
 

 

University POLITEHNICA of Bucharest 

Automatic Control and Computers Faculty 

Automation and Industrial Informatics Department 

 
 

 

 

 

 

PhD Thesis Summary 

 

Smart Building Monitoring in Cloud for Detecting Hazardous 

Events 

 

 

Presented by 

Drd.Ing. Florin LĂCĂTUȘU 

 

 

Supervised by 

Prof.Dr.Ing. Anca Daniela IONIŢĂ 

 

  

 

2023 

 

Bucharest, Romania 

 

 

 

 



2 

 

Abstract 
The transformation of people’s lives through the use of smart buildings has become a trend for 

residential purposes, university and corporate campuses, and commercial complexes, where it 

is important to focus on both socioeconomic and environmental factors that can be facilitated 

by smart technologies, including the Internet of Things (IoT) and cloud computing. The 

interconnection between these two topics - smart buildings leveraged by IoT devices, and cloud 

computing for sustaining the management of software architecture components - has gained a 

lot of interest from the scientific community; it mostly benefits from the elastic computing and 

the ease of access for the building operators. One of the objectives of my thesis is to design 

smart building architecture by combining the advantages provided by an edge network located 

within a building and the cloud hosting the monitoring application. The result is the Edge 

Watcher System (EWS), which was conceived for monitoring a complex of smart buildings and 

detecting hazardous events via a cloud-native web application that runs on Kubernetes. 

Regarding the contributions to the aforementioned topics, I am proposing a new smart building 

monitoring system with hazard events detection capabilities including the design of distributed 

architecture solutions used to evaluate the proposed solution. Therefore, four main architecture 

design options were presented that cover the location of the monitoring software and the local 

building edge network configurations. Besides this, the thesis also shows the validation of the 

capabilities of the Edge Watcher System building monitoring system by integrating it into a 

real building where sixteen test cases were defined based on the design options presented. Also, 

another important topic that the thesis covers is represented by the evaluation of scaling 

capabilities using up to one thousand simulated edge nodes for different scenarios. Each 

scenario corresponds to a real-world building type such as a small apartment, a house, a small 

residential building, an office building, and a complex of buildings where a different number 

of edge nodes would be installed. Also, for each scenario, a comparison was made between 

Edge Watcher System monitoring service installed in a Kubernetes cluster located on the 

monitored building and Edge Watcher System monitoring application installed in the IBM 

Cloud Kubernetes service. Both local and cloud Kubernetes cluster configurations used for 

testing were able to perform well in most of the test cases. However, a more powerful cluster 

than the ones tested is recommended for a complex of buildings that contain more than 100 

edge nodes. Based on the results provided by these evaluations both the real-world one and the 

scaling evaluation, the thesis also presents recommendations for the best architecture to be used 

for the Edge Watcher System. 

 

 

 

 

 

 

 

 



3 

 

 
 

 

 

 

Acknowledgements 
 

First of all, I would like to thank Professor Anca Daniela Ioniță for her guidance, support, 

patience, and availability during my Ph.D. studies journey. She is the best mentor and advisor 

and I couldn’t achieved the same results without her advices. 

I want also to thank my Ph.D. committee, Professor Daniela Saru, Professor Florin Daniel 

Anton, and Professor Adriana Olteanu for their guidance and comments that helped me improve 

my work. 

Furthermore, I want to thank my brother, Marian Lăcătușu, and my good friend Ioan Damian 

with whom I successfully collaborated on multiple articles during our Ph.D. journeys. 

Last but not least, I want to thank my family for their support and encouragement during my 

Ph.D. work. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

 

Contents 
Abstract ...................................................................................................................................... 2 

Acknowledgements .................................................................................................................... 3 

List of Tables .............................................................................................................................. 6 

List of Figures ............................................................................................................................ 6 

1. Introduction ............................................................................................................................ 7 

2. Analysis of the State of the Art .............................................................................................. 8 

3. Monitoring Building Emergencies in Cloud .......................................................................... 9 

3.1 Research Objectives ......................................................................................................... 9 

3.2 Method ............................................................................................................................ 10 

4. Research Contributions for Building Monitoring in Cloud ................................................. 10 

4.1 Proof of Concept for a University Building ................................................................... 10 

4.2 Edge Watcher System (EWS) ......................................................................................... 11 

4.2.1 EWS logical architecture .................................................................................... 11 

4.2.2 Hazardous events detection algorithm used in testing ............................................. 13 

4.2.3 Hazard event detection and notification .................................................................. 13 

4.3 Design Options Evaluated .............................................................................................. 14 

4.3.1. Architectural options ............................................................................................... 14 

4.3.1.1. Architectural Option A — Public Cloud Kubernetes Cluster .......................... 14 

4.3.1.2. Architectural Option B — Local datacenter Kubernetes cluster ...................... 15 

4.3.2 Sensing devices options ........................................................................................... 16 

4.3.2.1. Edge Option A — Edge nodes. ........................................................................ 16 

4.3.2.2. Edge Option B — Sensing edge devices. ......................................................... 16 

5. Evaluation and Validation for a University Building ........................................................... 17 

5.1 Building Monitoring and Hazardous Event Detection Experiment................................ 17 

5.1.1 Experiment overview ............................................................................................... 17 

5.1.2 Edge Option A. Edge nodes implementation ........................................................... 17 

5.1.2.3 EWS performance evaluation for Edge Option A ............................................. 18 

5.1.3 Edge Option B. Sensing edge device implementation ............................................. 18 

5.1.3.1 EWS performance evaluation for Edge Option B ............................................. 19 

5.1.4 Discussion ................................................................................................................ 19 

5.2 Performance Testing for Multiple Design Options ........................................................ 20 

5.2.1. Testing scenarios ..................................................................................................... 20 

5.2.2 EWS testing ............................................................................................................. 20 

5.2.2.1. Design options .................................................................................................. 21 

5.2.2.2. Implementation details ..................................................................................... 23 



5 

 

5.2.2.3 Testing procedure .............................................................................................. 24 

5.2.3 Results ...................................................................................................................... 24 

6. Scaling Evaluation and Lessons Learned ............................................................................. 25 

6.1 Background ..................................................................................................................... 25 

6.2 Scaling Evaluation .......................................................................................................... 25 

6.2.1 Performance evaluation of the containerized architecture options .......................... 26 

6.2.2 Testing  scenarios ..................................................................................................... 26 

6.2.3 Performance test settings ......................................................................................... 27 

6.2.4 Containerized environment setup ............................................................................ 28 

6.2.5 Performance metrics ................................................................................................ 28 

6.3 Scaling Evaluation Results ............................................................................................. 28 

6.4 Discussion and Lessons Learned .................................................................................... 32 

6.4.1. Performance comparison based on scenarios ......................................................... 32 

6.4.2 Recommendations .................................................................................................... 33 

7.Conclusions ........................................................................................................................... 34 

7.1 Discussion ....................................................................................................................... 34 

7.2 Summary of Original Contributions ............................................................................... 36 

7.3 List of Publications ......................................................................................................... 39 

7.4 Future Perspectives ......................................................................................................... 40 

Selected References .................................................................................................................. 41 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

 

List of Tables 
Table 5.1 Option A performance analysis 

Table 5.2  Option B performance analysis 

Table 5.3  Results 

Table 6.1 Summary of the test results for the IBM 

Cloud Kubernetes cluster. 

Table 6.2 
Summary of test results for the Docker 
Desktop local cluster. 

 

List of Figures 
Fig. 2.1  Research topics 

Fig.3.1  Solution method steps 

Fig. 4.1 EWS logical architecture 

Fig. 4.2 EWS portal software architecture 

Fig. 4.3 Emergency notifications 

Fig.4.4 The EWS with a public cloud Kubernetes 

cluster 

Fig. 4.5 

 

EWS with a local datacenter Kubernetes 

cluster 

Fig. 4.6  EWS design with edge nodes. 

Fig. 4.7 EWS design with sensing edge devices. 

Fig.5.1 Raspberry Pi Edge node and Node MCU 

Sensor Node 

Fig. 5.2  Raspberry PI sensor node diagram 

Fig. 5.3   Option 1.1 Sensor Edge Node, locally-

deployed EWS 

Fig. 5.4  Option 1.2 - Sensor Edge Node, cloud-

deployed EWS 

Fig. 5.5 Option 2.1 - Edge Node MQTT broker 

with Sensor Node, locally-deployed EWS 

Fig. 5.6   Option 2.2 - Edge Node MQTT broker 

with Sensor Node, cloud-deployed EWS 

Fig.6.1 Comparative response times for different 

scenarios 

Fig. 6.2  Comparative response times for the complex 

of buildings 

Fig. 6.3  Comparative run times for different 

scenarios. 

Fig. 6.4  Comparative run times for the complex of 

buildings. 

 

 

 

 

 



7 

 

1. Introduction 
 

One of the most discussed subjects in the scientific community and IT industry is the migration 

to cloud technologies of previous solutions. The implementations using cloud technologies 

have become more frequent because of their underlying advantages and prevalence. This 

growing trend is determined by the multitude of available offerings from different cloud 

providers. Another factor of influence is represented by the flexibility offered by cloud 

computing. Therefore, the concerns of hardware choices, costs, installation, and maintenance 

do not exist in this kind of environment. The advantages of cloud were exploited in multiple 

industries, from personal use cases to complex processing, solving elaborate problems that 

require a significant amount of computing resources. For example, Carstoiu et al. propose a 

cloud use case that can be applied in the medical field, to rehabilitate neurological patients [1]. 

The biggest problem that had to be solved in the past was the cost of acquiring such hardware 

for the respective need. In the cloud, every resource is taxed for the time it is used. Thus, the 

use of high-performance equipment is accessible to a larger group of people.  

Another important task in the context of building monitoring systems is the implementation of 

a sensor network, with the purpose of collecting various environmental parameters. Sensor 

networks are used in many domains, like in the medical field, to detect tumors [2]. More and 

more implementations will migrate to this new practice, because of the flexibility that is 

provided by it, and its underlying advantages. The concept of renting hardware is not new. It 

was used for many years in the IT industry in the form of Infrastructure as a Service (IaaS) 

solutions. The implementations that adhered to this method were migrated from local servers 

to cloud virtual machines. The advantages that came with this kind of deployment were strictly 

related to the hardware costs of the servers. Therefore, the acquisition of servers is replaced 

with cloud plans that offer the possibility of paying for the respective hardware only for the 

time that it is used. This possibility of using the hardware only for the amount of time that is 

needed always fascinated me and it represents one of my top subjects of interest. I begin the 

study of cloud solutions with my dissertation project, where I migrated an early warning system 

to the cloud. The latest trend in the world of cloud applications is the use of Platform as a 

Service (PaaS) solutions. The difference between these two types of cloud methodologies (PaaS 

and IaaS) is the fact that, in the case of PaaS, the user is concerned only about the application 

implementation. All the operating system administrative tasks are executed by the cloud 

provider. As a result, this type of development makes the cloud accessible to multiple 

developers who want to migrate their applications to the cloud without the operating system 

administration worries. In my doctorate thesis, I approached the best methodologies for 

implementation of a building monitoring system, in the cloud, using a platform as a service 

solution. For this reason, I studied the implementation of monitoring applications using Linux 

containers with the result of developing cloud-native solutions. Every important cloud provider 

implements in its offering catalogue a Linux containers service. One of the most popular 

container orchestration services is Kubernetes. It was developed by Google, and it is the most 

important container orchestration solution in the IT business. The greatest advantage that is 

offered by a container implementation is related to application isolation and it offers the 

baseline for implementing loosely coupled microservices. This separation of application 

components into multiple small parts is recommended because the dependence between them 

is reduced, and, if a component is offline, the others will continue to serve their purpose. I chose 

Kubernetes as a viable solution for a building monitoring application because it provides high 

availability for its pods. A pod is the smallest unit in Kubernetes, and it can contain one or 



8 

 

multiple containers. The separation of the building infrastructure from its monitoring software 

is an important step in ensuring that, in case of a disaster, this emergency system will continue 

to function and send alerts to the helping parties. 

The objective of my research is to design smart building architecture by combining the 

advantages provided by an edge network located within a building and the cloud hosting the 

monitoring application. Similar to [3], the main functionalities are monitoring multiple 

environmental parameters using different sensors, detecting abnormal situations, and sending 

notifications in both centralized and decentralized ways. After evaluating multiple architectural 

options, the result is the Edge Watcher System (EWS), which was conceived for monitoring a 

complex of smart buildings and detecting emergency events via a cloud-native web application. 

The aim is to improve the workflow and access of management systems within a smart building, 

by providing a flexible architecture to monitor and configure the local building edge network. 

The system was designed as a cloud-native application, which can be accessed from any 

location using many device types, such as smartphones, tablets, laptops, etc, using container 

model deployment within a Kubernetes cluster. This brings the advantage of high availability 

and self-healing of containers, a necessary feature for a building monitoring system that can 

send alerts in case of emergency [4]. Regarding the configuration capabilities provided by our 

system, I propose a method of generating configuration files based on user preferences; this 

information will be further used within the setup of the edge network nodes, in order to 

automate their configuration process and the communication with the cloud system. 

The novelty of my research is related to the proposal of a new system that leverages the 

advantages of cloud technologies and the latest development methods, to offer a platform that 

is used to both monitor and configure building edge nodes, with the aim of detecting different 

alerts. Also, my solution is developed to be integrated into a broader system composed of 

multiple smart buildings with the purpose of notifying each other of possible alerts. The 

research also included the performance evaluation for simulated settings correspondent to a 

small apartment, a house, a small residential building, an office building and a complex of 

buildings. 

Regarding the thesis structure, it is composed of the following chapters. Chapter 2 presents the 

analysis of the state of the art, with investigation on two main topics – Building monitoring for 

emergency management and Cloud and edge computing. Chapter 3 refers to the research 

objectives and method. Chapter 4 presents the original contributions of my thesis regarding the 

building monitoring in cloud topic. In Chapter 5 the verification and validation of the Edge 

Watcher System are discussed. Chapter 6 represents the contributions regarding the scaling 

evaluation of EWS. The thesis concludes with the conclusions (Chapter 7), summary of the 

original contributions, future perspectives and an appendix with implementation details. 

2. Analysis of the State of the Art 
In the research field, a literature study provides the base ground for every inquiry by virtue of 

creating a personal solution that improves on the current ones. My research is based on the 

study of intelligent buildings and how monitoring systems can be implemented in this regard, 

with the primary scope of emergency signaling in case of disaster. Adding to the before-

mentioned themes, I also studied the implementation of the previously specified monitoring 

system in a cloud environment intending to separate the monitoring infrastructure from the 

building. Thus, the study on this research initiative started with the investigation of different 

articles that provide insights into current developments in building monitoring for hazard 



9 

 

management topic, which includes: building monitoring, hazard management, and emergency 

situations, and continued with the cloud and edge computing topics, which include cloud, IoT, 

edge, and fog computing, and performance monitoring (see Fig. 2.1). These are essential for 

the thesis main objective, which refers to smart building monitoring using cloud computing. 

Therefore, the monitoring software will be hosted using a cloud solution that gathers data from 

different IoT devices that communicate within an edge network to gather data from the building. 

 

Fig. 2.1 Research topics 

 

3. Monitoring Building Emergencies in Cloud 

3.1 Research Objectives 
My thesis objectives are related to the study of the topic of smart buildings integrated with 

cloud-native solutions. The goal is mainly related to the proposal of a new solution that is 

capable of integrating these two topics and can benefit from the cloud’s elasticity and high 

availability. These advantages offered by cloud implementations, coupled with the flexibility 

of IoT devices installed at the building level, can provide a robust solution that can respond 

adequately in case of possible alerts detected at the building level. Besides these, one of the 

most important objectives would also be the evaluation of such a building monitoring system 

within different situations: from the real-world evaluation which implies the installation of the 

monitoring system in an actual building to the simulated scaling evaluation that employs 

hundreds and thousands of edge nodes. Therefore, below I have summarized the main thesis 

objectives:  

1. New smart building monitoring system with hazard events detection capabilities 

2. Design and evaluate distributed architecture solutions 



10 

 

3. Validate the building monitoring system by integrating it into a real building 

4. Evaluate scaling capabilities using simulated edge nodes for different scenarios 

 

 

3.2 Method 
 The method applied for conducting this research is presented in Fig. 3.1. 

 

Fig. 3.1 Research method steps 

4. Research Contributions for Building Monitoring in Cloud 

4.1 Proof of Concept for a University Building  
During my study, I first created a proof of concept for the system, and I conducted a comparison 

between multiple possibilities of implementations for EWS in a university environment, with 

the goal of detecting possible emergencies that may occur. Therefore, I made a comparison of 

two implementations of a university building monitoring system, using a local server approach 

and a cloud-native implementation respectively. For both approaches, the result was a system 

capable of monitoring the target building and sending notifications. The provided services are 

useful to individuals who can access this system and receive emergency notifications. Also, 

data gathered from sensors are also essential because they can represent events that can 

characterize hazardous situations. The next logical step for this kind of structure was the 

implementation of monitoring system that can send user reports. The goal of the system was to 

display the data from sensors and user reports, and display it in a dashbaord. The information 

received is shown in real-time. The systems consist of a sensor network that collects data, a 

monitoring and notification software, and an application that collects reports from its users.  

The monitoring system provides information about the university building's environmental 

parameters; if one of these parameters comes out of a set threshold, it generates alerts. The 



11 

 

reporting application’s goal is to collect user reports in case of an emergency. The reports are 

sent over the Internet or as SMS. The monitoring system collects reports from users and 

compares them with the data that originated from sensors. 

4.2 Edge Watcher System (EWS) 
Monitoring and automated hazard events detection are essential for every building with a high 

number of occupants, and it can be vital in detecting events that can affect the life of its 

inhabitants. Edge Watcher System is the solution that I propose for this building monitoring, 

with the capability to detect hazardous events and notify the responsible persons. There are 

many types of sensing devices that can be used in a building such as environment data 

collectors, video monitoring, equipment information gathering, and virtual sensors. Virtual 

sensors are represented by human reports that describe what happens when a particular event 

occurs. This type of input is essential because it comes from the building occupants, and it 

represents a very important input due to the fact that it shows the current state of the persons 

that are currently living or working in the monitored structure. Also, in the context of every 

monitoring system, the user input is the most important and it can have a critical impact on the 

possible intervention because it describes in detail the exact events that occur at a particular 

time in a building that can possibly affect the lives of its occupants. Besides the human and 

hardware input that serves as the collecting part of a monitoring system, an important part is 

the actual monitoring software that processes the data and based on the results sends alerts or 

displays the collected data in a structured form that can be read by the authorized personnel. In 

a software monitoring architecture, multiple services compose the solution such as services that 

run on nodes and gather data from the sensors along with the service that collects all the data 

from nodes. Also, along with the previously mentioned software component, another important 

part of the monitoring system is dedicated software that analyses the data and shows alerts, and 

a web dashboard that is accessed by the admins with the scope to display the processed data. 

The dashboard represents the interaction of the personnel with different data that come from 

the sensors. In the solution that I propose for this topic of software building monitoring, the 

dashboard is represented by a Web application and has two purposes: the main monitoring 

scope and the datastore configuration for the application. Therefore, the administrators of the 

system have the possibility of adding multiple buildings to monitor along with all the necessary 

components that will be queried for data such as nodes and sensors. Also, the application 

provides the configuration of structural characteristics regarding the location of each sensing 

device such as the floor where each node is located. The monitoring data has a dedicated page 

in the form of a dashboard where cards show statistics regarding the building such as the number 

of floors, nodes, sensors, and registered users.  

4.2.1 EWS logical architecture 

Edge Watcher System architecture is composed of multiple partitions. Therefore in Fig. 4.1, the 

EWS architecture is shown by underlining the three partitions that compose the solution: 

Hazardous Events Notifications, Cloud, Edge Network. 

 



12 

 

 

Fig. 4.1. EWS logical architecture 

The cloud partition is represented by a microservices container implementation of the software 

monitoring system that processes the data that comes from the edge network. Multiple services 

compose this system such as the monitoring service that gathers the data from sensors along 

with the user reports. EWS centralizes the data from the other services, and it is very flexible 

and configurable to add multiple buildings, nodes, sensors, and users. It can be adaptable to add 

any building and integrate with different monitoring services and devices. The database 

represents the persistence part of the monitoring system where all configuration and data are 

added to be interrogated by the other services, especially by the EWS. Also, the cloud partition 

is represented by the Edge Watcher System software components deployed on a Kubernetes 

cluster located in a public cloud, such as Amazon Web Services, Microsoft Azure, or IBM 

Cloud. The software architecture is represented by loosely coupled services implemented on 

Kubernetes pods [5]. There is a pod for each of the services presented in Fig. 4.1. Regarding 

the data flow between the components, two scenarios can be described, which are representative 

of the two main functionalities that this application offers:  

(i) Scenario 1 - data gathering from the monitored building and alerting,  

(ii) Scenario 2 - configuration of the edge nodes within EWS.  

The EWS software has four main components:  

(1) a Web frontend written using the Angular framework 

(2) a Node.js backend (Monitoring service API) 



13 

 

(3) a MySQL database to retain the user settings, configuration sensor, and human input 

(4) the Notification service.  

All of these are implemented on containers, and they run on Kubernetes. As a result, there is a 

dedicated pod for each of these components. This application is flexible and can run in every 

cloud with minimal modifications. 

4.2.2 Hazardous events detection algorithm used in testing 

The hazardous events detection algorithm was used to verify whether the collected sensor 

values exceeded a pre-defined (configurable) threshold. For the performance testing of EWS, 

the performance of the algorithm will be also taking into consideration using a Node.js 

dedicated library that measures the run time. 

The purpose of the algorithm, located in the containerized environment, was to filter the data 

received from sensors in order to detect a possible emergency (Fig. 4.2) and then to send alerts 

to the responsible personnel. Hence, the environmental data were compared to a pre-defined 

threshold that was set up during the configuration of the EWS for each building/complex of 

buildings it was applied to. The critical values were stored in the database, and alerts were sent 

to the responsible personnel based on these values. 

 

Fig. 4.2 Algorithm for hazardous events detection. 

For the algorithm, the metric employed was the average execution time, which was computed 

on the CSV file generated using the execution-time Node.js library. For each of the performance 

tests, there are two cases presented, corresponding to the two architectural options. 

4.2.3 Hazard event detection and notification 

Edge Watcher System provides the capability to send emergency notifications when a possible 

critical event is detected. The notification system is implemented within the Edge Watcher 

System's main detection method where data is received from the target monitored building. 

Therefore, when a critical event is detected – the received sensor value equals or exceeds the 

one that is set as a threshold, an emergency alert is sent to the authorized personnel (Fig.4.3). 

The system is implemented in such a manner that the sensor from where the emergency was 

detected is temporarily saved on the server, so if a new alert is detected by the sensor in the 

configured time (e.g., 5 minutes) a new alert will not be sent because it is considered related to 

the alert that was already sent. This notification system is essential for a building monitoring 

system since it detects possible critical data that comes from the sensors alerting the building's 

authorized personnel. 



14 

 

 

Fig. 4.3 Emergency notifications 

4.3 Design Options Evaluated  

4.3.1. Architectural options 

The EWS services are based on containerization to automate application deployment and allow 

an easy configuration for various smart building models. Hence, regarding the location of the 

building manager services, there are two deployment possibilities: within a public cloud, or 

within a local building data center.  

4.3.1.1. Architectural Option A — Public Cloud Kubernetes Cluster  

The first analyzed solution locates the EWS service on a Kubernetes cluster deployed in a public 

cloud. The data are collected by the cloud monitoring system directly from the sensing devices 

distributed throughout the building with the aim of detecting emergency situations and 

notifying the responsible personnel (see Fig. 4.4). The advantage of deploying the Kubernetes 

cluster remotely is related to the principle of separating the monitoring system from the 

monitored target building. In this case, the building monitoring system would not be affected 

by the different outages that can appear when an emergency occurs. Nonetheless, there are other 

important aspects, such as maintenance costs and the initial hardware acquisition costs, which 

are zero with this public cloud option. There are, indeed, usage costs that, in the end, are lower 

compared to those required for the acquisition and maintenance of a small data center, including 

the personnel involved in these operations. However, a disadvantage that applies to a system 

using this approach is the dependence of the monitoring system on a reliable Internet connection 

for sending data to the cloud. This issue can be easily mitigated by providing backup 

connectivity in case the main Internet connectivity is not available by coupling the system with 

mobile Internet connectivity, which should be present on each edge node/smart sensor node, to 

independently send data to the monitoring system if other Internet options are not available. 

In conclusion, the main advantage that supports this design option is that the monitor system 

does not depend on the building resources to function, and the costs to maintain a local data 



15 

 

center are removed. As a disadvantage, the cloud datacenter is located further from the building 

and the requests from the sensing devices take longer to be fulfilled 

 

Fig.4.4. The EWS with a public cloud Kubernetes cluster 

4.3.1.2. Architectural Option B — Local datacenter Kubernetes cluster  

In the second solution, the local data center design implies that the monitoring system is 

installed on the hardware located inside the building (Fig. 4.5). The advantage of this approach 

is faster communication between the sensors and the monitoring system. Communication in the 

local network is faster than in the one that operates via the Internet. This is coupled with the 

fact that the system does not depend on having a reliable Internet connection to send 

environmental data to the monitoring system. The big drawback that comes with the 

implementation of this solution is the dependence of the monitoring system on the building’s 

electrical grid. When there is a problem with the electrical system, the monitoring system cannot 

be kept online. This issue is only applicable to the data center’s hardware. The sensing devices 

consisting of edge nodes and sensors are composed of low-power devices that can function on 

a battery for a very long time, providing the necessary data from the building environment. 

 

Fig. 4.5. EWS with a local datacenter Kubernetes cluster 



16 

 

Compared to the location design of the first method, with this approach, the main advantage is 

the lower latency period in the transmission of data between the local edge network and the 

local cluster. The main disadvantage is that if a critical event occurs, the monitoring system can 

be also affected since it is located in the same facility 

4.3.2 Sensing devices options  

The previous section analyzed design options based on the location of the monitoring system, 

i.e., public cloud and local data center deployments. Other important aspects regarding the edge 

topology, the options for the sensing devices, and how these devices are connected to the cloud 

and used to collect data for the monitoring system are discussed subsequently.  

4.3.2.1. Edge Option A — Edge nodes.  

The first design option considered for the sensing devices is based on an architecture composed 

of microprocessor‐based edge nodes that gather data from wireless, low‐power, 

microcontroller‐based sensor nodes (Fig. 4.6). The purpose of the edge nodes is to gather data 

from multiple sensing devices and send them to the cloud monitoring system. This approach 

can be installed in any building to monitor environmental parameters. The edge nodes are 

connected to the Internet and can also function on a battery for shorter time frames compared 

with the sensor devices. 

 

Fig. 4.6. EWS design with edge nodes. 

4.3.2.2. Edge Option B — Sensing edge devices.  

The second design option taken into consideration for the implementation of the sensing devices 

was to connect sensing edge devices directly to the cloud (Fig. 4.7). This system is similar to 

the edge node presented earlier, but the sensors are connected through a physical connection to 

the node. The sensing edge devices are based on microprocessors, and the number of sensors 

would be close to that of the microcontroller‐ based sensor nodes from the previous design 

choice. As microprocessors are more expensive than microcontrollers and consume more 

power, this approach would be a lot more expensive than the previous one while providing the 

same functionality in this use case.  



17 

 

 

Fig. 4.7. EWS design with sensing edge devices. 

5. Evaluation and Validation for a University Building 
This chapter presents the validation experiments for the Edge Watcher System. The verification 

and validation are very important because the system is tested with different scenarios and 

offers the best view about how it works and behaves in the building environment. This chapter 

has two main parts: the experiment realized for a one-node EWS implementation and a real-

world scenario experiment where EWS was tested within an University building. 

5.1 Building Monitoring and Hazardous Event Detection Experiment  

5.1.1 Experiment overview 

Regarding the sensing devices options (), this chapter describes the experiments performed for 

the two alternatives presented in 4.3.1 : Edge Nodes and Sensing Edge devices. In order to do 

this, I created two different tests. 

One node EWS is based on the implementation of a single edge node that will gather data from 

sensors or from a microcontroller-based device such as the Node MCU. Below there are two 

options presented.  

5.1.2 Edge Option A. Edge nodes implementation 

This architecture option was described in more detail in Chapter 4, and it involves the 

integration of two devices, an edge node and a microcontroller-based sensor node. Therefore, 

for this experiment I implemented the following system that was composed of: 

• Raspberry Pi 3 as an edge node (MQTT Broker and Subscriber) 

• NodeMCU sensor node and MQTT publisher 

• BMP 180 sensor – used as an example to obtain data from the environment 

• Local Kubernetes cluster deployed on the same virtual network 



18 

 

 

Fig. 5.1 Raspberry Pi Edge node and Node MCU Sensor Node 

The scenario of this experiment is the following: The NodeMCU microcontroller-based node 

gathers data from the BMP 180 temperature sensor. After this, the data is published using 

MQTT to the Raspberry Pi 3 edge node. The role of this edge node is as MQTT broker and 

subscriber. Therefore, the data is sent to this node from one or multiple NodeMCU boards. This 

edge node also acts as an MQTT subscriber. Therefore, it also subscribes to the topics where 

the NodeMCU publisher is sending the sensor data as a JSON message. In the end, the data is 

analyzed on the Edge Node and is sent via an HTTP POST call to the Edge Watcher System. 

The message that comes from the sensor nodes contains both the detected value and the sensor 

id. This way the Edge Watcher System will know the identity and location of the sensor in order 

to display the values on the Dashboard or alert the responsible personnel if the detected value 

is critical. 

5.1.2.3 EWS performance evaluation for Edge Option A  

For the performance analysis test, I measured the response time and the hazard detection 

algorithm run time for 50 calls from the Edge Node to EWS. Each call was made every 5 

seconds when the data was received from the NodeMCU sensor node. In the table below, there 

is the result of the tests. Therefore, for the 50 calls performed, the response time was between 

27 and 54 ms with an average response of 32.25 ms. The decision algorithm run time is 11.27 

ms. 

Table 5.1 Option A performance analysis 

Edge 

Nodes 
Calls 

Interval 

between 

calls (s) 

Average 

(ms) 
Min Max Median 

95th 

percentile 

Run 

Time 

(ms) 

1 50 5 32.25404 27.24 53.801 30.924 37.52415 11.27152 

5.1.3 Edge Option B. Sensing edge device implementation 

This architectural option implies that a sensor is physically connected to the edge node Fig. 5.2. 

Therefore, for this experiment I implemented the following system that was composed of: 

• Raspberry Pi 3 as a sensing edge device 



19 

 

• BMP 180 sensor – used as an example to obtain data from the environment 

• Local Kubernetes cluster deployed on the same virtual network 

 

Fig. 5.2 Raspberry PI sensor node diagram 

The scenario of this experiment is the following: The Raspberry Pi 3 sensing edge device will 

collect readings from the BMP 180 temperature sensor. At the level of the Edge Watcher 

System, the sensor edge device is configured in order to register its location, critical threshold. 

The Edge Watcher System will register only the values that are passing the configured 

threshold. 

5.1.3.1 EWS performance evaluation for Edge Option B  

For the testing of this scenario, the sensor is directly connected to the edge device.  Therefore, 

50 calls were executed from it to the EWS. Therefore, on the EWS, the recorded values are 

compared with the selected threshold from the database. If the value exceeds the threshold, the 

data is added to the database. The average response time is 37,93 ms, and the algorithm run 

time is approximately 12 ms. These recorded values show a good performance for the current 

load (Table 5.2). 

Table 5.2 Option B performance analysis 

Edge 

Nodes 
Calls 

Interval 

between 

calls (s) 

Average 

(ms) 
Min Max Median 

95th 

percentile 

Run 

Time 

(ms) 

1 50 5 37.93 24.6 155.2 30.06 91.06 12.10 

 

5.1.4 Discussion 

For this one-node EWS, I demonstrate a base real-world experiment of the Edge Watcher 

System. The main theme of this chapter was the performance testing of the system with data 

that comes from a physical edge network. For the tests conducted in this paper, the local 

deployment of the Edge Watcher System was receiving calls from two configurations of the 



20 

 

edge network: Edge Option A and B. In the case of Edge Option A, the architecture is composed 

of an edge device and a sensor node. The data is gathered by the sensor node and published via 

MQTT to the broker (edge device). The edge device is both an MQTT broker and subscriber. 

When a new message is published to the topic, the subscriber sends the recorded value to the 

EWS via HTTP. The EWS compares the value with a pre-defined threshold and sends an alert 

if necessary. For Edge Option B, the architecture is composed of a sensing edge device that has 

a physical connection to a sensor. After the data is gathered, it is sent to EWS where it is 

processed in the same manner as it was described before.  

As it was seen from the experiment results, the performance results in the case of a one-node 

implementation, was very similar for the two options, both recording an average response time 

of under 40 ms. The advantage of Edge Option B is represented only by the implementation 

simplicity, and it is recommended for a small apartment where a limited number of sensors is 

required. Edge Option A is more complex to implement but it is cheaper compared to Edge 

Option B, where multiple sensors will be needed. 

5.2 Performance Testing for Multiple Design Options 
Performance testing in a real-world environment is essential to validate that a system functions 

at the required parameters. Therefore, multiple scenarios must be implemented that should test 

the functioning of a system. For my thesis, I conducted multiple testing scenarios within 

University Politehnica of Bucharest “Precis” building.  

5.2.1. Testing scenarios 

The tests consisted mainly in implementing the physical edge network within this building and 

creating multiple configurations for testing. Therefore, the test includes the settings for the edge 

network and also for the location of the Edge Watcher System, which was installed on a 

machine at the building level and also in IBM Cloud. Another set of scenarios included the type 

of edge device that was used to form the edge network. The role of the edge network is to gather 

environmental data from the building and send it to the monitoring system. Within the Edge 

Watcher System, as soon as the data is received from the building edge network it is compared 

against a threshold value set prior by the administrator. For this case, there are two scenarios 

that were covered within the tests.  

The first scenario is about the implementation of the hazardous event detection algorithm on 

the edge node. In this case, the microprocessor-powered Raspberry Pi, when it receives the data 

from the sensor it compares it to the threshold value that was prior set by an administrator.  

The second scenario that was tested is regarding the number of edge nodes that were installed 

within the target area. As a consequence, I conducted tests with both one edge node and two 

edge node configurations. For the two-edge node test, two Raspberry Pi devices were used to 

send the sensor data to the EWS.  Also, on the edge network topic, another type of scenario that 

was conducted was implementing two architecture choices: one in which the sensor was directly 

connected to the edge node through a physical connection and another one in which a new type 

of edge device was introduced: Node MCU. In the case of a large building such as University 

Politehnica of Bucharest “Precis” building the approach with microcontroller-based devices 

may be better suited since it costs less to implement. 

5.2.2 EWS testing  

The objective of my experiment is to test the Edge Watcher System building monitoring 

application against multiple edge device configurations. These devices would be installed then 

in a university building to provide the necessary data for detecting possible hazardous events. 



21 

 

For the planned test I identified multiple architectures configurations that can be integrated into 

a building environment and based on the Edge Option A and B and Architectural Option A and 

B. 

5.2.2.1. Design options 

The architectures that I propose for this performance test are classified into two categories that 

will be presented in detail below. 

1. Design options for scenario 1  

The most important characteristic of this architecture option is represented by a sensor that is 

physically connected to an edge node (Edge Option B).  Another classification would be related 

to the location of the monitoring system which can be deployed locally (Design Option 1.1 - 

Fig.5.3) or in the cloud (Design Option 1.2 - Fig. 5.4) based on Architectural Option B and A. 

 

Fig. 5.3 Design 1.1 Sensor Edge Node, locally-deployed EWS 

In the image below is represented the cloud deployed EWS which receives the building 

environment data from the Sensor Edge Node. The data is sent from the sensor edge node, 

which in our tests is represented by a Raspberry Pi 3 board, is sent via HTTP to the monitoring 

system. 

 

Fig. 5.4 Design Option 1.2 - Sensor Edge Node, cloud-deployed EWS 



22 

 

2. Design options for scenario 2 

The main difference that comes up is the introduction of a new hardware device within the edge 

network – a dedicated sensor node (Edge Option A). This sensor node which is represented by 

a microcontroller-powered board - Node MCU collects the data from the sensors and publishes 

it via MQTT to the Raspberry Pi 3 edge node, which acts as both Broker and subscriber. After 

the data is received on the edge node, it is then sent to the monitoring system via HTTP. 

 

Fig. 5.5 Design Option 2.1 - Edge Node MQTT broker with Sensor Node, locally-deployed EWS 

As with Design Option 1, there are two configurations available – locally deployed (Fig. 5.5) 

and cloud-deployed (Fig. 5.6) monitoring system. 

 

Fig. 5.6  Design Option 2.2 - Edge Node MQTT broker with Sensor Node, cloud-deployed EWS 

    3. List of tested design options   

In total sixteen test cases were defined, starting from the design options presented above. The 

list is as follows: 



23 

 

Design Option 1 

• Design Option 1.1 

1.1.1. One Sensor Edge Node, one sensor, hazardous event detection algorithm on 

Edge Node 

1.1.2. One Sensor Edge Node, one sensor, hazardous event detection algorithm on 

EWS 

1.1.3. Two Sensor Edge Node, one sensor per node, hazardous event detection 

algorithm on EWS 

1.1.4. Two Sensor Edge Node, one sensor per node, hazardous event detection 

algorithm on Edge Node 

• Design Option 1.2 

1.2.1. One Sensor Edge Node, one sensor, hazardous event detection algorithm on 

Edge Node 

1.2.2. One Sensor Edge Node, one sensor, hazardous event detection algorithm on 

EWS 

1.2.3. Two Sensor Edge Node, one sensor per node, hazardous event detection 

algorithm on EWS 

1.2.4. Two Sensor Edge Node, one sensor per node, hazardous event detection 

algorithm on Edge Node 

 

Design Option 2 

• Design Option 2.1 

2.1.1. One Edge Node, one sensor node, one sensor, hazardous event detection 

algorithm on Edge Node 

2.1.2. One Edge Node, one sensor node, one sensor, hazardous event detection 

algorithm on EWS 

2.1.3. Two Edge Nodes, one sensor node, one sensor per node, hazardous event 

detection algorithm on EWS 

2.1.4. Two Edge Nodes, one sensor node, one sensor per node, hazardous event 

detection algorithm on Edge Node 

• Design Option 2.2 

2.2.1. One Edge Node, one sensor node, one sensor per node, hazardous event 

detection algorithm on Edge Node 

2.2.2. One Edge Node, one sensor node, one sensor per node, hazardous event 

detection algorithm on EWS 

2.2.3. Two Sensor Edge Node, one sensor per node, hazardous event detection 

algorithm on EWS 

2.2.4. Two Sensor Edge Node, one sensor per node, hazardous event detection 

algorithm on Edge Node 

5.2.2.2. Implementation details  

The tests that I employed were conducted in the University “Politehnica” of Bucharest 

“PRECIS” building where I implemented the four architectures presented in the previous 

chapters. Within the tests, multiple scenarios were defined that include also the variations of 

the number of edge nodes. Besides these the emergency detection algorithm, a simple algorithm 

used to detect if there is an emergency was either implemented on the node or in the cloud, 

based on the scenario. 



24 

 

Hardware used: 

1. Design Option 1 

• Sensor Edge Node: Raspberry Pi 3 

• Sensor: BMP 180 temperature sensor 

• Local cluster: Kubernetes Cluster placed in the building local network 

• Cloud Cluster: IBM Cloud Kubernetes Cluster 

2. Design Option 2: 

• Edge Node: Raspberry Pi 3 

• Sensor Node: Node MCU 

• Sensor: BMP 180 temperature sensor 

• Local cluster: Kubernetes Cluster placed in the building local network 

• Cloud Cluster: IBM Cloud Kubernetes Cluster 

5.2.2.3 Testing procedure 

The purpose of the performance tests is to demonstrate the ability of the Edge Watcher System 

to function in a real-world scenario. Therefore, in order to test the performance of EWS, I 

evaluated the HTTP request calls that were made against it by different edge network 

configuration possibilities. Therefore, on the edge nodes, the response time from the HTTP call 

to insert data to EWS was measured. Usually, the HTTP response time is influenced by the 

location of the server, load, and processing that is done with each call. Regarding the 

processing, in the testing scenarios I included the possibility where the code that implements 

the small decision algorithm was run on the server and other scenarios where it ran on the edge 

node. 

5.2.3 Results 

The results were obtained for each of the design options presented. Therefore, in the table below 

I present the average response time for the calls executed from the edge nodes to the Edge 

Watcher System. For the scenarios presented in the previous chapter, there are ones where two 

edge nodes were utilized. Therefore, in the table below the average response time, E2 (Edge 

Node 2) will appear only for the scenarios where two edge nodes were deployed. For each 

scenario 50 calls were made from the edge node to EWS to send the environment data that was 

collected from the UPB “PRECIS” Building. The EWS is deployed in two locations, IBM 

Cloud (Milan location) and on the building network, therefore the results will differ also based 

on the location of the monitoring system. The last column shows where the decision algorithm 

runs – on the edge node or within EWS. The hazardous event detection algorithm compares the 

critical value that was set by the building administrator during the initial sensor configuration 

with the actual value that was gathered from the environment. If the value is critical, then the 

data is inserted in the EWS database, and it also sends a notification to the building's authorized 

personnel. 

Table 5.3 Results 

Design 

Options 

Average 

Response time 

E1 (ms) 

Average 

Response time 

E2 (ms) 

EWS Location 
Hazardous event detection 

algorithm 

1.1.1 64.21662 - Building Edge Node 

1.1.2 67.37904 - Building EWS 



25 

 

1.1.3 78.00704 92.02102 Building EWS 

1.1.4 76.4661 89.14806 Building Edge Node 

1.2.1 196.2808 - IBM Cloud Edge Node 

1.2.2 207.4164 - IBM Cloud EWS 

1.2.3 259.2715 222.0848 IBM Cloud EWS 

1.2.4 242.1902 222.6137 IBM Cloud Edge Node 

2.1.1 60.96322 - Building Edge Node 

2.1.2 85.6524 - Building EWS 

 2.1.3 69.35771 92.97539 Building EWS 

2.1.4 65.2284 80.05818 Building Edge Node 

2.2.1 210.3509 - IBM Cloud Edge Node 

2.2.2 213.7616 - IBM Cloud EWS 

2.2.3 196.2808 222.6137 IBM Cloud EWS 

2.2.4 214.7974 220.3171 IBM Cloud Edge Node 

 

Edge Node 2 has fewer values since was tested only in the two edge nodes scenarios. What is 

common to both nodes is that they recorded values under 300 ms, which indicates adequate 

performance for a monitoring system. 

6. Scaling Evaluation and Lessons Learned 

6.1 Background  
Evaluating performance is very important in edge and cloud computing and even more so for 

the use of these systems in hazard management. It requires multiple tests of “responsiveness, 

reliability, throughput, interoperability, and scalability” under a given workload [6]. Haseeb-

Ur-Rehman et al. developed a sensor cloud taxonomy that covers network, communication, 

data management, architecture, heterogeneity, and security aspects [7].  

6.2 Scaling Evaluation  
Performance testing is an essential part in the development of an application because it provides 

the means to find if the tested system is running on the desired parameters with different inputs. 

The importance of this critical step relies mostly on the idea that every new development piece 

must be tested on different pre-defined scenarios where different metrics are monitored. In the 

case of my study, which has as objective the research on cloud building monitoring systems, 

there are multiple capabilities of this system that has to be tested and validated against a 

predefined test plan. Some of these capabilities that will be further detailed further are related 

to the performance monitoring of this solution. An objective that I propose for this part is to 

simulate various edge node configurations that are performing different HTTP requests to the 

cloud application. Some of these requests are represented by the data that is sent to EWS to be 

further analyzed. Another important aspect of this test is that with this setup, the actual building 

edge node configurations are simulated, larger buildings require multiple edge nodes in order 

to cover a larger area. The test will be performed with scenarios for small apartments, a house, 

small residential building, office buildings, and a complex of buildings along with a detailed 

comparison of the reports generated for all these cases. Another aspect that will be taken into 

consideration with the previously mentioned tests is the comparison between the cloud hosted 



26 

 

solution and a local cluster. Therefore, the same tests will be simulated for the application being 

locally deployed and the cloud deployment on a container-based service such as a Kubernetes 

cluster. This comparison will show in what measure the cloud implementation will affect the 

response times for the application compared to the same solution deployed on the same network 

with the edge nodes. The next test that I propose for this solution is the performance evaluation 

for the hazardous events detection algorithms that are used to detect if the collected data is 

critical or not. For this test, a very essential part that should be mentioned is the importance of 

the cloud deployment and how fast the algorithms would run on a cloud-based container 

solution compared to the same implementation deployed on a local container cluster. Another 

factor that is very important for this test is the performance of the decision algorithm against a 

high number of requests represented by a larger edge node network located in a building 

complex.  

The results of the tests that were presented above represent also an important part of the 

validation process that will attest that the researched cloud solution achieves some performance 

metrics that are critical for the optimal functioning of such a system. 

6.2.1 Performance evaluation of the containerized architecture options 

Based on the design options presented in Chapter 4.3, I hereby present the method used to 

determine the performance of the system with multiple simulated sensing devices on the edge. 

The tests compared the performances of the two architectural design options: (A) the public 

cloud Kubernetes cluster; and (B) the local datacenter Kubernetes cluster. These were both 

connected with sensing devices through edge nodes based on the first option from Chapter 4.3. 

The tests conducted involved load and stress testing. The goal of this comparison was to gain a 

detailed view of the performance requirements needed for the cloud system when data are 

received from multiple nodes. Each test conducted corresponded to a real-world configuration 

for a type of building, with specific needs regarding the number of edge nodes and installed 

sensors required. 

6.2.2 Testing  scenarios 

For both architectural options, my concern was to identify testing scenarios based on 

configurations of real-world building examples, from a small apartment to an entire complex 

of buildings, such as a university or a corporate campus. Therefore, the performance tests were 

executed for EWS services hosted on containerized environments following the scenarios 

described below. I selected examples inspired by the occupancy classification and definitions 

given in The International Building Code [8] and from the ten classes of buildings established 

in [9]. 

• Small Apartment. This scenario refers to an individual unit in a residential building. I 

considered the setup for a small apartment with two rooms and one edge node. In this 

scenario, the edge node needs to collect environmental data from sensors to detect 

motion, temperature, and contact when the door opens or closes. For testing purposes, 

an API call is simulated from the edge node to the EWS, which results in the addition 

of a new reading in the database. The hazardous events detection algorithm compares 

each value to a predefined threshold to verify if an alert should be considered. The 

scenario is equally applicable for a shop in a shopping center if the sensor monitoring 

is done separately by the shop tenant. 

• House. The second scenario targeted a standalone residential building. I considered the 

example of a detached house with five rooms and two floors. In this scenario, an edge 

node is installed on each floor to collect environmental data and send it to the EWS. The 



27 

 

difference from the first scenario is in the use of two edge nodes; therefore, it may also 

be appropriate for a housing unit in a group of attached dwellings. 

• Small residential building. The small building scenario encapsulates a total of five 

simulated edge nodes installed on each floor of the building. Each node receives 

environmental data sent by sensors installed in the public space and inside the individual 

apartments situated on the same floor. The monitoring and the hazardous event 

notifications are managed for the entire building by the responsible personnel. 

• Office building. In this scenario, I simulated the case of a building with 10 floors and 

20 edge nodes. In this scenario, two edge nodes are installed on each floor in order to 

receive environmental data from the sensors and send them to the EWS for further 

processing. I considered this example of a non-residential building used for professional 

or commercial purposes because this type of building is more often used as a smart 

building; therefore, it can take advantage of services for hazardous events detection and 

alerting, such as those considered in our study. 

• A complex of buildings. I considered a scenario at a larger scale, corresponding to a 

group of related smart buildings with residential, business, or institutional usage. They 

may correspond to a shopping center, a university, a corporate campus, or a residential 

complex. They may occupy a smaller or larger area, with multiple sensors used to 

measure environmental data connected to EWS through multiple edge nodes. I first 

considered three cases for performing load and stress testing: 

o 50 edge nodes—scattered around multiple buildings that comprise the complex 

o 100 edge nodes—to test the capacity to work under a high load by registering a 

high number of environmental data points sent within a short period of time 

o 1000 edge nodes—to test the limits of the cluster configuration and the capacity 

to simulate 1000 requests sent to the system without a ramp-up period; the 

requests are sent immediately to the server, and it has to address each request as 

soon as the previous one has been fulfilled. 

Then, I also executed tests for edge node numbers between 100 and 1000 with steps of 100. 

6.2.3 Performance test settings 

For the EWS, performance testing was conducted using Apache JMeter version 5.4.1, in order 

to simulate the requests from the edge nodes and verify whether they were addressed without 

error and if the response time was low enough. The machine used to run the JMeter tests was 

powered by a 4-core Intel i7 CPU, coupled with 8 GB of RAM. 

Test cases were developed for different sizes, starting from a small apartment, and finishing 

with a complex of buildings. The tool setup consisted of creating threads to simulate groups of 

edge nodes and executing requests against the EWS reporting API. Regarding the JMeter 

configuration, there were three important parameters to set up: 

• The number of threads: the number of edge nodes used to send environmental data to 

the application 

• Ramp-up period: the time that it would take to get to the full number of threads 

• Loop count: the number of tests to be executed. 

Another objective for the performance testing, besides the JMeter HTTP calls is the actual 

testing of the decision algorithm that verifies if the collected sensor value exceeds the pre-

defined threshold. For the performance testing of the decision algorithm, I employed a Node.js 



28 

 

dedicated library that measures the run time of different functions. The library name is 

“execution-time” and can be installed from the node package manager (npm). 

6.2.4 Containerized environment setup 

To test the containerized architecture options for the EWS, I implemented two configurations, 

corresponding to the analysis presented in Chapter 4.3: 

(A) The IBM Cloud Kubernetes cluster was implemented for the public cloud Kubernetes 

cluster design option with the following technical details: 

• Deployment in IBM Cloud data centers 

• Free one node Kubernetes cluster with two cores and 4GB of RAM (default free tier) 

• Kubernetes version: 1.21.7 (default). 

(B) The Docker Desktop local cluster was implemented for the local datacenter Kubernetes 

cluster design option with the following technical details: 

• Deployed on a Windows machine with 4-core Intel i7 CPU, coupled with 8 GB of RAM-

Windows Subsystem for Linux (WSL) 2 

• Docker Desktop WSL 2 backend version 4.1.1 with Kubernetes 

• Memory and CPU are allocated dynamically to improve resource consumption 

• Kubernetes version 1.21.5 (default). 

6.2.5 Performance metrics 

The Apache JMeter makes it possible to output an HTML result that offers multiple parameters 

that are related to the response time of the tested request. The attributes that are relevant to my 

study are the execution errors, the response time, and the throughput (to determine the system’s 

performance). They are associated with the following metrics: 

• Error % (for the execution) 

• Average response time 

• Minimum response time 

• Maximum response time 

• Median response time 

• Percentiles 

• Transactions/s (for the throughput) 

• The ratio of the failed requests, the Error %, should be 0 for a successful test. 

6.3 Scaling Evaluation Results 
In this section, the results of the scaling evaluation are presented and discussed. For each of the 

two containerized environment setups (i.e., the IBM Cloud Kubernetes cluster and the Docker 

Desktop local cluster), multiple performance tests were executed to simulate the relevant 

scenarios identified in Chapter 6.2. The monitored results correspond to the metrics obtained 

for the JMeter HTTP calls, simulating the information gathered from a number of edge nodes 

plus the run time of the decision algorithm for hazardous event detection, which was measured 

with a Node.js library, as explained in Chapter 4.2. Thus, the performance testing was executed 

both for the local and the public cloud cluster implementations. JMeter can also be used to test 

the performance of web services applications such as the ones from [10], [11], [12]. 



29 

 

Thus, I generated 30 JMeter reports, each containing a multitude of graphics and data. To 

analyse them comparatively, several important results are summarized in Table 6.1 for the IBM 

Cloud Kubernetes cluster and in Table 6.2 for the Docker Desktop local cluster. 

Table 6.1. Summary of the test results for the IBM Cloud Kubernetes cluster. 

Test Executions 
Response Time 

(ms) 
Throughput 

Hazardous 

Event 

Detection  

Algorithm 

Scenario 
Samples 

(Edge Nodes) 

Error 

(%) 
Average Min Max Median 

95th  

Percentile 

Transactions 

/s 

Run time 

(ms) 

Small apartment 1 0 389 389 389 389 389 2.57 3.52 

House 2 0 375.5 371 380 375.5 380 5.26 4.42 

Small residential building 5 0 380 371 385 382 385 12.89 3.49 

Office building 20 0 405.75 374 437 405.5 436.8 43.8 21.8 

A complex of  

buildings 

50 0 472.84 391 560 461 553.45 81.04 167.43 

100 0 574 376 748 574 729 115.74 144.42 

200 0 556.83 375 815 563.50 789.00 203.87 278.9 

300 0 906.49 446 1336 947.50 1309.95 196.34 564.4 

400 0 981.00 380 1461 936.00 1412.85 236.27 554.4 

500 0 1393.26 420 2090 
1394.5

0 
2014.85 212.04 560.3 

600 0 1614.98 391 2282 
1602.0

0 
2225.95 223.46 846.57 

700 0 1584.66 374 2373 
1620.0

0 
2288.90 246.05 448.3 

800 0 1832.57 398 2759 1855.0 2651.95 250.16 677 

900 0 2026.60 499 3056 1994.0 2954.85 230.00 1036.5 

1000 0 1992 384 3538 1927 3359 189.9 939.89 

 

Table 6.2. Summary of test results for the Docker Desktop local cluster. 

Test Executions 
Response Time 

(ms) 
Throughput 

Hazardous 

Event 

Detection  

Algorithm 

Scenario 
Samples  

(Edge Nodes) 

Error 

(%) 
Average Min Max Median 

95th  

Percentile 

Transactions 

/s 

Run time 

(ms) 

Small apartment 1 0 9 9 9 9 9 111.11 3.22 

House  2 0 11 9 13 11 13 153.85 3.59 

Small residential 

building 
5 0 24 16 32 23 32 151.52 19.62 

Office building 20 0 68.2 31 109 69.5 107.7 176.99 57.3 

A complex of  

buildings 

50 0 228.44 97 288 239 285.8 130.89 155.5 

100 0 322.33 78 460 311 447.9 175.75 288.86 

200 0 543.18 138 978.6 553.7 930.7 176.3 447.3 

300 0 768.05 147 1390 769.3 1322.1 179.2 574.5 

400 0 995.9 164 1821.6 1002.5 1741.1 179.92 762.5 

500 0 1316 181 2378.3 1318.3 2293.3 177.93 1030.9 

600 0 1597.8 360 2855.6 1515.6 2737.8 175.79 1211.2 

700 0 2296.3 426 3262.4 2094.1 3151.5 164.04 1881.5 

800 0 2589.2 363 3698.7 2515.5 3560.75 173.05 2232.5 

900 0 2849.8 147 3994.4 2842.3 3757.9 162.14 2588.6 

1000 0 3098 243 4431 2914 4284 171.59 2975.23 



30 

 

I also present the results in comparative graphics to show the difference in the average response 

time for the two architectural design options: the IBM Cloud Kubernetes cluster and the Docker 

Desktop local cluster. Fig. 6.1 shows the response times versus the number of edge nodes 

corresponding to the first four scenarios: one edge node for the small apartment, two edge nodes 

for the house, five edge nodes for the small residential building, and 20 edge nodes for the office 

building. Fig. 6.2 represents the response times for a complex of buildings versus the number 

of edge nodes, ranging from 50 to 1000. One can, thus, observe the influence of the container 

orchestration decentralization. Fig. 6.3 and Fig. 6.4 illustrate similar comparisons for the run 

time of the decision algorithm for hazardous event detection. 

 

Fig.6.1 Comparative response times for different scenarios 

 

Fig. 6.2 Comparative response times for the complex of buildings. 



31 

 

 

Fig. 6.3. Comparative run times for different scenarios. 

 

 

Fig. 6.4. Comparative run times for the complex of buildings. 

 

I observed that the Docker Desktop local cluster worked faster for the first four scenarios with 

up to 20 edge nodes as a result of its location. However, the IBM Cloud Kubernetes cluster also 



32 

 

performed very well for the first four scenarios, keeping an average response time of under 500 

ms [13]. 

The IBM Cloud Kubernetes cluster (corresponding to architectural option A) performed better 

than the Docker Desktop local cluster (architectural option B) on the most demanding test cases, 

from 700 to 1000 edge nodes (almost one second faster). Option A was represented by a cloud-

dedicated cluster that was more powerful than Option B, which runs on a workstation. However, 

in cases with more than 100 edge nodes, both performed worse than the 500 ms limit, which is 

usually employed for web applications. As a conclusion to these tests, in a production 

environment, a more powerful cluster is recommended in order to provide satisfactory 

performance for cases with more than 100 edge nodes. 

6.4 Discussion and Lessons Learned 

6.4.1. Performance comparison based on scenarios 

This section discusses the results obtained for the implementation of the two architectural 

options for each of the options presented in Chapter 4.3. I also present these results in [16]. 

Small apartment. For one edge node, the differences that can be seen in the response times 

(Fig. 6.1) are mainly due to the fact that the Docker Desktop local cluster is deployed in a local 

environment and the latency is lower compared with the IBM Cloud Kubernetes cluster setup. 

Even though there were large differences between the respective response times, the results for 

the public cloud implementation still fall under an acceptable response time, i.e., under 500 ms. 

The run times of the algorithm for emergency detection were similar. 

House. For the two edge node configurations, the readings were not very different to those 

obtained with the 1 edge node approach (from the small apartment scenario). The results for 

both hosting options (Docker Desktop local cluster and IBM Cloud Kubernetes cluster) were 

very similar to those obtained for the previous scenario, offering a good performance. 

Small residential building. With the increase in the number of edge nodes tested, most of the 

changes related to the response time were registered on the Docker Desktop local cluster (Fig. 

6.3). The most notable difference and the cause for this slower response was related to the 

emergency detection algorithm run time, which increased significantly in the case of the Docker 

Desktop local cluster. For the IBM Cloud Kubernetes cluster, the values remained similar to 

those obtained with the two-edge-node approach. 

Office building. After increasing the requester number to 20 edge nodes, the response times 

increased for both tested approaches: the Docker Desktop local cluster and the IBM Cloud 

Kubernetes cluster. Nonetheless, the results show that both local and cloud approaches are able 

to handle an office building where 20 edge nodes send environmental data at the same time. 

A complex of buildings. For this scenario, the size of the complex and the number of edge 

nodes implanted can make an important difference from a performance point of view; the cases 

that were simulated are discussed separately. For both implementations of the containerized 

environment setup, the 50-edge-node experiments showed an increase in the average response 

time, with a more visible change for the Docker Desktop local cluster, where a developmental 

virtual machine was installed on a workstation. The smaller increase in response time for the 

IBM Cloud Kubernetes cluster was influenced by the use of a dedicated cluster to provide 

stability. Two-thirds of the requests had a response time below the recommended value of 500 

ms (most between 400 and 500 ms), and the other third had response times of between 500 and 

575 ms. The average response time was higher when the number of active threads was low, 



33 

 

because there were only a few users waiting for their calls to be executed; the others had already 

been served, i.e., the load was high. The run time of the algorithm for emergency detection 

increased for both approaches, providing a similar value. For the 100-edge-node stress test, both 

setups showed an increase in the average response times (Fig. 6.2). For the IBM Cloud 

Kubernetes cluster, the run time of the algorithm for emergency detection for the cloud system 

was very similar to the result obtained for the 50-edge-node experiment. For the Docker 

Desktop local cluster, the run time increased (Fig. 6.4), again illustrating the advantage 

provided by a dedicated cluster compared to the local workstation. Between 200 and 600 nodes, 

the response times for the two design options were quite similar; yet, starting from 700 edge 

nodes, a clear advantage towards the IBM Cloud Kubernetes cluster was shown, due to the fact 

that both the response times and the run times were better. The 1000-edge-node experiment 

verified the behavior of the system when 1000 calls were sent to it. The error rate for each of 

the systems was 0, which indicates that all environment data were successfully added to the 

EWS database. A big difference that only occurred for this experiment, but not the other 

scenarios, is that the Docker Desktop local cluster provided a higher average response time 

compared with the IBM Cloud Kubernetes cluster. For the other scenarios, the result was the 

opposite; the reason for this is that the request was sent locally, and the time difference was 

accounted for by the fact that, for the public cloud option, the request was sent via the Internet. 

Regarding the algorithm for emergency detection, the Docker Desktop local cluster 

implementation provided a run time that was almost three times higher than that obtained with 

the IBM Cloud Kubernetes cluster. 

An important limitation when working with a cloud solution may be related to the location of 

the datacenter. This choice influences the network latency present in the call to the application. 

This remark also can be taken into consideration for other Cloud-related applications such as 

[14], [15], [17], [18]. 

This underlines the fact that the use of a dedicated cloud cluster can offer a more consistent 

performance under a high load. However, as a general remark for the results related to the public 

cloud option, an average response time of almost 2000 ms is too high for this type of system. 

Based on these results, for a complex of smart buildings, a more powerful cluster configuration 

than the one tested in this study and described in Chapter 6.2.4 is recommended. The 1000 edge 

nodes represent a load experiment that may occur in real-world situations for large building 

complexes, such as smart campuses or large shopping centers. 

6.4.2 Recommendations 

In Chapter 4, I analyzed several design options for the EWS, considering two criteria: the 

containerized architecture and the edge network topology. I also presented the EWS 

architecture in [19]. After the qualitative evaluation, the method applied for the performance 

testing of the two architectural design options, (A) the public cloud Kubernetes cluster and (B) 

the local datacenter Kubernetes cluster, was described in Chapter 6. Further, this section 

presents the design choices made for developing EWS. 

Containerized Architectural Choice: Based on the test results from Chapter 5 and also in 

presented [20] and the performance comparison for the five scenarios, I conclude that 

architectural choice A (public cloud Kubernetes cluster) provides a stronger performance for a 

load corresponding to a complex of smart buildings, where the number of edge nodes used for 

gathering information is large. Another reason for this choice is the separation of the building 

monitoring system from the actual monitored building. The main advantage in case of a 

hazardous event that could produce an outage within the building is that the system would not 



34 

 

be affected, and it would retain the information in regard to the event. Another major reason for 

this choice is related to the initial and maintenance costs, which are lower with the public cloud 

approach. Cloud services also have a guaranteed Service Level Agreement that assures the 

system can run for more than 99.9 percent of the time. This aspect is crucial for a building 

monitoring system that includes the detection of different emergencies that can occur in the 

building in its scope. 

Edge Choice: Based on the qualitative analysis presented in Chapter 4.3, I am in favor of the 

design choice that uses sensor nodes connected to microprocessor-powered edge nodes and not 

sensing devices based on microprocessors that are directly connected to the EWS services on 

Kubernetes. The edge node’s role is to gather data, perform some basic decentralized 

processing, e.g., for detecting when to activate local alarm devices and sends data to the EWS 

to be processed in a centralized way using algorithms that require more resources. To estimate 

the costs corresponding to the two options for the edge network, I assumed that the same types 

and number of sensors were used, and we omitted other costs, such as those related to the 

containerized architecture. Let us consider a microprocessor-based node run with Raspberry Pi 

[21] - a very popular development board with the ability to act both as a sensing device (Edge 

Option B) and as a broker and data processor edge node (Edge Option A). For both options, 

Raspberry Pi provides enough computing power to run even more complex algorithms in the 

future [22]. The average cost for a Raspberry Pi 3 (4× ARM CPU, 1.2 GHz, 1 GB RAM, 10/100 

Ethernet, 2.4 GHz 802.11n wireless) is $35. For Edge Option A, a microcontroller-based sensor 

node may be run with NodeMCU v3 (32-bit CPU, 80 MHz, 128 KB RAM), a microcontroller-

based board with integrated Wi-Fi capability, to send data to an edge node. The average cost 

for a NodeMCU board is approximately $7. Thus, our estimations show that a solution 

containing only microprocessor-based sensing devices (Edge Option B) would cost five times 

more than one that also includes microcontroller-based sensor nodes (Edge Option A). This is 

especially important for the case of monitoring a complex of buildings with a large number of 

edge nodes. Therefore, Edge Option A, containing edge nodes, was selected because, overall, 

it is less expensive than the other option, and because it requires a smaller number of edge 

nodes, which is a premise for providing better performance. 

7.Conclusions 

7.1 Discussion 
This thesis presented a solution to the building monitoring for hazardous events detection topic 

as well as proposing a new set of architectures for evaluating the performance of the system. 

Therefore, to achieve these results, articles regarding different topics such as building 

monitoring, emergencies, IoT, cloud, disaster management, fog, and edge computing were 

investigated. I focused on presenting the Edge Watcher System Architectures - software and 

edge network that will be used for the evaluation of the system. The research contribution part 

was used to present the Edge Watcher System, the application that I developed to solve the 

building monitoring problem. The integration of a dedicated configuration system provides the 

means necessary to set up the edge devices that are scattered throughout the monitored building 

to collect environmental data. The mix of these offerings developed as a responsive web and 

application provides the building personnel with the means necessary to always be connected 

to their building and manage the necessary parameters. Edge Watcher System is the application 

that I proposed and can satisfy the above-mentioned requirements in a smart environment.  

Besides this matter, the integration of a dedicated configuration system provides the means 



35 

 

necessary to set up the edge devices that are scattered throughout the monitored building to 

collect environmental data.  

The verification and validation topic is represented by real-world testing which validates the 

implementation of EWS in real-world scenarios. As a consequence, firstly I tested the one-node 

configuration of the EWS installed on a local server. The two architectures involved in the test 

were showing similar results, both having an average response time of under 40 ms which is 

considered very fast for the local EWS installation. The advantage of the first architecture 

presented was the fact that it is cheaper when implemented with a very large number of sensors, 

compared to the other one (Edge Option B) whose main advantage is simplicity. The last step 

within the validation of the EWS was the implementation of the system within a real-world 

environment. Therefore, I chose to implement it within University “Politehnica” of Bucharest 

“Precis” building where I implemented multiple design options of the EWS used for 

performance testing. The results I obtained after running the performance tests show that all the 

performance tests achieved average response times under 300 ms for the data sent from Edge 

Nodes to EWS. As a general remark, both Options 1 and 2 registered similar results. From this 

perspective, either Design Option 1 or Design Option 2 will be able to perform similarly in a 

real-world environment. The difference between them will appear when the cost will be taken 

into discussion. Option 1 implements a physical connection from a microprocessor-based 

device (Raspberry Pi 3) to the sensor. A higher number of such devices needs to be acquired in 

order to implement Option 1 compared to Option 2. For Option 2, fewer microprocessor-based 

devices are needed since this edge node is used as an MQTT broker that receives data from 

multiple cheaper MQTT-based devices such as the Node MCU. If we go deeper into the 

scenarios presented, I observe that the scenarios where the emergency detection algorithm was 

deployed on the edge node receive the response from the EWS faster since it has less to process. 

The biggest difference is registered for the case where the EWS is deployed on the Cloud. In 

this case, the local installation is 3 times faster on average. This result was to be expected since 

the Cloud implementation of EWS was deployed in the Milan region which is very far, 

compared to the local network case. Another aspect is the number of edge nodes involved. 

When two edge nodes were involved the response times tend to be a little higher than the one 

node case. Nevertheless, the differences between these two options are not very high and both 

demonstrated to perform as intended in these situations. 

Regarding the scaling evaluation topic, firstly I measured the performance of EWS with 

simulated edge nodes. This part evaluated several design options for a system that monitors one 

or multiple smart buildings with the purpose of gathering information from a large variety of 

sensors, detecting abnormal situations (such as flames, toxic gas, leaks, etc.), and notifying the 

responsible personnel when emergency events occur. More details about this topic of 

notifications can be found in [23]. The design options took into account the container-based 

software architecture and the edge sensing devices. In addition to a qualitative analysis, I 

presented work based on containerized environments to test the performance, which has an 

important weight in alerting systems. The provided response times must remain under a certain 

threshold in order for the solution to be approved and implemented in a production 

environment. In conclusion, performance evaluation is an important stage for a project as it 

provides the necessary results to determine an application capacity and based on the results the 

exact system configuration that is needed for the desired capacity. Therefore, scenario-based 

testing is replicating different real-world scenarios to test the limits of the system and how it is 

behaving against different inputs. Besides these aspects, another important fact is the error rate 

that is registered for each case. For an application to be deemed stable, this metric should be 



36 

 

near 0 for all the calls. These arguments are validated by different experiments that were 

conducted against various applications and presented in the research chapter. The results 

recorded provided a very strong case for each of the systems to define the maximum capacity 

and also means of improvements in order to increase this value. To accomplish this, multiple 

tools can be employed for performance testing, Apache JMeter is shown as being a very popular 

choice because of its free distribution model and also because of the utility it provides. 

Regarding my main objective – Edge Watcher System multiple scenarios were being created 

that measure the efficiency of this application deployed on two different environments: a local 

cluster and a free Cloud cluster. Therefore, I implemented two containerized environment 

setups (an IBM Cloud Kubernetes cluster and a Docker Desktop local cluster), and I simulated 

the behavior for multiple scenarios corresponding to real-world configurations with 1 to 1000 

edge nodes. For settings corresponding to a small apartment, a house, a small residential 

building, and an office building, the average response time was 250 ms higher for the public 

cloud than for the local cluster. However, for a complex of buildings with more than 600 edge 

nodes, the response time was 700 ms lower for the cloud than for the local solution I used the 

performance evaluation findings and the edge options analysis to make design choices for the 

Edge Watcher System, a solution with microcontroller-based sensor nodes, microprocessor-

based edge nodes, and monitoring, configuration, and notification services with an IBM Cloud 

Kubernetes cluster. The metrics that were targeted for these tests are: error ratio (to validate if 

all requests were successful), the response time (min, max, average and percentiles, these are 

the most important metrics that underline the actual experience to perform calls and plays an 

important role in the final decision regarding the system), throughput (shows the transaction 

capacity). Besides the JMeter testing, another measurement was performed for the decision 

algorithm used by Edge Watcher System to decide if the edge node request contains a possible 

alert or not. For this aspect, a Node.js library was used called "execution-time". The result 

shown by this library is very important because it shows the exact time spent by the algorithm 

and can be extracted from the total response time provided by JMeter in order to decide if a 

more powerful configuration is needed. The results that were obtained following these tests 

were satisfactory for both approaches. The basic difference between the results recorded for the 

two systems is mainly related to the fact that the local cluster provided a faster response time 

because the calls were done locally. For the IBM Cloud Kubernetes cluster, the requests took 

longer because the system is located in the Cloud. Another remark is that the Cloud system, 

being provided a dedicated worker node tend to provide more consistent results even for the 

95th percentile, being near the average response time. The desired value for the response time 

should be in the vicinity of the 500 ms mark. This was easily achieved for the first five 

scenarios. If more than one hundred edge nodes are connected, then a more powerful system 

should be employed.  

7.2 Summary of Original Contributions 
1. Lessons learned from the literature study of cloud smart buildings, emergency 

situations, disaster management, and cloud computing. 

2. Proof of concept of a system for monitoring university hazards  

3. Comparison between the system deployed on a virtual machine and the same system 

deployed on cloud. 

4. Monitoring system deployment using containers 



37 

 

5. Architectures for both local (using a virtual machine) and cloud systems (using a 

Kubernetes cluster) 

Monitoring is essential for every building with a high number of occupants, and it can be vital 

in detecting hazardous events that can affect the life of its inhabitants. There are many types of 

sensing devices that can be used in a building, such as environment data collectors, video 

monitoring, equipment information gathering, and virtual sensors.  

6. Proposing a building monitoring and hazardous detection system and architecture (Edge 

Watcher System) 

7. Proposing a data model for the Edge Watcher System that underlines all the 

functionality of the application. 

8. Presented a well-documented API for a smart building solution that can be utilized 

further to integrate different services.  

9. Presented a responsive web frontend that is dedicated to the configuration and 

monitoring of a smart building facilitating its use 

10. Proposing a cloud container approach for the deployment of this system 

11. Proposed a set of technologies that integrate and serve as a robust solution for a building 

manager system. 

12. Proposed a unified framework for building monitoring systems that can be used for 

multiple buildings. 

13. Proposed an architecture for a cloud-based smart building manager that can monitor the 

local building and send notifications in case of hazardous events detection 

14. Created a cloud-based configuration tool that offers the possibility of generating 

configuration for local building edge nodes. 

15. Providing multiple scenarios that can be followed for the real-world usage of the smart 

building manager application. 

16. Proposed a cloud-based Kubernetes deployment for the building monitoring and 

hazardous events detection system. 

17. Presented a notification algorithm that takes into account if the detected hazardous event 

was sent from the same node 

Real-life testing scenarios are essential in validating the functioning of a system. In the case of 

the Edge Watcher System, a real-life performance testing scenario is represented by the 

implementation of a physical edge network composed of IoT devices that will gather the 

environmental data from the target building. Within this scope, there are multiple possible 

architectures that can be deployed for this kind of system that imply the selection of device 

types that can fulfill this action. For my thesis, I compared two types of edge network 

architectures and measure the performance related to data collection. 

18. I created the architectures for the two based edge network options (Edge Option A and 

Edge Option B) 



38 

 

19. I implemented both solutions (Edge Option A and Edge Option B) and connected them 

to the Edge Watcher System 

20. I tested the performance of EWS in connection with the two implemented edge network 

options 

21. Results comparison of the two proposed solutions 

I implemented the EWS within a University building environment where I tested the 

performance of the EWS by employing a local and a Cloud version of the system along with 

two different edge network architectures. 

22. Two design options were considered that contained two different versions (based on 

Edge Option A and B and Architectural Option A and B) 

23. Measuring the average response time of the EWS by taking into consideration the 

location of the software, the location of the decision algorithm, and the edge network 

architecture involved. 

24. Comparison of EWS architectures used for testing in the University building 

Performance testing is an essential part in the development of an application because it provides 

the means to find if the tested system is running on the desired parameters with different inputs. 

The importance of this critical step relies mostly on the idea that every new development piece 

must be tested on different pre-defined scenarios where different metrics are monitored. 

25. Performance testing for building management systems 

26. System architecture for the testing environment. 

27. Cloud and local deployments for performance testing. 

28. Scenario-based testing that covers multiple types of buildings and environments such 

as: a small apartment, a house, a small residential building, an office building, and a 

complex of buildings 

29. Simulation of building edge nodes API requests with Apache JMeter. 

30. Measurement of the hazard events detection algorithm performance run time 

31. Integration of a cloud-native monitoring solution. 

32. Scaling evaluation of the Edge Watcher System up to one thousand edge nodes 

33. Architectural discussion based on different design choices for edge nodes and cloud 

system hosting 

34. Network latency discussion for the cloud system 

35. Performance discussion for the cloud hosting hardware and edge nodes hardware 

36. Cost discussion based on the edge nodes choices 

37. In-depth discussion of the testing results 

38. Architecture recommendations based on the scaling evaluation and real-world testing 

results 



39 

 

 

7.3 List of Publications 
 

During my thesis writing, I used content from articles 1, 4, 6, and 9 which can be found below: 

1. Florin Lacatusu, A. D. Ionita, Marian Lacatusu, I. Damian and D. Saru, "A 

Comparison of Cloud Edge Monitoring Solutions for a University Building," 2022 

IEEE 18th International Conference on Intelligent Computer Communication and 

Processing (ICCP), Cluj-Napoca, Romania, 2022, pp. 253-257, doi: 

10.1109/ICCP56966.2022.10053978. 

 

2. Marian Lacatusu, A. D. Ionita, Florin Lacatusu and I. Damian, "Decision support for 

multicloud deployment of a modeling environment," 2022 IEEE 18th International 

Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-

Napoca, Romania, 2022, pp. 247-251, doi: 10.1109/ICCP56966.2022.10053951. 

 

3. Ioan Damian, Marian Lacatusu, Florin Lacatusu and A. D. Ionita, "Web Services for 

Guiding Persons with Locomotor Impairments in Public Spaces," 2022 26th 

International Conference on System Theory, Control and Computing (ICSTCC), 2022, 

pp. 639-644, doi: 10.1109/ICSTCC55426.2022.9931861, WOS:000889980600107 

 

4. Lăcătușu, Florin; Ionita, A.D.; Lăcătușu, Marian.; Olteanu, A. Performance Evaluation 

of Information Gathering from Edge Devices in a Complex of Smart Buildings. Sensors 

2022, 22, 1002. https://doi.org/10.3390/s22031002 , Impact factor: 3.84 – Q2, 

WOS:000760176500001 

 

5. Lăcătușu, Marian; Ionita, A.D.; Anton, F.D.; Lăcătușu, Florin Analysis of Complexity 

and Performance for Automated Deployment of a Software Environment into the Cloud. 

Appl. Sci. 2022, 12, 4183. https://doi.org/10.3390/app12094183, Impact factor: 2.84 -  

Q2, WOS:000794735600001 

 

6. Florin Lacatusu, I. Damian, A. D. Ionita and Marian Lacatusu, "Smart Building 

Manager Software in Cloud", U.P.B. Sci. Bull., Series C, vol. 83, no. 4, 2021, Impact 

factor:  0.37, WOS:000741473700003  

 

7. Marian Lacatusu, Florin Lacatusu, Ioan Damian, Anca Daniela Ionita, Multicloud 

Deployment to Support Remote Learning, 15th International Technology, Education 

and Development Conference (INTED 2021) Proceedings (2021), pp. 4601-4606, 

IATED Digital Library, doi: 10.21125/inted.2021.0936 

 

8. Ioan Damian, Marian Lacatusu, Anca Daniela Ionita, Florin Lacatusu, Software 

Services to Support Faculty Management in Times of Pandemic, 15th International 

Technology, Education and Development Conference (INTED 2021) Proceedings 

(2021), pp. 4634-4639, IATED Digital Library, doi: 10.21125/inted.2021.0943 

 



40 

 

9. Lăcătuşu, Florin; Ionita, A.D. Architecture for Monitoring Risk Situations in a 

University Environment. Rev. Roum. Sci. Tech. Electrotech. 2020, 65, 259–263, Impact 

factor: 0.44, WOS:000608261900017 

 

10. Adriana Olteanu, Florin Lacatusu, Marian Lacatusu, Iulian Craciun, Anca Daniela 

Ionita, ”Mobile Application for Crisis Situations in a University Campus” - The 

International Scientific Conference eLearning and Software for Education; Bucharest  

Vol. 2,  Bucharest: "Carol I" National Defence University. (2018): 280-287. 

WOS:000467466800038 

 

11. Olteanu, Adriana; Lacatusu, Marian; Ionita, Anca Daniela; Lacatusu, Florin,  

”Platform for Informal Education and Social Networking to Increase Awareness 

Regarding Nuclear Vulnerabilities” - The International Scientific Conference eLearning 

and Software for Education; Bucharest  Vol. 2,  Bucharest: "Carol I" National Defence 

University. (2018): 333-340. WOS:000467466800045 

 

 

7.4 Future Perspectives 
In terms of future work, the next step for the Edge Watcher System would be to be installed in 

a building as the main solution for monitoring and testing its performance when functioning for 

a long period of time. Another interesting fact would be testing the performance of the EWS 

when it’s integrated into a smart city infrastructure. Therefore, multiple instances of the EWS 

would be deployed for each of the buildings, and the functioning of the EWS can be tested in 

this scenario also.  

Besides this, given the fact that Edge Watcher System is a cloud-native application, it will run 

similarly on any cloud provider with no or minimal changes. As a consequence, another future 

perspective would be to test the performance of the monitoring software that runs on Kubernetes 

services provided by a different cloud provider to see if the performance varies between them. 

Currently, during the tests conducted in my study, IBM Cloud was used as the cloud provider 

for the EWS Kubernetes service. The performance registered in this case was satisfactory for 

the hardware flavor that was chosen. Therefore, comparing multiple offerings from multiple 

providers would be interesting because the optimal solution can be achieved by studying the 

performance-to-price ratio.  

The Kubernetes services deployed from multiple cloud providers should be compared at the 

same price point and the best performance-to-price option should be chosen. Afterward, a very 

interesting experiment would be, besides the price, the performance testing of EWS running on 

Kubernetes services provided by different public cloud providers. The main requirement for 

this type of comparison would be to deploy the Kubernetes cluster in a similar location for all 

the cloud providers. This way there would be little difference when we take into consideration 

the network latency that could be influenced by the Kubernetes cluster’s location. If we want 

to move further from the Kubernetes service, another possible implementation that can be 

considered for the EWS backend is represented by serverless functions. These types of 

resources are fully managed by the cloud provider and the developer only works on the 

application’s code. Therefore, a very interesting comparison would be between the container-

based Kubernetes solution and serverless functions with PaaS database services. The 

comparison that would be made between these solutions should cover, first of all, the 



41 

 

performance topic and also the cost difference between them. In the end, of course, this 

comparison can be generalized also to experiment with the most important cloud provider’s 

options regarding serverless functions and test their offering in order to find the most suitable 

option.  

Selected References 
[1] D. Cârstoiu, V.E. Oltean, S.M. Nica, G. Spiridon, A cloud-based architecture proposal for 

rehabilitation of aphasia patients, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg., 62, 3, pp. 

332–337 (2017) 

[2] G.M. Vasilescu, I. Bârsan, G. Kacso, M.E. Marin, M. Maricaru, L.N. Demeter, Two devices 

equipped with temperature sensors used to detect and locate incipient breast tumors, Rev. 

Room. Sci. Technol. – Électrotechn. et Énerg., 63, 4, pp. 441–445 (2018). 

[3] Kurniawan, F.; Meidia, H.; Salim, S. Building Monitoring System Based on Zigbee. JCSI 

2013, 6, 65–69 

[4] Kim, D.; Muhammad, H.; Kim, E.; Helal, S.; Lee, C. TOSCA-Based and Federation-Aware 

Cloud Orchestration for Kubernetes Container Platform. Appl. Sci. 2019, 9, 191. 

[5] Kubernetes Concepts - Pods: https://kubernetes.io/docs/concepts/workloads/pods/, 

Accessed October 5 2020. 

[6] Erinle, B. Performance Testing with JMeter 2.9; Packt Publishing: Birmingham, UK, 2013 

[7] Haseeb-Ur-Rehman, R.M.A.; Liaqat, M.; Mohd Aman, A.H.; Ab Hamid, S.H.; Ali, R.L.; 

Shuja, J.; Khurram Khan, M. Sensor Cloud Frameworks: State-of-the-Art, Taxonomy, and 

Research Issues. IEEE Sens. J. 2021, 21, 22347–22370. 

[8] International Building Code; International Code Council: Country Club Hills, IL, USA, 

2018; ISBN 978-1-60983-735-8. 

[9] National Construction Code 2019 Building Code of Australia, Volume One. Available 

online: 

https://ncc.abcb.gov.au/sites/default/files/ncc/NCC_2019_Volume_One_Amendment%201.pd

f (accessed on 6 December 2021). 

[10] I. Damian, M. Lacatusu, F. Lacatusu and A. D. Ionita, "Web Services for Guiding Persons 

with Locomotor Impairments in Public Spaces," 2022 26th International Conference on System 

Theory, Control and Computing (ICSTCC), 2022, pp. 639-644, doi: 

10.1109/ICSTCC55426.2022.9931861. 

[11] I. Damian, M. Lacatusu, A.D. Ionita, F. Lacatusu (2021) Software Services to Support 

Faculty Management in Times of Pandemic, INTED2021 Proceedings, pp. 4634-4639. INTED 

2021 

[12] Olteanu, Adriana; Lacatusu, Marian; Ionita, Anca Daniela; Lacatusu, Florin,  ”Platform 

for Informal Education and Social Networking to Increase Awareness Regarding Nuclear 

Vulnerabilities” - The International Scientific Conference eLearning and Software for 

Education; Bucharest  Vol. 2,  Bucharest: "Carol I" National Defence University. (2018): 333-

340. 



42 

 

[13] Serrano, D.; Bouchenak, S.; Kouki, Y.; Alvares de Oliveira, F., Jr.; Ledoux, T.; Lejeune, 

J.; Sopena, J.; Arantes, L.; Sens, P. SLA guarantees for cloud services. Future Gener. Comput. 

Syst. 2016, 54, 233–246. 

[14] Lăcătușu, F.; Ionita, A.D.; Lăcătușu, M.; Olteanu, A. Performance Evaluation of 

Information Gathering from Edge Devices in a Complex of Smart Buildings. Sensors 2022, 22, 

1002.  

[15] M. Lacatusu, A. D. Ionita, F. Lacatusu and I. Damian, "Decision support for multicloud 

deployment of a modeling environment," 2022 IEEE 18th International Conference on 

Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 2022, 

pp. 247-251, doi: 10.1109/ICCP56966.2022.10053951. 

[16] Lăcătușu, M.; Ionita, A.D.; Anton, F.D.; Lăcătușu, F. Analysis of Complexity and 

Performance for Automated Deployment of a Software Environment into the Cloud. Appl. Sci. 

2022, 12, 4183.  

[17] M. Lacatusu, F. Lacatusu, I. Damian, A.D. Ionita (2021) Multicloud Deployment to 

Support Remote Learning, INTED2021 Proceedings, pp. 4601-4606. INTED 2021 

[18] Lăcătuşu, F.; Ionita, A.D. Architecture for Monitoring Risk Situations in a University 

Environment. Rev. Roum. Sci. Tech. Electrotech. 2020, 65, 259–263 

[19] F. Lacatusu, I. Damian, A. D. Ionita and M. Lacatusu, "Smart Building Manager Software 

in Cloud", U.P.B. Sci. Bull., Series C, vol. 83, no. 4, 2021  

[20] F. Lacatusu, A. D. Ionita, M. Lacatusu, I. Damian and D. Saru, "A Comparison of Cloud 

Edge Monitoring Solutions for a University Building," 2022 IEEE 18th International 

Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, 

Romania, 2022, pp. 253-257, doi: 10.1109/ICCP56966.2022.10053978. 

[21] Johnston, S.J.; Cox, S.J. The Raspberry Pi: A Technology Disrupter, and the Enabler of 

Dreams. Electronics 2017, 6, 51 

[22] Cloutier, M.F.; Paradis, C.; Weaver, V.M. A Raspberry Pi Cluster Instrumented for Fine-

Grained Power Measurement. Electronics 2016, 5, 61 

[23] Adriana Olteanu, Florin Lacatusu, Marian Lacatusu, Iulian Craciun, Anca Daniela Ionita, 

”Mobile Application for Crisis Situations in a University Campus” - The International 

Scientific Conference eLearning and Software for Education; Bucharest  Vol. 2,  Bucharest: 

"Carol I" National Defence University. (2018): 280-287.   

 


