.161 18.188 54.98

MorrisUnaryHEB(8, RoundEven) 1.003 916 LUT 26.037 26.064 38.36

MorrisBiasHEB(2, 8, RoundEven) 1.002 454 LUT 20.062 20.089 49.77

Posit(8, 0, RoundEven) 1.003 894 LUT 26.007 26.034 38.41

Morris(3, 16, RoundZero) 1.004 1374 LUT, 1 DSP 36.048 36.075 27.72

MorrisHEB(3, 16, RoundZero) 1.006 1557 LUT, 1 DSP 41.585 41.622 24.02

MorrisUnaryHEB(16, RoundEven) 1.005 2262 LUT, 1 DSP 44.282 44.309 22.56

MorrisBiasHEB(3, 16, RoundEven) 1.007 1456 LUT, 1 DSP 39.705 39.732 25.16

Google Brainfloat(Round Even) 1.005 1527 LUT 33.281 33.308 30.02

Half Float(Round Even) 1.004 1892 LUT, 1 DSP 47.395 47.422 21.08

Posit(16, 1, RoundEven) 1.008 2399 LUT, 1 DSP 58.177 58.204 17.18

Posit(16, 2, RoundEven) 1.01 2178 LUT, 1 DSP 52.312 52.339 19.10

Nvidia Tensorfloat(Round Even) 1.005 1911 LUT, 1 DSP 48.206 48.233 20.73

AMD FP24(Round Even) 1.008 2208 LUT, 1 DSP 54.446 54.473 18.35

Pixar PXR24(Round Even) 1.008 2196 LUT, 1 DSP 53.402 53.429 18.71

Morris(4, 32, RoundZero) 1.014 4124 LUT, 4 DSP 95.787 95.814 10.43

MorrisHEB(4, 32, RoundZero) 1.015 4384 LUT, 4 DSP 115.435 115.462 8.66

MorrisUnaryHEB(32, RoundEven) 1.012 6733 LUT, 4 DSP 113.903 113.930 8.77

MorrisBiasHEB(4, 32, RoundEven) 1.016 3945 LUT, 4 DSP 89.558 89.585 11.16

Float(Round Even) 1.009 5129 LUT, 2 DSP 103.478 103.505 9.66

Posit(32, 2, RoundEven) 1.022 4652 LUT, 4 DSP 87.890 87.917 11.37

Posit(32, 3, RoundEven) 1.022 4784 LUT, 4 DSP 88.823 88.850 11.25

Double(Round Even) 1.037 17989 LUT, 9 DSP 214.545 214.572 4.66

Posit(64, 3, RoundEven) 1.065 13304 LUT, 15 DSP 250.921 250.948 3.98

Table 11: TFPU Generators FPGA Results

consumption and the number of LUTs. This is validated by the 24-bit number representation

systems (FP24, PXR24). On 32 bits, MorrisUnaryHEB has almost triple the number of LUTs

compared to the others. The internal sizes are similar to 64-bit Posit and IEEE754. A 64-bit

MorrisUnaryHEB is considered an over-utilisation of hardware resources, even with the ben-

efits of addition/subtraction exact results, which makes it an excellent inexact accumulator.

IEEE754 has the worst results, even if the others have greater internal exponent and fraction

sizes. The overhead can only come from decoding and encoding modules. Posit is second to

MorrisUnaryHEB in the number of LUTs and slower than all the counterpart Morris divided

number representation systems. MorrisBiasHEB keeps its better speed and better resource

utilisation on 32-bit. All the Morris hidden exponent bit divided number representation sys-

tems have a higher power consumption. On the other hand, IEEE754 has the lowest power

consumption. On 64-bit, Posit has higher power consumption and uses more LUTs (14.58%)

but has almost double the maximum frequency (30.06 versus 18.54). The following modules

are the TFPUs in Table 11. On 8-bit number representation systems, taking into account the

number of different values it can represent (Morris) and the dynamic range (MorrisBiasHEB),

the best choice is MorrisHEB, followed by Posit, which has double the number of LUTs and

almost half the maximum frequency. On 16-bit, it is no surprise that bfloat16 wins easily,

being the only one which does not require a DSP. Neither less, bfloat16 is more an inexact

number representation system suitable for computation than can correct itself like machine

learning (its scope also). For a more general arithmetic approach, MorrisBiasHEB is the best

trade-off being close to bfloat16 in hardware performance. Posit and MorrisUnaryHEB require

the most LUTs, but at least MorrisUnaryHEB has a better maximum frequency than half-

precision IEEE754. Posit with es = 1 has worse results than 24-bit IEEE754 systems. In the

32-bit department, it is a surprise that Posit has the better speed results. It also has the high-

29



Number representation system Power Hardware Delay Period Frequency

(W) Resources (ns) (ns) (MHz)

Morris(2, 8, RoundZero) 0.993 931 LUT 16.762 16.789 59.56

MorrisHEB(2, 8, RoundZero) 0.993 542 LUT 14.301 14.328 69.79

MorrisUnaryHEB(8, RoundEven) 0.996 2035 LUT 24.456 24.483 40.84

MorrisBiasHEB(2, 8, RoundEven) 0.992 353 LUT 12.896 12.913 77.44

Posit(8, 0, RoundEven) 0.993 609 LUT 20.338 20.365 49.10

Morris(3, 16, RoundZero) 1.054 23215 LUT, 3 DSP 56.353 56.380 17.73

MorrisHEB(3, 16, RoundZero) 1.021 11706 LUT, 3 DSP 52.346 52.373 19.09

MorrisUnaryHEB(16, RoundEven) 1.111 50985 LUT, 3 DSP 68.988 69.015 14.48

MorrisBiasHEB(3, 16, RoundEven) 0.995 1474 LUT, 3 DSP 18.997 19.024 52.56

Google Brainfloat(Round Even) 1.013 13656 LUT 74.764 74.791 13.37

Half Float(Round Even) 1.008 1939 LUT, 3 DSP 39.543 39.570 25.27

Posit(16, 1, RoundEven) 0.999 2595 LUT, 3 DSP 35.008 35.035 28.54

Posit(16, 2, RoundEven) 1.048 5639 LUT, 3 DSP 41.725 41.752 23.95

Nvidia Tensorfloat(Round Even) 1.036 14707 LUT, 3 DSP 56.037 56.064 17.83

AMD FP24(Round Even) 1.012 7493 LUT, 3 DSP 43.264 43.291 23.09

Pixar PXR24(Round Even) 1.025 13055 LUT, 3 DSP 50.964 50.991 19.61

Morris(4, 32, RoundZero) 1.101 50047 LUT, 12 DSP 72.134 72.161 13.85

MorrisBiasHEB(4, 32, RoundEven) 1.049 20149 LUT, 12 DSP 53.383 53.410 18.72

Float(Round Even) 1.043 16313 LUT, 6 DSP 56.072 56.099 17.82

Posit(32, 2, RoundEven) 1.04 14639 LUT, 12 DSP 60.295 60.322 16.57

Posit(32, 3, RoundEven) 1.091 27952 LUT, 12 DSP 67.068 67.095 14.90

Double(Round Even) 1.23 62370 LUT, 27 DSP 82.051 82.078 12.18

Posit(64, 3, RoundEven) 1.267 61636 LUT, 45 DSP 84.637 84.664 11.81

Table 12: KAU Generators FPGA Results

est power consumption of all of them. MorrisBiasHEB has comparable performance (11.16

versus 11.37 and 11.25) using 15.2% fewer LUTs and more negligible power consumption

(1.016 vs 1.022). The most power consumption efficient is IEEE754, which uses two fewer

DSPs. The 64-bit department has a more energy-efficient and faster IEEE754 than Posit.

The KAUs results are in Table 12. The accumulator and fraction sizes for every number

representation system are in Table 9. For all number representation systems, the accumulator

fraction size is limited to 1024, and the accumulator size is limited to 2048. The number of

bits necessary for Morris divided number representation systems are not feasible, except with

MorrisBiasHEB. Because their accumulator sizes are caped, the accumulators are inexact. On

8-bit, the high dynamic range of MorrisUnaryHEB, Morris, and Posit gives a high number of

LUTs for implementing an exact accumulator. Taking into account the dynamic range, Posit

is the best choice. MorrisHEB has a maximum exponent value of 7 (24 Posit), and Mor-

risUnaryHEB needs more LUTs (2053 vs 609). In the 16-bit department, again, the choice is

between MorrisBiasHEB and bfloat16. The first has a lower power consumption and a better

maximum frequency. The latter does not need DSPs. Posit remains an alternative solution.

The other Morris variants become unfeasible because of their extremely high dynamic range

and are excluded from the 32-bit evaluation. On 32-bit, Posit with es = 2 is the best choice

for power consumption and resource utilisation, and the speed is close to the second choice

MorrisBiasHEB. The 64-bit results confirm the high cost of hardware resources for accumu-

lators in this department. Even with this high cost, the maximum frequency has acceptable

results (10MHz). The last module tested is GFPU. It needs almost three times the hardware

resource of the specific counterpart FPU. These values come from the multiple encoding and

decoding modules. The power consumption for 32-bit is similar to TFPU counterparts. The

64-bit GFPU has a higher power consumption of 30.9%. The number of DSPs is similar to

their counterpart. The maximum frequency is almost half (6.4 vs 8.6 and 2.2 vs 3.9).

30



Size Power Hardware Delay Period Frequency

(bits) (W) Resources (ns) (ns) (MHz)

32 1.021 12008 LUT, 4 DSP 155.646 155.673 6.42

64 1.394 34613 LUT, 16 DSP 449.650 449.677 2.22

Table 13: GFPU Generators FPGA Results

6.2 Insights on Proposed Units Results

The current chapter proposes a hardware research infrastructure for number representation

systems. It is validated by adding three new number representation systems: MorrisHEB,

MorrisBiasHEB and MorrisUnaryHEB, but also implementing classics like IEEE754, Morris

and Posit. Generating procedures for FPUs, KAUs, and GFPUs were implemented. The

implementation for adding a new number representation system is reduced to encoding and

decoding modules. The benchmarks and the units will be generated without additional effort.

The FPGA evaluation results presented are a baseline from which future improvements can

be made. The internal floating-point system can be improved with the optimisations done for

the IEEE754 in recent decades. Such improvement will improve every number representation

system implemented in the library.

The usage of Posit for implementing Kulisch accumulators was validated. Still, 8-bit Mor-

risUnaryHEB can be an alternative if there is a need for a higher dynamic range with the cost

of hardware resources and power consumption. On 16-bit, MorrisBiasHEB is a more efficient

and faster number representation system for a Kulisch accumulator. Google’s bfloat16 is an

alternative for having less complex hardware. For 32-bit, the choice is also between MorrisBi-

asHEB and Posit (speed versus resource and energy). The cost of 64-bit Posit and IEEE754

accumulators is high (over 60000LUTS with 27 DSPs or 45 DSPs).

A GFPU is a proposed unit that can have operands and results in different number represen-

tation systems of the same bit-width size. The number of LUTs is tripled, and the maximum

frequency is halved compared to a specific FPU. The benefits of using different number rep-

resentation systems depending on the application or parts of the application can overrun the

cost.

For the specific FPUs (called TFPUs), Posit shows promising results for 32-bit implementation.

The 32-bit MorrisBiasHEB is close to the 32-bit Posit on performance and has better hardware

resource utilisation and smaller power consumption. On 16-bit, MorrisBiasHEB is the better

solution for general arithmetic, and bfloat16 is better for machine learning utilisation. In the

64-bit department, IEEE754 shows better results than the Posit counterpart.

Optimising the internal floating point in future work is a good path for improving the library’s

performance. Artificial intelligence and digital signal processing accelerators can be added to

the proposed units.

31



7 NRS INSIDE PROCESSORS

7.1 Processor Evaluation

This section evaluates and analyses the proposed approach based on accuracy, efficiency,

estimated area and power. A comparison is done between the original 32-bit FPU of Rocket

Chip which claims to implement the IEEE 754 standard (FP32) with the proposed E-PAU

operating with Posit systems of three bit-widths, namely 8-bit with 1-bit exponent denoted

by Posit(8,1) or P8, 16-bit with 2-bit exponent denoted by Posit(16,2) of P16, and 32-bit

with 3-bit exponent denoted by Posit(32,3) or P32. The proposed E-PAU is written in

Chisel and integrated with Rocket Chip [1] and uses SiFive’s Freedom E3101 development

platform to implement and synthesise the code to run on an Arty A7-100T FPGA.

7.1.1 Benchmarks

The next benchmarks that use floating-point operations are selected to evaluate the approach.

These benchmarks are organised into three levels as follows. Level one benchmarks are used

to evaluate both the accuracy and efficiency, in terms of cycles, of the proposed E-PAU versus

the original IEEE 754 FPU of Rocket Chip. These benchmarks represent the computation of

well-known mathematical constants using series and sequences. In particular, the following

constants are computed: π and e (Euler’s number), using numerical series, as shown in

Table 14. For π, Leibniz and Nilakantha series [5] is used. Since the Leibniz series converges

slowly, it runs for two million iterations. In contrast, the Nilakantha series converges faster

and runs for 200 iterations. For e, Euler’s series is used, which is fast-converging. Thus, it

runs for 20 iterations. In addition to π and e, the sin(1) is computed for 100 iterations. Level

two consists of kernels typically used in ML applications [15], as summarised in Table 16. For

these kernels, the efficiency of the E-PAU versus the FPU in terms of cycles is evaluated. The

correctness of the results is checked against reference outputs. Next, a brief description of

each kernel is presented. Matrix Multiplication (MM) implements the multiplication of two

square matrices, which is often used in ML and HPC workloads. In the tests, the matrices

accommodate sizes up to n = 182. K-means (KM) groups a set of multi-dimensional points

into k groups, or clusters, based on their Euclidean distance. KM is often used in ML and data

analytics applications. K-nearest neighbours algorithm (KNN) classifies a multi-dimensional

point based on the Euclidean distance to its k nearest neighbours. Linear Regression (LR)

is a kernel used in ML and data analytics. Multivariate Linear Regression, which consists of

1https://github.com/sifive/freedom

32



matrix and vector operations, is also used. Naive Bayes (NB) implements a simple Bayesian

model. The Classification (or Decision) Tree (CT) kernel is used in ML and data analytics to

represent a target variable based on some input attributes. Both the creation (training) and

usage (inference) of CT is evaluated. For this, the Iris data set2 is used as input for level two

benchmarks, except MM. This data set consists of n = 150 data points withm = 4 dimensions

representing flowers. These points belong to k = 3 classes. Level three of the benchmarks

suite represents full-fledged ML models. In the current work, Convolutional Neural Network

(CNN) implemented in Caffe and trained on CIFAR-103 dataset. While the original CNN has

14 layers and the parameters file has a size of 351 kB, it cannot accommodate the testbed

with limited memory size. Hence, only the last four layers of this CNN are taken, starting from

relu3, and standard C code with static memory allocations is generated. By instrumenting

the Caffe framework, all the parameters and the input of relu3 layer as binary files with FP32

values were collected. These binaries are converted to all three posit sizes, namely P8, P16,

and P32, transformed into objects and link them with the generated C code to get the final

RISC-V executable. The validation runs on all 10,000 images of the CIFAR-10 test dataset

by running the executables on the FPGA. The prediction results are compared against the

reference execution on an x86/64 host.

7.1.2 Accuracy and Efficiency

Level One. The accuracy and efficiency of Posit in comparison with 32-bit, single-precision

IEEE 754 floating-point (FP32), using level one benchmarks summarized in Table 14 and

Table 15 is evaluated. The accuracy is measured in exact fraction digits compared to the

reference value. The efficiency represents the number of cycles taken by Rocket Chip running

on the FPGA to execute the meaningful section of the program. For Posit, The speedup

is computed with respect to the FP32 execution. The results presented in Table 14 show

that Posit(32,3) achieves similar or better accuracy compared to FP32 , while saving up to

23% of the cycles taken by the FP32 FPU, when π with Leibniz series is computed. On

the other hand, [6] shows that any Posit can be accurately represented by an IEEE754 float

of a bigger size. That is why 64-bit, double-precision IEEE 754 floating-point is used in the

evaluation scripts. Posit operations take fewer cycles to complete. Thus, applications

with higher numbers of iterations exhibit better efficiency. For example, Posit(32,3) is 30%,

9%, and 3% faster than FP32 for π Leibniz with two million iterations, π Nilakantha with

200 iterations, and e with 20 iterations, respectively. The analysis revealed that this speedup

results from faster multiplication and division operations on Posit. This, in turn, is the result

of more straightforward exception and corner case handling in Posit. Intuitively, the efficiency

gap grows with the number of iterations. Figure 17 shows that Posit(32,3) achieves the

same accuracy as FP32 with fewer cycles as the number of iterations increases. Level Two.

Posit(32,3) and Posit(16,2) lead to the same final results as FP32 when running level two

2https://archive.ics.uci.edu/ml/datasets/iris
3https://www.cs.toronto.edu/~kriz/cifar.html

33

https://archive.ics.uci.edu/ml/datasets/iris
https://www.cs.toronto.edu/~kriz/cifar.html


Figure 17: Accuracy and efficiency of Euler’s number computation using FP32 and Posit(32,3)

Table 14: Accuracy (Level One Benchmarks)

Application Iterations

Accuracy

[actual value | number of exact fraction digits]

FP32 Posit(8,1) Posit(16,2) Posit(32,3)

π (Leibniz) 2,000,000 3.14159 5 3.5 0 3.14 2 3.14159 5

π (Nilakantha) 200 3.1415929 6 3.125 1 3.141 3 3.1415922 6

e (Euler) 20 2.7182819 6 2.625 0 2.718 3 2.7182817 6

sin(1) 100 0.8414709 7 0.78 0 0.8413 3 0.84147098 8

Table 15: Efficiency (Level One Benchmarks)

Application Iterations

Efficiency

[cycles | speedup]
FP32 Posit(8,1) Posit(16,2) Posit(32,3)

π (Leibniz) 2,000,000 216,022,827 166,022,835 1.30 166,022,829 1.30 166,022,830 1.30

π (Nilakantha) 200 57,940 52,937 1.09 52,952 1.09 52,937 1.09

e (Euler) 20 15,598 15,177 1.03 15,177 1.03 15,177 1.03

sin(1) 100 16,663 16,270 1.02 16,273 1.02 16,298 1.02

Table 16: Efficiency (Level Two Benchmarks). A grey background means that the result is

different from the reference.

Benchmark Input Size
Efficiency [cycles | speedup]

FP32 Posit(8,1) Posit(16,2) Posit(32,3)

Matrix Multiplication (MM) n = 182 418,177,415 418,063,614 1.0 418,063,629 1.0 418,177,423 1.0

k-means (KM)
Iris dataset

n = 150

m = 4

k = 3

19,150,075 18,879,618 1.01 18,971,747 1.01 19,011,507 1.01

k Nearest Neighbours (KNN) 151,402 138,140 1.10 143,313 1.06 144,136 1.05

Linear Regression (LR) 1,419,794 - - - - 1,398,643 1.02

Naive Bayes (NB) 398,254 407,330 0.98 397,869 1.0 399,893 1.0

Classification Tree (CT) 633,560 101,940 6.2 615,792 1.03 629,936 1.01

34



benchmarks while saving up to 6% of the cycles, as shown in Table 16. However, LR with

both Posit(8,1) and Posit(16,2) exhibits an out-of-range exception. This is because one

of the determinants computed by the program exceeds the range of these two Posit sizes.

Moreover, the programs operating with Posit(8,1) produce wrong results on all benchmarks,

except CT. This shows that small-size Posit is unsuitable for some ML kernels that need high

numerical accuracy. This observation is in contrast to some of the related works [2, 3, 13].

However, the evaluation is done on a different dataset, namely the Iris dataset. In the next

tests Posit(8,1) performs better on a partial CNN. On the other hand, Posit(16,2) offers a

good alternative to 32-bit floating-point representations. Level Three. When compared to

the reference execution on an x86/64 host, the CIFAR-10 CNN with FP32 , Posit(32,3) and

Posit(16,2) running on the FPGA with a Rocket Chip core exhibit the same Top-1 accuracy

as the reference model, namely 68.15%. Even Posit(8,1) achieves a reasonable accuracy of

62.68%. Regarding speed, all three Posit representations are around 18% faster than the

execution with FP32 . The results with Posit(16,2) and Posit(8,1) are promising and open up

a series of future optimisations. For example, these formats save half and three-quarters of

the memory for representing inputs and parameters compared to 32-bit FP32 or Posit(32,3).

Next, by packing two Posit(16,2) and four Posit(8,1) operands per instruction, the execution

time can be reduced by two and four times, respectively. Another source of accuracy loss is due

to underflow or overflow at runtime. For example, prob layer includes exponentiation, among

other operations. On Posit(8,1), exponentiation can easily result in underflow or overflow. To

test this hypothesis, the parameters are kept in 8-bit posit format in memory, but the E-PAU

use Posit(16,2) and convert between these two formats at runtime. The result is better than

expected because the Top-1 accuracy of this approach is 68.47%, higher than the accuracy of

the reference execution on FP32 . This result confirms the hypothesis that the primary source

of the inaccuracy of Posit(8,1) is at runtime and shows that using a hybrid approach with

posits of different sizes can save memory without losing accuracy.

7.1.3 Resource Utilization

As a proxy to the chip area taken by the implementation, the FPGA resource utilisation of

the E-PAU is evaluated compared to the original FPU of Rocket Chip. The FPGA resource

utilisation of the entire system is evaluated, namely SiFive Freedom E310 with a Rocket Chip

core with an FPU/E-PAU , running on the Arty A7-100T FPGA. While the results here denote

savings in terms of resources from an FPGA perspective, similar or even higher savings in terms

of the area will be obtained when the design is implemented on an ASIC [7,14]. Savings in the

chip area directly relate to static and dynamic power savings and thus are essential for low-

power-constrained applications such as IoT-based edge devices. Table 17 shows the utilisation

of the different FPGA resources with respect to both Posit and FP32 implementations. All

the implementations use the same amount of memory resources (Shift-register Look up table

– SRL, LUTRAM, and BRAM), indicating that the comparison involves only the modified

FPU, with the rest of the system being the same across all implementations. For significant

35



Table 17: FPGA Resource Utilization of the Entire Rocket Chip on SiFive Freedom E310

Resource FP32 Posit(8,1) Posit(16,2) Posit(32,3)

Logic LUT 29,335 19,367 (-34%) 25,598 (-13%) 38,155 (+30%)

FF 14,756 11,596 (-21%) 12,031 (-19%) 12,951 (-12%)

DSP 15 5 (-67%) 8 (-47%) 19 (+27%)

SRL 58 60 60 60

LUTRAM 924 924 924 924

BRAM 14 14 14 14

savings in area and power without much loss in accuracy Posit(16,2) is a viable option that

saves almost 50% of the DSPs, which translates to the multiply-accumulate (MAC) units in

an ASIC flow. These savings in the area should translate to a 50% drop in power as the MACs

account for a higher power compared to flops or other logic [8]. In contrast, Posit(32,3) uses

30% more LUTs and 27% utilisation compared to FP32 . These results are worse than those

reported in [4], which needs only 4% more LUTs compared to the FPU, but similar to the ones

reported in [12]. On the other hand, the original FPU of Rocket Chip is a work in progress.

It may not implement all the corner cases of the IEEE754 standard. Nonetheless, the higher

resource utilisation of Posit(32,3) may be counterbalanced by its speedup, leading to higher

time and energy efficiency compared to FP32 .

7.2 Insights on Processor Results

This chapter explores the opportunity of replacing the traditional IEEE754 standard with the

newly-proposed Posit system [11] in the context of machine learning at the edge. The proposed

implementation of an E-PAU to replace the original FPU in a RISC-V core is shown. This is the

first work to do a thorough evaluation of Posit versus FP32 to determine (i) whether hardware

or software conversion between posit and FP32 is better, (ii) the time-energy performance

for both mathematical and ML kernels, and (iii) insights on choosing the bit-width of Posit

for different types of applications. The implementation is evaluated on an FPGA using the

SiFive Freedom E310 platform. The accuracy, efficiency in terms of cycles, FPGA resource

utilisation and power of three Posit sizes are compared to 32-bit, single-precision IEEE754.

In contrast to previous works [2,3,13], the 8-bit Posit is not producing the required accuracy

to replace FP32 in common ML applications. On the other hand, 32-bit Posit is not exhibiting

spectacular improvements in terms of efficiency over FP32 . While they achieve the same or

higher accuracy and can speed up the execution when the program has multiplications and

divisions, they need around 30% more FPGA resources and use 6% more power compared

to FP32 . However, 16-bit Posit exhibits the best results. Even if they show lower accuracy

in scientific computations, they produce correct results for most ML kernels and applications

while requiring less area and power compared to FP32 . For example, Posit(16,2) achieves the

same Top-1 accuracy as FP32 on a CIFAR-10 CNN while exhibiting 18% speedup.

36



8 CONCLUSION

The current thesis approaches a research infrastructure for the discussions regarding number

representation systems. The software library proposed reduces the time and effort of proposing

a new number representation system to implementing the binary representation and the limits

of the numbers it contains. The benchmarks and the libraries implemented over the NRS-SL

interface benefit from working with any new number representation system proposed. The

thesis offers a statistical methods library, scientific computing benchmarks, a Fast-Fourier-

Transform function, and two low-precision machine learning frameworks. All of them were

used to evaluate different number representation systems. The hardware generator library

improves the path from an idea to multiple hardware prototype units. Implementing a number

representation system diminishes the cost of the encoding and decoding modules. Together

with complementary libraries from literature [17], the two libraries improve the research in-

frastructure. The new research infrastructure helps discuss number representation systems by

significantly reducing the entry level of proposing and testing a new number representation

system.

The software library proposed was used for adding three new number representation systems.

MorrisBiasHEB combines the benefits of the classic floating point and tapered floating point

and has the first or second best result on the literature benchmarks. It is a significant

competitor in general computation for IEEE754. MorrisUnaryHEB is a tremendous tapered

floating-point system defined only by its size. It has the most exact results on addition

(37.6%), the numerous ’golden zone’, better decimal accuracy on unary operations, and

higher dynamic range than IEEE754, Posit and MorrisBiasHEB. These characteristics make

it a formidable opponent in the artificial intelligence domain. Adding a hidden exponent bit

started a new path in developing number representation systems.

Nine finite precision number representation systems were evaluated using four scientific com-

puting benchmarks: matrix multiplication, gradient conjugate method, Simpson’s Integration,

and N-Body simulation. The results on small numbers validate the ”golden zone” of tapered

floating point systems. The difference between IEEE754 and other number representation

systems results is not significant, except N-Body simulation. On N-Body simulation 32-bit

Posit (es = 2) offers two more correct decimals for low-magnitude numbers and one more

for high-magnitude numbers than 32-bit IEEE754. Neither less on scientific computing appli-

cations, IEEE754 might remain the standard without significant benefits from the hardware

implementation of other number representation systems.

The statistical methods library offers 14 statistical methods. The 16-bit Posit (es = 1) shows

results similar to 32-bit counterparts. On the other hand, 16-bit IEEE754 (half-precision) can

37



not produce a valid result on 6 of them. Even when it produces one, it has a lower decimal

accuracy than 16-bit Posit. The decimal accuracy degrades with the number of entries and

higher values of the data set. The reader must understand that contrary to the beliefs, a

result of a statistical method on a more extensive data set might be further away from the

correct answer than expected. The number representation system used has an impact on it.

Posit offers better decimal accuracy than IEEE754 on all methods, except the ones based

firmly on variance, like the T-test and variance itself.

The two low-precision machine learning frameworks help intelligent embedded systems by

reducing the storage size of a deep neural network. They reduce the size by 66.75% respec-

tively 76.68% with an accuracy degradation lower than 2%. The first framework (LPML)

uses knowledge distillation and layer precision optimisation with a limited set of number rep-

resentation systems: generic Fixed-Point, 8-bit Posit (es = 0), 16-bit Posit (es = 1), 32-bit

Posit (es = 2), 32-bit IEEE754). The accuracy increase of using knowledge distillation in-

stead of classic training is validated by a value of 0.87%. The Resnet34 network (accuracy:

95.23%) is used as the teacher network. The student network Resnet18 obtains an accuracy

of 94.98% after training (classic accuracy: 94.11%). Layer precision optimisation reduces the

storage size of the Resnet18 network by 43.41%. The final accuracy is 93.25%. The memory

reduction compared to Resent34 is 66.75%. The second framework (CPML) uses uniform

and layer precision optimisation with number representation systems implemented in NRS-SL.

Uniform precision optimisation reduces the size of Resent18 (accuracy: 57.01%) with at least

62.25% (Morris) and a maximum of 75% (IEEE754) without losing more than 1% in accuracy.

The next step of layer precision optimisation is not significantly efficient, and the overhead of

different layer precision might surpass the benefits.

The hardware generator library generates functional units as FPUs, KAUs and unary/binary

modules. For number representation systems with a high dynamic range, inexact accumu-

lator units are a solution if the insignificant error is accepted. The general floating point

unit (GFPU) can operate simultaneously with multiple number representation systems as the

operands or the result. The hardware cost is triple, and the speed is half compared to a specific

number representation system FPU. The benefits of using a particular number representation

system for a specific part of the application might surpass the cost. In the 16-bit depart-

ment, Google’s bfloat16 shows the best hardware performance in a floating point unit (fewer

LUTS, fewer DPSs, better speed). Its scope is machine learning applications. For general

computing, MorrisBiasHEB and Posit are the best alternatives. The best choice in the 32-bit

department is between MorrisBiasHEB and Posit. For accelerators which use mainly addition

and multiplication, MorrisBiasHEB is the best decision possible. It has good accuracy, the best

computation time, and the smallest necessary hardware resources. The Kulisch accumulator

unit for 16-bit MorrisBiasHEB has almost double the maximum frequency (52.56 MHz versus

28.54 MHz) and nearly one-quarter fewer LUTS (1474 versus 1939) than the second-best in

that category.

A complete hardware-software system to test a number representation system can give a

38



different perspective. Posit tested its performance against IEEE754 on a RochetChip CPU [1].

Posit validated the expectation of being faster than IEEE754, but with the cost of hardware

resources and power consumption. The 16-bit Posit shows an 18% speedup on the third level

benchmark, and it requires fewer hardware resources and consumes less energy.

New, alternative or optimised operations will be added to the software library in future work.

The category of interval number representation systems is another path worth going, which

can offer solutions for the problems which the classic number representation system can not

solve. The pallet of units for the hardware generator library will grow by adding artificial intel-

ligence accelerators, digital signal processing accelerators or GPUs. The statistical methods

library needs to add more methods to be tested. The scientific computing benchmarks can

increase their complexity to offer better insights. The low-precision frameworks allow testing

on more complex networks that are not dedicated to embedded systems. The most signifi-

cant future work will be creating and evaluating more hardware-software systems to develop

a proper opponent for IEEE754. MorrisBiasHEB has excellent hardware and general compu-

tation performance, which needs to be investigated in a SoC (System on the Chip) in future

work. On another path, MorrusUnaryHEB might change the domain of artificial intelligence

computation.

39



BIBLIOGRAPHY

[1] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Biancolin,

Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraelevitz, et al.

The Rocket Chip Generator. University of California, Berkeley, Tech. Rep. UCB/EECS-

2016-17, 2016.

[2] Zachariah Carmichael, Hamed F Langroudi, Char Khazanov, Jeffrey Lillie, John L

Gustafson, and Dhireesha Kudithipudi. Deep positron: A deep neural network using

the posit number system. In Design, Automation & Test in Europe Conference & Exhi-

bition (DATE), pages 1421–1426, 2019.

[3] Zachariah Carmichael, Hamed F Langroudi, Char Khazanov, Jeffrey Lillie, John L

Gustafson, and Dhireesha Kudithipudi. Performance-efficiency trade-off of low-precision

numerical formats in deep neural networks. In Proceedings of the Conference for Next

Generation Arithmetic, pages 1–9, 2019.

[4] Rohit Chaurasiya, John L. Gustafson, Rahul Shrestha, Jonathan Neudorfer, Sangeeth

Nambiar, Kaustav Niyogi, Farhad Merchant, and Rainer Leupers. Parameterized Posit

Arithmetic Hardware Generator. In Proc. of 36th IEEE International Conference on

Computer Design, pages 334–341, 2018.

[5] Jose Cintra. Calculating the Number PI Through Infinite Sequences.

http://archive.today/2Nf1G, 2014.

[6] Florent De Dinechin, Luc Forget, Jean-Michel Muller, and Yohann Uguen. Posits: the

good, the bad and the ugly. In Proceedings of the Conference for Next Generation

Arithmetic, pages 1–10, 2019.

[7] Andreas Ehliar and Dake Liu. An ASIC Perspective on FPGA Optimizations. In Proc. of

International Conference on Field Programmable Logic and Applications, pages 218–223,

2009.

[8] James Garland and David Gregg. Low Complexity Multiply-accumulate Units for Convo-

lutional Neural Networks with Weight-sharing. ACM Transactions on Architecture and

Code Optimization, 15(3):1–24, 2018.

[9] David Goldberg. What every computer scientist should know about floating-point arith-

metic. ACM Computing Surveys (CSUR), 23(1):5–48, 1991.

[10] John L. Gustafson. The End of Error: Unum Computing. Chapman & Hall/CRC Com-

putational Science. Taylor & Francis, 2015.

40



[11] John L Gustafson and Isaac T Yonemoto. Beating floating point at its own game: Posit

arithmetic. Supercomputing Frontiers and Innovations, 4(2):71–86, 2017.

[12] M. K. Jaiswal and H. K. . So. Universal Number Posit Arithmetic Generator on FPGA.

In Proc. of Design, Automation Test in Europe Conference Exhibition, pages 1159–1162,

2018.

[13] Jeff Johnson. Rethinking floating point for deep learning. arXiv preprint

arXiv:1811.01721, 2018.

[14] I. Kuon and J. Rose. Measuring the Gap Between FPGAs and ASICs. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 26(2):203–215, 2007.

[15] Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou, Shengyuan Zhou, Olivier Teman,

Xiaobing Feng, Xuehai Zhou, and Yunji Chen. PuDianNao: A Polyvalent Machine

Learning Accelerator. In Proc. of 20th International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 369–381, 2015.

[16] Robert Morris. Tapered floating point: A new floating-point representation. IEEE Trans-

actions on Computers, 100(12):1578–1579, 1971.

[17] E. Theodore L. Omtzigt, Peter Gottschling, Mark Seligman, and William Zorn. Universal

Numbers Library: design and implementation of a high-performance reproducible number

systems library. arXiv:2012.11011, 2020.

41


	Introduction
	The development of the NRSs Software Library (NRS-SL)
	Hidden exponent bit tapered floating-point
	MorrisHEB(size, g, r)
	MorrisBiasHEB(size, g, r)
	MorrisUnaryHEB(size, r)

	Evaluation on software NRSs
	NRSs Characteristics
	Unary Operations
	Binary Operations
	Literature Benchmarks

	Insights on number representation systems

	NRS in Scientific Computing
	Benchmarks Results
	Conjugate gradient method benchmark
	Simpson's Integration benchmark
	N-body simulation benchmark

	Insights on Scientific Computing Results

	The usage of NRSs for Statistical Methods
	Statistical Methods Evaluation
	Insights on Statistical Methods Results

	NRSs impact on Artificial Intelligence
	Frameworks Results
	Insights on Machine Learning Frameworks

	The developement of the NRSs Hardware Generator Library (NRS-HGL)
	FPGA evaluation
	Insights on Proposed Units Results

	NRS inside Processors
	Processor Evaluation
	Benchmarks
	Accuracy and Efficiency
	Resource Utilization

	Insights on Processor Results

	Conclusion
	Bibliography

