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Motivation and outlines

General objective. The aim of this thesis is to develop a new direction of generalization

for the concept of iterated function system, which is one of the most important methods

of obtaining fractals. The concept of "fractal" has not a formal de�nition, but it can be

seen as an irregular, broken geometric shape, in some cases having the property that at

any scales, every part is (at least approximately) a smaller copy of the initial �gure.

One of the most important methods of obtaining fractals consists of applying �xed

point theorems to a certain operator (called the fractal or the Hutchinson-Barnsley op-

erator) associated with an iterated function system. The notion of iterated function

system (denoted for short by IFS) was considered for the �rst time by J. Hutchinson in

1981 (see [7]) and it became more popular in 1998 when M. F. Barnsley published the

book "Fractals everywhere" (see [1]).

There exists various generalizations for the concept of iterated function system. A

direction of generalization is represented by considering weaker contractivity conditions

for the functions of the system (see [4], [23], [24], [26]). Another direction of general-

ization consists of considering systems with an arbitrary number (�nite or in�nite) of

functions (see [5], [6], [8], [13], [27]). Another way to generalize the IFSs is to change

the structure of component functions or the structure of space (see [2], [3], [10], [11],

[28], [29], [30]). For all the above mentioned generalizations of IFSs, the fractal operator

associated with such a system is Picard and its unique �xed point is the attractor of the

system.

This thesis is dedicated to the study of IFSs for which the fractal operator is weakly

Picard. More precisely, we introduce and study a new class of iterated function systems,

namely possibly in�nite iterated function systems (denoted for short as IIFSs) for which

the component functions are endowed with weaker contractivity conditions on the orbit

of the elements from the space where they are de�ned.
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The motivation of the study presented in this thesis is given by the fact that one

of the most important methods of obtaining fractals is based on the notion of iterated

function system. Consequently, in the last years, many mathematicians have been inter-

ested in �nding a large variety of generalizations for the concept of IFS. In this thesis we

de�ne and study a new class of IFSs which are endowed with orbital contractivity con-

ditions and applying a weaker �xed point theorem, we prove that the associated fractal

operator is weakly Picard. Therefore, the IFSs presented in this thesis have a family of

attractors, instead of a unique attractor. We made a �rst study in this direction in the

paper [14], where we proved that the fractal operator associated with an IFS consisting

of continuous functions satisfying Banach's orbital condition is weakly Picard. Also,

inspired by the studies regarding the in�nite iterated function systems, the IFSs with

weaker contractivity conditions and the fuzzy IFSs presented in [5], [6], [12] and [23],

we took into consideration the idea of combining these concepts with the class of IFSs

introduced in this thesis and for these new obtained systems we studied the associated

operators.

Thesis description. The aim of this PhD thesis is to develop a new direction of

generalization for the concept of iterated function system. In Chapter 1 of this thesis

we introduce the notions of ϕ-contractive parent-child possibly in�nite iterated function

system (pcIIFS) and orbital ϕ-contractive possibly in�nite iterated function system (oI-

IFS). Also, in this Chapter, we state the notations and terminology that we used in the

thesis. In Chapter 2, we prove that the fractal operator associated with a pcIIFS or

an oIIFS is weakly Picard. For these types of systems we construct the canonical pro-

jection and we study its properties. Moreover, the operator HS which was studied for

ϕ-contractions is generalized for pcIIFSs and oIIFSs and we prove that the generalized

operator is continuous and weakly Picard. Also, we use this generalization of the HS

operator to prove that the Markov operator associated with a �nite pcIIFS or oIIFS with

probabilities is weakly Picard. In Chapter 3, we study certain topological properties of

attractors of orbital contractive iterated function systems (which are a particular case

of oIIFSs, where there is a �nite number of functions in the system and the comparison

function is linear). In Chapter 4, we introduce the notion of ϕ-contractive orbital a�ne

iterated function system (oAIFS) and we present two structure results for the component

functions of an oAIFS. In Chapter 5, we introduce the notion of orbital fuzzy iterated

function system and we prove that the associated fuzzy operator is weakly Picard. More-

over, we present some structure results regarding the �xed points of the fuzzy operator.

In every chapter some examples are provided.



Chapter 1

Preliminaries

In this chapter we state the notations and terminology used in this thesis.

De�nition 1.1. Let (X, d) be a metric space.

1) A weakly Picard operator is a function f :X → X having the property that for

every x ∈ X, the sequence (fn (x))n∈N is convergent to a �xed point of f . In this case,

we de�ne the operator f∞:X → X given by f∞(x) = lim
n→∞

fn (x) for every x ∈ X.

2) A Picard operator is a weakly Picard operator which has a unique �xed point.

De�nition 1.2. A function ϕ: [0,∞)→ [0,∞) is called

1) comparison function if ϕ(r) < r for all r > 0 and ϕ is increasing;

2) summable comparison function if ϕ is a comparison function and
∞∑
n=0

ϕn (r) is

convergent for every r > 0.

De�nition 1.3. Let (X, d) be a complete metric space. A function f :X → X is called

ϕ-contraction if there exists ϕ: [0,∞) → [0,∞) a right continuous comparison function

such that d(f(x), f(y)) ≤ ϕ(d(x, y)) for every x, y ∈ X.

Let (X, d) be a metric space. In the sequel, we shall use the following notations:

Pb (X) = {A ⊆ X | A 6= ∅ and A is bounded};
Pcl,b(X) = {A ∈ Pb (X) | A is closed};

Pcp (X) = {A ⊆ X | A 6= ∅ and A is compact}.

For A ⊆ X, the diameter of the set A is diam (A) = sup
x,y∈A

d (x, y) and for a �xed

x ∈ X, the distance between x and A is d (x,A) = inf
y∈A

d (x, y) .

For two functions f, g:X → X, the uniform distance between f and g is du (f, g) =

sup
x∈X

d (f (x) , g (x)).

6
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On Pb (X) we de�ne the generalized Hausdor�-Pompeiu semidistance h:Pb (X) ×
Pb (X) → [0,∞) given by h (A,B) = max {d (A,B) , d (B,A)} for all A,B ∈ Pb (X),

where d (A,B) = sup
x∈A

d (x,B) . The restriction of h to Pcl,b (X) is called the Hausdor�-

Pompeiu metric and it is also denoted by h.

The shift space

For n ∈ N∗, by Λn (I) we mean the set of all �nite words with n letters of I, namely

ω = ω1ω2 · · ·ωn. In this case, n is called the length of ω and it is denoted by |ω|. For

ω ∈ Λn (I) and m ∈ N∗, by [ω]m we mean the word formed with the �rst m letters of ω

if m ≤ n, or the word ω if n < m. By [ω]0 we mean the word λ. Λ0 (I) = {λ}, where λ
is called the empty word.

For a set I, by Λ (I) we mean the set of in�nite words, namely ω = ω1ω2 · · ·ωn · · · ,
where ω1, ω2, · · · ωn, · · · ∈ I. For ω ∈ Λ (I) and n ∈ N∗ by [ω]n we mean the word

formed with the �rst n letters of ω. By [ω]0 we mean λ.

For α ∈ Λn (I) and β ∈ Λm (I) or β ∈ Λ (I), with m,n ∈ N∗, by αβ we mean the

concatenation of α and β.

For a family (fi)i∈I , where fi:X → X for every i ∈ I, n ∈ N∗ and ω = ω1ω2 · · ·ωn ∈
Λn (I), we use the notation fω = fω1 ◦ · · · ◦ fωn . By fλ we mean the identity function.

For a set B ⊆ X, n ∈ N∗ and ω ∈ Λn (I), we use the notation Bω = fω (B).

By Λ∗ (I) we mean the set of all �nite words, namely Λ∗ (I) = ∪
n∈N

Λn (I).

By Λt (I) we mean the set of all words with letters of I , namely Λ∗ (I) ∪ Λ (I).

De�nition 1.4. Let (X, d) and (Y, ρ) be two metric spaces and (fi)i∈I a family of

functions with fi:X → Y for every i ∈ I. The family (fi)i∈I is called

1) bounded if the set ∪
i∈I
fi (B) ∈ Pb (X) for every B ∈ Pb (X),

2) equi-uniformly continuous if for every ε > 0 there exists δε > 0 such that for all

x, y ∈ X with d (x, y) < δε we have ρ (fi (x) , fi (y)) < ε, for all i ∈ I.

Let (X, d) be a complete metric space and (fi)i∈I a family of continuous functions,

with fi:X → X for all i ∈ I. Let B ∈ Pb (X). By the orbit of B we mean the set

O (B) = ∪
n∈N

∪
α∈Λ(I)

f[α]n
(B). If B = {x}, the orbit of {x} is denoted by O (x).

De�nition 1.5. Let (X, d) be a complete metric space and (fi)i∈I a family of functions,

where fi:X → X for every i ∈ I. The pair denoted by S =
(
(X, d) , (fi)i∈I

)
is called

possibly in�nite iterated function system (IIFS for short) if

i) fi:X → X is a continuous function for every i ∈ I,
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ii) the family (fi)i∈I is equi-uniformly continuous on bounded sets, i.e. for every

B ∈ Pb (X) and every ε > 0 there exists δε,B > 0 such that for all x, y ∈ B with

d (x, y) < δε,B we have d (fi (x) , fi (y)) < ε, for all i ∈ I,
iii) (fi)i∈I is a bounded family of functions.

Given an IIFS S =
(
(X, d) , (fi)i∈I

)
, the function FS :Pb (X)→ Pcl,b (X) , de�ned by

FS (B) = ∪
i∈I
fi (B)

for every B ∈ Pb (X), is called the fractal operator associated with S.
De�nition 1.5 iii) ensures us that FS (B) ∈ Pcl,b (X) for every B ∈ Pb (X).

The restriction of FS to Pcl,b (X) will still be denoted by FS .

De�nition 1.6. Let S =
(
(X, d) , (fi)i∈I

)
be an IIFS and let FS :Pcl,b (X) → Pcl,b (X)

be the fractal operator associated with S. Every �xed point of FS is called an attractor

of S. We say that S has a unique attractor if there exists a unique set denoted by

A ∈ Pcl,b(X) such that FS (A) = A and lim
n→∞

h (F n
S (K) , A) = 0 for every K ∈ Pcl,b(X).

De�nition 1.7. An IIFS S =
(
(X, d) , (fi)i∈I

)
is called

1) ϕ-contractive parent-child possibly in�nite iterated function system (pcIIFS for

short) if there exists ϕ: [0,∞)→ [0,∞) a summable comparison function such that

d (fω (x) , fωi (x)) ≤ ϕ|ω| (d (x, fi (x))) ,

for every i ∈ I, ω ∈ Λ∗ (I) and x ∈ X;

2) orbital ϕ-contractive possibly in�nite iterated function system (oIIFS for short) if

there exists ϕ: [0,∞)→ [0,∞) a right-continuous comparison function such that

d (fi (y) , fi (z)) ≤ ϕ (d (y, z))

for every i ∈ I, x ∈ X and y, z ∈ O (x).

De�nition 1.8. Let (X, d) be a complete metric space and (fi)i∈I a �nite family of

continuous functions, where fi:X → X for all i ∈ I. The pair
(
(X, d) , (fi)i∈I

) not
= S is

called

1) A contractive iterated function system if there exists C ∈ [0, 1) such that

d (fi (x) , fi (y)) ≤ C · d (x, y)

for every i ∈ I and x, y ∈ X.
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2) A ϕ-contractive iterated function system if there exists ϕ: [0,∞)→ [0,∞) a right

continuous comparison function such that

d (fi (x) , fi (y)) ≤ ϕ (d (x, y))

for every i ∈ I and x, y ∈ X.

3) A parent-child contractive iterated function system if there exists C ∈ [0, 1) such

that

d (fω (x) , fωi (x)) ≤ C |ω| · d (x, fi (x))

for every x ∈ X, i ∈ I and ω ∈ Λ∗ (I) .

4) An orbital contractive iterated function system if there exists C ∈ [0, 1) such that

d (fi (y) , fi (z)) ≤ C · d (y, z)

for every x ∈ X, i ∈ I and y, z ∈ O (x) .

5) A ϕ-contractive orbital iterated function system if there exists ϕ: [0,∞)→ [0,∞)

a right continuous comparison function such that

d (fi (y) , fi (z)) ≤ ϕ (d (y, z))

for every x ∈ X, i ∈ I and y, z ∈ O (x) .

The fractal operator associated with a system S =
(
(X, d) , (fi)i∈I

)
from De�nition

1.8, consisting of a �nite number of functions, is FS :Pcp (X)→ Pcp (X) given by

FS (K) = ∪
i∈I
fi (K)

for every K ∈ Pcp (X).



Chapter 2

ϕ-Contractive parent-child possibly

in�nite iterated function systems and

orbital ϕ-contractive possibly in�nite

iterated function systems

In this chapter, we study the fractal operator associated with a ϕ-contractive parent-child

possibly in�nite iterated function system (pcIIFS) and we prove that it is weakly Picard.

Moreover, we present the properties of the canonical projection associated with a pcIIFS.

Also, for an orbital ϕ-contractive possibly in�nite iterated function system (oIIFS) we

study the equivalent properties with the ones for pcIIFSs and the canonical projection.

Related to these two types of systems, we generalize the HS operator presented in [17]

for ϕ-contractions and we use this operator to prove that the Markov operator associated

with a �nite pcIIFS or oIIFS with probabilities is weakly Picard. In the last part, we

give some examples. The results presented here were published in [18] and [19].

2.1 ϕ-Contractive parent-child possibly in�nite iter-

ated function systems (pcIIFSs)

Let (X, d) be a complete metric space.

Theorem 2.1 (see [18]). Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS and let FS :Pcl,b (X) →

Pcl,b (X) be the fractal operator associated with S. Then, FS is a weakly Picard op-

erator. More precisely, for every B ∈ Pcl,b (X) there exists AB ∈ Pcl,b (X) such that

10
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lim
n→∞

F n
S (B) = AB and FS (AB) = AB. Moreover,

h (F n
S (B) , AB) ≤

∑
k≥n

ϕk (diam (B ∪ FS (B)))

for all n ∈ N.

Corollary 2.1 (see [14]). Every parent-child contractive iterated function system has

attractor. More precisely, the associated fractal operator is weakly Picard.

Proposition 2.1 (see [18]). Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS. Then, AB = ∪

x∈B
Ax

for every B ∈ Pcl,b (X).

Theorem 2.2 (see [18]). Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS. Then the function

F∞S :Pcl,b (X) → Pcl,b (X), given by F∞S (B) = lim
m→∞

Fm
S (B), for every B ∈ Pcl,b (X),

is continuous.

Proposition 2.2 (see [18]). Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS. Then, for every

B ∈ Pb (X) and α ∈ Λ (I), the sequence
(
f[α]n (B)

)
n∈N

is convergent. If we denote

by aα (B) = lim
n→∞

f[α]n (B), then h
(
f[α]m (B) , aα (B)

)
≤

∞∑
k=m

ϕk (diam (O (B))) for all

m ∈ N.

Lemma 2.1 (see [18]). Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS. Then,

1) aα (B) = ∪
x∈B
{aα (x)} for every B ∈ Pb (X) and α ∈ Λ (I);

2) aα is uniformly continuous on B for every α ∈ Λ (I) and B ∈ Pcl,b (X) ;

3) fω (aα (B)) = aωα (B) for every α ∈ Λ (I), ω ∈ Λn (I), n ∈ N∗ and B ∈ Pb (X);

4) aα (x) = aα (y) for every x ∈ X, y ∈ O (x) and α ∈ Λ (I).

Theorem 2.3 (see [18]). Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS. Then, AB = ∪

α∈Λ(I)
aα (B) =

∪
x∈B

∪
α∈Λ(I)

{aα (x)} for every B ∈ Pcl,b (X).

Proposition 2.3 (see [18]). Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS. Then, AB = Ax for

every x ∈ X and B ∈ Pcl,b
(
O (x)

)
.

Proposition 2.4 (see [18]). Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS. Then, for every

x, y ∈ X such that O (x)∩O (y) 6= ∅, we have Ax = Ay. In particular, if O (x)∩O (y) 6= ∅
for all x, y ∈ X, we have that FS is a Picard operator.

Proposition 2.5 (see [18]). Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS. Then,

(
diam

(
A[α]n,x

))
n∈N

is convergent to 0 and {aα (x)} = lim
n→∞

A[α]n,x for every x ∈ X and α ∈ Λ (I).
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Theorem 2.4 (see [18]). Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS. Then the function

Θ:Λt (I)× Pcl,b (X)→ Pcl,b (X) de�ned by

Θ (α,B) =


aα (B) , if α ∈ Λ (I)

fα (B) , if α ∈ Λ∗ (I) \ {λ}

B, if α = λ

for all (α,B) ∈ Λt (I)×Pcl,b (X) is uniformly continuous on bounded sets. In particular,

Θ is continuous.

Theorem 2.5 (see [25]). Let S1 =
(

(X, d) , (fi)i∈{1,··· ,n}

)
and S2 =

(
(X, d) , (gi)i∈{1,··· ,n}

)
be two parent-child contractive iterated function systems, such that:

i) there exists C ∈ (0, 1) such that FS1 :OS1 (x)→ OS1 (x) and FS2 :OS2 (x)→ OS2 (x)

are Banach contractions with the contraction constant C, for every x ∈ X, where

OS1 (x) = {fα1···αm(x)| m ∈ N, α1, · · · , αm ∈ {1, · · · , n}} and OS2 (x) = {gα1···αm(x)|
m ∈ N, α1, · · · , αm ∈ {1, · · · , n}}.

ii) S =
(

(X, d) , (li)i∈{1,··· ,2n}

)
where li = fi and ln+i = gi for every i ∈ {1, · · · , n},

is a parent-child contractive iterated function system. Then

h (FixFS1 , F ixFS2) ≤ 1

1− C
n

max
i=1

du (fi, gi) ,

where by FixFS we mean the set of �xed points of the fractal operator FS .

2.2 Orbital ϕ-contractive possibly in�nite iterated func-

tion systems (oIIFSs)

Theorem 2.6 (see [18]). Let S =
(
(X, d) , (fi)i∈I

)
be an oIIFS and let FS :Pcl,b (X) →

Pcl,b (X) be the fractal operator associated with S. Then, FS is a weakly Picard operator.

Moreover, h (F n
S (B) , AB) ≤ ϕn

(
diam

(
O (B)

))
for all n ∈ N and B ∈ Pcl,b (X),

where AB = ∪
x∈B

Ax.

Theorem 2.7 (see [18]). Let S =
(
(X, d) , (fi)i∈I

)
be an oIIFS. Then the function

F∞S :Pcl,b (X) → Pcl,b (X), given by F∞S (B) = lim
m→∞

Fm
S (B) for all B ∈ Pcl,b (X), is

continuous.

Proposition 2.6 (see [18]). Let S =
(
(X, d) , (fi)i∈I

)
be an oIIFS. Then, for all B ∈

Pb (X) and α ∈ Λ (I), the sequence
(
f[α]n (B)

)
n∈N is convergent. If we denote its limit
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by aα (B), we have h
(
f[α]n (B) , aα (B)

)
≤ ϕn (diam (O (B))) for all n ∈ N. Moreover,

aα (B) = ∪
x∈B
{aα (x)}.

Theorem 2.8 (see [18]). Let S =
(
(X, d) , (fi)i∈I

)
be an oIIFS. Then, AB = ∪

α∈Λ(I)
aα (B) =

∪
x∈B

∪
α∈Λ(I)

{aα (x)} for every B ∈ Pcl,b (X).

Theorem 2.9 (see [18]). Let S =
(
(X, d) , (fi)i∈I

)
be an oIIFS. Then the function

Θ:Λt (I)× Pcl,b (X)→ Pcl,b (X) de�ned by

Θ (α,B) =


aα (B) , if α ∈ Λ (I)

fα (B) , if α ∈ Λ∗ (I) \ {λ}

B, if α = λ

for all (α,B) ∈ Λt (I)× Pcl,b (X) is uniformly continuous on bounded sets.

2.3 The HS operator

Given (X, d) and (Y, ρ) two metric spaces, we use the following notations:

C (X, Y ) = {f :X → Y | f is continuous} ; Cb (X, Y ) = {f ∈ C (X, Y ) | f is bounded} .
Let S =

(
(X, d) , (fi)i∈I

)
be an IIFS. By C̃ we mean the set C̃ = { (f, g) | f ∈

Cb (Y × Λ (I) , X) , g ∈ Cb (Y,X) , such that f (y, α) ∈ O (g (y)) for all y ∈ Y, α ∈ Λ (I)}.
On Cb (Y × Λ (I) , X) we de�ne the operatorHS : Cb (Y × Λ (I) , X)→ Cb (Y × Λ (I) , X)

given by HS (f) (y, iα) = fi ◦ f (y, α) for all f ∈ Cb (Y × Λ (I) , X), y ∈ Y, i ∈ I and

α ∈ Λ (I).

On C̃ we consider H̃S : C̃→C̃ de�ned by H̃S (f, g) = (HS (f) , g) for all (f, g) ∈ C̃.

Proposition 2.7. Let S =
(
(X, d) , (fi)i∈I

)
be an IIFS. Then H̃S is continuous and

H̃S

(
C̃
)
⊂ C̃. Moreover, for every (f, g) ∈ C̃, the sequence

(
H̃n
S (f, g)

)
n
is convergent.

For g ∈ Cb (Y,X) we shall use the notation C̃g = {(f, g) | f ∈ Cb (Y × Λ (I) , X) ,

f (y, α) ∈ O (g (y)) for all y ∈ Y, α ∈ Λ (I)}.

Theorem 2.10. Let S =
(
(X, d) , (fi)i∈I

)
be an oIIFS. Then the function H̃S : C̃g → C̃g

is a Picard operator.

Theorem 2.11. Let S =
(
(X, d) , (fi)i∈I

)
be a pcIIFS or an oIIFS. Then, the operator

H̃S : C̃ → C̃ is weakly Picard.
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2.4 The Markov operator

By B (X) we mean the σ-algebra of Borel subsets of X. ByM (X) we mean the set of

all borelian probability measures µ:B (X)→ [0,∞) which have compact support.

De�nition 2.1. Let
(
(X, d) , (fi)i∈I

)
be a pcIIFS which contains a �nite number of func-

tions or an oIIFS formed with a �nite number of functions and let (pi)i∈I be a �nite family,

where pi ∈ (0, 1) for all i ∈ I and
∑
i∈I

pi = 1. By an iterated function system with prob-

abilities (IFSp for short) we mean the system denoted by S =
(
(X, d) , (fi)i∈I , (pi)i∈I

)
.

De�nition 2.2. Given an IFSp S =
(
(X, d) , (fi)i∈I , (pi)i∈I

)
, we de�ne an operator

MS :M (X)→M (X) called the Markov operator associated with S, given by MS(µ) =∑
i∈I

pi · µ ◦ f−1
i for all µ ∈M (X).

The following result shows that the Markov operator associated with an IFSp S
is a weakly Picard operator and the proof is based on the properties of HS operator

associated with the system S.

Theorem 2.12. Let S =
(
(X, d) , (fi)i∈I , (pi)i∈I

)
be an IFSp and let MS :M (X) →

M (X) be the Markov operator associated with S. Then MS is a weakly Picard operator.

2.5 Examples

By π1 we mean the function π1:X ×Y → X given by π1(x, y) = x for all (x, y) ∈ X ×Y
and by π2 we mean the function π2:X × Y → Y given by π2(x, y) = y for all (x, y) ∈
X × Y .

Example A. Let us consider the metric space (R2, ‖·‖2), where ‖·‖2 is the euclidean

norm on R2, and the subset X = {(x, y) ∈ R2 | x ≥ −y2 − 100}. We de�ne the functions

f0, f1:X → X given by f0 (x, y) =
(
x
3
, y
)
and f1 (x, y) =

(
x
3

+ 2
3
y2, y

)
for all (x, y) ∈ X.

Thus, fi (x, y) =
(
x
3

+ 2i
3
y2, y

)
for all i ∈ {0, 1} and (x, y) ∈ X.

We proved that S =
(

(X, d) , (fi)i∈{0,1}

)
is a pcIIFS.

Let α = i1i2 · · · in · · · ∈ Λ (I). We have aα (x, y) =

(
2
∑
n≥1

in
3n
y2, y

)
for all (x, y) ∈ X.

Therefore, for every (x, y) ∈ X, the attractor is A(x,y) = (2Cy2, y), where C is the Cantor

set. For a set B ∈ Pcl,b (X) we have AB = {(2ty2, y) |there exist t ∈ C and (x, y) ∈ B}
and

H̃m
S (f, g) (y, βα) = (Hm

S (f) (y, βα) , g (y)) = (fβ (f (y, α)) , g (y))
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=

(
1

3m
f[1] (y, α) + 2

(
i1
3

+
i2
32

+ · · ·+ im
3m

)
f 2

[2] (y, α) , f 2
[2] (y, α) , g (y)

)
for all m ∈ N∗, β = i1i2 · · · im ∈ Λm (I), α ∈ Λ (I), and (f, g) ∈ C̃.

Example B. Let α ∈
(

3
4
, 1
)
and β ∈ R, such that 0 < β < α3. We consider the set

X ⊂ R de�ned by X = {0, 1, α, α + α2, α + α2 + α3, α + α2 + α3 − β} and we denote by

d the usual metric on R, namely d:R×R→ [0,∞), d (x, y) = |x−y| for all (x, y) ∈ R×R.
On the metric space (X, d) we consider two functions f1, f2:X → X given by f1 (1) =

f2 (1) = 0, f1 (0) = f2 (0) = α, f1 (α) = f2 (α) = α + α2, f1 (α + α2) = α + α2 + α3,

f2 (α + α2) = α + α2 + α3 − β, f1 (α + α2 + α3) = α + α2 + α3, f2 (α + α2 + α3) =

α+α2+α3−β, f1 (α + α2 + α3 − β) = α+α2+α3, f2 (α + α2 + α3 − β) = α+α2+α3−β.
We proved that S =

(
(X, d) , (fi)i∈{1,2}

)
is a pcIIFS with the summable comparison

function ϕ: [0,∞)→ [0,∞) given by ϕ (t) = αt for all t ∈ [0,∞) but S̃ =
((
C̃, d̃
)
, H̃S

)
is not a pcIIFS with respect to ϕ.

Example C.We consider the space (R2, ‖·‖2), where ‖·‖2 is the Euclidean norm. Let

D1 =
{

(x, y) ∈ R2| x > 4, y ≤ 4 + 1
x+4

}
and D2 =

{
(x, y) ∈ R2| x < −4, y ≤ 4− 1

x−4

}
.

We consider the functions f1, f2, with f1, f2:R2 r (D1 ∪D2)→ R2, given by f1 (x, y) =(
1
3
x+ 1

3
, y
)
and f2 (x, y) =

(
2
3
x, y
)
for all (x, y) ∈ R2 r (D1 ∪D2) .

One can easily prove that S =
(

(R2, ‖·‖2) , (fi)i∈{1,2}

)
is a pcIIFS and also an oIIFS.

For an element K ∈ Pcp (R2 r (D1 ∪D2)) , the corresponding attractor is AK =
[
0, 1

2

]
×

π2 (K).

Example D. Let us consider the metric space (R2, ‖·‖2), where ‖·‖2 is the Euclidean

norm and a > 0. We denote by S1 the system
(

(R2, ‖·‖2) , (fi)i∈{1,2}

)
, where f1, f2:R2 →

R2 are given by f1 (x, y) =
(

1
2
x, y
)
and f2 (x, y) =

(
1
2
x+ 1

2
, y
)
for all (x, y) ∈ R2. For a

set K ∈ Pcp (R2), the attractor is A1
K = [0, 1]× π2 (K).

We denote by S2 the system
(

(R2, ‖·‖2) , (gi)i∈{1,2}

)
, where g1, g2:R2 → R2 are given

by g1 (x, y) =
(

1
2
x, y
)
and g2 (x, y) =

(
1
2
x+ α, y

)
for all (x, y) ∈ R2. Given an element

K ∈ Pcp (R2) , the corresponding attractor for S2 is A2
K = [0, 2α]× π2 (K).

One can see that S1 and S2 are both pcIIFSs and oIIFSs. For K ∈ Pcp (R2), we have

H (FixFS1 , F ixFS2) ≤ 1
1− 1

2

max2
i=1 du (fi, gi)

obtaining a con�rmation of Theorem 2.5.



Chapter 3

On the connectedness of attractors of

orbital contractive iterated function

systems

In this chapter, we study certain topological properties of attractors of orbital contrac-

tive iterated function systems (which are a particular case of oIIFSs where there is a

�nite number of functions in the system and the comparison function is linear). We

give a necessary and su�cient condition for an attractor to be connected and su�cient

conditions for an attractor to be arcwise connected. We o�er a generalization for the last

result and we study under which conditions an attractor has a �nite number of arcwise

connected components. We provide some examples. These results are published in [20].

3.1 A necessary and su�cient condition for an attrac-

tor to be connected

De�nition 3.1. A subset A 6= ∅ of a metric space (X, d) is said to be arcwise connected

if for every x, y ∈ A, there exists a continuous map γ: [0, 1]→ A such that γ (0) = x and

γ (1) = y.

De�nition 3.2. Let A be a nonempty subset of a metric space (X, d) and x, y ∈ A.

We consider the relation R̃ on the set A given by xR̃y if there exists B ⊂ A, B arcwise

connected, such that x, y ∈ B. It is easy to show that R̃ is an equivalence relation. The

equivalence classes of R̃ are called the arcwise connected components of A.

Let S =
(
(X, d) , (fi)i∈I

)
be an orbital contractive iterated function system. For a

16
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�xed K ∈ Pcp (X), let us consider the set MK := {Ax | x ∈ K}. Let g:AK → MK be

the function de�ned by g(x) = Ax for every x ∈ AK . As g is continuous and surjective,

MK is compact.

Theorem 3.1 (see [20]). Let S =
(
(X, d) , (fi)i∈I

)
be an orbital contractive iterated

function system and K ∈ Pcp (X). Then, AK is connected if and only if the family

(AK,i)i∈I is connected and MK is connected.

3.2 Arcwise connected attractors

Example A. Let us consider the normed space (X, d) = (R2, ‖·‖2), where ‖·‖2 is the

Euclidean norm. We de�ne the functions f1, f2:R2 → R2 given by f1 (x, y) = (x, ηxy)

and f2 (x, y) = (x, ηxy + 1− ηx) for all (x, y) ∈ R2, where

ηx =


1
2
, if x ≤ 0

1
3
· x+ 1

2
· (1− x) , if x ∈ (0, 1)

1
3
, if x ≥ 1.

We obtained that the system S =
(

(R2, ‖·‖2) , (fi)i∈{1,2}

)
is an orbital contractive

iterated function system. The set A(0,0) is connected and for K = [0, 1]×{0} ∈ Pcp (R2),

MK and AK are arcwise connected. The �gures below represent the �rst steps in the

construction of the attractor using the fractal operator and having as starting point the

set [0, 1]2.

Example B. Let us consider the metric space (X, d) =
(
[0, 1]2 , d2

)
, where d2 is the
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Euclidean distance. We de�ne the functions f0, f1: [0, 1]2 → [0, 1]2 given by

f0 (x, y) =


(
x, y

2

)
, if y ≤ ax(

x, ax
2

)
, if y ∈ (ax, 1− ax)(

x, y−1+2ax
2

)
, if y ≥ 1− ax

and f1 (x, y) =


(
x, 1− y

2

)
, if y ≤ ax(

x, 2−ax
2

)
, if y ∈ (ax, 1− ax)(

x, 3−y−2ax
2

)
, if y ≥ 1− ax

for all x, y ∈ [0, 1], where ax = 1
2

(1− x) + 1
3
x for every x ∈ [0, 1]. We deduced that

S =
((

[0, 1]2 , ‖·‖2

)
, (fi)i∈{0,1}

)
is an orbital contractive iterated function system. For

K = [0, 1]× [0, 1], AK and MK are arcwise connected. We have that f0(AK) and f1(AK)

are connected. The attractor is represented in the following �gure.

The above examples suggest the statement of Theorem 3.2, that gives us su�cient

conditions for an attractor of an orbital contractive iterated function system to be arcwise

connected.

Theorem 3.2. Let S =
(
(X, d) , (fi)i∈I

)
be an orbital contractive iterated function sys-

tem and K ∈ Pcp (X), such that MK is arcwise connected. If there exists x0 ∈ AK such

that Ax0 is connected, then AK is arcwise connected.

Theorem 3.3. Let S =
(
(X, d) , (fi)i∈I

)
be an orbital contractive iterated function sys-

tem and K ∈ Pcp (X). If MK is arcwise connected and there exists x0 ∈ K such that Ax0

has a �nite number of connected components, then AK has a �nite number of arcwise

connected components, which is less than or equal to the number of connected components

of Ax0.

In Theorem 3.3, the number of arcwise connected components of AK is less than or

equal to the number of connected components of Ax0 . In Examples A and B, AK has

an arcwise connected component and Ax0 has a connected component. In the following

example (Example C) this equality doesn't take place (depending of x ∈ K, Ax has
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two or three connected components, while AK has an arcwise connected component). In

Example C we considered K = [0, 1]× [0, 2] and we obtained

AK =

{
(x, y) | x ∈ [0, 1] , y ∈

[
0,

1

2
− x

6

]
∪
[

1

2
+
x

6
,
4

3
+
x

6

]
∪
[

5

3
− x

6
, 2

]}
.

The set AK is arcwise connected and it is represented in the following �gure:

Let S =
(
(X, d) , (fi)i∈I

)
be an orbital contractive iterated function system and

K ∈ Pcp (X) and we suppose there exist n ∈ N∗ and x1, · · · , xn ∈ K such that Axj

has a �nite number of connected components, denoted by nj ∈ N∗ for all j ∈ {1, · · · , n}.
The connected components of Axj are denoted by A1

xj
, · · · , Anj

xj , for all j ∈ {1, · · · , n}.
Let α, β ∈ Λ (I). We consider the relation ⊥, de�ned by α⊥β if there exist j ∈

{1, · · · , n} and k ∈ {1, · · · , nj} such that aα (xj), aβ (xj) ∈ Akxj . One can easily notice

that, in general, ⊥ is not an equivalence relation. We consider the equivalence relation

E⊥ = ∩
E is an equivalence relation; ⊥⊂E

E.

Theorem 3.4 (see [20]). Let S =
(
(X, d) , (fi)i∈I

)
be an orbital contractive iterated

function system and K ∈ Pcp (X) such that MK is arcwise connected. Assume that

there exist n ∈ N∗ and x1, · · · , xn ∈ K such that Axj has a �nite number of connected

components, for all j ∈ {1, · · · , n}. If the relation E⊥ has one class of equivalence, then

AK is arcwise connected.



Chapter 4

ϕ-Contractive orbital a�ne iterated

function systems

In this chapter we introduce the notion of ϕ-contractive orbital a�ne iterated function

system (oAIFS). We present two results (Theorem 4.1 and Theorem 4.2) which give a

structure result for the functions of an oAIFS and establish su�cient conditions to exist

a norm with speci�c properties on the linear space where the functions are de�ned. We

o�er some examples. The results presented here were published in [22].

4.1 Preliminaries

If (Y, ‖·‖Y ) and (Z, ‖·‖Z) are two normed spaces and A ∈ L (Y, Z), by ‖A‖Y,Z we mean

sup
y∈Y,y 6=0Y

‖Ay‖Z
‖y‖Y

.

Let Y , Z ⊆ Rn be two real linear spaces such that Y +Z = Rn and Y ∩Z = {0Rn}. If
x ∈ Rn, then there exist a unique y ∈ Y and a unique z ∈ Z such that y+ z = x. In this

case, we shall use the notation x =

 y

z

. Let A ∈ L (Rn,Rn) and x =

 y

z

 ∈ Rn. We

use the notation A =

A11 A12

A21 A22

, where A11 ∈ L (Y, Y ), A12 ∈ L (Z, Y ), A21 ∈ L (Y, Z)

and A22 ∈ L (Z,Z) are de�ned by Ay =

 A11y

A21y

 and Az =

 A12z

A22z

 for every y ∈ Y

and z ∈ Z. Note that Ax =

A11y

A21y

+

A12z

A22z

 for every

 y

z

 ∈ Rn.

20



Abstract of the PhD thesis 21

De�nition 4.1. On Rn we consider a �xed norm denoted by ‖·‖. By an a�ne iterated

function system we mean a pair denoted by S =
(
(Rn, ‖·‖) , (fi)i∈I

)
, where (fi)i∈I is a

�nite family of continuous functions, with fi:Rn → Rn for all i ∈ I, having the property

that for every i ∈ I, there exist Ãi ∈ L (Rn,Rn) and ãi ∈ Rn such that fi (x) = Ãix+ ãi

for all x ∈ Rn.

De�nition 4.2. By a ϕ-contractive orbital a�ne iterated function system (oAIFS for

short) we mean a pair denoted by S =
(
(Rn, ‖·‖) , (fi)i∈I

)
which is an a�ne iterated

function system and has the property that there exists a comparison function ϕ: [0,∞)→
[0,∞) such that S is a ϕ-contractive orbital iterated function system.

4.2 Main results

Proposition 4.1 (see [22]). Let S =
(
(Rn, ‖·‖) , (fi)i∈I

)
be an oAIFS, m ∈ N, m ≥ 2

and α ∈ Λm (I). Then, fα (x) = Ãαx+ ãα1 +
m∑
k=2

Ã[α]k−1
ãαk

for all x ∈ Rn.

Theorem 4.1 (see [22]). Let S =
(
(Rn, ‖·‖) , (fi)i∈I

)
be an oAIFS. Then, there exist

two linear subspaces Y, Z ⊂ Rn such that:

1) Y + Z = Rn, Y ∩ Z = {0Rn};
2) for every i ∈ I, there exist Bi ∈ L (Z,Z), Ci ∈ L (Y, Z) and bi ∈ Z such that

Ãi =

IY OZ,Y

Ci Bi

 and ãi =

0Y

bi

;
3) there exist c ∈ (0, 1) and a norm ‖·‖Z on Z such that ‖Bi‖Z < c for all i ∈ I.

Theorem 4.2 (see [22]). Let S =
(
(Rn, ‖·‖) , (fi)i∈I

)
be an oAIFS. Let Y and Z be the

linear subspaces of Rn which result from Theorem 4.1 and let ‖·‖Y be a norm de�ned

on Y . Let µ = max
i∈I
‖Bi‖Z, β = max

i∈I
‖Ci‖Y,Z and θ ∈

(
0, 1−µ

β

)
. We consider the norm

‖·‖θ :Rn → [0,∞) de�ned by∥∥∥∥∥∥
 y

z

∥∥∥∥∥∥
θ

= max {‖y‖Y , θ ‖z‖Z}

for all y ∈ Y and z ∈ Z and the norm ||| · |||:Z → [0,∞) given by |||z||| = θ||z||Z for all

z ∈ Z. Then,
∥∥∥Ãi∥∥∥

θ
≤ 1 and |||Bi||| = ‖Bi‖Z < 1 for all i ∈ I.



Chapter 5

Orbital fuzzy iterated function systems

In this chapter we introduce the notion of orbital fuzzy iterated function system. We

prove that the fuzzy Hutchinson-Barnsley operator associated with such a system is

weakly Picard. Also, for each fuzzy set, we provide a description of the corresponding

fuzzy fractal. In addition, we study the fuzzy fractal generated by a canonical fuzzy

iterated function system and give a structure result regarding the fuzzy fractals generated

by an orbital fuzzy iterated function system. Some examples are provided. The results

presented here can be found in [15], [16] and [21].

5.1 Preliminaries

The terminology used in this chapter can be found in [23].

Let (X, d) be a complete metric space. The family of fuzzy subsets of X is denoted

by FX . For u ∈ FX , we use the following notation: [u]∗: = {x ∈ X | u(x) > 0}. An
element u ∈ FX is called normal if there exists x ∈ X such that u(x) = 1.

Notation 5.1. F∗∗X = {u ∈ FX | u is normal and compactly supported};
F∗X = {u ∈ F∗∗X | u is usc (upper semicontinuous)} .

The topology on F∗∗X is de�ned using the Hausdor�-Pompeiu semidistance between

the α-cuts. Since Pb (X) contains all the α-cuts, we can de�ne a semimetric d∞ in F∗∗X
by d∞ (u, v) = sup

α∈[0,1]

h ([u]α , [v]α) for every u, v ∈ F∗∗X . The restriction of d∞ to F∗X is a

metric, since in this case the α-cuts belong to Pcp (X).

Given a metric space (X, d) and (fi)i∈I a family of functions with fi:X → R for all

i ∈ I, we denote by ∨
i∈I
fi:X → R the function given by ( ∨

i∈I
fi) (x) = sup

i∈I
fi (x) for every

x ∈ X.

22
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De�nition 5.1. Let S = ((X, d), (fi)i∈I) be a contractive iterated function system and

let (ρi)i∈I be an admissible system of grey level maps. The system denoted by SZ =(
(X, d) , (fi)i∈I , (ρi)i∈I

)
is called an iterated fuzzy function system.

De�nition 5.2. Let S =
(
(X, d) , (fi)i∈I

)
be an orbital contractive iterated function

system and let (ρi)i∈I be an admissible system of grey level maps. The system SZ =(
(X, d) , (fi)i∈I , (ρi)i∈I

)
is called an orbital fuzzy iterated function system.

If SZ =
(
(X, d) , (fi)i∈I , (ρi)i∈I

)
is an iterated fuzzy function system or an orbital

fuzzy iterated function system, the function Z:F∗∗X → F∗∗X , given by Z (u) = ∨
i∈I
ρi (fi (u))

for all u ∈ F∗∗X , is called the fuzzy Hutchinson Barnsley operator associated with SZ .
The function Ẑ:F∗X → F∗X , is given by Ẑ (u) = Z(u) for all u ∈ F∗X . For the sake of

simplicity, we will denote Ẑ by Z.

5.2 Results regarding the fuzzy operator associated

with an orbital fuzzy iterated function system

Let SZ =
(
(X, d) , (fi)i∈I , (ρi)i∈I

)
be an orbital fuzzy iterated function system. We con-

sider F∗∗S = {u ∈ F∗∗X | if for those x ∈ X with the property u (x) > 0, there exist w ∈
X and y ∈ O (w) such that x ∈ O (w) and u (y) = 1} and F∗S = {u ∈ F∗∗S | u is usc}.

We note that the operator Z:F∗∗X → F∗∗X induces the operator Z:F∗∗S → F∗∗S given

by Z(u) = Z(u) for every u ∈ F∗∗S , which, for the sake of simplicity, will be denoted by

Z instead of Z.

Also, Z:F∗X → F∗X induces the operator Ẑ:F∗S → F∗S given by Ẑ(u) = Z(u) for every

u ∈ F∗S , which, for the sake of simplicity, will be denoted by Z instead of Ẑ.

Lemma 5.1 (see [21]). Let SZ =
(
(X, d) , (fi)i∈I , (ρi)i∈I

)
be an orbital fuzzy iterated

function system, with I an nonempty �nite set. Then (F∗S , d∞) is a closed subset of

(F∗X , d∞).

Theorem 5.1 (see [21]). The fuzzy operator associated with an orbital fuzzy iterated

function system S is a weakly Picard operator on F∗S .

Example A. Let us consider the metric space (R2, ‖·‖2), where ‖·‖2 is the Euclidean

norm, and the functions f1 and f2, with f1, f2:R2 → R2, given by f1 (x, y) =
(
x, 1

2
y
)

and f2 (x, y) =
(
x, 1

2
y + 1

2

)
for all (x, y) ∈ R2. Let us consider I = {1, 2}. One can

easily prove that S =
(
(R2, ‖·‖2) , (fi)i∈I

)
is an orbital iterated function system and

for every K ∈ Pcp (R2) , the attractor is AK = [0, 1] × π2 (K) (see example A from
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[25]). We de�ne an admissible system of functions (ρi)i∈I , given by ρ1 (t) = t and

ρ2 (t) =


0, if t ∈

[
0, 1

3

)
1
3
, if t ∈

[
1
3
, 2

3

)
2
3
, if t ∈

[
2
3
, 1
] for every t ∈ [0, 1]. We consider the function u ∈ F∗SΛ

,

de�ned by u (x, y) =

 1, if (x, y) ∈ [0, 1]× {0}

0, otherwise
, for all (x, y) ∈ R2.

Let x ∈ [0, 1]. We now consider the system S restricted to Xx: = {x} × R. One can
easily prove that it is a contractive iterated function system. In this case, the attractor

is Ax = {x} × [0, 1]. We are going to give details on uu.

Using the mathematical induction method, one can prove that

Zn (u) (x, y) =


1, if x ∈ [0, 1] and y = 0

2
3
, if x ∈ [0, 1] and y ∈

{
p

2n
| p ∈ {0, 1, 2, · · · , 2n − 1}

}
0, otherwise

,

for all (x, y) ∈ R2 and n ∈ N∗. By passing to limit, we have uu = lim
n→∞

Zn (u).

The following �gures illustrate the above example. The �rst step represents u, the

second step illustrates Z (u), in the third step is represented Z2 (u), the fourth by Z3(u)

and in the last step we illustrated Z4 (u).

Example B.We consider the system S =
(
(R2, ‖·‖2) , (fi)i∈I

)
presented in Example

A. Let us de�ne the admissible system of functions (ρi)i∈I , given by ρ1 (t) = t and
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ρ2 (t) = 3t
4
for every t ∈ [0, 1].

Let x ∈ [0, 1]. We now consider the system S restricted to Xx: = {x} × R. We

consider the function u ∈ F∗SΛ
from Example A and we want to describe the function uu.

Let p:Λ∗ (I)∪Λ (I)→ [0, 1] be given by p (α) =

|α|∑
n=1

αn − 1

2n
, for all α = α1α2 · · ·αn · · · ∈

Λ∗ (I) ∪ Λ (I). We also de�ne the function η:Λ∗ (I) ∪ Λ (I) → N ∪ {+∞}, given by

η (α) = |{i | αi = 2, 1 ≤ i ≤ |α|}| for all α = α1α2 · · · ∈ Λ∗ (I) ∪ Λ (I), where for a set

A we denoted by |A| the number of elements of A. Using the mathematical induction

method, one can prove that

Zn (u) (x, y) = max
p(α)=y,|α|≤n

(
3

4

)η(α)

,

if (x, y) ∈ [0, 1]2 and there exists α ∈ Λ∗ (I) such that |α| ≤ n, y = p (α) and

Zn (u) (x, y) = 0, otherwise.

By passing to limit, we have uu(x, y) = lim
n→∞

Zn (u) (x, y) = max
p(α)=y,α∈Λ∗(I)∪Λ(I)

(
3
4

)η(α)

for every (x, y) ∈ R2.

The following �gures illustrate the example presented above. The �rst step represents

u, the second step illustrates Z(u), in the third step it is represented Z2(u) and in the

last step we illustrated a part of Z4(u).
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5.3 A characterization of the fuzzy fractals generated

by an orbital fuzzy iterated function system

Let us �x u ∈ F∗S and x ∈ [u]∗. Hence, there exist wx, yx ∈ X such that x, yx ∈ O(wx)

and u(yx) = 1. Let us �x wx as above. We consider the function ux:X → [0, 1] de�ned

as in Theorem 5.1, namely ux(y) =

 u(y), if y ∈ O(wx)

0, otherwise
, for every y ∈ X. We have

ux ∈ F∗S .
We make the notations: uu: = lim

n→∞
Zn(u), wu: = ∨

x∈[u]∗
ux,wx,u and ux,wx,u = lim

n→∞
Zn(ux).

The existence of the above limits is based on Theorem 5.1.

For x ∈ X, we consider δx ∈ F∗X given by δx(t) =

 1, if t = x

0, if t 6= x
, for every t ∈ X.

Note that δx ∈ F∗S for every x ∈ X.

Proposition 5.1 (see [15]). Let SZ = ((X, d), (fi)i∈I , (ρi)i∈I) be an orbital fuzzy iterated

function system, u ∈ F∗S and x ∈ [u]∗ (hence there exist wx, yx ∈ X such that x, yx ∈
O(wx) and u(yx) = 1). Then lim

n→∞
Zn(δs) = ux,wx,u, for every s ∈ O(wx). In particular,

lim
n→∞

Zn(δx) = ux,wx,u.

Proposition 5.1 ensures us that ux,wx,u does not depend on the function u. Hence,

instead of ux,wx,u, we will use the notation ux.

Proposition 5.2 (see [15]). Let SZ = ((X, d), (fi)i∈I , (ρi)i∈I) be an orbital fuzzy iterated

function system and u ∈ F∗S . Then uy = ux, for every x ∈ [u]∗ and every y ∈ [ux]
∗.

Proposition 5.3 (see [15]). Let SZ = ((X, d), (fi)i∈I , (ρi)i∈I) be an orbital fuzzy iterated

function system and u ∈ F∗S . Then the function U : [u]∗ → F∗X , given by U(x) = ux, for

every x ∈ [u]∗, is continuous.

Proposition 5.4 (see [15]). Let SZ = ((X, d), (fi)i∈I , (ρi)i∈I) be an orbital fuzzy iterated

function system and u ∈ F∗S . Then [ ∨
x∈[u]∗

ux]
α = ∪

x∈[u]∗
[ux]

α, for every α ∈ (0, 1] and

u ∈ F∗S .

Proposition 5.5 (see [15]). Let SZ = ((X, d), (fi)i∈I , (ρi)i∈I) be an orbital fuzzy iterated

function system and u ∈ F∗S . Then {ux | x ∈ [u]∗} = {ux | x ∈ [u]1}. In particular,

wu = ∨
x∈[u]∗

ux = ∨
x∈[u]1

ux.

Proposition 5.6 (see [15]). Let SZ = ((X, d), (fi)i∈I , (ρi)i∈I) be an orbital fuzzy iterated

function system and u ∈ F∗S . Then wu is upper semicontinuous, so wu ∈ F∗X .
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Proposition 5.7 (see [15]). Let SZ = ((X, d), (fi)i∈I , (ρi)i∈I) be an orbital fuzzy iterated

function system and u ∈ F∗S . Then d∞(uu, wu) = 0.

Theorem 5.2 (see [15]). Let SZ = ((X, d), (fi)i∈I , (ρi)i∈I) be an orbital fuzzy iterated

function system and u ∈ F∗S . Then uu = ∨
x∈[u]∗

ux = ∨
x∈[u]1

ux = max
x∈[u]∗

ux = max
x∈[u]1

ux.

5.4 The structure of fuzzy fractals generated by an

orbital fuzzy iterated function system

Let SZ =
(
(X, d) , (fi)i∈I , (ρi)i∈I

)
be an iterated fuzzy function system and let Z be the

fuzzy Hutchinson-Barnsley operator associated with SZ . We denote by uS the fuzzy

fractal generated by SZ .
We consider the canonical iterated fuzzy function system which is denoted by SΛ =

((Λ(I), dc), (τi)i∈I , (ρi)i∈I). The fuzzy Hutchinson-Barnsley operator associated with SΛ

will be denoted by ZΛ and the fuzzy fractal of ZΛ will be denoted by uΛ. Hence,

ZΛ(uΛ) = uΛ and lim
n→∞

d∞(Zn
Λ(u),uΛ) = 0, for every u ∈ F∗Λ(I).

Theorem 5.3 (see [16]). In the above framework, we have uΛ = lim
n→∞

un, where un ∈ F∗SΛ

is given by un(ω) = ρ[ω]n(1), for every n ∈ N∗ and every ω ∈ Λ(I).

Theorem 5.4 (see [16]). In the above framework, for every iterated fuzzy function system

SZ = ((X, d), (fi)i∈I , (ρi)i∈I), we have uS = π(uΛ), where π is the canonical projection

associated with the contractive iterated function system ((X, d), (fi)i∈I).

Let SZ = ((X, d), (fi)i∈I , (ρi)i∈I) be an orbital fuzzy iterated function system and let

u ∈ F∗S . Then, for every x ∈ [u]∗, there exist wx, yx ∈ X such that x, yx ∈ O(wx) and

u(yx) = 1.

We consider the iterated fuzzy function system ((O(wx), d), (
∼
fi)i∈I , (ρi)i∈I)

not
= Swx ,

where
∼
fi:O(wx)→ O(wx) is given by

∼
fi(y) = fi(y), for every y ∈ O(wx). We denote by

πx its canonical projection and by Zwx its fuzzy Hutchinson-Barnsley operator. Let us

also denote by π̃x(uΛ) the function given by π̃x(uΛ)(y) =

 πx(uΛ)(y), if y ∈ O(wx)

0, if y ∈ X \ O(wx)

for every y ∈ X.

Theorem 5.5 (see [16]). In the above framework, we have uu = ∨
x∈[u]∗

π̃x(uΛ) = ∨
x∈[u]1

π̃x(uΛ) =

max
x∈[u]∗

π̃x(uΛ) = max
x∈[u]1

π̃x(uΛ).
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