
UNIVERSITY POLITEHNICA OF BUCHAREST

FACULTY OF AUTOMATIC CONTROL AND COMPUTERS

COMPUTER SCIENCE AND ENGINEERING DEPARTMENT HBFX

Computer Science - Logo

Computer Science

Computer Science

& Engineering

& Engineering

Depar tment

Depar tment

PhD Thesis Summary

The Security of Heterogeneous IoT Infrastructures

Ing. Ioana-Maria Culic

Thesis advisor:

Prof. Dr. Ing. Răzvan-Victor Rughinis,

BUCHAREST
2023

CONTENTS

1 Introduction 1

2 Security Enforced by Modern Programming Languages 4

2.1 Integrating the D Programming Language in Constrained IoT Devices 4

2.2 Secure IoT Applications Using JavaScript 5

2.2.1 Running JerryScript On the NXP Rapid IoT Prototyping Kit 6

2.2.2 A Build and Deployment Solution for JerryScript 6

2.2.3 Tests and Results . 7

2.3 Flow-Based Programming for IoT Infrastructures 7

2.3.1 The Platform Implementation . 8

2.3.2 Application Implementation and Results 8

3 Secure Internet of Things Development 10

3.1 IoT Development and Prototyping Tools 10

3.1.1 Platform Overview . 10

3.1.2 Platform Architecture and Implementation 11

3.1.3 Maintaining the Platform . 13

3.1.4 Platform Usage . 16

3.2 IoT Education . 16

3.2.1 Hardware Platform for Circuit Abstraction 16

3.2.2 Hardware Simulator . 19

4 Secure Updates Infrastructures for IoT Systems 21

4.1 The Platform Constraints . 21

4.2 The Proposed Mathematical Model . 22

4.2.1 Terminology . 22

1

4.2.2 Defined Sets . 23

4.2.3 The Mathematical Model . 23

4.3 Model Implementation and Validation - IoTWay 25

4.4 Test Use Case . 26

4.5 Results . 26

4.5.1 Software Characteristics . 27

4.5.2 Deployment Performances . 27

4.5.3 Performance Comparison With Balena 28

5 Security at the Kernel Layer 29

5.1 Security Enforcement in Tock . 29

5.2 The Approach . 30

5.3 eBPF Sandbox Integration Into Tock . 30

5.3.1 The eBPF Executor . 31

5.3.2 The Bytecode Pre-Processor . 32

5.3.3 The User Space Communication Agent with the eBPF Sandbox . . . 33

5.4 Tests and Results . 34

5.4.1 The Evaluation of the Original Implementation 34

5.4.2 The Evaluation of the Proposed Approach 36

5.4.3 Results . 39

6 Conclusions 40

Bibliography 42

2

ABSTRACT

As the Internet of Things (IoT) technologies have become widely adopted in multiple areas,

the number of security attacks targeting IoT devices has also increased. With famous attacks

such as the Mirai Botnet, security has become an essential aspect in the development of

all IoT products. Internet of Things infrastructures are complex, heterogeneous systems

following an extensive hardware and software stack. As a result, security mechanisms need to

be implemented at all stack layers to ensure a final product with a high safety degree.

This thesis aims to analyze the security mechanisms and policies that can be implemented

at various stack layers and propose solutions for a better security. Our contributions ap-

proach software security in IoT devices as we leverage hardware safety mechanisms already

implemented.

We first address the security of Internet of Things applications, focusing on the programming

languages developers can use to build sandboxed applications. We identify JerryScript, a

lightweight JavaScript engine, as the most suitable approach and focus on enabling JerryScript

to run on a large category of IoT devices.

Further on, we focus on the tools necessary in a security-focused IoT software development

process. We propose an implementation of a complex development platform that abstracts

hardware setup overhead and enables developers to focus on building secure applications. We

also addressed the challenges IoT education has in relation to the available development tools.

We propose some contributions meant to enable educators to integrate IoT technologies into

their curriculum. As a result, we have built a customizable platform used by over 30.000

hobbyists and educators.

At the cloud layer, we approached the security concerns related to software deployment and

updates as we identified a lack of open infrastructures for these operations. In this context, we

proposed a mathematical model for a secure software deployment and updates infrastructure,

which we validated with an open platform implementation.

Finally, we move to a layer closer to hardware and address the security in Real-Time Op-

erating Systems (RTOSes). We leverage the security advantages of Rust, a relatively new

programming language developed for secure programming. Due to its characteristics, Rust is

a good alternative to C and can be used for writing operating systems. In this context, we

focus on Tock, an open-source operating system for microcontrollers fully written in Rust that

has multiple security policies implemented. Our contribution concentrates on implementing a

real-time module allowing Tock to run as a secure RTOS on constrained devices.

With the research directions presented in this thesis, we addressed the primary software layers

in IoT infrastructures and implemented multiple security mechanisms and contributions for a

safer IoT development process.

Keywords: Internet of Things, Security, Over-the-Air Update, Hardware Simulator, Visual

Programming, Real-Time Operating Systems, Rust

1 INTRODUCTION

Being a technology increasingly present in people’s lives, Internet of Things (IoT) raises

important concerns related to the safety of the deployed infrastructures, as the occurrence

of a security attack can have a large-scale impact. For instance, the famous Mirai Botnet

attack infected over 200.000 IoT devices [1, 2]. In this context, Internet of Things devices

and infrastructure security is essential for commercial and industrial integrators.

When approaching the security of IoT infrastructures, a significant challenge is the complexity

of these systems. Internet of Things architectures are heterogeneous infrastructures from the

hardware, software, and communication point of view. They rely on a complex stack that

starts with simple microcontroller devices running relatively few lines of code and ends with the

cloud that aggregates and processes all the data and manages the connected devices. What

is more, at the lower layers where microcontrollers and embedded computers run applications,

most of the software is built in C, which has a high risk of security issues. The industry

states that around 70% of vulnerabilities arise from problems related to memory safety [3,

4]. This is mainly because of how C implements memory operations that can easily lead

to buffer overflows or control-flow attacks [5]. While modern, more secure programming

languages (e.g., Python, Java) are increasingly used for embedded computer applications [6,7],

the operating systems currently used for computers and microcontrollers are fully written in

C, which maintains the security risks at the kernel layer. In addition, the complexity and

dimensions of the operating systems used (e.g., Linux has over 27 million lines of code [8])

expose a large attack surface.

Periodic updates are very important, considering the importance of maintaining security in

the IoT infrastructures deployed in commercial and industrial environments. They enable the

producers to keep their products up to date with the latest bug fixes and security improve-

ments.

All the challenges presented above are being addressed by the development of new program-

ming languages and technologies.

The Rust [9] programming language is a significant breakthrough developed to address the

security weaknesses of C. This programming language for systems is guaranteed to be secure

through mathematical proof and has safeguards in place to prevent errors related to pointer

manipulation, which mitigates numerous security concerns commonly encountered in C pro-

grams. Leveraging Rust’s advantages, operating systems entirely written in this language are

being developed (e.g., Tock [10], Hubris [11], Redox [12]). Out of these, Tock, for instance,

is an open-source OS targeting low-capabilities microcontrollers, being a suitable alternative

to operating systems such as FreeRTOS [13] or Zephyr [14].

1

What is more, updates for IoT devices is also a heavily researched domain, and several solu-

tions, many of which with a commercial purpose, have been developed. These open a new

research area where remote software deployment infrastructures can be optimized and secured.

Therefore, we define the following research questions that we aim to respond to in this thesis:

• How can the security of Internet of Things systems be enforced during the product life

cycle, starting from the prototyping phase to the maintenance phase?

• Are OTA deployments systems helpful in maintaining the security of IoT infrastructures,

or do they bring additional risks?

• To which extent can we secure the constrained devices integrated into IoT infrastruc-

tures?

• Can C be replaced with other modern high-level programming languages that can guar-

antee an increased security in microcontrollers and embedded devices?

In the context of various IoT infrastructures being deployed for diverse use cases, we aim

to research into ways of securing these systems in a generic manner, irrespective of the

heterogeneity that characterizes them. In our work, we address several layers in the IoT

stack, and we aim to propose secure platforms for both kernel and user space and also for

the maintenance of these systems. The final objective is to achieve a full-stack infrastructure

that addresses the current major security issues in IoT infrastructures.

Therefore, in the development of this thesis, we define the following intermediary objectives

related to the research questions and the security context we presented in the section above:

• Analyze existing development and deployment tools for the IoT systems for various use

cases and in different usage conditions.

• Explore the security mechanisms enforced by OTA IoT deployment systems and analyze

their efficiency.

• Define the constraints microcontrollers and embedded computers have and analyze how

they impact the security of these devices.

• Inspect the security of existing operating systems for microcontrollers and embedded

computers.

• Identify alternatives to the classical, C-based operating systems for IoT devices.

• Define the advantages high-level programming languages have over C from a security

point of view.

• Identify more secure alternatives to the C programming language for Internet of Things

applications.

In this thesis, we focus on securing the Internet of Things stack by proposing generic ap-

proaches and platforms independent of the variety of devices and technologies involved. We

aim to propose solutions suitable for a large variety of infrastructures that can be applied at

multiple layers in the stack. Therefore, in our work, we approach the security of all the major

2

components of IoT infrastructures. We start with IoT applications running on embedded

computers and their maintenance systems deployed in the cloud and move down the stack to

the security of microcontrollers. We also approach the user space together with the kernel

space security for these devices.

In the first contribution, we focus on the security of the user space for IoT gateways and

embedded computers. We analyze the security modern programming languages bring to the

application layer, as most involve a sandbox where the code is executed. In this context, our

contribution focuses on identifying some of the high-level programming languages which are

suitable for the IoT area and the specific embedded devices [15]. We propose specific use

cases for them and research into how versatile they are and how easily they can be adapted

to run on a new hardware architecture. This way, we identified JavaScript, together with its

lightweight engine, JerryScript [16], as one of the most suitable languages that can be used

for programming a large variety of embedded devices, from not so powerful ones to others

having more advanced capabilities [17].

Further on, we addressed issues related to development tools for various use cases. We

define specific requirements based on the development use case: commercial, prototyping,

or educational, and propose secure solutions for each of them. Further in our research, we

propose a generic solution capable of abstract operations related to hardware setup and other

configurations [18, 19]. We test the solution’s efficiency in several environments with various

users, proposing a generic platform that enables integrators, hobbyists, and students preparing

to work in this field to focus on aspects such as the security of the IoT infrastructures they

develop [20,21].

In the same field related to deployment and maintenance tools, we approached the mainte-

nance of the IoT applications, as once an IoT system is deployed, various changes (e.g., bug

fixes, security improvements, new features) need to be made at a certain point. These updates

are remote, which introduces multiple difficulties and risks. Our contribution in this thesis

consists of a detailed analysis of the challenges related to deployment and update infrastruc-

tures, followed by the proposal of a generic mathematical model for such an infrastructure

that covers all the identified aspects. What is more, we validate the model with a specific use

case implementation [22].

The final contribution focuses on the devices at the bottom of the IoT stack: the sensors and

actuators. These rely on low-power, low-memory microcontrollers that cannot run complex

software such as a full-fledged operating system. In the case of these devices, securing them

is even more of a challenge due to hardware constraints. Therefore, in this thesis, we start

with a deep analysis of the security risks involved in the development of these devices and

identify existing solutions [23]. In addition, we suggest a secure real-time operating system for

microcontrollers that employs advanced technologies and programming languages like Rust

and eBPF [24].

3

2 SECURITY ENFORCED BY MODERN PROGRAMMING LAN-

GUAGES

In this chapter, we focus on proving if using sandboxed programming languages for constrained

IoT devices is possible and straightforward. Therefore, we aim to identify areas where C can

be replaced with a programming language that reduces the risk of bugs and security breaches.

2.1 Integrating the D Programming Language in Constrained IoT

Devices

The D programming language is relatively new when compared to others. It is a general-

purpose language meant to be the successor of C++ [25]. While similar to C from the syntax

point of view, D aims to be a safer alternative.

With D being used in general-purpose systems, and even in the Linux kernel [26], the aim

of our research is to test if we can run D on low-capabilities devices as microcontrollers to

replace C with a more secure alternative.

D is a compiled language that relies on the DRuntime. DRuntime is the library that defines the

D language and it is also the reason why writing secure D applications for microcontrollers is

not possible. The DRuntime is large (around 40MB) and does not fit the memory constraints

of most MCUs available on the market.

Therefore, in this research, we aim to adapt the D environment to run on microcontrollers

without compromising its advantages.

We choose to implement our research on a Nucleo F429ZI device, which is an ARM Cortex-

M4 with a flash of 2MB and an SRAM of 256+4 KB. At the OS layer, we choose Tock, an

open-source operating system written in Rust that has full support for this device.

The main aspect to tackle is to enable the cross-compilation of D applications and DRuntime

for ARM architectures. For this, we used the ldc2 LLVM-based compiler.

Considering the task complexity, we followed a two-step approach for this research topic.

We first focused on building the D applications using better C. Better C is an options that

enables programmers to build D applications in a similar manner to C as it removes any

dependency on DRuntime.

In our case, using better C depends on building a user space library that allows us to run D

programs on top of Tock. After we implemented the library, we obtained an environment where

4

C-like D applications can be compiled and deployed on the Nucleo device. The applications

can use the standard Tock library and control any existing peripherals. However, at this point,

the security of such an application is similar to any other C app. This is why the next step is

required.

The following step requires to adapt DRuntime so it requires less memory resources and can

be used to run secure applications. However, at the time of writing this thesis, the existing

technology did not allow us to compile the original DRuntime for the target architecture.

Moreover, the string concatenation operator cannot be used if we cross-compile DRuntime

for the Nucleo. Using it leads to a kernel panic due to unallocated or protected memory

access.

This research concludes that in its current form, D does not seem to be a suitable candi-

date for secure IoT application development, and we decided to shift to other, more mature

programming languages such as JavaScript.

2.2 Secure IoT Applications Using JavaScript

As at the time of the writing of this thesis, D is still far from being suitable for embed-

ded applications for microcontrollers, we identify JavaScript as a suitable option for writing

embedded applications that are more secure than the ones written in C.

Similarly to D, JavaScript uses a garbage collector that handles all memory allocations, reduc-

ing the security risks in the applications. In addition, JavaScript relies on an executor, that

brings another security layer as user space code is not directly executed on the CPU.

JavaScript code can be easily deployed on microcontrollers using JerryScript. JerryScript is a

lightweight JavaScript engine especially developed to run JS code on low-capabilities devices.

It can run on devices with less than 64KB of RAM and less than 200KB of ROM [16].

Considering the popularity of JavaScript in the IoT field and the security it brings to the table,

our purpose in the presented research is to test how easy it is to deploy a JavaScript program

on a device.

The device we choose for our implementation is the NXP Rapid IoT Prototyping Kit. It

contains an NXP Kinetis K64 120MHz 32-bit microcontroller, based on Arm Cortex-M4 Core,

NXP Kinetis KW41Z Wireless Controller for BLE, Thread, and Zigbee Connectivity and several

integrated sensors: air quality, temperature, gyroscope, accelerometer, magnetometer, etc.

We used Amazon FreeRTOS at the operating system layer, as it is the OS that has the best

support for this device.

Oficially, the Rapid IoT Prototyping Kit supports only C as a programming language.

5

2.2.1 Running JerryScript On the NXP Rapid IoT Prototyping Kit

To port JerryScript to a new hardware device, we first need to compile it on that specific

platform, obtaining a static library. Once compiled, the engine is capable of running the Jer-

ryScript bytecode. The engine API exposes functions that allow developers to run JavaScript

applications and, more importantly, to define native functions that can be called inside these

applications.

For our use case, we used the Amazon FreeRTOS source code provided by NXP and added

the JerryScript engine as a different service. To compile this version of the RTOS, we used

NXP’s MCUXpresso tool, which generated a binary that can be uploaded on the device. Once

flashed, the device executed the JavaScript code using the engine.

2.2.2 A Build and Deployment Solution for JerryScript

While JerryScript applications can be successfully deployed on the NXP device, the MCUX-

presso tool that we used is not a straightforward application. Using it can be a troublesome

process. Therefore, in this implementation, we also aim to automatize the application deploy-

ment process and remove the dependency on the tool that NXP provides.

First, we used the Hexiwear docking station specific to this device. When attached to it, the

board module enters into debug mode and opens a serial connection. Therefore, data can be

transferred from the computer to the device if connected to a computer via a USB cable.

In this case, our solution was to build a script that takes the JavaScript code and sends it over

the serial interface. On the device side, we added a service to the Amazon FreeRTOS, which

was configured to read the information coming on the serial line and pass it to the JerryScript

to execute it.

This solution is stable and works without any interruptions. However, it requires the boomerang

expansion, which is expensive and also makes the device less robust.

The second solution we implemented was to send the source code over the Bluetooth con-

nection. In this case, we create a different FreeRTOS service that gets the data from the

Bluetooth manager and passes the code to the JerryScript engine. This way, the Rapid IoT can

be programmed without additional hardware. What is more, no physical connection between

the computer and the device is necessary.

Although easy to use and affordable, this solution is not stable. Our tests proved a 50%

success rate in delivering the correct information to the device. Furthermore, the results show

that the Bluetooth manager on the devices crashes due to a memory leak, as the module is

not designed for transferring such large amounts of data.

In this approach, we built the Amazon FreeRTOS JerryScript module so it runs a fixed-size

source code. Considering the total memory available, we initialized a 32KB buffer with values

6

of zero. Once the binary is generated using the MCUXpresso tool, we save it in the project

folder, at a fixed path. At every run, we inject the JavaScript source code that we aim to run

into the zero-buffer space in the binary. By analyzing the binary, we identified the memory

address where the string representing the JavaScript code is stored (Figure 1). Each time we

want to run an application, we overwrite that memory space in the binary. This solution is

possible, as MCUXpresso does not digitally sign the binary it generates, so we can tamper

with it and then flash it on the device.

Amazon FreeRTOS

Serial Service Bluetooth Service

JerryScript Engine

JS Code Zero
padded

32 KB

Figure 1: Final firmware architecture.

This approach is the most stable. JavaScript code can be successfully run on the device in

100% of cases. In addition, compared to the previous approaches, in this case, as we inject

the JavaScript code, the device will run it even after resetting. In the other two cases, this

was not possible.

2.2.3 Tests and Results

Once the porting process was successful, we reached the goal of proving that JavaScript can

be easily deployed on microcontrollers. Further on, we tested this programming approach in

comparison with the C-based one in various scenarios and the first proved more robust and

easy to use.

The result of this research is that JerryScript can be easily ported for various hardware devices

and we consider it is a suitable alternative to C for more secure applications development.

2.3 Flow-Based Programming for IoT Infrastructures

Another popular approach for IoT applications programming is using flow-based editors, such

as Node-RED [27]. The main idea behind this approach is that the application can be

considered a flow of messages that trigger actions. Once the application runs on the device,

each time one of the events specified in the used nodes is triggered, a message is generated

and passed to the next node. The receiver will execute whatever action or actions it needs

to, and it will pass on the same or a new message.

The advantage of such an approach is that the developer can easily visualize the architecture

of the system and keep track of how each of the components interact. The visual interface

7

makes it easy to debug, as there is a clear connection between all the elements.

However, even though Node-RED has more advantages over the first approach, it still has a

big disadvantage: synchronizing two branches and assuring that certain functions on different

branches are called one after another. Another downside is that each node can emit messages

arbitrarily, resulting in nondeterministic behavior. However, BPMN, a flow-based approach

used in modeling business processes overcomes these downsides.

The solution we propose in this section is to extend BPMN in order to build a more reliable

development platform for Internet of Things applications.

2.3.1 The Platform Implementation

In order to build a deployment platform for BPMN-based IoT applications, we use an existing

BPMN editor that can be easily integrated into any application. Bpmn.js is an open-source

diagram rendering toolkit. We use it for the interface that allows users to build the applica-

tions. The toolkit returns an XML structure containing all the elements. Therefore, the first

step in the implementation is to translate the XML structure to JSON. Further on, we need

to create the controller for the whole project and one for each element [28].

Once the JSON structure is in place, we need to generate a token to flow through the network

and activate each element. Each element consumes the token(s) received from the incoming

connection(s) and generates a new token that is passed on.

In our implementation, the token is a structure containing multiple fields such as deviceId,

tokenId, timestamp, or signature. The next step is to define the behavior of each element

(e.g. task, XOR gateway, start event) we can use for modeling the application.

2.3.2 Application Implementation and Results

To test that the BPMN-based approach can be applied to designing Internet of Things appli-

cations and that the existing elements are sufficient for building a complex smart system, we

designed a coffee machine application using the BPMN editor.

The application we designed is supposed to control a coffee machine equipped with an NFC

sensor and an HDMI screen for user interaction. The NFC detects when a user places a

recipient in front of the machine, then coffee is dispensed. If the user has a special cup with

a unique NFC ID, the machine can identify the id and show the user how many cups of coffee

he drank that day. In case his caffeine intake is above a certain limit, a warning message is

displayed. The dispenser has the following behavior: when it starts, it pours coffee for 20

seconds, then it automatically stops and displays a message asking the user to remove the cup.

In case the user removes the cup earlier than 20 seconds, the dispenser stops immediately.

Once the dispenser stops, the amount of poured coffee is computed.

8

We built this system using procedural programming and flow-based programming as shown in

Figure 2.

Figure 2: The coffee machine application developed using BPMN.

In the end, the BPMN approach proved easier to debug, reducing the development time by

30%. In addition, the system is much easier to trace and diagnose.

9

3 SECURE INTERNET OF THINGS DEVELOPMENT

In this chapter, we propose a development platform to support the prototyping of secure IoT

applications. We also address the challenges of IoT educators in teaching students to build

efficient and secure infrastructures.

3.1 IoT Development and Prototyping Tools

At the hardware layer, the most used device for IoT prototyping is the Raspberry Pi. Therefore,

we focused our work on building a development tool that makes the Raspberry Pi easy to

program and allows developers to focus on the application development rather than on the

necessary configurations and deployment setup.

Our proposed platform, Wyliodrin, is a web-based application that uses secure protocols to

enable the programming and monitoring of Raspberry Pi and other embedded devices in a

straightforward manner.

3.1.1 Platform Overview

The platform we propose, Wyliodrin, is a web-based application that enables users to remotely

connect to their embedded devices, such as the Raspberry Pi, and deploy applications on them.

The platform has the following major characteristics:

• Web-based - It is easy to access and does not require any application to be installed on

the computer.

• Fast setup - The platform guides the users through a simple series of steps necessary

to connect to the device. No advanced networking and programming knowledge is

necessary to control the devices.

• Visual monitoring - Debugging information coming from the devices can be mapped on

visual graphs for easier monitoring.

• Shell console - For more advanced users, a shell console is available. This allows complete

control over the device.

• Secure connection - As security is very important, all data that the devices exchange

with the web application is encrypted and sent over a secure channel.

• Visual programming - The platform has support for a Google Blockly-based IDE that

allows users to drag and drop blocks and connect them to create an application [29].

10

Google Chrome Application

The platform was initially implemented as a web application that was dependent on an inter-

net connection. This approach proved to be inefficient in many cases. In various setups where

we used the platform, the network was not reliable enough, and devices kept disconnecting.

Therefore, we implemented a more stable version that also works with a local network connec-

tion. What is more, by changing the communication protocol, we also increased the reliability

of remote connections.

As more advanced web technologies became popular, we decided to rewrite the platform

and completely replace the device supervisor with another one entirely written in JavaScript

(Node.js). On the web application side, we developed the platform as a Google Chrome

application that can be easily installed on any computer. We also implemented support for

remote connections and a web platform that can run from any browser without any installation.

In this case, the Chrome application acts as the server to which the device connects. All com-

munication is done via HTTP. From the users’ point of view, this translates to a more stable

connection between the device and the web platform. What is more, we also implemented a

way of remotely connecting devices (over Internet) by using an intermediary server.

3.1.2 Platform Architecture and Implementation

As the platform was initially developed for XMPP communication and later on changed to

HTTP, the architecture also suffered some changes. For XMPP, the only approach we imple-

mented is dependent on a third-party XMPP server. In contrast, when using HTTP with a

device located in the same network, the Chrome app also acts as the server.

XMPP Server

To ensure a high degree of security, the initial system uses XMPP for the messages exchanged

between the device and the browser. The main advantages we identified in using XMPP are

that all the communication is encrypted, and messages are sent under the XML format, which

is easily extensible.

In our implementation, at one end, there is the user who is logged in on the web platform.

Next, the web application connects on behalf of the user to an XMPP server. Once the

connection is established, the web server retrieves the rosters, which are all the available

boards.

11

HTTP Server

The HTTP implementation relies on two important technologies that enable the data transfer

between the device and the web application:

• Avahi - a device discovery tool that allows the web app to identify all the boards

connected to the local network;

• Web Sockets - a bi-directional communication channel that enables secure message

passing between the device and the Wyliodrin web application.

Figure 3: Representation of the messages exchanged by the device and the Wyliodrin Chrome

application.

The challenge in implementing this type of communication was enabling the Wyliodrin web

application to communicate with multiple devices simultaneously. This required an advanced

module for managing the multiple socket instances.

12

Device Supervisor

One of the essential components of the platform is the device supervisor. This ensures the

communication between the server and the device. For this, based on how the technologies

evolved over time, we used different implementation approaches.

As an overview, the supervisor is an application that connects to the server, receives commands

as messages, executes them, and sends back the result. The source code is also sent as a

message, and a child process is started to compile and run it. In the initial implementation,

the resulting child process would communicate with the supervisor via pipes. However, pipes

do not support text formatting, so the platform could display the result in a non-user-friendly

manner. Therefore, we defaulted to creating a pseudoterminal (pty) for each process.

3.1.3 Maintaining the Platform

An important essential of the Wyliodrin platform is how it can be maintained. Platforms

such as Wyliodrin are difficult to keep up to date as the number of peripherals continuously

increases. This means that continuous work needs to be done to ensure that the latest devices

and sensors are supported. Besides the connection setup required for each new supported

device, the visual programming elements also need to be kept up to date. Each hardware

producer that creates its sensors provides its own way of interacting with the respective

peripherals. Thus, the number of necessary visual blocks required is increasing at the same

rate as the number of peripherals created, which is exceptionally high.

This is why there is a need to create such blocks in a different way than the one provided

by the Google Blockly platform. The classical way implies that somebody uses the existing

Google platform in order to create each block separately and then integrate the generated

element into the IoT platform which is using it. In this context, we focus our research on

finding a way to automatically generate blocks and validating if this is a feasible approach.

The first step when integrating Blockly into a platform is to create a web view that will

contain the editor. The editor consists of a toolbox listing all the blocks and a dashboard

where users can drag and drop the elements. Apart from this basic setup, the interface can

be customized. There is the possibility of displaying the generated code in one of the possible

programming languages.

Automatic Blocks Generation for Google Blockly

There are thousands of different existent sensors and actuators that can be connected to

the existing embedded boards. As we discussed in the previous section, the field is in a

continuous expansion, and there is no standard way in which peripherals can be connected

yet. This implies that for each group of existing I/O devices, one must use specific functions

13

and communication protocols.

Eclipse Mraa is a C/C++ library created by the Eclipse IoT Project that offers a structured

API in order to control the input/output ports of various embedded devices [30]. The library

also has Python and JavaScript bindings which make it easier to use.

As a result, it is easier for peripherals manufacturers to map their sensors on top of the

supported hardware, while users see a generic set of functions they need to use in order to

control the hardware.

By using this library, the number of functions that need to be implemented has shrunk dra-

matically. Wyliodrin uses this library in order to minimize the number of blocks that need to

be implemented.

This section presents a new way in which Wyliodrin can generate new and up-to-date visual

blocks.

The generator consists of a script that pulls all libmraa files from the git repository and parses

them, generating blocks corresponding to each described function. The script generates both

visual elements and Python and JavaScript code. All these are stored in a database owned

by Wyliodrin. Blocks are automatically retrieved from the database so that this process is

transparent for Wyliodrin users who see a complete and up-to-date toolbox.

Generator Architecture

The generator is based on the libmraa library, which brought us to the idea that once some

generic standard functions exist, it is easy and efficient to create an automatic blocks gener-

ator.

The first step was to extract from the library’s files the information required in order to obtain

some intuitive visual elements. Once the format of libmraa’s files was clear, the next step was

to generate the file parser. For this, we used a parser generator, Jison [31]. Any input will be

converted into the abstract syntax tree, which is, in fact, a JSON structure [32].

After the basic structure is extracted from the source file, the next step is the semantic analysis

that checks if the basic JSON structure is correctly translated to one that contains all the

relevant information for generating a block.

After everything is parsed, the next step is to do the semantic analysis. First of all, the

function’s name must be separated from its type. Also, in case a function argument is of an

enum type, it should be tied to that enum structure. After this step, the essential information

for auto-generating the blocks is available. Nevertheless, the resulting block would not be

much different from the function it represents.

The purpose of Google Blockly is to replace code by using more intuitive elements. This is

why it is important to adjust this structure to make it more suitable for this programming

14

language. This is an optimization phase and consists of creating a well-built block. What we

did, in these terms, is to interpolate the description of each function, which is basically the

main text on the block, with the argument, where possible.

In the end, the result is a new JSON structure that contains all the relevant information

required to correctly generate a complete Blockly element.

Parting from all this information, all the rest of the required details can be inferred. This is

why the next step is to create a more complex structure from which the visual elements can

be easily generated.

During this process, each parameter is converted into an input together with the appropri-

ate fields. For instance, any boolean parameter is transformed into a checkbox, while any

enumerator translates to a dropdown list. What is more, basic variables types such as int or

char* are converted to Number, respectively String type.

In the end, the result is a new JSON structure that intuitively represents the correspondence

it has to the created block.

Automated Block Generator for Wyliodrin

Starting with the block generator presented in the previous section, we created an API that

allows the creation, manipulation, and storage of each new block structure. The API has two

parts, one is for use by the web server to generate blocks and change the JSON structure,

while the other part is to be used in a web client to display the block and insert its code in

the page.

The API server part includes the generator because it exposes the functions that generate the

JSON structure from the C/C++ functions. In addition, the API also manages the storage

of the blocks. It communicates with a database API that stores data structures and alters

them.

On the other hand, the web client API allows the blocks to be displayed in a browser. The

module exposes a function that analyzes the JSON structure and calls the Blockly functions

that build the block. Basically, this function replaces the initialization function of Blockly.

Once the representation of each block is complete, a script that would pull all libmraa’s files,

generate the final JSON structure, and store it in a database is required. To accomplish these

tasks, we created a Node.js script.

When using the blocks generator with the mraa library, we generated a total of 150 blocks.

80% of them are intuitive blocks that can be used as is. The rest require custom changes to

be made.

15

3.1.4 Platform Usage

The Wyliodrin platform is available on GitHub as an open-source project [33]. It can also

be directly downloaded as a compiled app for all existing platforms (Windows, Linux, and

MacOS), or used directly in the browser [34].

To measure the platform’s usage, we integrated a statistics module that allows us to count

the number of projects built and the number of new users. We started gathering usage data

in October 2019. In the interval 1 Oct 2019 - 31 Dec 2022, a total of 30.000 users developed

applications using the web and local versions. What is more, a total of 40.000 new applications

were developed and deployed on around 31.000 Raspberry Pi devices.

3.2 IoT Education

As educational IoT projects are, to a certain extent, similar to the prototypes built by the

maker community, we adapted the Wyliodrin platform for this specific field.

While some of the features of the standard Wyliodrin platform are suitable for educational

needs (e.g., visual programming, easy setup), additional development is required. To this end,

in our research to find out if IoT education can prepare students for building secure software,

we implemented the following tools to make the educational process more straightforward:

• build a hardware add-on to abstract the electronic circuits;

• build a hardware simulator for institutions that cannot afford the proposed add-on.

3.2.1 Hardware Platform for Circuit Abstraction

This hardware platform works as a shield that students use to build the circuit that their

software will control in a more accessible manner.

When designing the platform, we took into account the fact that students have a better

understanding of the information they are presented if they can use it in real-life applications

of their interest.

The platform we built consists of both hardware and software components designed to be

deployed to a class of students. The system is built on top of existing educational tools such

as Blockly and the Raspberry Pi [35].

Our solution consists of a Raspberry Pi extension board that exposes a wide array of Grove

connectors to which students can connect peripherals such as buttons, LEDs, solar panels,

temperature and light sensors, etc. In order to connect the peripherals, students do not need

any electronics knowledge, as all the elements are designed to be plugged into the socket,

without any other necessary connections required.

16

The expansion we propose has integrated the following elements, as shown in Figure 4:

• LCD;

• 3 LEDs;

• 2 buttons;

• 30 Grove connectors for digital, analog, and I2C connections.

Figure 4: The Raspberry Pi expansion.

To better simulate the systems that students are building, on top of the Raspberry Pi extension,

we built a support plate on top of which they can place 3D-printed objects such as traffic

lights or house structures. We designed the objects to be fully compatible with the Grove

peripherals so students can attach LEDs and sensors to them, obtaining a physical object

(Figure 5).

For the actual programming of the devices, students can choose from programming languages

such as Python, JavaScript, or Blockly. This way, students accustomed to programming can

use a procedural language such as Python, while students with no programming background

can get started with using visual blocks.

Classroom Usage

The Wyliodrin expansion was implemented at a computer science course for Power Engineering

students during one semester. In order to evaluate the platform’s efficiency, we took into

account metrics such as student engagement, the complexity of the applications built by

17

Figure 5: Traffic lights structure connected to the Raspberry Pi expansion board.

students, their final grades, and the overall group progress. We compared these metrics to

the ones obtained by the previous cohort of students a year before. While the previous year

students worked with simple Raspberry Pi and Arduino devices to control simple peripherals,

the following year students used the Wyliodrin Lab platform for applications related to the

power engineering field [36,37].

During the second year, the laboratories required students to build power energy plants, control

and monitor the energy consumed by buildings, traffic lights, and street lighting systems [38].

Allowing students to build the physical systems was engaging to them. As a result, students

focused on the laboratory and solved all the required exercises, showing a high engagement

rate. In contrast, previous students used to lose interest and focus on different aspects, not

solving all the laboratory exercises.

Another approach was to introduce students to visual programming based on Blockly and

help them transition to Python programming. To do this, we asked students to build a full

application using the blocks and then alter the application from the Python code [39]. After a

few laboratories, we would create some Blockly elements that generate a faulty Python code

and have the students repair the code. Finally, we asked students to build simple Python

applications. By the end of the semester, 80% of the students were capable of writing a

Python application that reads data from the sensors and controls some LEDs.

For the final exam, 70% of the students could control peripherals, exchange data between

different Raspberry Pi devices, and use web services. In contrast, at the end of the semester,

18

the previous cohort had the knowledge to control Raspberry Pi and Arduino devices, with very

few students having more advanced skills.

3.2.2 Hardware Simulator

Implementing IoT-related classes implies significant financial costs. This is because building

IoT applications requires hardware components, starting with the main development board,

where Raspberry Pi and Arduino are the most popular choices, to sensors, actuators, and other

add-ons [40]. A kit containing a Raspberry Pi, a breadboard, and a basic set of peripherals has

an average cost of 100$, leading the total cost of equipping an IoT-dedicated lab to around

2000$.

In the contribution detailed in this section, we aim to present a solution to the problem in-

troduced above. In order to reduce the costs related to implementing IoT classes, we have

designed a software simulator designed especially for education. The platform we propose

simulates a Raspberry Pi device connected to various peripherals, that can run basic applica-

tions. This solution aims to make IoT a more accessible field and helps introduce such classes

into educational institutions by reducing the costs related to the courses.

To achieve this, we added a Raspberry Pi simulator as an additional module to the Wyliodrin

platform. The main advantage of this is that students can use the same platform for running

applications both in the simulator and on the physical Raspberry Pi. What is more, there

are no changes required to run an application on both schematics. The only difference is the

device they connect to: a physical Raspberry Pi, or a simulated Raspberry Pi.

The Raspberry Pi simulator works based on Fritzing schematics that can be imported and

are parsed into the applications. Currently, the simulator recognizes the following peripher-

als: LEDs, LCDs, and buttons. Therefore, users can build any schematic that uses these

components and import them in the platform we propose.

Further on, as a circuit is selected, students can write applications and run them on the

simulated device. Currently, the applications can be written either in Node.js or using Blockly,

which generates JavaScript code.

Classroom Usage

To test the solution’s efficiency, we used it in an IoT course for first-year Electrical Engineer-

ing students without previous knowledge of working with the Raspberry Pi or other circuit

elements. Around 25 students attended the class, which lasted for 12 weeks, consisting of a

two-hour theoretical course and a two-hours laboratory.

During the first four weeks, students used only the Raspberry Pi simulator integrated into

Wyliodrin and switched to working with the physical device. The result was that students

19

managed to implement the simulated circuits and then switched to implementing the physical

schematics without frying any of the hardware components. In comparison to this, a year ago,

when the solution was not available, students started by implementing simple circuits on the

Raspberry Pi, and used to connect the LEDs badly,frying many of them due to short-circuits.

What is more, students managed to develop more advanced applications by the end of the

semester, as it was easier for them to get started. Many of the students used to be reluctant

to start working with hardware components.

20

4 SECURE UPDATES INFRASTRUCTURES FOR IOT SYSTEMS

The purpose of the research presented in this chapter is to propose a software deployment

and updates infrastructure that is built on top of a generic model and is open-source and easy

to implement by any IoT integrator.

4.1 The Platform Constraints

In defining the deployment infrastructure, we first analyzed the context in which it is used

and the existing constraints. As a result, we define the following design constraints:

• C1 - The platform has to enable the development and debugging of the applications on

hardware devices and in conditions similar to production ones.

• C2 - The platform has to support beta testing for the software to be deployed. For

this, the software is deployed on the same hardware as the one in production and in

conditions similar to production ones.

• C3 - After beta testing is successfully finalized, software updates need to be deployed

incrementally. This way, any error in the deployment process can be identified at an

early stage.

• C4 - Application updates need to be scheduled outside the devices operation times

(e.g., we cannot update an assembly line while running or a vending machine while it

performs product sales).

• C5 - In case the newly deployed application does not start on certain devices, it needs

to be automatically rolled back to the most recent working version.

• C6 - A monitoring dashboard for the deployed devices is required. Maintainers will have

access to the dashboard to visualize deployed devices’ behavior, run diagnostic tests,

and remotely access the device to perform manual software rollback if necessary.

• C7 - In case of a compromised device (e.g., a stolen connected bike), maintainers have

the possibility of disabling it, thus bringing it to a non-functioning state.

• C8 - For security, devices need to authenticate and be compatible with Trusted Platform

Modules (TPMs) [41](e.g., ARM TrustZone [42], Software Guard Extensions [43]).

• C9 - Updates must be fast and require small data transfers to preserve bandwidth.

• C10 - The system needs to be open and easy to integrate with the vendor’s infrastruc-

ture.

21

4.2 The Proposed Mathematical Model

Based on the constraints defined above, we define a mathematical model for an embedded

software deployment infrastructure that can be implemented by vendors using their preferred

technologies.

4.2.1 Terminology

The model we propose is based on a central orchestration unit that manages the devices, their

connections, and deployment procedures. From a more detailed perspective, the system con-

sists of the following main elements: Vendor, User, Product, Cluster, Application, Container

Deployment, Project, Event. Further on, we describe each of these elements in detail:

• Vendor - It is the user of the system, or more specifically, the IoT producer, who builds

and manages the devices. The vendor owns products, clusters, projects, applications,

deployments, and containers.

• User - For each vendor, multiple users can be created. Each user can manage the

elements described further on.

• Product - Each device registered in the platform is a unique product. We refer to it as a

product since it is the basic element the vendor sells. Each product uniquely identifies by

an id, and also has a name. We define three different product types: development (used

for software development and debugging), beta (used for beta testing), and production

(commercialized by the vendor). Each product is part of a cluster (defined below).

• Cluster - A cluster can contain one or more products. All the products in a cluster are

located in a delimited geographical area and run the same software (e.g., a collection

of devices gathering soil data about a specific agricultural area).

• Application - One application uniquely defines a piece of software to be deployed on a

cluster. Each application has a list of versions. What is more, for each application, a

list of default parameters used to run the software is defined.

• Container - It is the actual software to be deployed on the registered products. The

container is stored in a repository.

• Deployment - A deployment links one or multiple clusters to an application, an ap-

plication version number, and a set of application parameters. Once a deployment is

created, all products in the target cluster(s) will run the specified version of the selected

application using the defined parameters.

• Event - Events are definitions of actions that take place as the system is running (e.g.,

product registration, cluster creation, a new application version).

The application deployment infrastructure we model in this section consists of three core

components: the server, the products, and the deployments. The server communicates with

the products while the products run the software delivered as a deployment. Based on this

22

generic approach, more specific use cases can be implemented to optimize the deployment

and updates system for specific scenarios.

4.2.2 Defined Sets

To mathematically define the infrastructure described above (server, products, and deploy-

ments interaction), we define the following sets based on which all the following definitions

are implemented:

• P - the set containing all possible product ids; the concrete value is left at the discretion

of each implementation;

• C - the set containing all possible cluster ids; the concrete value is left at the discretion

of each implementation;

• K - the set containing all possible public key infrastructure (PKI) keys (e.g., ECC [44]

or RSA [45]);

• Pa - the set containing all the possible parameters associated with the deployments; he

concrete value is left at the discretion of each implementation;

• A - the set containing all the possible application ids; the concrete value is left at the

discretion of each implementation;

• S - the set containing all the possible digital signatures based on the keys in K ;

• U - the set containing all unique tokens associated with a product; the tokens are used

for the product to authenticate; the concrete value is left at the discretion of each

implementation;

• E - the set containing all defined errors; the concrete value is left at the discretion of

each implementation;

• T - the set containing all the possible product types: development - used while the

application is under development, and a lot of debugging is done; beta - used for beta

testing on a limited number of devices in conditions similar to the production ones;

production - used for the final products that are sold by the vendor.

4.2.3 The Mathematical Model

Based on the sets defined above, we define the following model for a generic software de-

ployment and updates platform that follows the constraints defined previously. Based on

this model, the vendor can build and integrate its custom implementation with the complete

infrastructure.

Starting from the sets described above, the first definition is for the T set that contains all

available product types (1).

T = {development, beta, production} (1)

23

Further on, we define M as the space of all products, where a product is a device running the

desired software (2).

M = P ×K × C ×K × T × Pa (2)

The projection on the space M, represented by the vector −→m has the following dimensions: id,

private key, cluster id, cluster private key, type, and additional parameters that can be useful

for specific implementations (3).

−→m : M = (idproduct, keyproduct, idcluster, keycluster, type, parameter) (3)

Starting from the M vector space, we can define the following functions that project the

vector components on each of the axes:

• product (4) - the function that projects −→m on idproduct of P ; the result is a value that

defines a product;

product(−→m) : M → P = −→m × (1, 0, 0, 0, 0, 0)T (4)

• kp (5) - the function that projects −→m on keyproduct of K ; the result is a value that

defines the product’s private key;

kp(
−→m) : M → K = −→m × (0, 1, 0, 0, 0, 0)T (5)

• cluster (6) - the function that projects −→m on idcluster of C ; the result is a value that

defines the cluster that contains the product;

cluster(−→m) : M → C = −→m × (0, 0, 1, 0, 0, 0)T (6)

• kc (7) - the function that projects −→m on keycluster of K ; the result is a value that defines

the cluster’s private key;

kc(
−→m) : M → K = −→m × (0, 0, 0, 1, 0, 0)T (7)

• type (8) - the function that projects −→m on type of T ; the result is a value that defines

the product type;

type(−→m) : M → T = −→m × (0, 0, 0, 0, 1, 0)T (8)

• parameters (9) - the function that projects −→m on parameters of Pa; the result is the

set of parameters required for each specific implementation;

parameters(−→m) : M → Pa =
−→m × (0, 0, 0, 0, 0, 1)T (9)

In relation to k ∈ K, we define kT as the corresponding public key.

24

4.3 Model Implementation and Validation - IoTWay

To verify if the proposed model is suitable for implementation, we have built a deployment

and updates platform based on it. The platform is called IoTWay [46] and is an open-source

solution based on secure open standards and protocols. However, other implementations can

also be made starting from the model we defined in the previous section.

The platform’s implementation is based on five major components (server, repository, deployer,

client, IDE) that are connected as depicted in Figure 6.

Figure 6: IoTWay high-level system architecture.

The server is the central unit as it manages all essential operations related to users, products,

clusters, applications, and deployments. Per C10, the server is designed so the platform can

be easily integrated with existing infrastructure. Therefore, the server is built as a web service

collection that exposes an extensive REST API interface. All exchanges are made over the

HTTPS protocol, and the actual data is structured as JSON [47].

The repository is an actual container repository that uses an OAuth token bearer for authen-

tication [48].

The deployer is a lightweight application that runs on each product. The application is in

charge of how containers are installed and started on the device. It does the file system

mappings necessary for the container and the event logging. Another optional feature that

can be disabled is for the deployer to provide an active bidirectional connection with the server

so a remote shell can be opened.

25

The client is an optional component that offers a visual interface to the users. Via the client,

the vendors can handle all available operations. However, the server can be easily integrated

with any other infrastructure using the REST API, and the client might not be necessary in

this case.

The IDE is another optional component. It is a web application that enables vendors to build

their applications remotely. It is basically a web interface where users can build their projects.

All these components are interconnected for a successful deployment to happen. For example,

in case of an update, the deployer sends a query to the server asking for a list of deployments

scheduled to run on the product. Once the server authenticates the product, it sends the list

and a set of credentials for the container repository. The deployer downloads the containers

using the provided credentials and runs them.

4.4 Test Use Case

To evaluate the efficiency of the IoTWay platform, we used it for a commercial use case. The

use case targeted the implementation of a software deployment and updates infrastructure for

smart soda dispensers. To extensively test the implementation’s efficiency, we used multiple

different technologies at various stacks in the infrastructure. This way, we can measure the

impact the deployment infrastructure has on the rest of the system’s components.

In the implemented use case we connected numerous soda dispensing machines displaying

commercials. The users control the dispenser via the touchscreen to select the desired bever-

age and control the liquid flow (start/stop). All the dispensers were connected to the cloud so

consumption data can be monitored. The machines have multiple sensors integrated. They

are used for measuring the quantity and type of disposed beverages, monitoring the water

filter status, the machine temperature, and energy consumption.

Using IoTWay, the vendor can upload new software on the device and monitor the deployed

machines.

4.5 Results

To measure the efficiency of the proposed model and implementation, we deployed around 100

dispensing machines together with a commercial partner, in three different regions: Romania,

USA, and India.

26

4.5.1 Software Characteristics

The IoTWay platform was used for both application development and updates. In this context,

the software deployed on the devices ranges from simple applications to more advanced ones

implying a user interface.

From the performance point of view, running the latest application version on the BeagleBone

Black devices proved troublesome due to the hardware resources available. Many of the

transitions would move very slow or freeze. On the other hand, the Raspberry Pi (4 CPU

cores) had no performance issues, and the software was successfully run on the Raspberry Pi

devices. Moreover, the performance was even better when the GPU rendering was active.

Table 1 outlines the performance comparison between the approaches. The machine load

average is computed as the average CPU percent usage over a 10 minutes time span.

Table 1: Machine performance.

Platform CPU Speed RAM Avg Load Avg RAM load

BeagleBone Black 1.0 GHz 512 MB 150% 100%

Raspberry Pi 3 (no GPU driver) 4 x 1.2 GHz 1 GB 40% 60%

Raspberry Pi 3 (GPU driver) 4 x 1.2 GHz 1 GB 10% 60%

The load related to the application run on the device also had an impact on the updates system

efficiency. As the BeagleBone Black devices were heavily loaded, network traffic suffered many

packet losses and many disconnects.

4.5.2 Deployment Performances

The first parameter we measured related to the implementation’s efficiency is the software

size for the first deployment and the updates. As IoTWay is designed to support differential

updates, the first software deployment is expected to be notably larger in size and take a

longer time.

The first image we created was 1.2 GB in size and required 1h for the deployment to complete.

The following updates are in the size range of 200-300MB and took 10-15 min to be made.

Considering the significant sizes, 20% of the updates failed and required a retry. However,

none of the deployments resulted in rollbacks or corrupt devices.

After the first measurements, we decreased the container image size by optimizing the build

system. We identified the unnecessary files created during the building process and dropped

them. This resulted in an initial container image size of 500MB and update containers ranging

between 50 MB and 100 MB. This decreased the initial deployment time to 20-30 min and

the updates time to around 5 min.

27

Table 2: Update performances.

Initial Deployment

Size
Update Size

Update Retry

Rate

Initial Deployment

Time
Update Time

Initial 1.5 GB 500 MB 20% 1 h 10-15 min

Optimized 200-300 MB 50-100 MB 5% 20-35 min 5 min

Initially, the measurements were made on the Raspberry Pi as it proved to be more stable

and have higher hardware performances (Table 2). In contrast, the BeagleBone Black has

hardware constraints that affect the deployment infrastructure, leading us to an update retry

rate and time that are higher by approximately 30%.

After the container optimization, we used the infrastructure to perform a total of 133 deploy-

ments on 100 dispensing machines (Table 3). For the BeagleBone Black devices, 30% of the

deployments failed due to network packet losses and faulty disk writes.

Table 3: Update numbers.

Platform Devices Updates
Avg. Recovered

Devices/Updates

Avg. Unrecovered

Devices/Updates

Devices with

Other Failures

BeagleBone Black 80 133 25 2 20

Raspberry Pi 3 30 133 3 0 0

4.5.3 Performance Comparison With Balena

The research presented in this chapter has as its primary purpose to propose a software

deployment and updates infrastructure that has a solid theoretical foundation and which can

be easily adapted for various use cases. At the time when this research was carried out, several

other OTA commercial solutions were implemented.

When comparing the proposed model and implementation with other platforms, Balena stands

out as an update infrastructure that has several common mechanisms with the IoTWay plat-

form. In this context, we implemented the use case presented above using the Balena in-

frastructure. We deployed the second software iteration and the 133 updates on the same

devices, Raspberry Pi and BeagleBone Black. The results are outlined in table 4.

Table 4: Update performance comparison between IoTWay and Balena.

Platform Devices Updates Avg. Recovered Avg. Unrecovered Devices with

Devices/Update Devices/Updates Other Failures

IoTWay 110 133 19 2 20

Balena 110 133 17 10 40

28

5 SECURITY AT THE KERNEL LAYER

The purpose of the work presented in this chapter is to propose a real-time component for

an embedded operating system that can also ensure a high degree of security. After a short

review of the existing technologies dedicated to embedded applications, we identified that

all classic RTOSs have a major security penalty that is tightly related to the fact that all of

these operating systems are written in C. Due to the way in which memory management is

implemented in C, buffer overflows, and other similar attacks are frequent.

On the other hand, Hubris and Tock, embedded operating systems entirely written in Rust,

are not affected by most of the C memory management-related security threats. The only

aspect that they are lacking is real-time support. Therefore, we aimed to enhance Tock and

integrate a real-time mechanism for achieving a superior security level while ensuring the fast

handling of specific events.

5.1 Security Enforcement in Tock

The safety of the Tock operating system relies on three main implementation characteristics:

1. The kernel is written in Rust, with the number of unsafe code lines reduced to the

minimum.

2. Drivers are divided into two layers: low-level drivers with direct access to hardware and

capsules, and upper-level drivers that abstract the low-lever ones and are not allowed

to use unsafe Rust. Most of the development is carried out at the capsule layer.

3. It uses the hardware memory protection to restrict the applications from accessing

memory outside their address space.

Applications run in the user space and are compiled completely separately from the kernel.

The advantage of this approach is that deploying the kernel and applications can be carried out

separately, and applications are installed on top of Tock in a similar manner to general-purpose

systems.

Figure 7 depicts the Tock implementation stack, which demonstrates the distinction between

kernel space and user space [49].

While this clear separation between the kernel and user space has safety advantages, it in-

troduces delays in the process of interrupt handling, as applications cannot directly expose

interrupt handlers.

29

Hardware

 Temperature NineDoF Console

PWM ...SPI

SPI UART GPIO ...

GPIO

Alarm

Hardware Interface Layer (HIL)

Scheduler
IPC

C/C++ Application Rust Application ...

Figure 7: The Tock stack.

5.2 The Approach

Considering the Tock stack, one of the overheads that we identified as preventing the operating

system from running low-latency real-time operations is the context switch from kernel to

application space. The latency is generated mostly from the time gap between the moment

the kernel notices the interrupt and the moment the callback function code in the user space

gets executed.

We believe that moving all of the interrupt handling from the user space to kernel space

and eliminating the context switch associated with the execution of an interrupt routine will

significantly reduce the response time.

The Berkeley Packet Filter (BPF) is a kernel sandbox capable of running tasks for filtering

network data. In 2013, BPF suffered important changes and was renamed eBPF, and can be

now used for more varied applications, rather than only network filtering. The main capability

of eBPF is to inject specific code into the Linux kernel at runtime [50]. It is a straightforward

way of dynamically introducing kernel code from the user space without recompiling the kernel.

5.3 eBPF Sandbox Integration Into Tock

The implementation that we propose is to inject the interrupt handling routine in the kernel

(driver) instead of registering the callback function for the upcall, as shown in Figure 8.

The injected routine is any eBPF bytecode that the application developer can generate using

various tools such as LLVM or gcc. As eBPF is a known standard portable code, this approach

30

ensures that the solution is not dependent on a specific architecture.

Figure 8: The proposed system architecture.

The proposed implementation relies on the following three main components:

• The eBPF executor - This is the capsule that executes the interrupt handling routine,

and that needs Tock kernel and user space interaction.

• The bytecode pre-processor - It modifies the original eBPF bytecode to be compatible

with Tock’s memory model.

• The user space communication agent with the eBPF sandbox - This is the capsule’s

API through which the defined bytecode is injected into the executor.

5.3.1 The eBPF Executor

The central component in the architecture that we propose is the executor of the eBPF

bytecode developed as a Tock capsule.

In this context, we identified the following constraints concerning the executor’s implementa-

tion, which are due to Tock’s implementation rules:

• C1 - The injected bytecode needs to have a deterministic execution time. It needs to

ensure that it finishes executing in a finite amount of time.

• C2 - No unsafe Rust code is allowed at this layer. The executor needs to contain only

safe code.

• C3 - No heap memory allocation is allowed in Tock, as heap allocation is not determin-

istic. Therefore, the eBPF executor cannot use the heap.

For the implementation, we used rbpf [51], a small open-source project that aims to provide

an eBPF executor written entirely in Rust.

31

For our approach, the eBPF sandbox needed to be run in the kernel as a capsule. This led us

to outline three main disadvantages in the original rbpf implementation that are not suitable

for the use case that we propose.

• Rbpf depends on the Rust standard library, which does not exist in the Tock kernel.

Furthermore, it relies on the Vec structure, which uses the heap to allocate data. This

contradicts C3.

• Rbpf has large blocks of unsafe code. Tock requires that all capsules have zero lines of

unsafe Rust code, contradicting C2 from the constraints list.

• The complete rbpf crate is very large in dimensions, as it is designed to run on general-

purpose computers. In our case, where we aim to run it on microcontrollers, the available

memory is too small to accommodate all the features. Furthermore, many of the nice-

to-have features included in rbpf are unnecessary for our use case, such as JIT or helper

functions. While this is not in direct contradiction with the three constraints defined

above, it is an important aspect related to the general purpose of our work.

In this context, we generated a custom version of rbpf that has the characteristics necessary

to be safely integrated into the Tock kernel. To obtain the custom version, we followed some

specific implementation steps:

1. Remove all of the unnecessary features, such as helper functions and JIT-related func-

tions. The eBPF memory is represented as an array to the bytecode program. This is

critical with regard to the speed and memory footprint.

2. Rewrite all code parts dependent on the standard rust library, which appear mainly

because the memory is represented as a vec structure. To achieve this, we replaced the

memory representation with a mutable array of 8-bit unsigned integers.

3. Remove all dereferences of raw pointers, which produce unsafe code that cannot be run

inside the Tock capsules.

After the alterations mentioned above, the custom rbpf version has all of the capabilities

required to be safely run as a Tock capsule on top of embedded devices that have constrained

capabilities.

5.3.2 The Bytecode Pre-Processor

In addition to the eBPF sandbox, an important aspect in running safe custom code in the

kernel is how the eBPF bytecode to be executed is generated. For this, we need to consider

the constraints related to Tock and the hardware capabilities. While, in general, eBPF is

designed to run on computers, in our case, we needed to adapt to microcontrollers with

reduced processing power and memory.

32

Least Significant Bit Most Significant Bit

0 7

Opcode

8 11

Src

12 15

Dest

16 31

Offset

32 63

Immediate Value

Figure 9: eBPF instruction format.

The eBPF ISA is straightforward, the binary program itself being a long sequence of 64-bit

instructions that must respect the format that is presented in Figure 9.

The bytecode pre-processor is part of the rbpf sandbox that we used for our implementation.

The major alteration is related to the memory buffer allocation. Initially, the executor repre-

sented the memory area passed from the user space as a Vec structure, which is allocated on

the heap at the runtime. For our use case where the executor is represented as a Tock capsule,

this contradicts C3. Therefore, we changed the original memory management implementation

to replace the Vec struct with an array, which is allocated on the stack.

Another feature of interest related to memory management is that the initial rbpf implementa-

tion uses a Vec structure for the virtual machine’s stack. As we stated before, this contradicts

C3, so we removed it. Our solution was to allocate an array in the main capsule and pass it

to the executor together with the memory structure. The two were concatenated and passed

further on. Therefore, one of the challenges is to ensure that operations related to memory

management are carried out correctly.

5.3.3 The User Space Communication Agent with the eBPF Sand-

box

The final component of the proposed architecture is related to the actual integration of the

eBPF executor in the Tock stack. The sandbox was deployed as part of the kernel space but

also communicates with the user space and exposes a user space API (Figure 10), which makes

the integration more complex. At the kernel layer, the rbpf executor module was included in

a custom Tock capsule designed to intermediate this communication.

The capsule we created is meant to offer a generic implementation that allows for interactions

with all other existing Tock capsules. In this context, this capsule does not control the

hardware directly, but sends commands to already implemented hardware control capsules.

However, it needs to associate the bytecode with the necessary hardware operations, identify

the appropriate hardware control capsule, and define the necessary commands. Further on, it

reads the result that the hardware control capsule returns and transmits it back to the user

space.

33

Figure 10: The communication between the application and a peripheral capsule using the

eBPF executor.

For the communication with the user space, the capsule receives the bytecode from the

application via a command and allows for system calls. The actual bytecode is passed as a

byte array stored inside a buffer shared by the kernel and the application. This relies on the

Tock standard of sharing data between the user space and the kernel.

5.4 Tests and Results

To evaluate the efficiency of the proposed approach, we measured the system’s latency when

handling interrupts. As we target obtaining a soft real-time system, the necessary evaluation

approach relies on monitoring the system’s behavior and measuring latencies.

5.4.1 The Evaluation of the Original Implementation

We first conducted tests to assess the performance of the Tock operating system on various

architectures. These tests were meant to identify the original latencies in the Tock kernel and

the overall system behavior in handling external triggers. To achieve this, we implemented

two test categories:

1. Overall behavior - These are stress tests meant to identify if a device running Tock can

handle a massive amount of high-frequency triggers.

2. Latency measurement - These tests focused on evaluating the latency in handling in-

terrupts in Tock.

For all the tests, we used a BBC micro:bit v2 device, which has an nRF52833 MCU. This

34

MCU has a frequency of 64MHz and is one of the slowest MCUs supported by Tock; however,

the micro:bit v2 is one of the most popular devices that is completely supported by Tock.

As the tests involve generating high-frequency triggers, we used an oscilloscope to carry that

out.

Overall Behaviour Tests

For these tests, we set the oscilloscope to generate alternative HIGH-LOW values at different

frequencies, while the micro:bit ran one or more processes that handle the received interrupts.

The interrupt handler routine is defined for both edge triggers and, when called, increments

a value and prints it in the serial console.

For the case when the micro:bit runs one application whose only target is to handle these

incoming interrupts, we managed to handle all triggers received at a frequency of 2 KHz. For

higher frequencies, around 30% of the interrupts are lost. Finally, at a frequency of 10 KHz,

the system does not print any message, as it is too fully occupied to handle the interrupts

coming from the oscilloscope, and the print function never gets called.

We made the same test with a system that runs two parallel applications simultaneously. We

ran the previously mentioned application that handles interrupts in parallel with an application

that makes an LED blink once per second. The interrupt frequencies at which the system

works are the same, while for frequencies higher than 2 KHz, up to 70% of the interrupts are

lost. Similarly to the first case, the system stops printing messages for interrupts generated

at a frequency of 10 KHz. However, the LED blink process still functions.

The final test replaces the LED blink application with one that registers an interrupt routine

for a button. In this case, for interrupts generated at a frequency of 2 KHz, the overall

behavior shows that both routines, the one for the pin connected to the oscilloscope and the

one for the pin connected to the button, are called. We still need to investigate the actual

behavior that leads to this appearance.

These tests conclude that Tock is not designed to handle high-frequency interrupts and that

the interrupt handler mechanism is not optimized for fast responses.

Latency Measurements

To evaluate the interrupt handling latencies specific to Tock, we clocked the response time

between syscalls.

All of the measurements were computed as an average of 150 different samples. The deviation

in the measurements was around 150 µs.

At the user space layer, we implemented four scenarios:

35

1. One user space process - The device runs one process that continuously issues a com-

mand syscall every 250 milliseconds.

2. Three identical user space processes - The device runs three different processes, each

issuing a command syscall every 250 milliseconds.

3. One CPU-intensive process - To put more pressure on the system, it runs one CPU-

intensive process (a loop without any delays) and two processes that issue a command

syscall every 250 milliseconds.

4. Two CPU-intensive processes - This stress test uses two CPU-intensive processes and

one blocking process, similar to the ones presented above.

For each scenario, we performed two different measurements: one for a synchronous syscall

and one for an asynchronous syscall.

The synchronous measurement focuses on the duration for a syscall to be transmitted from

the user space to the kernel and for the user space to receive the result.

The asynchronous measurement clocks the duration for a syscall to reach the kernel and get

back to user space, but in the case of an asynchronous capsule.

The measurement results are displayed in Table 5. The delays obtained are considerably higher

than the delays specific to a low-latency real-time system, where the values are around 50

microseconds [52].

Table 5: Latency measurements using a micro:bit device.

One User

Space Process

Three User

Space

Processes

One

CPU-Intensive

Process

Two

CPU-Intensive

Processes

Synchronous

measurement
5127 µs 90127 µs 91452 µs 125250 µs

Asynchronous

measurement
9213 µs 91545 µs 90643 µs 120903 µs

5.4.2 The Evaluation of the Proposed Approach

The evaluation of the system implemented was carried out incrementally. Specific components

of the system were benchmarked, as well as the overall solution.

eBPF Executor Efficiency Tests

The first tests focus on comparing results when running eBPF bytecode using the original rbpf

implementation to the one we adapted. This ensures the validity of the proposed solution.

36

To this end, we created multiple C applications for each load and store operation, compiled

them to eBPF, then ran the bytecode in a Rust application [53]. This allowed us to com-

pare the rbpf output to the output obtained from our modified rbpf implementation. These

tests were run on a general-purpose system, capable of running both versions of the rbpf

implementation.

The testing framework for the correctness of the implementation was also used to evaluate the

efficiency of the eBPF executor that we propose. We used the same framework to measure

how fast the load and store instructions run in the original rbpf executor compared to the one

that we propose.

Table 6 outlines the results, where the timings obtained by the eBPF executor that we imple-

mented are, on average, 3 to 4 times lower for simple operations and around 2.5 times lower

for more complex ones.

Table 6: Load and store operations execution speed comparison between the rbpf executor

and the proposed executor.

Test Name Description

Rbpf

Execu-

tor

Proposed

rpbf-Based

Executor

LD ST DW REG
Load and Store Double-Word

into Reg
2701 µs 660 µs

LD ABS DW
Load Double-Word from

absolute indexed address
1415 µs 490 µs

ST DW IMM
Store Double-Word to absolute

indexed address
1986 µs 500 µs

LD IND DW
Load Double-Word from

indirect indexed address
1698 µs 293 µs

Stack test

Generate a vector of 496 char

elements on the stack with

values from 0 to 495

75,159

µs
28,358 µs

Complete Platform Tests

For the evaluation of the complete proposed approach, we used the same micro:bit v2 device

as in the initial tests. We defined several sets of tests to evaluate both the system’s response

to interrupt hammering and the delay in interrupt handling. For all of the tests, we used an

oscilloscope to generate an oscillating signal. For each test, we performed 50 measurements

37

and computed the average value, which is presented below. The deviation in the obtained

results was 5 µs.

We tested the system’s responsiveness when receiving interrupts at a frequency of 10 KHz.

During these current tests, all interrupts coming at a frequency of 10 KHz were successfully

handled.

Further on, we focused on two main test categories to evaluate the response time. These

tests were conducted to compare the response time of the eBPF-based approach with the

response time of the standard Tock approach and with a capsule designed to handle the same

interrupts. The results are outlined in Table 7.

Table 7: Comparison between delays obtained in handling interrupts.

Standard Tock Approach Raw Capsule eBPF Framework

One GPIO pin 104 µs 14 µs 60 µs
Array of pins 136 µs 43 µs 208 µs

Figure 11 also shows a visual representation of the results.

0

50

100

150

200

250

One GPIO pin Array of pins

Standard Tock Raw capsule eBPF framework

μs

Figure 11: Interrupt handling delays.

The results obtained by the approach that we suggest were compared to the delays measured

in the original Tock implementation and to the ones resulted in the case of a dedicated capsule

to handle these interrupts. As expected, the delays in the case of a dedicated capsule are the

lowest, as all of the application logic is implemented in the kernel.

When compared to the original Tock implementation, the eBPF-approach is faster for the

first use case, which is when the GPIO pins are predefined. However, in the second use case,

when an array of pins is used, that response time increases significantly. This is due to the

operation of iterating the array. In Rust, iterating an array is very time-consuming. Therefore,

the main future improvement that we will focus this research on is to reduce this overhead.

38

5.4.3 Results

The final results outline a significant improvement in the system’s response to high-frequency

interrupts. To be more precise, we implemented an approach that allows the Tock kernel to

run custom code triggered by interrupts coming at a frequency of 10 KHz, while the original

kernel freezes during such a use case.

When compared to the raw approach of introducing a custom capsule in the kernel meant

to handle specific interrupts, the eBPF-based solution has a lower response time. However,

the main advantage of the proposed solution is its generality. It does not involve a different

capsule for each different use case but allows the interrupt routine to be injected into the

kernel from the user space.

Regarding the delay in handling an incoming event, the approach that we propose measures a

mean value of 200 µs between the interrupt being triggered and a pin’s status being changed.

This value is for the case where we work with an array of pins that are being read. If we

resume to a specific use case where the pins are statically defined in the capsule, the delays

drop to 60 µs, which is comparable to other real-time systems. The evaluation made by Zhang

M. et al. [52] outline that a real-time system implemented using a Raspberry Pi 3 that has a

CPU of 1.2 GHz and a BeagleBone Black with a 1 GHz CPU has a response latency between

45 and 75 µs.

39

6 CONCLUSIONS

This thesis centers around the means of securing Internet of Things infrastructures by con-

sidering the diversity of technologies involved in building such a system. Therefore, our work

addresses multiple aspects related to IoT, starting from the sensing layer and climbing the

IoT stack up to the cloud technologies involved in maintaining any Internet of Things device.

In our first contribution, we focus on the enablement of secure modern programming languages

for specific embedded computers and microcontrollers. For instance, we managed to run

JerryScript (a light JavaScript runtime) on top of the NXP IoT Rapid Prototyping Kit, a

device designed for prototyping IoT applications for smart houses and weather stations. We

also researched running such high-level programming languages on more constrained devices

and on top of lightweight operating systems, aiming to address the security aspect at both

kernel and application layers. For this, we managed to run applications written in D-lang on

top of Tock, a secure kernel for microcontrollers written in Rust.

Another complementary aspect that we approached is the visual programming languages. We

focused on a frequently used visual programming solution for the Internet of Things: Node-

RED. This has a flow-based approach, as programmers use connected nodes to define their

infrastructures’ behavior and how these interact with each other. In this research work, we

proposed an alternative to Node-RED as a BPMN-based solution for defining IoT systems.

Due to its specific constraints and the usage of an interpreter, the BPMN-based platform we

propose is secure from the application point of view.

As security is an aspect to be taken into account from the prototyping phase in a product’s

development cycle, we focus one contribution on identifying and proposing technologies that

enable integrators to securely and robustly prototype IoT devices. As a result, we propose

Wyliodrin, a prototyping platform we designed for safely and efficiently building and deploying

applications on embedded computers such as the Raspberry Pi, BeagleBone Black, or the

Qualcomm DragonBoard.

We developed Wyliodrin as a generic and easily extensible platform and adapted it to work

with various hardware and software technologies. Therefore, this contribution answers the

question regarding ways of enforcing the security of IoT systems during the product life cycle.

Extending the proposed IoT prototyping tools, we designed a specific Wyliodrin version tar-

geting education. While similar in many respects, prototyping and educational tools also have

certain characteristics that are specific for each of their purposes.

The final solution consists of a modular open source hardware and software platform which

can be easily adapted by the maker community and by educators. As a result, in the interval

40

1 Oct 2019 - 31 Dec 2022, a total of 30.000 users developed applications based on it.

Another contribution addresses the security vulnerabilities related to software deployment and

updates in Internet of Things devices. This contribution is divided into two major sections.

In the first section, we propose a generic deployment and updates infrastructure that relies

on a mathematical model. The second section details the implementation of this model using

technologies at the state-of-the-art level such as docker. For the mathematical model, we

consider all issues related to software deployment in IoT, with a focus on security. We also

take into account the reliability of such an infrastructure and focus on models that prevent

the bricking and lockout of a device when it is in the middle of an update.

Further on, to prove the feasibility of the general model we propose, we build an implemen-

tation of a generic, open deployment and updates platform which we used to run 13.300

software updates on devices on three different continents, with a success rate of over 70%

and with 0 bricked or locked out devices.

Our final work presented in this thesis addresses the lowest layer in the IoT stack, focusing

on low-capabilities devices such as microcontrollers and the security of the operating systems

running on them.

We leverage the advantages of Tock which is an open-source OS for microcontrollers designed

on top of a solid security foundation, but which lacks the real-time characteristic. Based on

this, we researched ways of introducing a real-time capability in the Tock kernel so we can

obtain an operating system that is both secure and real-time. The approach we took was to

leverage the eBPF technology used for network processing and use it for handling low-latency

operations. The results we obtained are comparable with FreeRTOS, the most used real-time

operating system for microcontrollers.

41

BIBLIOGRAPHY

[1] J. Margolis, T. T. Oh, S. Jadhav, Y. H. Kim, and J. N. Kim, “An In-Depth Analysis of

the Mirai Botnet,” in 2017 International Conference on Software Security and Assurance

(ICSSA), pp. 6–12, 2017.

[2] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Du-

rumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, et al., “Understanding the mirai

botnet,” in 26th USENIX security symposium (USENIX Security 17), pp. 1093–1110,

2017.

[3] G. Thomas, “A proactive approach to more secure code.” Available online: https://msrc-

blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code (accessed

on 2 December 2022).

[4] A. Taylor, A. Whalley, D. Jansens, and N. Oskov, “An update on Memory Safety

in Chrome.” Available online: https://security.googleblog.com/2021/09/an-update-on-

memory-safety-in-chrome.html (accessed on 2 December 2022).

[5] R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward, “Control-

flow integrity for real-time embedded systems,” in 31st Euromicro Conference on Real-

Time Systems (ECRTS 2019), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[6] A. Taivalsaari and T. Mikkonen, “A roadmap to the programmable world: software

challenges in the IoT era,” IEEE software, vol. 34, no. 1, pp. 72–80, 2017.

[7] R. Avila, “Embedded Software Programming Languages: Pros, Cons, and Comparisons

of Popular Languages.” Available online: https://www.qt.io/embedded-development-

talk/embedded-software-programming-languages-pros-cons-and-comparisons-of-

popular-languages (accessed on 2 December 2022).

[8] S. Bhartiya, “Linux in 2020: 27.8 million lines of code in the kernel, 1.3 million in sys-

temd.” Available online: https://www.linux.com/news/linux-in-2020-27-8-million-lines-

of-code-in-the-kernel-1-3-million-in-systemd/ (accessed on 2 December 2022).

[9] “Mozilla Welcomes the Rust Foundation.” Available online:

https://blog.mozilla.org/en/mozilla/mozilla-welcomes-the-rust-foundation (accessed on

2 December 2022).

[10] “Tock Embedded Operating System.” Available online: https://www.tockos.org (ac-

cessed on 2 December 2022).

42

[11] “Hubris.” Available online: https://hubris.oxide.computer (accessed on 2 December

2022).

[12] “Redox.” Available online: https://www.redox-os.org (accessed on 2 December 2022).

[13] “FreeRTOS.” Available online: https://www.freertos.org (accessed on 2 December

2022).

[14] “Zephyr Project.” Available online: https://www.zephyrproject.org (accessed on 2 De-

cember 2022).

[15] T. Severin, I. Culic, and A. Radovici, “Enabling High-Level Programming Languages

on IoT Devices,” in 2020 19th RoEduNet Conference: Networking in Education and

Research (RoEduNet), pp. 1–6, IEEE, 2020.

[16] “Jerryscript engine for internet of things.” Available online: https://jerryscript.net (ac-

cessed on 2 December 2022).

[17] I. Culic, A. Radovici, L. Moraru, C. Radu, and J.-A. Vaduva, “Porting JerryScript to

NXP Rapid Prototyping Kit,” eLearning & Software for Education, vol. 2, 2020.

[18] I. Culic and A. Radovici, “Development platform for building advanced Internet of Things

systems,” in 2017 16th RoEduNet Conference: Networking in Education and Research

(RoEduNet), pp. 1–5, 2017.

[19] A. Radovici and I. Culic, “Open cloud platform for programming embedded systems,”

in 2013 RoEduNet International Conference 12th Edition: Networking in Education and

Research, pp. 1–5, IEEE, 2013.

[20] I. Culic, A. Radovici, and C. Dumitru, “Hardware Simulator for Teaching Internet of

Things,” eLearning & Software for Education, vol. 2, 2020.

[21] I. Culic and A. Radovici, “Open Source Technologies in Teaching Internet of Things,”

eLearning & Software for Education, vol. 2, 2017.

[22] A. Radovici, I. Culic, D. Rosner, and F. Oprea, “A model for the remote deployment,

update, and safe recovery for commercial sensor-based IoT systems,” Sensors, vol. 20,

no. 16, p. 4393, 2020.

[23] A. Vochescu, I. Culic, and A. Radovici, “Multi-Layer Security Framework for IoT De-

vices,” in 2020 19th RoEduNet Conference: Networking in Education and Research

(RoEduNet), pp. 1–5, IEEE, 2020.

[24] I. Culic, A. Vochescu, and A. Radovici, “A Low-Latency Optimization of a Rust-Based

Secure Operating System for Embedded Devices,” Sensors, vol. 22, no. 22, p. 8700,

2022.

43

[25] “D Programming Language.” Available online: https://dlang.org (accessed on 3 Decem-

ber 2022).

[26] E. Staniloiu, A. Militaru, R. Nitu, and R. Deaconescu, “Safer Linux Kernel Modules using

the D Programming Language,” IEEE Access, pp. 1–1, 2022.

[27] “Node-RED.” Available online: https://nodered.org/ (accessed on 4 December 2022).

[28] “bpmn-js source code.” Available online: https://github.com/bpmn-io/bpmn-js (ac-

cessed on 26 December 2022).

[29] “Blockly.” Available online: https://developers.google.com/blockly (accessed on 4 De-

cember 2022).

[30] “Eclipse/Mraa - Github.” Available online: https://github.com/eclipse/mraa (accessed

on 5 January 2023).

[31] “jison - Github.” Available online: https://github.com/zaach/jison (accessed on 5 Jan-

uary 2023).

[32] D. Grune, K. Van Reeuwijk, H. E. Bal, C. J. Jacobs, and K. Langendoen, Modern

compiler design. Springer Science & Business Media, 2012.

[33] “Wyliodrin - Github.” Available online: https://github.com/wyliodrinstudio/WyliodrinSTUDIO

(accessed on 7 January 2023).

[34] “Wyliodrin.” Available online: https://wyliodrin.studio/ (accessed on 7 January 2023).

[35] “Buy a Raspberry Pi - Raspberry Pi.” https://www.raspberrypi.org/products (accessed

on 19 February 2023).

[36] E. Crawley, J. Malmqvist, S. Ostlund, D. Brodeur, and K. Edstrom, “Rethinking engi-

neering education,” The CDIO approach, vol. 302, no. 2, pp. 60–62, 2007.

[37] G. T. Heydt and V. Vittal, “Feeding our profession [power engineering education],” IEEE

Power and Energy Magazine, vol. 1, no. 1, pp. 38–45, 2003.

[38] A. Radovici, I. Culic, O. Stoica, and D. Rosner, “Building a Smart City Infrastructure

using Raspberry Pi and Arduino,” 2016.

[39] B. Burd, L. Barker, F. A. F. Pérez, I. Russell, B. Siever, L. Tudor, M. McCarthy, and

I. Pollock, “The internet of things in undergraduate computer and information science

education: exploring curricula and pedagogy,” in Proceedings Companion of the 23rd

Annual ACM Conference on Innovation and Technology in Computer Science Education,

pp. 200–216, 2018.

[40] J. Sobota, R. PiŜl, P. Balda, and M. Schlegel, “Raspberry Pi and Arduino boards in

control education,” IFAC Proceedings Volumes, vol. 46, no. 17, pp. 7–12, 2013.

44

[41] S. L. Kinney, Trusted platform module basics: using TPM in embedded systems. Elsevier,

2006.

[42] S. Pinto and N. Santos, “Demystifying Arm TrustZone: A Comprehensive Survey,” ACM

Comput. Surv., vol. 51, 01 2019.

[43] V. Costan and S. Devadas, “Intel SGX Explained.,” IACR Cryptology ePrint Archive,

vol. 2016, no. 086, pp. 1–118, 2016.

[44] N. Koblitz, “Elliptic curve cryptosystems,”Mathematics of computation, vol. 48, no. 177,

pp. 203–209, 1987.

[45] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and

public-key cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp. 120–126,

1978.

[46] “IoTWay.” Available online: https://iotway.io (accessed on 19 February 2023).

[47] P. Bourhis, J. L. Reutter, F. Suárez, and D. Vrgoč, “JSON: data model, query languages

and schema specification,” in Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI

symposium on principles of database systems, pp. 123–135, 2017.

[48] B. Leiba, “OAuth Web Authorization Protocol,” IEEE Internet Computing, vol. 16, no. 1,

pp. 74–77, 2012.

[49] “Tock source code - Github.” Available online: https://github.com/tock/tock (accessed

on 22 September 2022).

[50] S. Miano, M. Bertrone, F. Risso, M. Tumolo, and M. V. Bernal, “Creating complex net-

work services with ebpf: Experience and lessons learned,” in 2018 IEEE 19th International

Conference on High Performance Switching and Routing (HPSR), pp. 1–8, 2018.

[51] “rbpf - Github.” Available online: https://github.com/qmonnet/rbpf (accessed on 22

September 2022).

[52] M. Zhang, M. Timmerman, L. Perneel, and T. Goedemé, “Which is the best real-time

operating system for drones? evaluation of the real-time characteristics of nuttx and

chibios,” in 2021 International Conference on Unmanned Aircraft Systems (ICUAS),

pp. 582–590, 2021.

[53] “rbpf tests - Github.” Available online: https://github.com/WyliodrinEmbeddedIoT/

rbpf tests (accessed on 22 September 2022).

45

	Introduction
	Security Enforced by Modern Programming Languages
	Integrating the D Programming Language in Constrained IoT Devices
	Secure IoT Applications Using JavaScript
	Running JerryScript On the NXP Rapid IoT Prototyping Kit
	A Build and Deployment Solution for JerryScript
	Tests and Results

	Flow-Based Programming for IoT Infrastructures
	The Platform Implementation
	Application Implementation and Results

	Secure Internet of Things Development
	IoT Development and Prototyping Tools
	Platform Overview
	Platform Architecture and Implementation
	Maintaining the Platform
	Platform Usage

	IoT Education
	Hardware Platform for Circuit Abstraction
	Hardware Simulator

	Secure Updates Infrastructures for IoT Systems
	The Platform Constraints
	The Proposed Mathematical Model
	Terminology
	Defined Sets
	The Mathematical Model

	Model Implementation and Validation - IoTWay
	Test Use Case
	Results
	Software Characteristics
	Deployment Performances
	Performance Comparison With Balena

	Security at the Kernel Layer
	Security Enforcement in Tock
	The Approach
	eBPF Sandbox Integration Into Tock
	The eBPF Executor
	The Bytecode Pre-Processor
	The User Space Communication Agent with the eBPF Sandbox

	Tests and Results
	The Evaluation of the Original Implementation
	The Evaluation of the Proposed Approach
	Results

	Conclusions
	Bibliography

