University POLITEHNICA of Bucharest

Faculty of Automatic Control and Computers,
Computer Science and Engineering Department

Computer Science
& Engineering
Department

PHD THESIS
SUMMARY

Memory Optimization Techniques For
Modern Computer Systems

Scientific Adviser: Author:

Prof. Dr. Ing. Razvan-Victor Rughinis Ing. Razvan Nitu

Bucharest, 2023

Cuprins

1 Introduction 1
1.1 Thesis Contributions 3
1.2 ThesisStructure 4
2 State of the Art 6
2.1 Memory Management Techniques 6
2.2 Memory Safety for the LinuxKernel 7
2.3 Prefetchingtechniques 7
3 Memory Performance - Adding Reference Counting in D 10
4 Memory Safety - Improving The Safety of Applications By Using the D pro-
gramming Language 12
5 Memory Architecture - Improving Prefetching For Applications 15
6 Conclusions 17

6.1 Listof Publications. i e e 18

Chapter 1

Introduction

The recent advances in computer architecture have enabled processors to continuously
increase the capacity at which they execute instructions. Figure 1.1 highlights the pace at
which compute performance has increased over the years. As it can be observed, memory
performance has not been able to keep up with the processing power and this gap deepens
as years pass by. As a consequence, powerful processors are not leveraged to their entire
capabilities due to data stalls, leading to CPU starvation. The problem is not represented
by memory bandwidth, but rather by the physical limitations of DRAM memory. As a
consequence, solving this issue by creating better memory controllers or better DRAM
memory is not going to entirely close the gap.

Moore’s law effect

100000 60%/yr
o 10000
Q
C
E 1000
5 CPU performance Gap grows at
E 50% per year
a 100 7%/yr
10 Memory performance

Time
Figure 1.1: Processing power vs. memory performance [1]

To make matters worse, modern computing systems add to the problem due to the different
layers of abstractions that are being stacked above the physical memory. A typical system
uses an operating system that manages the physical memory and a runtime, library allo-
cator that is typically dependent on the programming language that is used, as showcased
in Figure 1.2. The result is that memory operations - that ensure allocation, deallocation
or actual use of memory - are multiplied and go through multiple indirections, ultimately
affecting overall performance.

These layers are put in place because the computer technology has evolved to a point
where performance is not the single critical aspect of systems. Security, maintainability

CHAPTER 1. INTRODUCTION 2

X

Programmer

Variables

Variable mapping
Allocation/Deallocation

Operating System

Physical Addresses

Hardware

Figure 1.2: Abstraction layers on top of DRAM memory

and ease of development have become major factors in the adoption or avoidance of a
particular technology. As a consequence, application specific trade-offs are being made
when choosing a particular technology for a particular use case. Nevertheless, performance
remains the guiding factor and the ultimate deciding factor.

In this context, researchers have strived to improve all stages where memory is being han-
dled: hardware, operating system level, programming language level.

From a hardware perspective, cache memory has been employed to save data that is reused
frequently so that subsequent accesses will suffer from a smaller latency penalty. Addition-
ally, prefetchers are added to try and predict future memory accesses and fetch the data in
the cache, before the actual access takes place. Other improvements include: preload in-
structions that offer the user the possibility to tell the processor which memory address are
going to be used in the future, temporal loads that do not go through the cache hierarchy
and programmable memory controllers. However, hardware solutions are limited because
they try to fix the problem for all potential applications that might be run on it. In contrast,

CHAPTER 1. INTRODUCTION 3

we propose a novel prefetching solution that relies on analysing the application at hand to
be able to perfectly prefetch all the necessary data items.

Operating systems not only have to ensure optimal use of system resources, but also need to
ensure the safety aspect. Asa consequence, operating systems use virtual memory modules
to ensure process sandboxing along with allocators that implement the allocation strat-
egy. However, given the fact that most operating systems are written in C which is an
unsafe programming language, the kernel itself becomes a security issues. In our work,
we demonstrate, that the Linux kernel can be improved with regards to safety by an in-
cremental transition to a programming language that is mechanically checked for safety,
D.

Programming languages have evolved to the point where they can simplify most of the
programmer’s tasks: memory management may be handled by runtime implementations,
expressive constructs have been put in place to take care of the most stringent needs, third
party tools help in maintaining and improving the quality of the code etc. However, most
of these come with a cost. For example, garbage collected programming language lift the
burden of manual memory management, however, impose additional resource consump-
tion. Rust’s state of the art borrow checker offers security guarantees at low resource cost,
however, even trivial programs need to specify the complex logic of value ownership. As an
alternative, the D programming language offers the possibility to mechanically check for
safety C-like programs, but relies on the garbage collector for lifetime management. Our
perspective is that using D’s safety features alongside reference counted data structures
brings the advantages of both automatic memory management and memory performance.

Only by improving all stages of memory abstractions will it be possible to (1) close the
gap between the increasing processing power of CPUs and the stagnating performance of
DRAM memory and (2) meet the expected criteria for memory safety and ease of use. In
this thesis, we pave the way to the usage of a memory safe language, the D programming
language at all levels of memory abstraction, by taking into consideration all aspects of
dealing with memory: performance, safety and ease of use. Additionally, we propose a
hardware alternative to the existing prefetching techniques the paves the way to closing
the gap between compute and memory access.

1.1 Thesis Contributions

To summarise, the thesis makes the following contributions:

« We have designed and implemented the copy construction feature for the D program-
ming language.
« We have designed and implemented the ability to break the transitivity of the D type

qualifiers by introducing a new keyword __mutable.

« We have used the above mentioned features to implement referenced counted data
structures, proving that they represent a better alternative, with regards to perfor-

CHAPTER 1. INTRODUCTION 4

mance, to the garbage collector.

« We have performed a security audit of the D programming language, assessing the
level of guarantee that the safe subset of the language offers. We have identified 3
flaws in the safety typesystem and have proposed solutions to fixing them.

« We have ported a Linux kernel device driver to D and have proved that it is possible
to integrate a memory safe language in the Linux kernel without loss of performance.

« We have improved the D compiler library so so that subsequent tools may be imple-
mented to enrich the language ecosystem.

« We have improved an existing tool, dpp that automatically translates C header files
to D. We have proved that this tool is usable in conjunction with the Linux kernel
header files.

« We have made a survey, categorizing most of the existing prefetching tools and
highlighting their benefits and limitations. Future researchers may consult our sur-
vey to understand the different aspects taken into consideration when evaluating a
prefetching technique.

« We have proposed a mathematical framework to understand the prefetching capabil-
ities of a given application that runs a hardware with given characteristics. Computer
architects may use our framework to understand the bottlenecks of a system, whereas
software developers may use it to understand the bottleneck of their applications.

« We have proposed a novel prefetching technique by using an FPGA to offload prefetch
requests.

1.2 Thesis Structure

The thesis is structured as follows:

Chapter 2 presents the most relevant works that are related or have influenced this thesis.
It is organized in the form of sections, each treating a specific level of the memory abstrac-
tions that this thesis improves upon. Therefore, the 3 sections are represented by: memory
management techniques, memory safety for the Linux kernel and prefetching techniques.

Chapter 3 presents our contributions in terms of adding reference counting to the D pro-
gramming language. It details all of the technical aspects of implementing the copy con-
struction and __ mutable features. Finally, it presents the benchmarks for our implementa-
tions of some data structures that employ reference counting, showcasing the advantages
it offers over garbage collection.

Chapter 4 presents our contributions with regards to improving the memory safety aspects
of applications. It first presents our findings from our security audit over the D program-
ming language. We continue by improving the compiler interface for the D programming
language, which enable developers to create tools that aid in enhancing the memory safety

CHAPTER 1. INTRODUCTION 5

of applications. We then present our journey to improve the memory safety of the Linux
kernel by porting a device driver to D. Finally, we present the improvements that we have
made to the dpp tool to enable it to be used in the context of the Linux kernel files.

Chapter 5 presents the survey that we have accomplished to better understand the existing
prefetching techniques. In the process, we have identified the major dimensions that may
be used to categories such techniques. Furthermore, we present a mathematical frame-
work that may be used to better understand and optimize the prefetching capabilities of
a given application that runs on a particular hardware. Finally, we present our novel ap-
proach of prefetching using an FPGA and its performance evaluation.

Chapter 6 concludes our work and showcases the list of publications that the current
writing is based upon.

Chapter 2

State of the Art

In this chapter we will highlight what were the major improvements that have been pro-
posed and implemented in the research community in terms of memory optimizations.
Given the broad range of topics that need to be discussed, we have narrowed it down to the
fields that are particularly relevant the improvements that are being made by this thesis.

As a consequence the present chapter is structured in 3 sub-chapters, each highlighting the
major research papers that have influenced the particular memory abstraction that is being
discussed. Therefore, Section 2.1 discusses what are the major memory allocation tech-
niques and provides an overview over the D programming language, Section 2.2 highlights
alternatives to our approach of making the Linux kernel safer and their limitations and Sec-
tion 2.3 presents the major prefetching techniques that are employed modern computer
architectures emphasizing the trade-offs that are being made.

2.1 Memory Management Techniques

Since the inception of the ability to directly allocate memory, memory management has
become one of the most complex endeavors of programming. The first and most primitive
form of memory allocation is represented by manual memory management technique. In
this form of memory management, the user is tasked with demanding and freeing memory.
A task that is easier said than done. This form of memory management has led to count-
less forms of bugs: use after free, double free, use without allocation, dangling pointers,
memory that is never freed etc.

As a consequence, more advanced forms of memory management were required, ones that
would lift the complexity of the shoulders of users. The result was the implementation of
garbage collected programming languages or reference counted systems. The former is a
heavyweight approach where a considerable size of system resources are necessary but is
extremely easy to use (practically, completely transparent), whereas the latter is lightweight
but comes with limitations: it does not support circular references and is to a certain degree
invasive.

2.1.1 The D programming language

D is an imperative, general purpose, systems programming language. D aims to fulfill the
requirements of a full stack programming language, under the mantra One language to

CHAPTER 2. STATE OF THE ART 7

rule them all”. As a consequence, D has support for mechanical safety checks [2], func-
tional programming [3], meta-programming [4], parallel programming, object oriented
programming etc. Heavily inspired from popular languages like C, C++, Java and Python,
D builds upon the features that exist in other languages: C-style syntax and manual mem-
ory management, Java-like classes and garbage collection, similar C++ template system,
Scheme-like functional programming etc. Although some of the features are mutually
exclusive (for example: manual memory management and garbage collection), the user
may choose from the different options via command line switches.

2.2 Memory Safety for the Linux Kernel

Improving the safety of the Linux kernel and its drivers is the constant focus of the pro-
fessional and research security community. There are different approaches ranging from
static analysis of the Linux kernel code [5-7] to fuzzing [8-11] to the use of runtime checks
and/or instrumentation [12,13].

The idea of using programming languages that implement different memory safety features
in order to make the Linux kernel code safer has also been tackled.

2.2.1 The Rust Programming Language

The recent availability of Rust as a programming language in the Linux kernel [14,15] paves
the way for adding code written in a secure programming language. This is compatible with
our own approach of using D to write code in the Linux kernel. Although the memory
safety guarantees that Rust offers are superior when compared to D, integrating it in the
Linux kernel is a very complicated task. As evidence, the work required to add support for
Rust in the Linux kernel was done by 173 people (present in the commit changelog [16])
over the course of 18 months. This included solely the implementation of the infrastructure
required to integrate Rust code in the kernel. It does not implement any device driver or
any parts of the Linux kernel in Rust. By comparison, our work was done by 3 people over
the course of 4 months, including the initial exploratory phase of the Linux infrastructure
as well as the porting of the kernel header files. The actual porting time of the device
driver required only 2 to 3 weeks. The reader should consider that, in the meantime, work
has been advanced to automate the porting of kernel header files to D [17], thus reducing
the required time to integrate D device drivers to a minimum. In addition, the effort to
integrate Rust in the kernel has required compiler changes to accommodate the esoteric
code encountered, whereas our work does not necessitate any compiler changes.

2.3 Prefetching techniques

Prefetching is a standard technique that has been used in many different ways and in many
situations. We briefly outline relevant work and elaborate, further, our approach.

CHAPTER 2. STATE OF THE ART 8

Prefetching can be implemented in hardware, software as well as a combination of hard-
ware and software. Table 2.1 groups similar prefetching techniques into categories and
highlights the relevant attributes of each technique.

Hardware Techniques

Hardware prefetching techniques require a specialized physical unit that handles the
monitoring of memory accesses and automatically generates prefetch requests. This unit
is commonly tightly coupled to the execution unit, normally a processor core. This allows
for low latency communication between the core and the prefetch hardware unit. The
hardware units tend not to support anything but a general prefetch method which may not
be optimal for all algorithms or applications. In our work and in this paper, we show that
latency is not crucial for performance allowing a loosely and program controlled acceller-
ator to carry out prefetching effectively. This also allows the prefetchers in our approach
to implement specialized and more complicated prefetch methods.

Table 2.1: Prefetching Techniques

Prefetch

Approach SW | HW Pattern Schedule
Analysis

Stride - hardware [18-23] X Simple stream Dynzjlmlc at
runtime

Pointer fetching - hardware [24-26] X Pointer chase Dyngmm at
runtime

Indirect - hardware [27, 28] X Indirect Dyngmlc at
runtime

History based [29-32] X Complex stream Dyngmlc at
runtime

Run-ahead [33-35] X All Dyn?mlc at
runtime

Helper threads [36-40] All Static

Software prefetching [41] [42] X Stride Static

Software prefetching [43] [44] X Stride Dynamic upfront

Software prefetching [45] X Indirect Static

Software prefetching [46] X All Dynamic upfront

Helper threads [47-50] X All Static

Pointer fetching [51-54] Pointer chase | Static

Programmable prefetcher [55] All Static

FPGA prefetching (this work) All Dynamic upfront

CHAPTER 2. STATE OF THE ART 9

2.3.1 Software Techniques

Software prefetching techniques rely on prefetch hints or instructions that are inserted
in the source code. These generate pre-load instructions that are executed before the ac-
tual load. These instructions are committed immediately and therefore do not stall the
pipeline. This approach has the advantage that it does not require extra hardware since
most architectures implement a form of prefetch instruction. However, software prefetch-
ing techniques suffer from two major shortcomings: (1) accurately inserting the prefetch
instructions is difficult and (2) accesses that involve multiple long latency loads are still
going to stall the pipeline and therefore require extra computation that masks the prefetch.

2.3.2 Helper Threads

Helper threads [36-40,47-50] tackle prefetching by statically extracting the code for delin-
quent loads and running it on a spare thread context. This approach can optimally target
any access pattern by increasing the number of helper threads. Furthermore, it is flexi-
ble enough to be implemented both in hardware [36-40] and software [47-50]. However,
even using a single extra thread comes at a an increased energy penalty on high perfor-
mance cores. Moreover, accesses that require loads in their address computation will stall
and in the absence of a hardware event queue the synchronization of loads becomes costly
in terms of both implementation and performance. In contrast, our approach does not re-
quire any synchronization and running prefetch kernels on the FPGA should be cheaper
in terms of energy consumption.

2.3.3 Programmable Hardware

Programmable hardware techniques employ specialized hardware units that are able to
run specific address computation instructions. Jones et al. have proposed a programmable
prefetcher specifically designed for graph workloads that targets specific traversals [56]. Yi
et al have designed a hybrid prefetcher that targets indirect memory accesses [57]. Several
approaches have targeted linked list data structures [51-54]. A more general approach has
been developed by Jones et al. [55] that uses multiple small in order cores to run prefetch
kernels that are indicated in software. This work has proven significant speed-ups for load-
intensive applications, however, the design is not able to deal with the pointer chase pat-
tern and the prefetch kernel size is limited to only a few instructions whereas [46] reports
prefetch kernels that require up to 80 instructions. Our approach is similar in essence
with [55], however, the difference is that the FPGA is reconfigurable. This offers the op-
portunity to instantiate the minimum hardware that is necessary to obtain maximal perfor-
mance. Furthermore, we provide a mathematical framework that aids the programmers
in instantiating the minimal hardware for optimal prefetching.

Chapter 3

Memory Performance - Adding
Reference Counting in D

As more and more software products are developed daily, the security risks imposed by
the growing code bases increase. In 2019, Microsoft reported that the cause for 70% of
security bugs were memory related [58]. The costs incurred due to security flaws and their
exploitation are in the billions [59], with the IBM System Science Institute stating that
patching costs 100 times more than the development costs [60].

To help mitigate the risk, memory safe systems programming languages, such as D and
Rust, are increasingly adopted by developers. A significant area where memory safe lan-
guages are desirable is represented by the Internet of Things (IoT). IoT devices have become
apopular target for attackers to compromise and use as an IoT Botnet army [61] that is used
to carry attacks against businesses, governments and even entire countries [62] [63]. In or-
der to satisfy the needs of IoT devices, the programming languages used must also produce
fast programs and be resource considerate.

D is a modern, systems-level programming language that aims to provide both high per-
formance and memory safety in a simple, intuitive and expressive manner. Although it is
an imperative language, D provides functional style concepts such as pure functions and
transitive type qualifiers. In addition, it is able to inter-operate with C and C++ code out
of the box, thus providing a simple migration path for legacy code.

D provides a garbage collector (GC) [64] for built-in features that use heap memory, such
as dynamic arrays and classes, but also supports manual memory management via raw
pointers and malloc/free. Therefore, for situations where the garbage collector is unsuitable
due to resource scarcity (small memory, small number of computation units or both) or
real-time constraints, users have the possibility to implement a custom allocation strategy.
Note that in this scenario ease of use is sacrificed for performance, since the user needs to
manually manage memory. This has proven to be a complex, time consuming and error
prone endeavour [65].

A third option is represented by automatic reference counting (ARC) in the form of a library
solution [66]. ARC is lightweight in terms of resource utilization, since it typically stores
an extra counter field for each allocated instance. In terms of computation, the added
overhead consists of simple addition or subtraction operations. In addition, the usage of
ARC is almost transparent to the user: an object needs to be declared as being reference
counted and everything will be taken care of behind the scenes. Providing support for

10

CHAPTER 3. MEMORY PERFORMANCE - ADDING REFERENCE COUNTING IN
D 11

such an option is important because it offers maximum flexibility in terms of allocation
strategies: for the majority of cases, the GC should be sufficient; for constrained scenarios
where the GC cannot be supported, ARC is to be used; for extreme situations, where not
even ARC is sufficient to attain the performance guarantees, manual memory management
should be employed.

Chapter 4

Memory Safety - Improving The
Safety of Applications By Using the
D programming Language

Memory safety has become a major concern for present day applications. With the ad-
vent of migrating more aspects of our daily lives into online environments we gain time
efficiency, however, we expose ourselves to cyber attackers.

Hackers target vulnerabilities in a system and exploit them. Such actions may result in:
gaining escalated privileges, causing denial of service, crypting sensitive data and asking
for ransom, deleting important data etc. Successfully attacks on companies or individuals,
typically result in substantial losses, from both a financial and a reputation perspective.

Although companies are investing increasing amounts of resources into cybersecurity [67],
the results are not expected ones. This phenomenon has a simple explanation and lies in
the fact security is treated retroactively, not proactively.

Cyberattacks come in 2 broad categories: social engineering and vulnerability exploitation.

Social engineering attacks occur when an attacker tries to obtain a password or elevated
privileges by tricking someone into an organization that they are someone they are not
[68]. Examples of social engineering attacks are: phishing, tailgating, shoulder surfing,
ransomware etc. The main vector of attack in social engineering attacks is the human.

Vulnerability exploitation relies on the fact that there is some mistake or flaw in the im-
plementation of an application, system, protocol etc. While social engineering attacks the
human, vulnerability exploitation attacks the program.

Both social engineering and vulnerability exploitation rely on human mistakes: in the
former, a human wrongfully identifies the attacker as being someone else, whereas in the
later, a human makes a technical mistake when implementing a program. No matter how
much resources are invested, humans will make mistakes. This is the underlying reason
why security enhancements have had limited success: they always tackle the symptom that
the root case.

Recently, better approaches have been adopted to improve the situation with social engi-
neering. Two factor authentication [69] is an example on how measures can be taken
proactively: have the user go through multiple steps of authentication (password, biomet-

12

CHAPTER 4. MEMORY SAFETY - IMPROVING THE SAFETY OF APPLICATIONS
BY USING THE D PROGRAMMING LANGUAGE 13

rically, one-time-passwords etc.). This situation assumes that the user will make a mistake
and communicate his password to an attacker and requires an additional step of authenti-
cation.

For vulnerability exploitation, researchers are proposing formal verification tools for pro-
grams. However, it is hard to assess the correctness of any given program automatically,
without user intervention. Nevertheless, steps have been made in creating standards and
formal verification tools that are program dependent.

From a programming language perspective, safety is defined as a program being correct in
terms of memory usage. This means that a program should not have dangling pointers, use
after free, pointers to expired stack frames etc. Some languages trade-off performance for
memory safety by not allowing the use of pointers (Java, Python, Javascript etc.), however,
this typically means that there is the need for a garbage collector to track the lifetime of
variables. At the other extreme, we have the C programming language which allows lib-
eral use of pointers that ultimately cause the introduction of numerous vulnerabilities. In
recent years, programming languages such as Rust and D have gain attention due to their
middleground approach where memory safety may be mechanically checked by the com-
piler (i.e. if a program compiles, then there is no situation where it may corrupt memory -
thus eliminating the main source of program vulnerabilities) without the need of a garbage
collector.

However, the adoption of such young languages poses multiple challenges:

« ease of integration with existing programs. We don’t want to reinvent the wheel so
we want to leverage existing libraries written in other languages.

« ease of use. Programmers want to get work done, not spend hours in fighting the lan-
guage, therefore a memory safe language does not need to impose extra complexity
on the programmer.

« existing tooling. Programmers don’t adopt languages if they don’t have a strong
ecosystem that provides development tools.

In this work, we aim at increasing the usage of memory safe languages by showing that D
is a good substitute for memory unsafe languages such as C due to its good integration with
the C family of programming languages, its similarity with existing modern languages such
as Java and Python and we implement changes that improve the current state of tooling.

As such the main contributions of this chapter are:

« We perform a security audit for the D programming language, identifying 2 flaws
in its type system that may lead to unsafe code being accepted. We propose and
implement solutions that eliminate the discovered issues.

» We analyze existing D third party software development tools and extract a common
interface that may be used for the compiler as a library. We implement this interface,
thus opening the door to the creation of more D developer tools.

CHAPTER 4. MEMORY SAFETY - IMPROVING THE SAFETY OF APPLICATIONS
BY USING THE D PROGRAMMING LANGUAGE 14

« We show that the D programming language may be used to replace the C program-
ming language in performance and safety constrained scenarios such as the Linux
operating system. We implement and integrate a D device driver into the Linux ker-
nel.

« We improve an existing tool that automatically generates D header files from C
sources to be usable inside the Linux kernel. This eases the integration of D code in
the kernel.

Chapter 5

Memory Architecture - Improving
Prefetching For Applications

As the speed gap between modern processors and the memory system is ever increasing [70,
71], the bottleneck of memory accessing in today’s Von-Neumann machines becomes the
pain-point that inspires various optimizing techniques such as caching [72] and prefetch-
ing [73-76].

Prefetching is a fundamental technology of most high-performance systems today [77-
81]. The goal of prefetching is to retrieve, in a timely manner, data from a high latency
memory, typically DRAM, and place it in fast-to-access cache memory. One key feature
of a prefetcher is that it aims to fetch the data that is needed before the computation unit
accesses and uses it. Prefetching can significantly reduce the time a CPU needs to wait when
accessing data.

Existing prefetchers implemented in hardware [18-32] provide fixed-function operation
and can not fundamentally change to adapt to the application, limiting attainable perfor-
mance.

We argue that future prefetchers need to be configurable to support different strategies,
possibly to the extent that they are configured by software. Memory access patterns are
well known to be application dependent, which makes prefetching hard to be performed
in a both accurately and timely manner. For example, different prefetching distances, i.e.
how far ahead the prefetcher sends requests, can lead to up to 10x performance benefits
variation [82]. Therefore, we argue that prefetching needs to be driven by dynamic appli-
cation behavior [46, 55, 82].

This opens up a large design space for the developer: Which prefetching strategy should
be selected? When should a prefetch request be sent out? Is it worthwhile to keep the
current strategy or is there a benefit to switch to a new one (while considering the potential
overhead of this change)? Which parameters should one select if the prefetch strategy
is parameterizable? Until now, such questions have not been possible to address in a
systematic way.

In this work, we propose a novel analytical framework that, based on measurements of
application execution, can suggest close-to-optimal prefetcher strategies. Our framework
provides two results. First, for a given prefetching strategy, the framework outputs an
optimized schedule of prefetches that is both accurate and timely. The prefetching plan

15

CHAPTER 5. MEMORY ARCHITECTURE - IMPROVING PREFETCHING FOR
APPLICATIONS 16

can be used to improve the application performance. In our experiments, we show that
the speed-up obtained while using the generated prefetch schedule is at or near optimal,
seeing speed-ups between 1.16x and 2.05x.

Second, a performance estimate of the application that uses the mentioned prefetching
schedule is computed. This estimate can be used to select between different prefetching
strategies. In our experiments, the difference between the estimated and the measured
speed-up is less than 5%.

Prior to our work, prefetching has been viewed as a black box. Developers have been us-
ing trial-and-error techniques for developing prefetchers hoping to meet the performance
targets. In contrast, our framework brings transparency to prefetching by providing the an-
alytical tools for a developer to understand the prefetching capabilities, or limitations, of
an application that runs on a given system. Additionally, it offers the possibility to obtain
the information required to select the best solution from a basket of options.

Below, we list the main contributions of this work.

« We propose a mathematical framework to both understand and predict potential
prefetcher performance. The framework abstracts the technique of prefetching and
is general enough to cover most prefetching scenarios.

« We develop a methodology of evaluating the prefetching capabilities of an application
to allow developers to evaluate its suitability for a given hardware configuration.

« We describe how memory-level parallelism (MLP) for prefetching can close the gap
to optimal performance.

« We evaluate the accuracy or our framework in the context of helper threads, software
prefetching and FPGA prefetching.

Chapter 6

Conclusions

This thesis has presented several improvements regarding how memory is handled at dif-
ferent abstraction levels. We began by highlighting the importance of modern memory safe
programming languages in the context of a programmers every day job. We have presented
the D programming as a logical next step for developers coming from a C

C++ background, highlighting its strengths in terms of expressiveness and memory safety.
We then presented our improvements to the main language that enables developers to use
D at no performance cost in terms of memory usage, thus providing an alternative to the
main garbage collected subset of the language.

We then proceeded to demonstrate that D can be successfully integrated with the Linux
kernel by porting and integrating a device driver, thus increasing its memory safety. Our
implementation is on par with the performance of the C written device driver, thus demon-
strating that incremental transitioning to a memory safe langauge, with no loss of perfor-
mance, is possible.

Finally, we have provided an analytical framework to understand the prefetching capa-
bilities of an application. Our framework may be used by computer architects and soft-
ware developers to optimize their systems with respect to prefetching. In addition, we
have demonstrated that programmable prefetching is possible by offloading prefetching to
FPGAs.

Therefore, we have presented contributions on all levels of the memory abstraction stack.

The gap between computing and memory access performance is only going to get wider as
time goes by. In addition, security will become a concern that is of equal (if not greater)
importance than memory performance. As such, it is critical that memory operations all
optimized for performance and security at all levels of abstraction. This thesis paves the
way to a world where memory operations that are easily expressible by the user are run in
a secure environment, on top of customizable, application-specific hardware.

17

CHAPTER 6. CONCLUSIONS 18

6.1 List of Publications

1. Razvan Nitu, Eduard Stdniloiu, Cristian Creteanu, Rdzvan Rughinis, "Building an
Interface for the D Compiler Library”, 2021 20th RoEduNet Conference: Networking
in Education and Research (RoEduNet), Iasi.

2. Razvan Nitu, Eduard Staniloiu, Cristian Done, Razvan Rughinis, “Security Audit
for the D Programming Language”, 2021 20th RoEduNet Conference: Networking in
Education and Research (RoEduNet), Iasi.

3. Eduard Staniloiu, Razvan Nitu, Robert Aron, Razvan Rughinis, "Extending Client-
Server API Support for Memory Safe Programming Languages”, 2021 20th RoEduNet
Conference: Networking in Education and Research (RoEduNet), Iasi

4. Eduard Staniloiu, Razvan Nitu, Cristian Becerescu, Rdzvan Rughinis, "Automatic
Integration of D Code With the Linux Kernel”, 2021 20th RoEduNet Conference: Net-
working in Education and Research (RoEduNet), Iasi.

5. Razvan Nitu, Eduard Stdniloiu, Rdzvan Deaconescu, Razvan Rughinis, "Adding
Support for Reference Counting in the D Programming Language”, Proceedings of the
17th International Conference on Software Technologies (ICSOFT), Lisbon, 2022.

6. Eduard Staniloiu, Razvan Nitu, Rdzvan Deaconescu, Rizvan Rughinis, “A New Col-
lection Framework For the D Programming Language”, accepted for publication at
U.P.B. Scientific Bulletin Series C, Bucharest, Romania, 2022.

7. Razvan Nitu, Eduard Stdniloiu, Rdzvan Deaconescu, Rdzvan Rughinis, "Designing
Copy Construction for the D Programming Language”, accepted for publication at
U.P.B. Scientific Bulletin Series C, Bucharest, Romania, 2022.

8. Eduard Staniloiu, Rdzvan Nitu, Alexandru Militaru, Rdzvan Deaconescu, "Safer
Linux Kernel Modules Using the D Programming Language”, accepted for publication
in IEEE Access, 2022.

9. Razvan Nitu, Lingfeng Pei, Trevor E, Carlson, A Cross-Prefetcher Schedule Opti-
mization Methodology, IEEE Access, 2022.

10. Giorgiana Violeta Vldsceanu, Caraman Ghenadie, Rdzvan Nitu, Costin-Anton Boiangiu,
A voting method for image binarization of text-based documents”, 2022 21st RoE-
duNet Conference: Networking in Education and Research (RoEduNet), Bucharest.

Bibliography

[1]

2]

[10]

[11]

A. Jaspe-Villanueva, “Scalable exploration of 3d massive models,” Ph.D. dissertation,
11 2018.

R. Nitu, E. Staniloiu, C. Done, and R. Rughinis, “Security audit for the d
programming language,” in 2021 20th RoEduNet Conference: Networking in
Education and Research (RoEduNet). IEEE, 2021, pp. 1-6.

S. L. Peyton Jones and P. Wadler, “Imperative functional programming,” in
Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, ser. POPL ’93. New York, NY, USA: ACM, 1993, pp.
71-84. [Online]. Available: http://doi.acm.org/10.1145/158511.158524

K. Czarnecki, K. @sterbye, and M. Volter, “Generative programming,” in European
Conference on Object-Oriented Programming. Springer, 2002, pp. 15-29.

A. Machiry, C. Spensky, J. Corina, N. Stephens, C. Kruegel, and G. Vigna,
“{DR}.{CHECKER}: A soundy analysis for linux kernel drivers,” in 26th USENIX
Security Symposium (USENIX Security 17), 2017, pp. 1007-1024.

R. Johnson and D. Wagner, “Finding User/Kernel pointer bugs with type inference,”
in 13th USENIX Security Symposium (USENIX Security 04). San Diego, CA:
USENIX Association, Aug. 2004. [Online]. Available:
https://www.usenix.org/conference/13th-usenix-security-symposium/finding-
userkernel-pointer-bugs-type-inference

D. Dawson, N. Hawes, C. Hoermann, N. Keynes, and C. Cifuentes, “Finding bugs in
open source kernels using parfait,” 2009.

J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel, and G. Vigna,
“Difuze: Interface aware fuzzing for kernel drivers,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, 2017, pp.
2123-2138.

D. Song, F. Hetzelt, J. Kim, B. B. Kang, J.-P. Seifert, and M. Franz, “Agamotto:
Accelerating kernel driver fuzzing with lightweight virtual machine checkpoints,” in
29th USENIX Security Symposium (USENIX Security 20), 2020, pp. 2541-2557.

D. R.Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin, “Razzer: Finding kernel race
bugs through fuzzing,” in 2019 IEEE Symposium on Security and Privacy (SP).
IEEE, 2019, pp. 754-768.

S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz,
“{kAFL}:{Hardware-Assisted } feedback fuzzing for {OS} kernels,” in 26th USENIX
Security Symposium (USENIX Security 17), 2017, pp. 167-182.

19

http://doi.acm.org/10.1145/158511.158524
https://www.usenix.org/conference/13th-usenix-security-symposium/finding-userkernel-pointer-bugs-type-inference
https://www.usenix.org/conference/13th-usenix-security-symposium/finding-userkernel-pointer-bugs-type-inference

BIBLIOGRAPHY 20

[12] K. Lu, A. Pakki, and Q. Wu, “Automatically identifying security checks for detecting
kernel semantic bugs,” in European Symposium on Research in Computer Security.
Springer, 2019, pp. 3-25.

[13] C.Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee, “Enforcing kernel security
invariants with data flow integrity.” in NDSS, 2016.

[14] “Rust for Linux,” https://github.com/Rust-for-Linux, accessed: 2022-04-17.

[15] “Rust in the linux kernel: Good enough,”
https://thenewstack.io/rust-in-the-linux-kernel-good-enough/, accessed:
2022-04-17.

[16] “Linux kernel commit to add rust support,”
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
8aebac82933ffla7c8eedel8cabllel115e2062b, accessed: 2022-10-22.

[17] E. Staniloiu, R. Nitu, C. Becerescu, and R. Rughinis, “Automatic integration of d
code with the linux kernel,” pp. 1-6, 2021.

[18] T.-F. Chen and J.-L. Baer, “Reducing memory latency via non-blocking and
prefetching caches,” ser. ASPLOS V, 1992.

[19] J. Kim, S. H. Pugsley, P. V. Gratz, A. L. N. Reddy, C. Wilkerson, and Z. Chishti, “Path
confidence based lookahead prefetching,” in 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2016.

[20] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H. Pugsley, and
Z. Chishti, “Efficiently prefetching complex address patterns,” in 2015 48th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2015.

[21] F. Dahlgren and P. Stenstrom, “Effectiveness of hardware-based stride and
sequential prefetching in shared-memory multiprocessors,” in Proceedings of 1995
1st IEEE Symposium on High Performance Computer Architecture, 1995.

[22] I. Hur and C. Lin, “Memory prefetching using adaptive stream detection,” in 2006
39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’06),
2006.

[23] Y. Ishii, M. Inaba, and K. Hiraki, “Access map pattern matching for data cache
prefetch,” ser. ICS 09, 2009.

[24] R. Cooksey, S. Jourdan, and D. Grunwald, “A stateless, content-directed data
prefetching mechanism,” ser. ASPLOS X, 2002.

[25] J. Collins, S. Sair, B. Calder, and D. M. Tullsen, “Pointer cache assisted prefetching,”
ser. MICRO 35, 2002.

[26] A.Roth and G. S. Sohi, “Effective jump-pointer prefetching for linked data
structures,” ser. ISCA ’99, 1999.

https://github.com/Rust-for-Linux
https://thenewstack.io/rust-in-the-linux-kernel-good-enough/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=8aebac82933ff1a7c8eede18cab11e1115e2062b
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=8aebac82933ff1a7c8eede18cab11e1115e2062b

BIBLIOGRAPHY 21

[27] X.Yu, C.J. Hughes, N. Satish, and S. Devadas, “Imp: Indirect memory prefetcher,”
ser. MICRO-48, 2015.

[28] M. Cavus, R. Sendag, and J. J. Yi, “Array tracking prefetcher for indirect accesses,” in
2018 IEEE 36th International Conference on Computer Design (ICCD), 2018.

[29] S. Pakalapati and B. Panda, “Bouquet of instruction pointers: Instruction pointer
classifier-based spatial hardware prefetching,” in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), 2020, pp. 118-131.

[30] A.Jain and C. Lin, “Linearizing irregular memory accesses for improved correlated
prefetching,” ser. MICRO-46, 2013.

[31] D.Joseph and D. Grunwald, “Prefetching using markov predictors,” 1999.

[32] Y. Solihin, Jaejin Lee, and J. Torrellas, “Using a user-level memory thread for
correlation prefetching,” in Proceedings 29th Annual International Symposium on
Computer Architecture, 2002.

[33] O.Mutlu, J. Stark, C. Wilkerson, and Y. Patt, “Runahead execution: an alternative to
very large instruction windows for out-of-order processors,” 2003.

[34] M. Hashemi, O. Mutlu, and Y. N. Patt, “Continuous runahead: Transparent
hardware acceleration for memory intensive workloads,” 2016.

[35] O.Mutlu, H. Kim, and Y. N. Patt, “Techniques for efficient processing in runahead
execution engines,” in 32nd International Symposium on Computer Architecture
(ISCA’05). IEEE, 2005, pp. 370-381.

[36] S.ChappellRobert, StarkJared, P. KimSangwook, K. ReinhardtSteven, and
N. PattYale, “Simultaneous subordinate microthreading (ssmt),” ACM Sigarch
Computer Architecture News, 1999.

[37] R.S. Chappell, F. Tseng, A. Yoaz, and Y. N. Patt, “Microarchitectural support for
precomputation microthreads,” ser. MICRO 35, 2002.

[38] J. D. Collins, D. M. Tullsen, Hong Wang, and J. P. Shen, “Dynamic speculative
precomputation,” in Proceedings. 34th ACM/IEEE International Symposium on
Microarchitecture. MICRO-34, 2001.

[39] J. D. Collins, Hong Wang, D. M. Tullsen, C. Hughes, Yong-Fong Lee, D. Lavery, and
J. P. Shen, “Speculative precomputation: long-range prefetching of delinquent
loads,” in Proceedings 28th Annual International Symposium on Computer
Architecture, 2001.

[40] J. Lu, A. Das, W.-C. Hsu, K. Nguyen, and S. G. Abraham, “Dynamic helper threaded
prefetching on the sun ultrasparc cmp processor,” ser. MICRO 38, 2005.

[41] E.H. Gornish, E. D. Granston, and A. V. Veidenbaum, “Compiler-directed data
prefetching in multiprocessors with memory hierarchies,” in Proceedings of the 4th
International Conference on Supercomputing, ser. ICS *90, 1990.

BIBLIOGRAPHY 22

[42] S. W. Son, M. Kandemir, M. Karakoy, and D. Chakrabarti, “A compiler-directed data
prefetching scheme for chip multiprocessors,” ser. PPoPP *09, 2009.

[43] I. Lu, H. Chen, R. Fu, W.-C. Hsu, B. Othmer, P.-C. Yew, and D.-Y. Chen, “The
performance of runtime data cache prefetching in a dynamic optimization system,”
ser. MICRO 36, 2003.

[44] C.-K. Luk, R. Muth, H. Patil, R. Weiss, P. G. Lowney, and R. Cohn, “Profile-guided
post-link stride prefetching,” ser. ICS ’02, 2002.

[45] S. Ainsworth and T. M. Jones, “Software prefetching for indirect memory accesses,”
ser. CGO ’17, 2017.

[46] G. Ayers, H. Litz, C. Kozyrakis, and P. Ranganathan, “Classifying memory access
patterns for prefetching,” ser. ASPLOS *20, 2020.

[47] D.Kim and D. Yeung, “Design and evaluation of compiler algorithms for
pre-execution,” 2002.

[48] D.Kim and D. Yeung, “A study of source-level compiler algorithms for automatic
construction of pre-execution code,” ACM Trans. Comput. Syst., 2004.

[49] Changhee Jung, Daeseob Lim, Jaejin Lee, and Y. Solihin, “Helper thread prefetching
for loosely-coupled multiprocessor systems,” in Proceedings 20th IEEE International
Parallel Distributed Processing Symposium, 2006.

[50] M. Kamruzzaman, S. Swanson, and D. M. Tullsen, “Inter-core prefetching for
multicore processors using migrating helper threads,” ser. ASPLOS XVI, 2011.

[51] H. Al-Sukhni, I. Bratt, and D. A. Connors, “Compiler-directed content-aware
prefetching for dynamic data structures,” in 2003 12th International Conference on
Parallel Architectures and Compilation Techniques, 2003.

[52] C.-L. Yang and A. Lebeck, “A programmable memory hierarchy for prefetching
linked data structures,” 2002.

[53] S. Choi, N. Kohout, S. Pamnani, D. Kim, and D. Yeung, “A general framework for
prefetch scheduling in linked data structures and its application to multi-chain
prefetching,” ACM Trans. Comput. Syst., 2004.

[54] N. Kohout, Seungryul Choi, Dongkeun Kim, and D. Yeung, “Multi-chain
prefetching: effective exploitation of inter-chain memory parallelism for
pointer-chasing codes,” in Proceedings 2001 International Conference on Parallel
Architectures and Compilation Techniques, 2001.

[55] S. Ainsworth and T. M. Jones, “An event-triggered programmable prefetcher for
irregular workloads,” ser. ASPLOS ’18, 2018.

[56] S. Ainsworth and T. M. Jones, “Graph prefetching using data structure knowledge,”
ser. ICS ’16, 2016.

BIBLIOGRAPHY 23

[57] M. Cavus, R. Sendag, and J. J. Yi, “Informed prefetching for indirect memory
accesses,” ACM Trans. Archit. Code Optim., 2020.

[58] C.Cimpanu, “Microsoft: 70 percent of all security bugs are memory safety issues,”
URL: https://www. zdnet.
com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues, 2019.

[59] A. Bannister, “Substandard software costs us economy $2tn through security flaws,
legacy systems, abandoned projects,” URL:
https://portswigger.net/daily-swig/substandard-software-costs-us-economy-2tn-
through-security-flaws-legacy-systems-abandoned-projects, 2021.

[60] M. Dawson, D. N. Burrell, E. Rahim, and S. Brewster, “Integrating software
assurance into the software development life cycle (sdlc),” Journal of Information
Systems Technology and Planning, vol. 3, no. 6, pp. 49-53, 2010.

[61] S.Dange and M. Chatterjee, “Iot botnet: the largest threat to the iot network,” in
Data Communication and Networks. Springer, 2020, pp. 137-157.

[62] D. McMillen, “Internet of threats: Iot botnets drive surge in network attacks,” URL:
https://securityintelligence.com/posts/internet-of-threats-iot-botnets-network-attacks/,
2021.

[63] Z.Whittaker, “Mirai botnet attackers are trying to knock an entire country offline,”
URL: https://www.zdnet.com/article/mirai-botnet-attack-briefly-knocked-an-entire-
country-offline/, 2016.

[64] P. Lee, Topics in Advanced Language Implementation. MIT Press, 1991.

[65] D.E. Knuth, “The art of computer programming. volume 1: Fundamental
algorithms. volume 2: Seminumerical algorithms,” Bull. Amer. Math. Soc, 1997.

[66] . H. McBeth, “Letters to the editor: on the reference counter method,”
Communications of the ACM, vol. 6, no. 9, p. 575, 1963.

[67] D.Kosutic and F. Pigni, “Cybersecurity: investing for competitive outcomes,”
Journal of Business Strategy, vol. ahead-of-print, 10 2020.

[68] F.Salahdine and N. Kaabouch, “Social engineering attacks: A survey,” Future
Internet, vol. 11, no. 4, p. 89, 2019.

[69] K. Reese, T. Smith, J. Dutson, J. Armknecht, J. Cameron, and K. Seamons, “A
usability study of five Two-Factor authentication methods,” in Fifteenth Symposium
on Usable Privacy and Security (SOUPS 2019). Santa Clara, CA: USENIX
Association, Aug. 2019, pp. 357-370. [Online]. Available:
https://www.usenix.org/conference/soups2019/presentation/reese

[70] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach.
Elsevier, 2011.

https://www.usenix.org/conference/soups2019/presentation/reese

BIBLIOGRAPHY 24

[71]

[72]

[75]

[77]

[78]

(80]

(82]

W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of the
obvious,” ACM SIGARCH computer architecture news, vol. 23, no. 1, pp. 20-24, 1995.

A. Farshin, A. Roozbeh, G. Q. Maguire Jr, and D. Kosti¢, “Make the most out of last
level cache in intel processors,” in Proceedings of the Fourteenth EuroSys Conference
2019, 2019, pp. 1-17.

M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Bingo
spatial data prefetcher,” in 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 1EEE, 2019, pp. 399-411.

S. Pakalapati and B. Panda, “Bouquet of instruction pointers: Instruction pointer
classifier-based spatial hardware prefetching,” in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). 1EEE, 2020, pp.
118-131.

M. Bakhshalipour, S. Tabaeiaghdaei, P. Lotfi-Kamran, and H. Sarbazi-Azad,
“Evaluation of hardware data prefetchers on server processors,” ACM Computing
Surveys (CSUR), vol. 52, no. 3, pp. 1-29, 2019.

J. Kim, S. H. Pugsley, P. V. Gratz, A. N. Reddy, C. Wilkerson, and Z. Chishti, “Path
confidence based lookahead prefetching,” in 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 1EEE, 2016, pp. 1-12.

D. Suggs, M. Subramony, and D. Bouvier, “The AMD “Zen 2” processor,” IEEE
Micro, vol. 40, no. 2, pp. 45-52, 2020.

K. Viswanathan, “Disclosure of hardware prefetcher control on some Intel®
processors.” [Online]. Available:
https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-
prefetcher-control-on-some-intel-processors.html

A. Sodani, R. Gramunt, J. Corbal, H. Kim, K. Vinod, S. Chinthamani, S. Hutsell,
R. Agarwal, and Y. Liu, “Knights landing: Second-generation intel xeon phi
product,” IEEE Micro, vol. 36, no. 2, pp. 34-46, 2016.

J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy, “Power4 system
microarchitecture,” IBM Journal of Research and Development, vol. 46, no. 1, pp.
5-25, 2002.

R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield, K. Sugavanam,

P. Coteus, P. Heidelberger, M. Blumrich, R. Wisniewski, a. gara, G. Chiu, P. Boyle,
N. Chist, and C. Kim, “The ibm blue gene/q compute chip,” IEEE Micro, vol. 32,
no. 2, pp. 48-60, 2012.

S.Jamilan, T. A. Khan, G. Ayers, B. Kasikci, and H. Litz, “Apt-get: Profile-guided
<i>timely</i> software prefetching,” in Proceedings of the Seventeenth European
Conference on Computer Systems, ser. EuroSys '22. New York, NY, USA:

https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html

BIBLIOGRAPHY

25

Association for Computing Machinery, 2022, p. 747-764. [Online]. Available:
https://doi.org/10.1145/3492321.3519583

https://doi.org/10.1145/3492321.3519583

	1 Introduction
	1.1 Thesis Contributions
	1.2 Thesis Structure

	2 State of the Art
	2.1 Memory Management Techniques
	2.2 Memory Safety for the Linux Kernel
	2.3 Prefetching techniques

	3 Memory Performance - Adding Reference Counting in D
	4 Memory Safety - Improving The Safety of Applications By Using the D programming Language
	5 Memory Architecture - Improving Prefetching For Applications
	6 Conclusions
	6.1 List of Publications

