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INTRODUCTION 

The fast increase in the energy production from renewable energy sources, mainly solar 

Photovoltaics (PV) and wind, is encouraged resulting into a healthy green environment. 

However, because the production of energy from the solar PV and wind renewable energy 

sources cannot be predicted, they can disrupt the stability of the electrical grid system. 

According to the International Energy Agency (IEA) 2022 report [1] in 2019 the energy 

production increased from solar PV and wind sources by 11.6 % and 35.7 % respectively and 

as a result the stability of the electrical grid system was strongly affected. In this context, 

hydropower energy plays an essential role in the stability of the electrical grid system as water 

is the only one capable of being stored at a large scale on the long term. 

Each time a hydraulic turbine is operated under different loads than the rated one or 

during load variations, it is subjected to hydraulic and mechanical overloads leading to 

shortening the lifetime of the turbines components [2], [3]. To lower the financial and time 

resources for assessing the turbine performances, a great interest in computational fluid 

dynamics (CFD) is rising. The numerical simulation approach can be used to design and 

estimate the turbine performances in a cost-effective manner [4], [5]. In most industrial 

applications, the Reynolds Averaged Navier Stokes (RANS) equations-based turbulence 

models are used, due to their small computational requirements [6], [7]. Over time, different 

wall treatments were developed for the RANS equations-based turbulence models with the 

purpose of a better estimation of the flow quantities in the near wall zone. Over the past decade, 

special attention was given to modifying the turbulence models with different sets of equations 

and algorithms, with the purpose of improving the simulations results or simply to reduce the 

required time and/or computational power requirements, by observing other flow characteristics 

that can be taken into consideration such as the pressure gradient [8], [9]. To improve the 

solution of the RANS numerical simulations, the k - ω turbulence model was developed. The 

use of this model requires a very fine discretization of the computational grid, with y+ = 1, 

leading to large time and computational effort [4], [7]. 

The work of the thesis is focused around the two equations eddy viscosity turbulence 

model, the k - ω turbulence model. The main reason for choosing the eddy viscosity turbulence 

models was that they represent the most used numerical approaches in the academic community 

and in the industry [6], [7]. Two wall models are used for implementation, one developed by 

Manhart [8], and one by Duprat [10]. The two wall models were developed based on the 

standard wall function and, in addition, they consider the influence of the streamwise pressure 

gradient [8], [10]. So far, the wall models were successfully validated against Direct Numerical 

Simulations (DNS), by Manhart [8] and Duprat [10], and Large Eddy Simulations (LES) by 

Duprat [10]. In this thesis, the Manhart and Duprat wall models, were implemented in the k - ω 

SST turbulence model used to carry out RANS numerical simulations of steady flow and 

unsteady pulsating turbulent flows. 

The main objective of this thesis is to decrease the computation time and computational 

effort of numerical simulations using wall models in flows with strong adverse pressure 

gradients and pulsations. The wall models used in the numerical simulations are the standard 

formulation of the k - ω SST turbulence model (linear law of the wall), the Manhart wall model 

[8] and the Duprat wall model [11]. The wall models of Manhart and Duprat are implemented 

in the k - ω SST turbulence model. The RANS numerical simulations performed are steady-

state and unsteady-state numerical simulations. The unsteady-state numerical simulations are 

carried out to resemble several pulsating turbulent flows. The turbulent flows analysed are 

characterized by three oscillations frequencies 0.03 Hz, 0.10 Hz, 0.35 Hz. The results of the 

numerical simulations showed a decrease in the computation time and computational effort 
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required while keeping a good approximation of the experimental measurements. The test case 

on which the numerical simulations are performed replicates the experimental set-up of 

Cervantes and Engström [12] which is also used for validation. 

In this thesis investigations are conducted to study the work of Manhart and Duprat on 

more complex geometries and flow regimes. The wall models of Manhart and Duprat were used 

in numerical simulations performed on an asymmetric diffuser for one steady flow and three 

pulsating flows. The Manhart and Duprat wall models are applied to RANS based numerical 

simulations in contrast to the DNS and LES analysis conducted by Manhart and Duprat. The 

first two chapters present the state of the art of flow analysis in CFD, where the usual wall 

functions and turbulence models are used in CFD. Also, in these chapters the wall models of 

Manhart and Duprat are presented. In chapter 3 the free open source CFD code, Code_Saturne, 

is presented followed by the wall functions implementation procedure. Chapters 4 and 5 

presents the experimental and numerical test cases followed by the experimental data processed 

for validating the numerical simulations of the steady and three pulsating flows. The 

comparisons between the experimental data and the numerical simulations are presented in 

chapter 6 for steady flow and in chapter 7 for pulsating flows, including the sensitivity analyses 

of each type of numerical simulation. At the end of the thesis are presented the conclusions, 

personal contributions and future work directions of the research conducted. 

THEORETICAL ASPECTS OF TURBULENT BOUNDARY LAYER IN CFD 

Turbulent flows involve high Reynolds numbers, that contain 3D fluid structures known 

as eddies or vortices. The eddies inside the turbulent flows are present in a wide range of sizes 

that are randomly changing in both time and space. Modelling the turbulence requires the 

estimation of all eddies energy, from the smallest to the largest one, in both time and space, 

resulting in a very difficult task to accomplish. However, numerous efforts have been made in 

predicting the turbulence using different models and numerical approaches [13], [14], [15], 

[16], [17], [18]. 

The first approach is the Direct Numerical Simulations (DNS). It is the most accurate 

numerical method in which the Navier-Stokes equations, (1) and (2), are solved for all structures 

in the turbulent flow. The disadvantage of DNS is that the computational power requirement is 

extremely high, and a very fine mesh must be made. The computational effort for using DNS 

is increased with the Reynolds number (Re) the number of mesh node is proportional to Re3 

[7]. Therefore, making its availability of use limited to geometries with low or moderate 

Reynolds number flows [7], [4], [19], [20]. 

 ( ) 0u
t





+  =


 (1) 

 
( )

( ) ( )
u

u u P g
t


  


+  = − + +


 (2) 

 

The second approach is the Large Eddy Simulations (LES). It gives a very good 

estimation of the turbulent flow while demanding less computational effort than the DNS 

approach. The LES method solves only a part of the turbulent motions inside the fluid, that is 

the large scales, or the large eddies, using a “filtered” velocity field defined as a function of 

length and time dependent, Ũ (x, t) [21]. In LES, a modified version of the Navier-Stokes 

equations, (1) and (2), is solved only for the large motions scales, while for the rest of the motion 

scales includes a model that considers the influence of the small eddies from the fluid. 

The third approach is the Reynolds-Averaged Navier-Stokes (RANS) simulations. This 

approach uses turbulence models for predicting the motions in the turbulent flow. It is 
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economical in terms of computational power requirement, where very fine mesh and direct 

calculation of the Navier-Stokes equations can be avoided [7], [6]. The RANS approach solves 

the Navier-Stokes equations using the Reynolds-averaged method. It is based on using a 

statistical approach, (3), where the instantaneous quantities of the flow, ϕ, are decomposed into 

a time-averaged component,  , and a time-fluctuating component, ϕ’, [7], [6], [22], [23]. 

 ( ) ( ) ( ), ' ,x t x x t  = +  (3) 

where ϕ is the instantaneous variable,   - the time-averaged variable component, ϕ’ - the time-

fluctuating part of the variable. 

 

The application of the Reynolds-averaged method over the non-linear Navier-Stokes 

equations results in additional terms that need to be modelled. The additional unknown terms 

are called Reynolds stresses, Rij, and they are determined using turbulence models. These 

turbulence models contain equations used for calculating the Reynolds stresses, e.g., the k-ε 

turbulence model, the k-ω turbulence model etc. [7], [6], [23], [24]. 

The most frequently used turbulence models are the two-equations turbulence models: 

the standard k-ε turbulence model and the k-ω SST turbulence model. In addition to the 

continuity and momentum equations two more equations are added: one equation for the 

turbulent kinetic energy, k, and depending on the turbulence model used, another equation for 

the turbulence dissipation rate, ε, or the specific dissipation rate of turbulent kinetic energy, ω, 

also known as the turbulence frequency [7], [22], [23], [24]. 

The k–ω SST turbulence model 

The k–ω SST turbulence model is based on the k-ω turbulence model, equations (4) and 

(5), combined with the advantages of the k-ε turbulence model. Therefore, it offers accurate 

results both in the near-wall region and further from the wall. In the near-wall region, where 

the flow separation occurs due to adverse pressure gradients and geometries with strong 

curvatures, the k-ω SST turbulence model uses the k-ω turbulence model formulation. Far from 

the near-wall region, the k-ω SST turbulence model behaves as the k-ε turbulence model in the 

modelling the flow. To use the proper turbulence model formulation for either near-wall region 

or for the region far away from the wall, the k-ω SST turbulence model involves the use of 

blending functions. 

The transport equations used for the k-ω turbulence model are: 

 ( ) ( ) t
k kb

i j k j

k
k ku P k P

t x x x


     



     
+ = + + − +  

      

 (4) 

 ( ) ( ) 2t
k b

i j j

u P P
t x x x k




  
    



     
+ = + + − +  

      

 (5) 

where Pk is the production of turbulent kinetic energy and is calculated in the same way as for 

the k-ε turbulence model, Pεb is the production term due to buoyancy forces. 

 

The constants of the k-ω turbulence model are presented in Table 1. 

Table 1 Constants of the k–ω turbulence model 

β β’ α σk σω 

0.075 0.09 5/9 2 2 
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To consider the transport of the turbulent shear stress, a modification to the turbulent 

viscosity, μt, is required, as presented in equation (6) [23], [24]. 

 
( )

1

1 2max ;
t

a k

a SF
 


=

 

(6) 

 

2

2 2

2 500
tanh max ;

k
F

y y



  
=



   
           

(7) 

where, a1 is a model constant, with a1 = 0.31, S is the invariant measure of the strain rate, F2 is 

a blending function for calculations in the boundary layer. 

 

The definition of the production term for the specific dissipation rate of turbulent kinetic 

energy, Pω, is presented in equation (8). 

 
3

k
t

P P




 
=  
   

(8) 

Turbulent boundary layer modelling 

• Standard wall function 

It is based on the work of Launder and Spalding (1972) where the near-wall region can 

be divided in three sub-layers, Figure 1. The subdivisions of the near-wall region are delimited 

by the dimensionless distance normal to the wall, y+, defined in equation (9) [7], [6], [24]. 

 
yu

y 



+ =
 

(9) 

 

 
Figure 1. Subdivisions of the boundary layer in standard wall function 

 

The “viscous sublayer” is limited to y+ ≤ 5 and in this region the velocity distribution is 

assumed to have a linear variation. The “buffer layer” starts from y+ = 5 and it stops at around 

y+ = 30. Here, because multiple forces are dominant over the velocity field, i.e., viscous and 

turbulence forces, it is very difficult to accurately predict the flow quantities inside the layer. 

The third layer of the boundary layer is called the “logarithmic layer” due to the velocity 

distribution that follows a logarithmic variation (known also as the “log-law”). The logarithmic 

layer usually starts from y+ = 30 and it goes up to y+ = 100 , or even more, depending of the 

flow regime, [7], [22], [23], [24]. 

The velocity distribution used in the standard wall function is defined using the equation 

(10) for a y+ ≤ 5 and using the equation (11) for a y+ ≥ 30 [23]. 

0 5 30 > 100 y+ 

U+ inner layer 

viscous  

sublayer 

 

U+ = y+ 

outer layer 

buffer  

layer 
logarithmic  

layer 
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The formula of the friction velocity, uτ, based on the wall shear stress is presented in 

equation (12). 

 
wu




=

 

(12) 

 

• Manhart wall model 

Manhart [8] proposed a new velocity scaling that considers the pressure gradient in 

addition to the wall shear stress. For estimating the velocity field Manhart use a characteristic 

velocity, uτp, instead of the friction velocity, uτ, and it is based on the wall shear stress and the 

streamwise pressure gradient (Simpson [25]). 

The characteristic velocity, uτp, is defined as 

 2 2
p pu u u = +

 
(13) 

where, uτ is the friction velocity due to the wall shear stress influence, equation (14), 

 
wu




=

 

(14) 

and up is the velocity influenced by the streamwise pressure gradient. equation (15). 

 

1 3

2p
P

u
x






=


 

(15) 

where, /P x   is the streamwise pressure gradient. 

 

The wall model proposed by Manhart estimates the velocity profile for the “viscous 

sublayer”, up to y+ = 5, in dimensionless form, equation (16), using the equations (17). 

 ( ) ( )
23 2* * *1w m m

P
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U
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=
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* pyu
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2

2m

p

u
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(17) 

where y* is the dimensionless distance based on the characteristic velocity defined in equation 

(13) and αm is a parameter that takes account of wall shear stress, equation (14), and streamwise 

pressure gradient, equation (15). 

 

Manhart validated his wall model results against DNS results. Due to the lack of 

computational power availability, the Manhart wall model was validated up to a y+ = 5 [8]. 

 

• Duprat wall model 

The Manhart wall model was further developed by Duprat [11] envisaging the accuracy 

improvement of the wall model and the application domain extension. The application domain 

of the Duprat wall model was extended compared to the Manhart wall model, from a y+ = 5 up 

to y+ = 100 [9], [11], [26]. 

To consider the pressure gradient further away from the wall, Duprat [11] developed a 

new turbulent viscosity, νt, model presented in equation (18). It is influenced by the two velocity 

scales, uτ and up, the dimensionless wall normal distance, y*, and the Kármán constant, κ. 

 U y+ +=
 

(10) 

 
1

lnU y C


+ += +
 

(11) 
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where, βd = 0.78 and A = 17, are two coefficients used in the Duprat wall model for 

approximation of the turbulent viscosity, νt, when compared to the DNS results, for a turbulent 

flow [11]. 

 

Using the turbulent viscosity equation (18), the Manhart wall model, equation (16), was 

developed by Duprat resulting in Duprat wall model, equation (19). 
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(19) 

 

The validation procedure of the Duprat wall model was made using LES on test cases 

under the effects of the favourable or adverse pressure gradient where the y+ reached values 

around 100 [9], [26]. 

The Duprat and Manhart wall models are working as a one scale velocity wall function, 

where the characteristic velocity scale, uτp, is used which includes the influence of wall shear 

stress and streamwise pressure gradient. The characteristic velocity scale, uτp, is based on the 

friction velocity, uτ, and the velocity due to the pressure gradient, up, and the influence of the 

pressure gradient is accounted by a flow parameter, α. 

CFD code Code_Saturne 

Code_Saturne is an open-source software used for Computational Fluid Dynamics 

(CFD) applications, developed by EDF R&D. It can solve the Navier-Stokes equations for flow 

simulations in 2D or 3D dimensions for laminar or turbulent regime. Code_Saturne can solve 

the general flow equations for incompressible or weakly dilatable, steady or unsteady flows, 

using structured and unstructured meshes. Code_Saturne is compatible with several mesh 

generators software as: SALOME, Gambit, ICEM-CFD, Star-CCM+ etc. [23]. The code can 

also conduct numerical analyses based on several modules as: Lagrangian, Gas combustion 

module, Compressible module etc. The available simulation types for numerical analyses are 

the RANS-based simulations and the Large-Eddy Simulations, with various turbulence models 

options. 

Code_Saturne uses a discretization based on a co-located Finite Volume approach, 

where the equations solved are integrated over each cell of the mesh domain or over the control 

volume Ωi. Code_Saturne can carry out steady-state or unsteady-state numerical simulations. 

For the unsteady-state numerical simulations, Code_Saturne uses a θ-scheme for the 

discretization of time. It involves applying an algorithm based on a prediction-correction 

method to solve the mass and momentum equations. For pressure-velocity coupling 

Code_Saturne can use several algorithms as SIMPLE, SIMPLEC and PISO. Code_Saturne can 

solve the convective term using several schemes as Upwind, Centred and Second Order Linear 

Upwind (SOLU) Schemes. The SOLU scheme has the advantage of an increased precision 
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compared to the first two schemes. In Code_Saturne, two algorithms are available for 

computing the cell gradient for scalars and vector fields: the standard method and the Least-

square method. Comparing the two methods, the standard method is more robust, but the 

computational effort is higher, while on the other hand the Least-square method is faster, but 

the results are less accurate. 

Wall function implementation 

A user defined wall function can be implemented in Code_Saturne using two methods, 

depending on the required level of detail: 

1. The standard user boundary conditions, where to the standard boundary conditions of 

the domain can be applied simple mathematical expressions. 

The standard boundary conditions can be modified through the Graphical User Interface 

(GUI) using the available built-in options or through simple user defined functions, as in 

equation (20). 

 ( )2 sinU a b t= + +   (20) 

where a, b and t are examples of several variables needed for the standard boundary condition. 

 

2. The wall function boundary conditions, where advanced specific code language 

knowledge of Code_Saturne and several codes programming languages are required. 

The user defined wall function boundary conditions require accessing the internal code 

variables used to either set the boundary conditions in a more advanced approach than the user 

law approach or to change the variation of the flow parameters inside the boundary layer. 

The Duprat and Manhart wall models are implemented as a wall function boundary 

condition. A workflow diagram on how the Duprat or Manhart wall models are integrated in 

the Code_Saturne solver is presented in Figure 2, the location in the Code_Saturne computation 

process is marked with a red dotted contour. At the start of the numerical simulation the script 

with the simulation setup is passed to the kernel of Code_Saturne along with the pre-processor 

data, where the mesh is analysed and prepared for computation. 

Code_Saturne handles the user-defined functions in two steps. In the first step, a 

verification of the user-defined function is made. This step is taking place at the start of the 

computational process where the user-defined functions are compiled into the code as an 

external input file. The second step is when the user-defined functions are applied to the 

computation process, after the mass and momentum equations are solved, red dotted line 

contour in Figure 2. 
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Figure 2. Integration of wall functions in Code_Saturne code. 

ASYMMETRIC DIFFUSER NUMERICAL TEST CASE 

The test case used in this thesis is an asymmetric diffuser preceded by a rectangular 

duct, Figure 3; see Cervantes and Engström [12]. The reason for using the experimental setup 

from the work of Cervantes and Engström [12] is the detailed velocity measurements performed 

in the boundary layer, under the influence of a moderate pressure gradient, making possible the 

validation of the numerical results against the experiments. 

 
Figure 3. Experimental setup – asymmetric diffuser, dimensions in mm [12]. 

 

The test section used for the numerical analysis comprises of a straight rectangular duct 

of 2.102 m length, with a height h = 0.1 m and a width w = 0.15 m, followed by an asymmetric 
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rectangular diffuser with a diverging upper wall (Figure 3). The asymmetric diffuser from the 

experimental setup (Figure 3) was designed to maintain a constant adverse (or positive) pressure 

gradient on the entire length of the diffuser. It starts with an angle of 2.5° at the inlet, at x = 

2.082 m, and increases smoothly, along the diffuser length, to an angle of 7.5° at the outlet, at 

x = 2.772 m, with an opening of 0.15 m × 0.15 m. The walls of the test section were made from 

transparent Plexiglas [12], [13]. 

The velocity measurements for this test case were carried out by Cervantes and 

Engström [12] using a Laser Doppler Anemometer (LDA). Experimental data of streamwise 

(in x-direction) and normal (in y-direction) velocity components, U and V, were measured at 

the bottom wall of the diffuser. During the analysed flow regimes, the two components of the 

velocity profile were measured in detail at two sections in the diffuser, at x = 2.082 m, S1, and 

x = 2.632 m, S2. The two measurement sections were chosen to analyse the flow with and 

without the influence of the adverse pressure gradient. The measurements were made at the 

half-width of the diffuser, z = 0.075 m, along a normal line from the bottom wall of the diffuser. 

The experiment was made for one steady-state regime and three unsteady-state regimes 

(pulsating flows) obtained by modifying the frequency of the pump electric current. The 

oscillations of the three pulsating flows are characterized on three frequencies f = 0.03 Hz, f = 

0.10 Hz and f = 0.35 Hz. All the measurements made on the experimental setup were made with 

a maximum uncertainty of 0.5% for the velocity measurements [12]. 

Numerical test case 

The geometry of the numerical test case comprises the straight rectangular duct, starting 

at x = 0.1 m, followed by the asymmetric diffuser, up to x = 2.772 m, as presented in Figure 3 

marked with red discontinued line. The dimensions of the experimental setup are considered in 

designing the geometry for the numerical simulations. The geometry used for the numerical 

simulations is presented in Figure 4 and in Figure 5 is presented a detailed view on the diffuser 

part. 

 
Figure 4. Geometry of the numerical test case, side and top view. 

 
Figure 5. Asymmetric diffuser detail. 

 

The mesh was generated in ICEM CFD. First, the blocking structure also known as 3D 

bounding box was created. After the blocking topology is created, it can be modified to fit the 
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geometry properly by splitting the initial block into smaller ones for a further, more detailed 

blocking topology. The blocking topology was adjusted through various tools, such as splitting 

or merging the blocks, modifying edges or faces, move vertices and Ogrid definition. The 

blocking topology created for generating the mesh for the numerical test case is presented in 

Figure 6 [27]. 

 
Figure 6. Blocking structure, with zoom for the asymmetric diffuser. 

 

The solver used in the numerical simulations presented in this thesis is Code_Saturne. 

Code_Saturne can handle both structured and unstructured meshes. Because of the complexity 

of the geometry of the asymmetric diffuser, an unstructured mesh was created. Therefore, the 

mesh was initially generated as a structured mesh and then converted into an unstructured mesh. 

This conversion allows keeping the advantage of the alignment of structured mesh cells and the 

advantage of the connectivity to the geometry of an unstructured mesh [28]. The generated 

mesh for the asymmetric diffuser is an unstructured mesh with dominant hexahedral cells, an 

example of the mesh required for the asymmetric diffuser is presented in Figure 8, Figure 7 and 

Figure 9. 

 
Figure 7. Mesh domain. 

 
Figure 8. Mesh domain, inlet and outlet view. 

Inlet 

Outlet 

Diffuser inlet 

Inlet 

Outlet 

Inlet 

Outlet 



17 

 

 
Figure 9. Mesh diffuser detail, cross-section through the centre of geometry view. 

 

The generated mesh must meet the minimum mesh quality conditions imposed by the 

CFD solver, Code_Saturne. After the simulation setup is completed, the simulation process 

consists in following three steps: mesh processing, variables computation and output of the 

numerical solution. Most of the time the mesh quality criteria verified by the CFD solver are 

not the same as the mesh quality criteria available in the mesh generation software. Therefore, 

the compatible mesh quality parameters from ICEM CFD that correspond with the required 

mesh quality parameters from Code_Saturne solver were analysed [27], [28]. The compatible 

ICEM CFD mesh quality parameters with the Code_Saturne solver mesh quality parameters 

are: aspect ratio, minimum angle, volume change and warpage. 

In Code_Saturne the quality of the mesh is verified at the beginning of the numerical 

simulation. The cells with unsatisfactory quality are marked as “bad cells”, requiring an 

improvement in the quality of the mesh. The mesh quality criteria verified by Code_Saturne 

solver are cell’s non-orthogonality (Qf
ortho), cell’s offset (Qoffset), cell’s distortion (QLSQ), cell’s 

volume ratio (Qvol) and the “guilt by association” [28]. 

The results of the mesh quality analysis are presented at the beginning of each 

simulation, as the number of bad cells and as in percentage of bad cells for each of the five 

quality criteria. After reading the meshes in Code_Saturne, the pre-processor returned no errors 

regarding the mesh quality for all numerical simulations of steady and pulsating flows. 

Numerical simulations settings 

For the numerical analysis performed for the asymmetric diffuser test case, three 

simulations using RANS k-ω SST were carried out. The simulations were made using the 

Code_Saturne CFD solver, using the k-ω SST turbulence model. The settings applied to the 

numerical simulations are presented further for both steady-state and unsteady-state regimes. 

In this thesis the work of Manhart and Duprat was further extended to the following 

analyses. Firstly, the wall models of Manhart and Duprat were used in less expensive numerical 

simulations, RANS rather than DNS and LES, and on a more complex geometry than the cases 

used in the initial analyses conducted by Manhart and Duprat. Secondly, the wall models of 

Manhart and Duprat were used in carrying out steady and unsteady pulsating flows numerical 

simulations, not only in steady state LES as presented in Duprat [11]. Thirdly, all the numerical 

simulations results presented in this thesis were compared with detailed experimental 

measurements available from Cervantes and Engström [12]. 

The steady-state numerical simulations were performed using the SIMPLE algorithm 

for coupling the pressure with velocity, while for the unsteady-state numerical simulations, the 

SIMPLEC algorithm was used. For computing the gradient of cells for each flow variable, the 

least-squares method with an extension to the neighbouring cells was used. The Second Order 

Linear Upwind (SOLU) scheme was used for computing the velocity field and turbulent 

variables, k and ω [28]. 

The boundary conditions were set in the same way for all numerical simulations, 

accordingly to the experimental conditions, except for the inlet boundary condition. The 

locations of the boundary conditions are presented in Figure 10, and they are color-coded: inlet 

of the domain is coloured in blue; the walls of the domain are represented with grey, and the 
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outlet of the domain is marked with green. For the unsteady-state numerical simulations it was 

used a symmetry plane marked with red colour. 

The inlet boundary condition for the steady-state numerical simulations was set to a 

steady velocity of 0.165 m/s, normal to the surface of the inlet rectangular straight duct. Based 

on the work of Salehi et al. (2017), the turbulent intensity was set to 3.0 %, which corresponds 

to a medium turbulent intensity [13]. 

For unsteady-state numerical simulations, the velocity at the inlet boundary condition 

was set to a periodic function, equation (21). Three different flow regimes were simulated based 

on the frequency of the pulsating flows oscillations f1 = 0.35 Hz, f2 = 0.10 Hz and f3 = 0.03 Hz. 

 ( ) ( )( )0 1 cos 2Uc cU U A U f t=  +    (21) 

where U0, (AUc / Uc), f and t are the mean velocity, the perturbation of the oscillation signal, the 

frequency of the pulsating flow and the current time. 

 

 
a) steady flow 

 
b) pulsating flows 

Figure 10. Asymmetric diffuser test case - boundary conditions. 

 

The outlet and the walls were set in the same way for all numerical simulations, steady 

and unsteady. The flow that exits from the experimental test case is in contact with the 

atmospheric pressure. Therefore, an outlet boundary condition with an atmospheric pressure of 

0 Pa relative pressure was set at the exit of the numerical test case. Since the material for the 

walls of the experimental test case was Plexiglas, the walls boundary conditions of the 

numerical test case were set as smooth walls with the “no-slip” condition applied. For reducing 

the computational effort, for the unsteady-state numerical simulations, it was used a symmetry 

plane at the half width (z = 0.075 m) of the asymmetric diffuser geometry. 

 

NUMERICAL RESULTS VALIDATION 

Experimental data 

The experimental data were obtained by Cervantes and Engström [12]. The 

measurements were carried out in the asymmetric diffuser marked with the red discontinued 

red line in Figure 3. The experimental data were processed to obtain time-averaged flow 

variables, time-development flow quantities, phased-averaged flow variables. The experimental 

flow quantities presented in this section are used with the consent of the authors of the 

experiment and processed to validate the numerical simulations results performed in this thesis. 
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• Time-averaged flow variables 

The time-averaged flow variables used in the validation of the numerical simulations 

are the dimensionless streamwise velocity, U+, (Figure 11) and dimensionless turbulence 

production, Pk
+, (Figure 12). The friction velocity, uτ, used for normalizing U+ and Pk

+, was 

determined using a fifth order polynomial approximation based on equation (22) [12], valid for 

a y+ ≤ 12. 

 
2

2 4 51

2

u dP
U y y Dy Ey

dx



 
= + + +  (22) 

where y is the distance from the wall to the computational point, dP/dx is the pressure gradient 

in the streamwise direction, D and E are free parameters. 

 
Section S1 

 
Section S2 

Figure 11. Experimental time averaged streamwise velocity, U+ 

 

 
Section S1 

 
Section S2 

Figure 12. Experimental time averaged turbulent production, Pk
+ 

 

• Time-development flow quantities 

The time-development flow variables used in the comparisons of the numerical 

simulations and experimental data are the centreline velocity, Up, (Figure 13) and wall shear 

stress, τw, (Figure 14). The velocity measured in the centreline of the diffuser, Up, was 

normalized with its mean value, Uc. The development in time of the centreline velocity was 

reduced to one period as the flows are periodic. The variation in time of the normalized wall 

shear stress with its mean value, τm. is presented for one period, in Figure 14. 
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Section S1 

 
Section S2 

Figure 13. Experimental time development of centreline velocity normalized with mean centreline 

velocity, Up / Uc 

 

 
Section S1 

 
Section S2 

Figure 14. Experimental time development of wall shear stress normalized with the mean wall shear 

stress, τw / τm 

 

• Phased-averaged flow variables 

The phased-averaged flow variables used in the validation of the numerical simulations 

are the amplitude of streamwise oscillating velocity, AU, (Figure 15) and phase shift of the 

streamwise oscillations, φU, (Figure 16). 

The amplitude of streamwise oscillating velocity, AU, from experiment was normalized 

with its value at the centre of the asymmetric diffuser, AUc, and is presented in Figure 15. The 

difference between the experimental phase of the streamwise velocity oscillation, ϕU, and its 

centre value, ϕUc, is presented in Figure 16. The continuous line represents the amplitude of the 

Stokes solution in a channel. 

 
Section S1 

 
Section S2 

Figure 15. Experimental amplitude of the streamwise oscillating velocity normalized with the centre 

streamwise amplitude, AU / AUc 
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Section S1 

 
Section S2 

Figure 16. Experimental phase shift of the streamwise oscillation relative to the centre streamwise 

velocity, ϕU / ϕUc. 

 

The experimental data are used to validate the numerical simulations results carried out 

using the three wall models (k-ω SST, Manhart k-ω SST and Duprat k-ω SST), for one steady 

flow and three pulsating flows with the frequencies of 0.35 Hz, 0.10 Hz and 0.03 Hz. 

Steady flow numerical simulations results 

The validation of the steady flow numerical simulation results with the experimental 

data is performed for the time-averaged variables: streamwise velocity, U, and turbulent 

production, Pk. Because the research conducted for this thesis is focused on the boundary layer, 

all the numerical simulations carried out are based on the k-ω SST turbulence model. The 

experimental data used in the validation of the numerical simulations was available from the 

work of Cervantes and Engström [12]. Furthermore, the numerical results were compared 

against detailed numerical simulations of Reynolds Stress Model (RSM) [29] performed by 

Salehi et al. [13]. The RSM numerical simulations performed by Salehi et al. [13] are carried 

out using boundary conditions very similar to the experimental procedure performed by 

Cervantes and Engström [12]. The comparison of the numerical results with the experimental 

data was made in two sections from the numeric case: at x = 2.082 m, S1, and at x = 2.632 m, 

S2, the same as the measurement sections (Figure 3). 

To determine the right mesh dimension for the steady-state numerical simulations mesh 

sensitivity studies were performed. The parameters used for the mesh sensitivity studies were 

the streamwise velocity, U, and the friction velocity, uτ. To keep a good accuracy of the 

numerical simulations results and to avoid large computational costs, from the comparisons 

performed in the mesh sensitivity study resulted that the normal size mesh can be chosen for 

the validation of the numerical simulations. Table 2 presents the mesh quality parameters for 

the normal size mesh used to carry out the numerical simulations for all wall models. 

Table 2 Meshes used for numerical simulations 

Numerical 

simulation 

Mesh 

size 

Mesh quality parameters 

Angle 

(min.) [°] 

Aspect ratio 

(max.) [-] 

Volume change 

(max.) [-] 

Warpage 

(max.) [°] 

k-ω SST 1.018·106 40.59 127 2.75 5.39 

Manhart k-ω SST / 

Duprat k-ω SST 
0.528·106 41.22 46.1 2.42 5.39 

 

The numerical simulations results are carried out for each wall model using the 

appropriate mesh requirements: for the standard k-ω SST wall model is used a mesh of 1018487 
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cells where the average y+ is 0.4, and for the Manhart and Duprat wall models is used a mesh 

of 528853 cells where the average y+ is 1.54 and 1.53 respectively. 

Table 3 presents the comparison of the wall shear stress, τw, and the friction velocity, uτ, 

between the numerical simulations results carried out with the three wall models and the 

experimental data. All three wall models underestimate the wall shear stress, τw, and the friction 

velocity, uτ. A cause of the underestimation of the averaged flow quantities, τw and uτ, is the 

setup of the inlet boundary condition of the numerical case different than in the experimental 

procedure. Even though the Manhart and Duprat wall models underestimate the averaged flow 

quantities is worth noted that the results are obtained using half of the mesh size comparing to 

the standard k-ω SST wall model. 

Table 3 Mean flow quantities – steady flows 

Test case conditions 
Wall shear stress, τw [Pa] Friction velocity, uτ [m/s] 

Section S1 Section S2 Section S1 Section S2 

Experimental data 0.090 0.050 0.0095 0.0070 

k-ω SST 0.070 0.033 0.0083 0.0057 

Manhart k-ω SST 0.064 0.029 0.0080 0.0054 

Duprat k-ω SST 0.064 0.029 0.0080 0.0054 

 

 
 

Figure 17. Streamwise velocity streamlines. Figure 18. Streamwise velocity vectors. 

 

After the section S2 a flow recirculation zone, marked with red arrows, is observed in 

Figure 17 and Figure 18 on each side wall near the curvature of the asymmetric diffuser. Going 

upward to the diffuser outlet two vortices are formed one on each side of the asymmetric 

diffuser. The flow recirculation zones show that the flow is influenced by an adverse pressure 

gradient, also observed in the experimental procedure [12]. 

 

• Streamwise velocity profiles, U+ 

The distribution of the streamwise velocity, U+, is presented in Figure 19 for both 

sections. In section S1, just before the beginning of the diffuser, the flow is influenced by a 

favourable pressure gradient which can result that the boundary layer is in equilibrium. Thus, 
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the experimental mean streamwise velocity in wall units, U+, follows the general velocity 

distributions laws of the boundary layer: the linear law in the viscous sublayer (y+ ≤ 5) equation 

(23), and in the logarithmic layer the log-law (κ = 0.41, C = 5.2) equation (24). The results of 

the numerical simulations show a very good approximation of the mean streamwise velocity, 

U+, in the near wall region, viscous and parts of the buffer layers, up to a y+ ≈ 12. 

 U y+ +=  (23) 

 
1

lnU y C


+ += +  (24) 

 

To observe the influence of the adverse pressure gradient over the flow field, the second 

section, S2, was chosen close to the elbow of the diffuser. The influence of the adverse pressure 

gradient due to the diverging top wall of the diffuser can be seen comparing the standard log-

law with the experimental data. Starting with the buffer layer and continuing in the logarithmic 

layer the results of the numerical simulations carried with the three wall models fail to estimate 

the experimental data. Although, the Manhart and Duprat wall models are developed to yield 

good results in flows influenced by the adverse pressure gradient, the complexity of the 

asymmetric diffuser geometry is creating difficulties in estimating the experimental data. 

 

 
Section S1 

 
Section S2 

Figure 19. Mean streamwise velocity distribution, U+ vs y+. 

 

It is important to note that the accuracy of the Manhart and Duprat wall models, which 

is close to the standard k-ω SST wall model is achieved using half of the mesh required by the 

standard k-ω SST wall model. Also, the computation time to perform a numerical simulation is 

smaller for the Manhart and Duprat wall models than for the k-ω SST wall model. The 

computation time required to perform the numerical simulations carried out using the three wall 

models is presented in Table 4. 

Table 4 Wall models performance – steady flows 

Numerical 

simulation 
Mesh size Average y+ Computation time 

k-ω SST 1.018·106 0.4 3h 26’ 

Manhart k-ω SST 
0.528·106 

1.54 3h 19’ 

Duprat k-ω SST 1.53 3h 10’ 

 

• Turbulent production, Pk
+ 

The averaged turbulent production, Pk
+ for the numerical simulations performed with 

the three wall models is presented in Figure 20. The results from the three numerical simulations 

follow the trend of the experimental data for both considered sections, S1 and S2. Still, all wall 

models poorly estimate the level of the averaged turbulent production, especially in the first 

part of the boundary layer, viscous and buffer layers, up to a y+ ≈ 40 for section S1 and up to a 



24 

 

y+ ≈ 20 for section S2. The underestimation of the production of the turbulent kinetic energy of 

the numerical simulations results for all wall models may come from the evaluation of the poor 

estimation of the wall shear stress. 

 

 
Section S1 Section S2 

Figure 20. Averaged turbulent kinetic energy production, Pk
+ vs y+. 

Pulsating flows numerical simulations results 

The validation of the pulsating flows numerical simulation results with the experimental 

data is carried out for time-averaged flow variables, time-development flow variables and 

phased-averaged flow variables. The unsteadiness of the pulsating flows is based on three 

frequencies: f1 = 0.35 Hz, f2 = 0.10 Hz, f3 = 0.03 Hz. 

For the unsteady-state numerical simulations, sensitivity studies were performed. These 

studies were divided into several parts: mesh sensitivity study, time step sensitivity study, and 

a periodic sensitivity study due to the numerical simulation’s periodic behaviour. First, the mesh 

sensitivity analysis is carried out to find the right balance between the computational effort and 

spatial discretization error. Second, the time-step sensitivity analysis is conducted to find the 

right time-step that will respect the Courant–Friedrichs–Lewy (CFL) condition and will 

adequately simulate the behaviour of the pulsating turbulent flows. Third, due to the repetitive 

nature of the pulsating flow oscillations, the periodic state of the pulsating flows is studied. 

To generate the appropriate mesh distribution and set the correct settings of the 

numerical simulations for the 3D asymmetric diffuser test case, the Stokes second problem was 

used for all three pulsating flows frequencies: 0.35 Hz, 0.10 Hz, and 0.03 Hz. 

 
Figure 21. Stokes second problem description. 

 

The exact solution of the Stokes second problem for an oscillating flat plate in a laminar 

flow, equation (25), was selected as the reference for the sensitivity studies. 

 ( ) ( )/

0, cos /sy l

su y t U e t y l−
=    −  (25) 

where U0 is the velocity magnitude, t is the time, ω is the angular frequency, y is the coordinate 

normal to the boundary, ls is the Stokes length. 
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Analysing the comparisons from the sensitivity studies, resulted that in the numerical 

simulations performed for the asymmetric diffuser, several important criteria were considered: 

- The mesh distribution normal to the wall should consist in at least 50 cell layers, 

uniform in height, throughout the entire height of the oscillating layer, while 

considering the boundary layer requirement, y+. 

- To accurately represent the oscillations of the pulsating flow, the time-step of the 

numerical simulations should be considered to result in at least 40 data points over 

one period of the oscillations. 

- It is important to determine the time-step that will respect the CFL condition when 

performing unsteady-state numerical simulations, therefore the maximum Courant 

number should not exceed 50. 

 

• Asymmetric diffuser meshes 

Based on the mesh sensitivity study the meshes used for the pulsating flows numerical 

simulations of the asymmetric diffuser were generated for each wall model of each frequency, 

Table 5. 

From the previous subchapters results that to perform a pulsating flow numerical 

simulation a very fine mesh discretization in the near-wall region is required to accurately 

evaluate the velocity distribution in the oscillating boundary layer. Thus, the meshes generated 

for the unsteady-state numerical simulations would easily reach the order of millions of cells. 

To reduce the computational effort of carrying out unsteady-state numerical simulations of 

pulsating flows the meshes were generated for half of the geometry, by halving the width (z = 

0.075 m) of the channel, presented in Figure 22. 

 
Figure 22. Half width geometry (z = 0.075 m). 

 

Table 5 Meshes used for the unsteady numerical simulations 

Frequency f1 = 0.35 Hz f2 = 0.10 Hz f3 = 0.03 Hz 

Wall 

model 

k-ω SST 

Manhart k-ω SST 

Duprat k-ω SST 

k-ω SST 
Manhart k-ω SST 

Duprat k-ω SST 
k-ω SST 

Manhart k-ω SST 

Duprat k-ω SST 

Mesh size 

(cells) 
4.467·106 7.195·106 4.591·106 11.800·106 5.317·106 

 

Based on the time-step sensitivity analysis of the Stokes second problem test case, for 

the unsteady-state numerical simulations, the time-step of Δt = 0.01 s needs to be imposed to 

respect the CFL condition for all three frequencies regardless of the wall model used. Still, as 

observed in the Stokes 2nd problem test case, a time-step of 0.01 s, considering the refinement 

of the mesh discretization for each wall model and frequency, will lead to large amounts of 

computational storage. Therefore, two time-steps were used for the unsteady-state numerical 

simulations of the pulsating flows: 

- one time-step used for the computation of the flow variables, Δtc = 0.01 s, 

- another time-step used for sampling the data from the numerical simulations, Δts, 

that will result in 48 sampling data points over one period of the pulsating flows. 

The Courant number used in carrying out the numerical simulations for each pulsating 

flow frequency of 0.35 Hz, 0.10 Hz and 0.03 Hz are presented in Table 6. 
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Table 6 CFL condition, maximum Courant number 

Wall model 
Frequency (Hz) 

0.35 0.10 0.03 

k-ω SST 3.85 3.94 28.41 

Manhart k-ω SST 4.03 4.85 4.61 

Duprat k-ω SST 21.23 16.3 4.61 

 

The state of periodicity of the pulsating flows numerical simulations was studied using 

monitor points located at the beginning of the asymmetric diffuser (section S1) at different 

distances from the bottom wall of the diffuser. The monitor points are located on the symmetry 

plane (z = 0.075 m) at different distances from the wall: 0.001 m, 0.01 m, 0.02 m and 0.05 m. 

The periodic convergence of the numerical simulations was performed for the 

streamwise velocity, U, over the simulation time for each numerical simulation. For the 0.35 

Hz frequency all three wall models reached the periodic convergence after the 7th period. For 

the 0.10 Hz frequency only the k-ω SST wall model and the Manhart k-ω SST wall model 

attained the periodic convergence at the 3rd period of the simulation. The Duprat k-ω SST wall 

model failed to reach the periodic convergence and after the 6th period Code_Saturne solver 

stopped due to divergence in the computation. The periodic convergence for the frequency of 

0.03 Hz was obtained from the 2nd period for all three wall models. 

The numerical simulations of the pulsating flows were carried out using the same wall 

models used for the steady-state numerical simulations: the k-ω SST, the Manhart k-ω SST, 

and the Duprat k-ω SST. The comparison was carried out at the same sections used for the 

comparison of the steady-state numerical simulations, at section S1 and section S2. 

The quantities presented in the following comparisons were reduced to one period, after 

the periodic state was reached. Depending on the pulsating flow oscillation frequency several 

periods are required to reach the periodic state of the numerical simulations: 

- for the frequency of f1 = 0.35 Hz, seven periods were required to attain the periodic 

state, and the results of the numerical simulations were extracted from the 8th period, 

between 21.06 and 23.94 seconds. 

- for the frequency of f2 = 0.10 Hz, three periods were required to reach the periodic 

state, and the extraction of the of the numerical simulations results was performed 

at the 4th period, from 34.65 to 44.73 seconds. 

- for the frequency of f3 = 0.03 Hz, two periods were required to achieve the periodic 

state, and the numerical simulations results were extracted at the 3rd period, from 

82.6 to 116.2 seconds. 

 

The validation of numerical simulations was performed for three groups of flows 

quantities structured as follows: time-averaged quantities, time-development quantities and 

phased-averaged quantities. 

The simulation running time can have a major impact when conducting a numerical 

analysis. Therefore, the time elapsed for each numerical simulation used in the validation 

procedure for the pulsating flows numerical analysis is presented in Table 7. 

Due to the instabilities generated by the Duprat wall model in the Code_Saturne solver 

for 0.35 Hz and 0.10 Hz frequencies, the time required to reach the simulation time was higher 

than for the k-ω SST or Manhart k-ω SST numerical simulations. It is important to consider 

that the Duprat wall model was not used until this thesis, to the knowledge of the author of the 

thesis, in any other numerical simulations than for steady flows. For a lower frequency, 0.03 

Hz, that is closer to a steady flow than the other two frequencies, the Duprat wall model returns 

the fastest results. 
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Table 7 Simulations running time – pulsating flows 

Wall model 
Frequency 0.35 Hz 

Simulation time 25.74 s 

Frequency 0.10 Hz 

Simulation time 51 s 

Frequency 0.03 Hz 

Simulation time 133 s 

k-ω SST 36.7 hours 159.3 hours 599.8 hours 

Manhart k-ω SST 35.1 hours 69.4 hours 127.2 hours 

Duprat k-ω SST 298.1 hours 429.8 hours 115.5 hours 

 

• Time-averaged flow variables 

Time-averaged flow variables used in the validation of the pulsating flows numerical 

simulations are the wall shear stress, τw, the friction velocity, uτ, the dimensionless streamwise 

velocity, U+, and the dimensionless turbulence production, Pk
+. 

The wall shear stress, τw, and the friction velocity, uτ, resulted from the numerical 

simulations of each wall model are compared with their corresponding experimental data for 

both sections of each frequency and presented in Table 8. 

Table 8 Mean flow quantities – pulsating flows 

Test case 
Wall shear stress, τw (Pa) Friction velocity, uτ (m/s) 

Section S1 Section S2 Section S1 Section S2 

Frequency 0.35 Hz 

Experimental data 0.087 0.046 0.0093 0.0068 

k-ω SST 0.067 0.032 0.0081 0.0056 

Manhart k-ω SST 0.067 0.033 0.0081 0.0057 

Duprat k-ω SST 0.067 0.033 0.0081 0.0057 

Frequency 0.10 Hz 

Experimental data 0.09 0.049 0.0095 0.0070 

k-ω SST 0.067 0.032 0.0081 0.0057 

Manhart k-ω SST 0.065 0.031 0.0081 0.0055 

Duprat k-ω SST 0.063 0.029 0.0079 0.0054 

Frequency 0.03 Hz 

Experimental data 0.09 0.045 0.0095 0.0067 

k-ω SST 0.067 0.033 0.0082 0.0057 

Manhart k-ω SST 0.064 0.030 0.0080 0.0055 

Duprat k-ω SST 0.064 0.030 0.0080 0.0055 

 

The values of the wall shear stress and the friction velocity are reduced to one period 

after the convergence periodicity was attained. Comparing the experimental data with the 

results of the numerical simulations it can be observed that the wall models underestimate the 

wall shear stress and the friction velocity in each section for all considered frequencies. A 

possible cause to the discrepancy between the experimental data and the numerical simulation 

results is represented by the inlet boundary condition. 

 

• Streamwise velocity, U 

In section S2 the flow is separating from the walls in the corners of the diffuser where a 

positive pressure gradient affects the flow. Also in the second section, in the corners of the 

diffuser, the velocity is negative meaning that regions of flow recirculation occur as observed 

in Figure 23, which lead to forming of vortices shown in Figure 24. 
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Figure 23. Streamlines of U velocity. From top to bottom the frequencies are 0.35 Hz, 0.10 Hz and 

0.03Hz. 
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Figure 24. U velocity vectors. From top to bottom the frequencies are 0.35 Hz, 0.10 Hz and 0.03Hz. 

 

• Streamwise velocity profiles, U+ 

The streamwise velocity distributions of U+ for the pulsating numerical simulations are 

presented in Figure 25 compared with the experimental data for each frequency. 

The results of the numerical simulations compared to the experimental data shows a 

good agreement between the data, at least in the near wall region until the distributions reach 

y+ = 10. After that all three wall models start to fail approximating the experimental data. For 

the frequency of 0.10 Hz, the Duprat k-ω SST shows the most increased deviation in estimating 

the experimental data because of the instabilities induced in the Code_Saturne solver, leading 

to a poor periodic convergence of the numerical simulation. For the other two frequencies of 

0.35 Hz and 0.03 Hz, the Manhart k-ω SST and Duprat k-ω SST return the same results. 

Although the Manhart and Duprat wall models are in a small percentage less accurate 

compared to the k-ω SST wall model, except for the 0.35 Hz frequency where all wall model’s 

results are almost the same, the Manhart and Duprat wall models use a two times coarser mesh 

k-ω SST Manhart k-ω SST Duprat k-ω SST 

k-ω SST Manhart k-ω SST Duprat k-ω SST 

k-ω SST Manhart k-ω SST Duprat k-ω SST 
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than the k-ω SST wall model. The advantage of using a coarser mesh has a tremendous impact 

over the time required to perform a pulsating flow numerical simulation and the time economy 

could reach up to four times compared to the traditional wall models, i.e., k-ω SST (Table 7). 

 

  

  

  
Section S1 Section S2 

Figure 25. Time-averaged streamwise velocity distribution, U+ vs y+. From top to bottom the 

frequencies are 0.35 Hz, 0.10 Hz and 0.03Hz. 

 

• Turbulent production, Pk
+ 

The turbulent production distribution, Pk
+, is presented in Figure 26 for all three 

frequencies in both diffuser sections. In all pulsating flow numerical simulations, the turbulent 

production, Pk
+, is highly undervalued by all three wall models with approximately 50 % 

compared to the experimental data, regardless of the considered section, S1 and S2. Although the 

wall models fail to estimate the experimental data, the locations on the x-axis of the maximum 

turbulent production value are predicted very close to the measurement data, for section S1 at 

approximately y+ = 10 and for section S2 at y+ = 9. These comparisons show the disadvantage 

of the RANS numerical simulations where the eddy viscosity is not estimated correctly due to 

its definition based on the turbulent kinetic energy, k. 
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Section S1 Section S2 

Figure 26. Time-averaged turbulent kinetic energy production, Pk
+ vs y+. From top to bottom the 

frequencies are 0.35 Hz, 0.10 Hz and 0.03Hz. 

 

• Time-development flow variables 

The studied flow variables are the velocity extracted from the centre of the asymmetric 

diffuser, Up, and the wall shear stress, τw. The flow variables presented in this section are 

developed in time over one period after the numerical simulation reach its convergence state. 

 

• Centreline velocity, Up 

The velocities extracted at the centreline of the asymmetric diffuser, Up, normalised 

with the mean velocity, Uc, are presented in Figure 27. 

The numerical simulations results are in good agreement with the experimental 

measurements for the section S1, for all the data points in the period. For the section S2, the 

amplitude of the velocity wave form is underestimated by all wall models. Due to the location 

of the studied velocity, i.e., in the centre of the diffuser, the results of the numerical simulations 

are very similar to each other regardless of the mesh used. One source of the differences 

between the numerical simulations results and the experimental data in section S2 is the 

influence of the adverse pressure gradient over the flow in the diffuser. 
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Section S1 Section S2 

Figure 27. Time development of the centreline velocity normalized with the mean centreline velocity, 

Up/Uc. From top to bottom the frequencies are 0.35 Hz, 0.10 Hz and 0.03Hz. 

 

• Wall shear stress, τw 

The development in time of the wall shear stress, τw, over one period is presented in 

Figure 28 for all three frequencies. The wall shear stress is normalised with its mean value over 

one period, τm. From Figure 28 it can be observed that decreasing the frequency, from 0.35 Hz 

to 0.03Hz, the numerical simulations results start to have a better estimation of the experimental 

data for section S1. At section S2, the numerical simulations results are deviating from the 

experimental data with decreasing the frequency. 
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Section S1 Section S2 

Figure 28. Time development of the wall shear stress, τw / τm. From top to bottom the frequencies are 

0.35 Hz, 0.10 Hz and 0.03Hz. 

 

• Phased-averaged flow variables 

The phased-averaged quantities used in validating the numerical simulations results are 

the amplitude of the streamwise oscillating velocity, AU, and the phase shift of the streamwise 

velocity oscillations, φU. The phased-averaged quantities presented in this section are evaluated 

over one period, after the periodic convergence was attained. 

• Amplitude of the streamwise oscillating velocity, AU 

Figure 29 shows the amplitude of the streamwise velocity, AU, normalised with its value 

at the centre of the asymmetric diffuser, AUc, over one period, for all three frequencies. The 

numerical simulations results are compared with the experimental data and with the Stokes 

analytical solution for a channel flow [12], at both sections from the diffuser, S1 and S2. 

The numerical simulations results are in good agreement with the experimental data 

until the Stokes normal distance, ys, reaches ys = 1, for all frequencies except for the section S2 

at the 0.35 Hz and 0.03 Hz frequencies. After ys = 1, for the frequency of 0.35 Hz at the section 

S1 all the wall models underestimate the maximum amplitude of the experimental data, while 

at the S2 section the numerical results are very close to the experimental data. At this frequency 
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all wall models follow the Stokes solution for both sections, S1 and S2. In case of 0.10 Hz 

frequency, only for the S2 section the Duprat wall model overestimate the peak values of the 

experimental measurements while the other wall models, for both sections, have a good 

estimation of the experiment. The Stokes solution is followed by all wall models until ys = 1. 

Then the wall models deviate completely from the Stokes solution. For the 0.03 Hz frequency 

the k-ω SST deviates from the experimental data from ys = 0.3 until ys = 5 where it reaches the 

centre of the diffuser. 

 

  

  

  
Section S1 Section S2 

Figure 29. Amplitude of the streamwise oscillating velocity, AU / AUc. From top to bottom the 

frequencies are 0.35 Hz, 0.10 Hz and 0.03Hz. 

 

• Phase shift of the streamwise oscillations, ϕU 

The phase shift of the streamwise oscillations, ϕU, relative to its centre values ϕUc, is 

presented in Figure 30, where the numerical simulations results are validated against the 

experimental data and the phase of Stokes solution in a channel, for all three frequencies. The 

phase shift, ϕU, from the numerical simulation results was calculated using the equation (26) 

over one period. 
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t

f
T

 =  (26) 

where f is the frequency of the pulsating flows oscillations, t is the time in the oscillation period, 

and T is the time of oscillation period. 

 

For the frequency of 0.35 Hz all the wall models follow the Stokes solution and until 

close to the centre of the diffuser, ys = 10 for section S1 and ys = 2 for section S2, they follow 

the experimental data also. In the centre of the diffuser the experimental data is underestimated, 

for section S1 and overestimated for section S2. For the other two frequencies, 0.10 Hz and 0.03 

Hz, the numerical simulations results deviate completely from the Stokes solution. While 

approaching to the centre of the diffuser the numerical simulations are showing a good 

evaluation of the experimental data. The only exception is made by the Manhart and Duprat 

wall models at the 0.03 Hz frequency in section S2 where they fail to predict the experimental 

data almost on the entire diffuser height. 

  

  

  
Section S1 Section S2 

Figure 30. Phase shift of the streamwise oscillations, ϕU - ϕUc. From top to bottom the frequencies are 

0.35 Hz, 0.10 Hz and 0.03Hz. 
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CONCLUSIONS 

In the present thesis numerical studies were carried out of turbulent flows inside an 

asymmetric diffuser for several flow regimes by using different wall models for estimating the 

velocity in the near wall region. The flow regimes analysed in the numerical studies are steady-

state flow and three pulsating flows with the frequencies of 0.35 Hz, 0.10 Hz and 0.03 Hz. 

RANS numerical simulations were carried out and the wall models used for predicting the 

velocity near the wall were the standard formulation of the k - ω SST turbulence model (linear 

law of the wall), the Manhart wall model [30] and the Duprat wall model [11]. 

The main objective of this thesis is to find more economical approaches, i.e., decrease 

the computational time and effort, for numerical simulations of steady and pulsating flows with 

strong adverse pressure gradients. 

Also, other objectives attained in this thesis are: 

- Use of a free, open-source CFD code, Code_Saturne, to perform steady-state and 

unsteady-state numerical simulations. 

- Implement different wall models for estimation of the flow field in the near wall 

region, Manhart and Duprat wall models, in the CFD solver code to decrease the 

computational effort required to perform the numerical simulations. 

- Perform numerical simulations for both steady flows and unsteady (pulsating) flows 

using different wall models, built-in wall models (Linear Law of the Wall) and user 

wall models (Manhart and Duprat). 

- Validate the numerical simulations against detailed experimental data, using several 

flow variables (time-averaged, time-development and phased-averaged flow 

variables). 

The experimental measurements used to validate the numerical simulations presented 

in this thesis were performed by Cervantes and Engström [12] on an asymmetric diffuser 

experimental installation located at the Division of Fluid Mechanics, Luleå University of 

Technology, Luleå, Sweden. The research of this thesis was focused on assessing the 

performance of recent developments in estimating the near-wall velocity using wall models for 

steady-state and unsteady-state flows, e.g., pulsating flows, implemented for the first time in 

RANS turbulence models. Other research investigations were made on the influence over the 

numerical simulations of the geometry, the mesh domain resolution, the mesh distribution near 

the wall, the time-step. 

The thesis is structured in 9 chapters presented below starting with a general 

presentation of the actual context for the thesis, followed by the state of the art of wall modelling 

and the numerical approaches in CFD solvers. The thesis continues with the presentation of the 

CFD code Code_Saturne, used in carrying out the numerical simulations, followed by the 

description of the numerical test case and the validation of the numerical results with the 

experimental data. At the end of the thesis several conclusions and future work directions are 

presented. 

- The present-day context of the electrical grid system stability is presented in the 

Introduction chapter. The Introduction chapter presents the role of the hydropower 

plants in the stability of the electrical grid system. Also, in this chapter is listed the 

main numerical approaches and the usual numerical methods focusing on the 

boundary layer definition. The aim of the thesis is presented in the Introduction 

chapter considering the limitations of the RANS numerical simulations and methods 

to decrease the drawbacks of the RANS numerical simulations. 

- Second chapter presents the state of the art of wall modelling, the common 

approaches for modelling the flow near the wall. In this chapter the downsides of 

modelling the wall region are observed given by the mathematical methods or the 
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computational effort used to perform the numerical simulations. Two wall models 

are presented in this chapter that endorse the research of the thesis. 

- In the third chapter the usual numerical approaches used in CFD codes are 

described, focussing on the economical numerical approaches, i.e., RANS 

numerical simulations. The wall models of Manhart [30] and Duprat [11] are 

presented in this chapter, upholding the consideration of the pressure gradient in the 

estimation of the near wall region flow compared to the standard considerations 

available in the general literature. 

- The CFD code used for conducting the numerical simulations from this thesis is 

presented in the fourth chapter. The CFD code, Code_Saturne, is presented followed 

by the implementation procedure of wall functions/models approaches in 

Code_Saturne solver. The chapter first describes how the computation procedure is 

applied on the flow governing equations and how the computational domain is 

processed by the Code_Saturne solver. In the second part of the chapter are 

presented two methods of implementing a wall function or a wall model in the 

Code_Saturne solver depending on the level of detail the functions modify the CFD 

solver. 

- The fifth chapter presents the experimental and numerical setups used in the 

validation of the numerical simulations results with the experimental data for steady 

and three pulsating flows. The numerical test cases used in the analyses presented 

in this thesis are inspired from the experimental case of Cervantes and Engström 

[12]. The geometry consists of a straight rectangular duct and continues with an 

asymmetric diffuser. Using ICEM CFD the geometry was prepared for generating 

the mesh of the numerical test case used in the steady-state and unsteady-state 

numerical simulations. At the end the fifth chapter the boundary conditions and the 

settings of the numerical simulations are presented. 

- In chapter six are presented the experimental data obtained by Cervantes and 

Engström [12], for steady and unsteady (pulsating) flows. The experimental data 

consist of several flow quantities structured in time-averaged, time-development 

and phased-averaged quantities. 

- The steady-state numerical simulations compared with the experimental data are 

presented in chapter seven, along with the mesh sensitivity studies for the numerical 

simulations carried out. The numerical simulations were performed using the linear 

law of the wall, the Manhart [30] and the Duprat [11] wall models. The validation 

of the steady-state numerical simulations with the experimental data is performed 

for the time-averaged flow quantities. The time-averaged variables used in the 

validation of the steady flow numerical simulations are the wall shear stress, τw, the 

friction velocity, uτ, the dimensionless streamwise velocity U+, and the 

dimensionless production of turbulence Pk
+. 

- The validation of the unsteady-state numerical simulations with the experimental 

data is presented in chapter eight. The sensitivity studies carried out for the unsteady 

numerical simulations are presented at the beginning of the chapter based on the 

Stokes second problem case. The numerical simulations were performed using the 

three wall models also used for the steady-state numerical simulations. The 

unsteady-state numerical simulations were carried out for three pulsating turbulent 

flows based on following oscillation frequencies: 0.03 Hz, 0.10 Hz, and 0.35 Hz. 

The validation of the unsteady-state numerical simulations with the experimental 

data are presented structured in three parts: time-averaged flow variables 

(dimensionless streamwise velocity U+ and dimensionless production of turbulence 

Pk
+), time-development flow variables (centreline diffuser velocity, Up, and wall 

shear stress, τw), and phased-averaged flow variables (amplitude of the streamwise 

oscillating velocity, AU, and phase shift of the streamwise oscillations, φU). 
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- At the end of the thesis, in the nineth chapter, several conclusions and future work 

directions are presented along with the personal contributions to the thesis by the 

author. 

General conclusions 

For reaching the main objective of the present thesis, i.e., to decrease the computational 

time and effort of numerical simulations using wall models in pulsating flows with strong 

adverse pressure gradients, two concepts have been studied.  

First, for any kind of turbulent flow, the boundary layer was investigated. Different wall 

models were implemented and validated against experimental measurements of flows in 

geometries that are affected by the adverse pressure gradient. One of the most important 

parameters of the boundary layer in numerical simulations was the dimensionless distance from 

the wall to the first computational point, y+. Depending on the numerical method used, e.g., 

wall model, turbulence model etc., the computational domain, i.e., the mesh of the numerical 

simulation, requires different mesh distributions. 

Second, in the case of turbulent pulsating flows, the oscillating layer of the flow was 

investigated. The parameter that defines the oscillating layer of the pulsating flows is the height 

of the oscillating layer, δs. Because the pulsating flows represent a special case in turbulent 

flows, to properly prepare a numerical simulation of a pulsating flow two parameters need to 

be taken in consideration and find the most restrictive parameter to model. The parameters that 

are important in order to run a numerical simulation are the y+ and the δs, and they need to be 

modelled from the first stages of the numerical simulation that is the mesh generation step. For 

successfully run a numerical simulation of a pulsating flow the oscillating layer requires a 

certain mesh discretization, as seen in chapter 8, to capture the effects of the flow pulsations. 

Often the mesh discretization of the oscillating layer is more restrictive to the size of the mesh 

cell than the boundary layer mesh discretization. At fast oscillating frequencies, e.g., 0.35 Hz 

and 0.10 Hz, the cell size of the oscillating layer is smaller than the cell size of the boundary 

layer. 

Therefore, the first step in reaching the goal of the thesis, was to prepare the geometry 

for which the mesh will be generated for the numerical simulations presented in this thesis. 

From the experimental setup presented in Cervantes and Engström [12] was kept the straight 

rectangular duct followed by an asymmetric diffuser in which the top wall of the diffuser is 

diverging. All the irregularities of the geometry, like discontinuities and multiples instances of 

the elements of the geometry, were corrected in order to generate on a smooth geometry a good 

mesh quality domain. Bringing the geometry of the asymmetric diffuser to a high quality, the 

criteria for the boundary layer, y+, and oscillating layer were successfully attained accordingly 

to the turbulence models and pulsating flow phenomena requirements. The sensitivity analyses 

were carried out for each numerical simulation of each wall model in order to find the 

appropriate mesh, time-step and the time needed for running the numerical simulations, i.e., 

number of periods of the pulsating flow. The mesh refinement procedure was performed using 

the guidelines from Celik et al. [31]. The mesh domain used in the numerical simulations 

presented in this thesis was prepared in the ANSYS ICEM CFD tool. 

The performance of the wall models results presented in this thesis was assessed using 

steady-state and unsteady-state RANS numerical simulations. The unsteady-state numerical 

simulations were carried out for three frequencies: 0.35 Hz, 0.10 Hz and 0.03 Hz. 

The steady-state numerical simulations were performed on the full geometry of the 

asymmetric diffuser using as the initial conditions the mean variables of the flow. The 

numerical analyses were carried out using a free open source CFD toll called Code_Saturne. 

The domain used for numerical analyses was comprised from the straight rectangular duct 

followed by the asymmetric diffuser. To model the velocity in the boundary layer three wall 
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models were employed: the standard formulation of the k-ω SST turbulence model (linear law 

of the wall), the Manhart wall model and the Duprat wall model. Compared to the standard k-

ω SST turbulence model the Manhart and Duprat wall models allow the use of a coarser mesh 

discretization leading to faster numerical results without compromising the accuracy of the 

results. All the numerical simulations were performed using the k-ω SST turbulence model.  

To verify the implementation of the Manhart and Duprat wall models a double 

validation of the numerical simulation results was performed. The results of the Manhart and 

Duprat wall models were firstly validated against the results of the standard k-ω SST turbulence 

model and after another validation was performed against the experimental measurements. The 

experimental data were obtained using LDA techniques in two sections of the asymmetric 

diffuser. One section, at section S1 (x = 2.082 m), located just before the beginning of the 

asymmetric diffuser and the other section, at section S2 (x = 2.632 m), located close to the 

curvature of the asymmetric diffuser. 

The validation of the steady-state numerical results was performed on the time-averaged 

variables of the flow: the dimensionless streamwise velocity U+ and the dimensionless 

production of the turbulence kinetic energy Pk
+. The averaged variables used in the validation 

process of the wall models and the experimental measurements were extracted from the two 

sections of the geometry. Comparing the numerical results from the three wall models with the 

experimental data showed an underestimation of the variables used for validation. The three 

wall models showed a good approximation of the experimental data in the case of the 

streamwise velocity, U+, in the near wall region but getting away from the wall the results start 

to diverge from the experimental data. In the case of the production of the turbulence kinetic 

energy, Pk
+, the results from the wall models follow the trend of the experimental data but the 

wall models deviate completely from the experimental data on the entire height of the diffuser. 

The time required to complete the numerical simulations was approximately equally for all the 

wall models to around 3 hours with a sightly decrease in simulation time for the Manhart and 

Duprat wall models. 

The behaviour of the pulsating flows was investigated by performing unsteady-state 

RANS numerical simulations for three oscillating frequencies of 0.35 Hz, 0.10 Hz and 0.03 Hz. 

For each oscillation frequency three unsteady-state numerical simulations were carried out 

using the same wall models that were applied for the steady-state numerical simulations: the 

linear law of the wall, the Manhart wall model and the Duprat wall model. The settings of the 

pulsating flows numerical simulations were defined to resemble the experimental procedure. 

Therefore, the variable of interest in carrying out the numerical simulations was the 

experimental flow rate from which it was imposed the average velocity at the inlet of the 

numerical test case. The validation procedure of the numerical simulations of the pulsating 

flows was carried out against experimental measurements performed using LDA techniques. 

To induce the oscillations of the pulsating flows a cosine function of the velocity at the inlet 

boundary condition was imposed. Several tests were performed on the inlet boundary condition 

by including a perturbation in the amplitude of the inlet velocity profile to match the results of 

the numerical simulations to the experimental measurements. The unsteady-state numerical 

simulations, due to the restrictions of the CFD tool Code_Saturne, were carried out using a 

velocity profile rather than a steady-state numerical simulation as the usual CFD tools require. 

In order to perform an unsteady-state numerical simulation of a pulsating flow the mesh 

discretisation near the wall needs to be refined depending on the oscillation frequency. As 

observed in chapter 6 the height of the oscillating layer decrease with the increase of the 

oscillation frequency leading to a small cell height near the wall. Therefore, the region near the 

wall requires a high refinement of the mesh discretisation resulting in an increase in the 

computational effort to perform the numerical simulations. To reduce the computational effort 

of the numerical simulations and due to the symmetry of the asymmetric diffuser test case it 

was possible to use only half of the considered geometry used in the steady-state numerical 

simulations. 
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In order to use the proper settings for the numerical simulations of the asymmetric 

diffuser a simple case of an oscillating flat plate, the Stokes 2nd problem, was investigated for 

all three frequencies. For each oscillating frequency mesh and time-step sensitivity analyses 

were performed for the test case of Stokes 2nd problem. The results of the sensitivity analyses 

were compared with the exact solution of the Stokes 2nd problem therefore to accurately 

represent the pulsating behaviour of the pulsating flows several configurations are required. 

Regarding the mesh configuration the mesh sensitivity analyses showed that the oscillating 

layer should consists of at least 50 cell layers. From the time-step sensitivity analyses resulted 

that for a good representation of the oscillations of the pulsating flows it was necessary a time-

step that leads to at least 40 points per oscillation period and the Courant-Friedrichs-Lewy 

(CFL) condition should be below 50. The mesh discretisation and time-step resulted from the 

Stokes 2nd problem cases were applied to the numerical simulations of the asymmetric diffuser 

test cases. 

The validation of the unsteady-state numerical simulations results of the Manhart and 

Duprat wall models were carried out against the numerical simulations of the standard 

formulation of the k-ω SST turbulence model and the experimental data. The validation of the 

unsteady-state numerical simulations was performed for three categories of flow variables: 

time-averaged (dimensionless streamwise velocity U+ and dimensionless production of 

turbulence Pk
+), time-development (centreline diffuser velocity, Up, and wall shear stress, τw), 

and phased-averaged (amplitude of the streamwise oscillating velocity, AU, and phase shift of 

the streamwise oscillations, φU). The results of the wall models showed a very good 

approximation of the experimental data for the time-development flow variables for the entire 

range of the data points. In the case of the time-averaged and phased-averaged flow variables 

the wall models fail in estimating the experimental measurements over the entire spectrum of 

data points. The time-averaged variables are better estimated near the wall and the phased-

averaged variables are better estimated in the centre of the asymmetric diffuser. A reason for 

this behaviour is that all three wall models presented in this thesis are developed for the mean 

flow which occur in the centre of the asymmetric diffuser. The phased-averaged flow variables 

were compared, in addition to the experimental data, with the Stokes solution for a laminar 

channel flow. The wall models show a good approximation of the Stokes solution in the centre 

of the asymmetric diffuser where the mean flow occurs but in the near wall region the wall 

models fail to approximate the Stokes solution. The Stokes solution is approximated better than 

the experimental data by the wall models over the entire diffuser height in both sections at high 

frequencies and the results of the Manhart wall model are the closest to the Stokes solution than 

the other wall models. For the 0.10 Hz frequency the Duprat wall model fails to estimate the 

experimental data and the Stokes solution except for the time-averaged variables. The cause 

might be the instabilities of the 0.10 Hz pulsating flow frequency that generated in the 

Code_Saturne solver. When the 0.10 Hz numerical simulation was carried out with the Duprat 

wall model was observed a struggle in convergence stability of the Code_Saturne solver. The 

differences in the results of the wall models numerical simulations and the experimental data 

might come from the assumptions made to develop the wall models, since the wall models were 

developed from the estimation of the mean flow parameters. Therefore, some modifications are 

required for the wall models presented in this thesis in order to attain a better estimation of the 

flow in the case of an unsteady-state numerical analysis. 

Another important aspect of performing unsteady-state numerical simulations is the 

amount of time a numerical simulation takes to reach the convergence state. Comparing the 

numerical simulations, the Manhart and Duprat wall models showed a decrease in the required 

time with at least several hours in the case of the 0.35 Hz frequency up to several days in the 

case of 0.03 Hz frequency. An exception in the decreasing of simulation time was observed in 

the case of 0.10 Hz only for the Duprat wall model. A cause to the large simulation time 

generated by the Duprat wall model might by due to the instabilities generated by the pulsating 

flow in the Code_Saturne solver. 
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The comparisons of the numerical simulations carried out using the Manhart and Duprat 

wall models showed that they are viable, more economical, and can be considered alternatives 

to the already implemented wall models with negligeable loss in accuracy. The main advantage 

of the Manhart and Duprat wall models is the use of a coarser mesh distribution, up to a y+ = 5. 

The ability to use a coarser mesh distribution is due to the involving of more flow parameters 

in the prediction of the flow in the near wall region. The Manhart and Duprat wall models 

consider, more than the standard wall model formulation of the k-ω SST turbulence model, the 

streamwise pressure gradient which represent an important parameter of the flow. 

Personal contributions 

Performing steady-state or unsteady-state numerical simulations has become more and 

more available to the average computers for simple cases but it is difficult to obtain fast and 

accurate results of the complex turbulent flows, e.g., pulsating flows. Furthermore, the use of 

new mathematical expressions, other than the already implemented ones, requires a high 

amount of knowledge of the programming language/s of the CFD solver code and time for 

testing and validate the results of the numerical simulations. 

The original work presented in this thesis is summarized in the following points: 

• Prepare the geometry for generating the mesh discretization domain for the 

numerical test cases presented in this thesis. To generate a high quality mesh the 

geometry used in the numerical analysis must be complete without any gaps and 

overlapped elements, e.g., lines, points etc. 

• Generate the mesh discretisation domain further used for the numerical simulations. 

A higher mesh quality is preferable to obtain high quality numerical simulations 

results. The mesh quality is verified using the mesh quality criteria available in the 

mesh generation software and they should correspond with the mesh quality criteria 

verified by the CFD solver. The mesh was generated at first as a structured mesh 

and in the final stage of mesh generation it was converted in unstructured mesh for 

a better alignment of the geometry particularities and curvature. Depending on the 

flow modelled, steady flow or pulsating flow, the boundary layer or the oscillating 

layer were discretized accordingly to capture the flow particularities while 

minimizing the computational effort. 

• Develop the implementation procedure of the Manhart and Duprat wall models 

required by the CFD solver Code_Saturne. To perform the implementation of the 

Manhart and Duprat wall models in the Code_Saturne solver, the knowledge of 

several programming languages was necessary, e.g., Fortran90, C and C++. Also, 

the internal functions of the Code_Saturne solver were analysed to establish a strong 

and fast connection between the results of the wall models and the core of the 

Code_Saturne solver. 

• Investigate the implementation of the Manhart and Duprat wall models in the 

Code_Saturne solver for several test cases. The validation of the implementation 

procedure for the Manhart and Duprat wall models were performed starting from 

simple cases up to more complex test cases. The simple cases were represented by 

a flow over a flat plate, flow in a plane channel and the flow in a straight pipe. The 

complex test cases are a flow in a pipe with converging and diverging designs and 

a flow in an asymmetric diffuser with small adverse pressure gradient other than the 

one presented in this thesis. 

• Perform RANS steady-state numerical simulations on the asymmetric diffuser 

numerical test case and validate those results against experimental data using time-

averaged variables. For the steady-state numerical simulations mesh sensitivity 

analyses were carried out to reduce the computational effort while preserving a good 
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approximation of the numerical simulations results when comparing with the 

experimental data.  

• Develop, for the numerical simulations of pulsating flows, a relationship between 

the boundary layer and the oscillating layer to model near wall region using the 

Stokes 2nd problem. 

• Analyse the influence of the inlet boundary condition for the unsteady-state 

numerical simulations to accurately analyse the behaviour of the pulsating flows. 

• Perform RANS unsteady-state numerical simulations for three frequencies (0.35 Hz, 

0.10 Hz and 0.03 Hz) on the asymmetric diffuser numerical test case.  

• Validate the results of the unsteady-state numerical simulations against 

experimental data using time-averaged, time-development and phased-averaged 

variables. To obtain the best equilibrium between the accuracy of the numerical 

results and the computational effort was used the Stokes 2nd problem test case for 

all three frequencies. For the stokes 2nd problem were conducted mesh sensitivity 

analyses and time step sensitivity analyses, and the results of the sensitivity analyses 

were used on the asymmetric diffuser test case presented in this thesis. 

Future work 

The research work presented in this thesis will be continued further to validate and 

improve the wall models of Manhart and Duprat, in both steady-state and unsteady-state 

numerical simulations. 

The Manhart and Duprat wall models will be tested on a coarser mesh discretisation 

where the dimensionless distance to the wall, y+, is greater than 5. A coarser mesh can lead to 

faster numerical simulations and to other comparisons of the Manhart and Duprat wall models, 

e.g., with the Standard Wall Function. 

An improvement in developing the Manhart and Duprat wall models will be to further 

optimize the calculus algorithms of the wall models in order to perform faster numerical 

simulations. 

Another improvement of the Manhart and Duprat wall models will be performed by 

adding more flow parameters, e.g., the roughness of the walls, to increase the accuracy of the 

wall models or by decrease the computational effort. 

Other type of numerical simulations can be performed using the Manhart and Duprat 

wall models such as to carry out LES based numerical simulations or hybrid RANS - LES 

numerical simulations in more complex geometries as a hydraulic turbine. 

An important future aim is testing the Manhart and Duprat wall models in more complex 

geometries with flows with a high degree of turbulence, such as the flow in a hydraulic turbine 

draft tube (Francis99 NTNU) or even in the entire domain of a hydraulic turbine, from the inlet 

of the spiral casing to the outlet of the draft tube. 
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