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Abstract

Autonomous robots are becoming ubiquitous in modern society - from industrial and
commercial applications - to entertainment and educational applications. With the
reduction in cost size and the increase in application area - they are becoming more and
more present not just in outdoor settings - but in indoor and other scenarios with a limited
GPS signal as well. This increase in demand and applications will continue, driven
by a combination of rising demand for automated small-scale robots, advancements in
embedded computation power, improvements in sensor precision, and emerging radio
chips.

The current thesis explores solutions for autonomous robotic positioning in GPS-
denied environments - with a focus on solutions for small-scale, low-power (embedded-
driven) robots. The thesis explores approaches and solutions and proposes novel paths for
efficient and flexible positioning solutions, testing out practical applications on real-life
environments.

The thesis is structured into one introductory chapter, one State of the Art chapter,
three contributions chapters, and one conclusion chapter. The first contribution chapter is
focused on visual servoing approaches for drone tracking - with applications in scenarios
that required fast and accurate relative positioning between autonomous drones and other
mobile targets of devices - and presents solutions focused on fiducial markers and a
complex hardware-software solution for real-time autonomous tracking of a moving
target. The second contribution chapter is focused on UWB-based localization - with both
software and hardware approaches for implementing a high-precision, high-speed indoor
positioning system for indoor robotic applications that required both high precision and
fast localization. A complete solution - FlexTDOA - is proposed and tested in numerous
complex scenarios - including comparisons for Line of Sight (LOS) and Non-Line
of Sight (NLOS) scenarios. The third contribution chapter is built around a practical
application for an autonomous robot designed for an industrial application - automated
tire measurements - that employs a navigation algorithm based on sensor fusion between
LIDAR and optical flow.

All the chapters are built around hardware and software solutions used to validate
the proposed mathematical models and software algorithms - the thesis setting up the
basis for future exploration of next-gen robotics applications in indoor and GPS-denied
environments.
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Chapter 1

Introduction

1.1 Presentation of the Field of the Doctoral Thesis

Autonomous robots, both ground-based and aerial-based, are becoming omnipresent,
evolving into an integral part of both our daily lives and of many industrial and com-
mercial applications. As we rely more and more on them for a multitude of tasks, we
also need to empower them with better localization, navigation, and capabilities for the
understanding of their surrounding. Applications for autonomous mobile robots range
from industrial ones (moving heavy payloads, fast moving of postal packets, mobile
cleaning, inspection, or aiding in critical situations), and commercial applications (in
retail, in office spaces, and anywhere a payload delivery or a repetitive task is necessary)
to services of specialized fields (medical, military, scientific research, journalism, and
entertainment).

This is not just momentary hype. Robots are here to stay and to expand their use,
driven by a mixture of advancements in sensors, better algorithms, advancements in
radio communication and the ubiquity of wireless communication technologies, lower
prices for controllers and off-the-shelf electronic components - as well as an increase in
computing power available in low-cost and low-power packages.

We are, however, far away from a Terminator-like scenario, in which mobile robots
would be interpreting the world around us with a human-like approach and precision.
While autonomous cars might be getting closer to this, they generally rely on tremendous
processing power, and high-cost sensors and they have several power consumption
limitations (in comparison with the power used by the drive-train). For “day-to-day”
robots, especially the ones used indoors, which are constrained in terms of physical
size, electrical power availability, and price tag, current solutions must be based on
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smarter solutions that use smaller computing platforms and lighter and cheaper sensors
(no Radar, no 4 x HD cameras and 4 x LIDAR) to navigate their environment.

Nonetheless, the above-mentioned progress in computation power for embedded systems
and better low-power, low-cost sensors is indeed helpful, opening even wider the existing
research field dedicated to how to position and help navigate autonomous robots in indoor
/ GPS-denied scenarios. The current thesis explores various state-of-the-art solutions
for autonomous robotic positioning and proposes novel approaches, more efficient and
flexible, with both outdoor and indoor applications, testing out practical applications of
the proposed solutions in real-life applications.

1.2 Scope of the Doctoral Thesis

The thesis aims to explore, test out and validate solutions that make the best out of new
embedded compute and wireless solutions for small dimensions autonomous robots
(both for ground-based robots and for aerial drones) positioning and navigation.

The thesis aims to answer the following research questions:

(Q1) How can localization methods be improved in GPS-denied environments to achieve
the best results for small, power-constrained autonomous robot applications?

(Q2) How does the usage of current novel wireless chips improve positioning accuracy
on small-scale, embedded system based robots?

(Q3) How to improve results in scenarios involving real-time relative positioning between
two 3D systems (e.g.: an aerial drone versus a mobile target)?

1.3 Content of the Doctoral Thesis

The thesis is structured into 6 chapters: one introductory chapter, one State of the Art
chapter exploring work related to the subject of the current Ph.D. thesis, three contribu-
tions chapters, and one conclusion chapter that summarises the thesis contributions and
sets the ground for future exploratory research work. The first chapter (the current one)
introduces the thesis and the motivation behind it.

The second chapter explores the current state of the art in the field of positioning and nav-
igation solutions for robotic applications for GPS-denied environments - ranging from
indoor environments to outdoor environments with geographical, structural, or ambient
limitations that force researchers and developers to use alternative technical solutions
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for precision positioning, orientation, and navigation. This chapter first explores general
characteristics, and limitations, and discusses examples of applications where alternative
solutions are needed. Then, a series of techniques that are used by state-of-the-art
approaches are presented, through discussion examples of recent literature publications:
classic WiFi-based solutions used in indoor environments with pre-existing WiFi infras-
tructure that is exploited as positioning beacons; UWB (Ultra Wide Bandwidth) based
solutions that promise better accuracy using new generation chips; vision based solutions
that use advancements in image-focused computational power which enable registering
visual cues as a reference, advanced object tracking, path estimation, and positioning
estimation; visual servoing implementations that are used with a focus on final task /
final trajectory corrections for precision landing, docking, and object delivery; as well as
the classic dead-reckoning approach that is making a comeback thanks to advancements
in sensors, embedded processing, and tracking algorithms.

The first contribution chapter explores solutions for drone tracking, with a focus on visual
servoing approaches. This is a priority chapter, as the last years have brought about a
multitude of use cases for precision landing and delivery, in-flight docking, and in other
scenarios that required fast and accurate relative positioning between a moving robotic
platform and a static or moving secondary platform / “target”. The first sub-chapter
explores fiducial markers variants with a focus on determining the best alternatives to be
used for UAVs (Unmanned Aerial Vehicle) usage, while the second sub-chapter explores
a complex implementation for real-time tracking of a moving target from a moving 3D
platform (aerial) - using sensor fusion and fast real-time processing in order to achieve a
fast and reliable target acquisition.

The second contribution chapter explores the broader subject of positioning in any en-
vironment - and it is focused on UWB-based localization. This chapter explores both
software and hardware approaches for implementing a high-precision indoor positioning
system that can be used for indoor robotic applications that required both high precision
and fast localization. It presents how the system is built up from basic distance mea-
surement techniques (Single-Sided Two-Way Ranging and Time Difference of Arrival),
then explores location computing algorithms (EKF - Extended Kalman Filter based
and LSE - Least Square Error minimization based), and then a flexible time-division
multiple-access scheme in which time is divided into slots, which manage when every
anchor and can start communication. Based on this, a complete solution - FlexTDOA -
is proposed and tested in numerous complex scenarios - including comparisons for Line
of Sight (LOS) and Non-Line of Sight (NLOS) scenarios.

The third contribution chapter explores applied scenarios and solutions for precision
navigation without GPS for robotic applications. This chapter is built around a practical
application for an autonomous robot designed for an industrial application - automated

3
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tire measurements. The proposed solution contains multiple hardware and software
implementations, including a navigation algorithm based on sensor fusion between
LIDAR and optical flow, a complete industrial robust hardware implementation, as well
as specific algorithms for image processing and high-accuracy measurements.

The conclusions chapter summarises the thesis drawing the main conclusions and
presents results both in terms of contributions (21 original contributions) and in terms
of publications: one Q1 journal as first author, one Q1 journal as second author, 3
publications as first author, and other 7 co-authored papers.
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Chapter 2

Related Work

Navigation, mapping, surveying, and robotics require exact placement. In urban canyons,
dense woodlands, and interior spaces, accuracy and precision might be difficult. Multi-
path, signal attenuation, and interference can reduce positioning system performance in
certain settings. Obstacles and dynamic surroundings can also cause position, velocity,
and orientation problems. Hence, academics have offered numerous methods to solve
these issues and increase positioning system accuracy and precision. The state-of-the-art
chapter will cover some of these techniques using tech literature publications that have
made substantial contributions to this subject. We’ll start with several papers on precise
location in different contexts, focusing on GPS-denied localization methods. After that,
we’ll discuss six localization technologies that meet accuracy requirements. The first
portion covers WiFi-based localization, the second UWB, the third and fourth computer
vision and visual servoing, the fourth IMU-only localization, and the sixth fusion-based
localization. Lastly, we will conclude with some open research topics and real-world
issue solutions.

2.1 GPS-denied Environments

Numerous articles in the tech literature address the problem of precision positioning in
various environments. Rahman et al. [1] propose an indoor positioning system based
on AM radio waves analyzed through the fingerprinting method, which combines three
variations of the nearest neighbor algorithms. Sahin et al. [2] created a positioning system
for indoor spaces by making use of active tags that communicate with the nearest reader
through distinct levels of power. Fang et al. [3] developed an indoor solution that is based
on LTE networks and performs real-time accurate localizations. Li et al. [4] explored
the fingerprinting localization technique by developing a system that uses integrated
channel state information and magnetic field strength information. Bencak et al. [5]
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propose a Bluetooth Low Energy indoor positioning solution with the purpose of aiding
the management of warehouses. Shi et al. [6] developed a system for Automatic Guided
Vehicles to move inside a warehouse with an accuracy of centimeters. These approaches
present different advantages and disadvantages, such as infrastructure requirements,
error rates, and update rates.

Various methods have been proposed to address GPS-denied settings for indoor and
outdoor navigation. Matos Carvalho et al. [7] use terrestrial radio data and UAV inertial
sensors combined with Kalman filters for smooth navigation. You et al. [8] suggest using
Ultra-Wide Band and Inertial Measurement Unit data to navigate quadrotor UAVs inside
buildings. Huang and Wu [9] developed a distributed WiFi RSS-based Direction of
Arrival module for search and rescue in GPS-denied conditions. Famili et al. [10] created
a robust acoustic indoor localization approach using ultrasonic acoustic signals with
hybrid FH-CDMA. Stockel et al. [11] present new techniques for accurately calculating
a UAV’s indoor mobility using phase measurements from a spinning radar and Inertial
Measurement Unit data. Oelsch et al. [12] use Simultaneous Localization and Mapping
and 3D LiDAR data to improve GPS-denied situations. Norton et al. [13] examine
navigation methods for US military small unmanned aerial systems in subterranean
and interior locations without GPS signal. Ismail et al. [14] offer a low-cost LTE-
based outdoor GPS localization alternative, while Haddadi et al. [15] use two modules
to estimate quadrotor UAV posture. Finally, Miraglia et al. [16] study data fusion
methods for a 3D positioning system based on UWB signals and a 3 axis, 9-DOF
Inertial Measurement Unit. These methods offer a range of approaches for addressing
GPS-denied settings, each with its own advantages and limitations.

Drones have multiple applications, ranging from search and rescue operations to creative
exhibitions. Farooq et al. [17] developed a perception-aware UAV platform using
computer vision for target recognition and collision avoidance, while Kolawole et
al. [18] designed a simulation platform for emergency drone mapping and indoor drone
positioning. Shu et al. [19] proposed a method to localize Micro Aerial Vehicles using
only IMU and four ultrasonic sensors, making it useful for amusement, monitoring, and
rescue purposes. These studies highlight the need for drone positioning solutions besides
GPS-based techniques to improve real-world scenarios.

2.2 Technological Approaches to Positioning

WiFi-based localization methods have been developed to provide indoor positioning
due to the ubiquity of WiFi in modern buildings [20]. These methods use received
signal strength indicator (RSSI) [21] to estimate the target node’s position, weight
range localizer (WRL), relative span exponential weight range localizer (RS-WRL) [22],
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and Angle of Arrival (AOA) [23] to improve range-based indoor localization, and
wireless indoor positioning and navigation approaches for Autonomous Ground Vehicles
(AGVs). [24] with measurement uncertainties. These methods have been shown to
improve positioning accuracy and determine safe moving pathways with high reliability.
They have also been utilized in indoor micro UAV localization and unmanned aerial
vehicles (UAVs) for search and rescue (SAR) [25] in GPS-denied interior situations.
Although these methods have their limitations, they provide a low-cost and existing
infrastructure for indoor positioning.

Ultra-wideband (UWB) technology has several advantages over other localization sys-
tems for high-precision indoor and outdoor localization [26] despite its high cost and
computational complexity. The technology has been used in various applications [27],
such as emergency response, vehicle interior navigation, and intelligent warehouse man-
agement systems [28]. The literature suggests different UWB implementations, including
neural networks [29], Kalman filters [30], machine learning algorithms [31], ad-hoc
networking [32], and probabilistic model-based approaches [33]. These approaches
have improved UWB localization accuracy [34], reduced non-line-of-sight inaccuracy,
and minimized robot navigation drift error [35]. While some of the proposed systems
have been tested under simulated data [36], others have undergone successful real-world
implementation.

Recent research has also focused on employing image processing techniques to develop
accurate and efficient visual-based indoor localization systems for robotic applications.
Li et al. [37] proposed a robust stereo visual SLAM system for AGVs, while Dong
et al. [38] introduced ViNav, a smartphone-based indoor navigation system. Zhang
et al. [39] suggested using cellphones for continuous indoor localization, and Zhao et
al. [40] introduced Vivid, a visual indoor navigation system. Zhang [41] proposed using
ORB features for interior spaces such as malls. Guan et al. [42] created a ROS-based
indoor robot visible light positioning (VLP) localization system, while Al-Hameed
et al. [43] proposed LiDAL, a visible light communication-based indoor light-based
detection and localization system. Additionally, Bavle et al. [44] described the VPS-
SLAM method, which enables airborne robotic systems to perceive and use semantic
information from their surroundings. Furthermore, Putra and Saputra [45] proposed using
a virtual 3D map to determine the position of an indoor drone based on IMU data, Naufal
et al.[46] developed a vision-based autonomous landing system for quadcopter drones
using OpenMV, while Liang and Liu[47] proposed a robust VLC-inertial localization
method using visible light communication and inertial measurements, and Ali et al. [48]
proposed an indoor vision-based localization and orientation determination method for a
quadrotor, by determining accurate absolute position, orientation, and altitude through
image processing and Markov localization methods. All these researchers leverage

7
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different image processing procedures to enhance localization accuracy and reduce
errors, providing efficient real-time placement solutions for robotics applications.

Another related approach is present in various studies on visual servoing for UAVs,
including using machine vision for drone placement, tracking linear structured infras-
tructures [49], passivity-based visual servoing for crop line tracking [50], vertical and
horizontal target tracking through image moments [51], and image-based visual servoing
of unmanned aerial vehicles for variable angle target tracking [52]. The studies also
explore techniques for landing a quadrotor UAV [53], robot-centric model-based visual
servoing [54], and ORB feature detection and descriptor computation for SLAM-based
navigation systems for indoor situations [41]. Additionally, a new multi-copter airborne
recovery control technique is developed [55]. Simulation and field test results prove the
effectiveness of the suggested techniques.

Some studies discuss the use of dead reckoning for location and trajectory reconstruction
in areas with poor or lost GPS signals. Aparna et al. [56] use a Nonlinear Autoregressive
Exogenous (NARX) algorithm to estimate the present position in GPS-denied areas
using GPS coordinates and IMU data. Jeong and Ko [57] suggest using Lie group
theory to dead reckon a mobile robot, improving its localization and attitude estimates.
Zhang et al. [58] propose a Dead-Reckoning-Based Local Positioning System (LPS) for
intelligent cars that estimates posture using speed and direction sensor outputs and past
state information. Xue and Jiang [59] offer a UWB-based navigation system that uses
dead reckoning and Time-of-Flight (TOF) distance measurements to increase indoor
location accuracy and stability. Zhou et al. [60] describe dead reckoning and Kalman
filter architectures for UAV trajectory tracking in complicated urban situations, while
another research group, Zhou et al. [61], suggest using the Invariant Extended Kalman
Filter (IEKF) technique to dynamically change process and observation noise covariance
matrixes using Attention mechanism and Recurrent Neural Network (RNN) to enhance
UAV localization.

One final approach present in the reviewed literature includes fusion-based techniques
that combine different technologies to compensate for shortcomings or enhance each
other to achieve precise indoor localization [62]. The methods include the use of ac-
celerometer, gyroscope, and magnetometer data [63], Bluetooth Low Energy, ultrasound
time difference of arrival [64], UWB positioning technology [65, 66], RFID data [67],
GPS, and image processing such as rotational vision [68], optical flowE [69], and
SLAM [35, 70]. These techniques are used to increase the accuracy of indoor localiza-
tion in areas with poor coverage, reduce robot navigation drift, achieve centimeter-level
self-localization, improve GPS localization accuracy, and provide precise localization
estimates, for example, in underground coal mining robots [71]. However, the efficacy
of a fingerprinting and image-processing technique was sometimes disappointing [72].

8
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The research aims to develop cost-effective and robust indoor positioning services to
enhance indoor localization performance.

Finally, the present scientific literature study examines different localization applications
using advanced technologies such as ultrawideband sensors [73], machine learning-
based computer vision algorithms [74], multi-sensor fusion self-localization systems,
indoor positioning systems [75], high-accuracy calibration approaches [76], and sensor-
assisted range systems for drones. These technologies offer solutions for GPS-denied
or GPS-challenged scenarios [77] in various indoor and underwater environments [78],
underground environments [79], or aerial missions [80] making autonomous and semi-
autonomous missions safer and more reliable [81]. The studies show that these tech-
nologies outperform traditional positioning methods like GPS and IMUs in indoor and
subterranean locations, making them cheaper and more accessible. Additionally, these
studies introduce mathematical models, calibration and optimization approaches [82],
and innovative algorithms for indoor and various natural environments localization
applications.

9



Chapter 3

Fast and Reliable Real-Time Tracking
of Moving Targets

3.1 Introduction

There is an undeniable flurry of increasingly bold applications for drones such as remote
inspections, package delivery, or even remote maintenance operations, stressing the need
for developing drone autonomy solutions. Two possible applications may require the
drone to:

• inspect railway tracks reducing the effort of manual inspections, by aerially col-
lecting imaging data and dispatching quickly to events; a novel solution for flying
along tracks is proposed due to the limitations of GPS navigation.

• assess forest inventory and health through the use of a small quadrotor drone in
conjunction with a larger fixed-wing drone for tree inventory assessments; the
focus is on a novel solution for the task of recovering the quadrotor drone using
the two drones in the air.

Fiducial markers are 2D symbols that can be printed on flat surfaces and used for various
applications, such as localization, tracking, robotics, camera calibration, position esti-
mation [83], orientation, landing and automatic control for drones [84], and augmented
reality [85], and existing marker systems are typically monochrome, but alternatives
using circular [86] or chromatic [87] markers also exist.
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3.2 Related Work

Drone Tracking

Onboard processing of drone-captured images has drawn the attention of researchers
for its potential use in various applications, including visual servoing, tracking, and
autonomous flight. Previous works have explored fixed-wing aircraft [88] and quadrotors
[89, 90] for target tracking and landing, utilizing various computer vision systems and
control algorithms [91–93]. Some examples include using a gimbaled video camera
transmitted via a wireless link and processed on a stationary computer [94], a color-
based target segmentation and tracking system [95], and neural networks running on
an off-board computer [96]. A recent work [97] installed a gimbaled camera and a
powerful embedded computer on a commercial quadrotor to perform visual tracking,
providing detailed information about the computer vision and control algorithms used.
All this work justifies the creation of a low-cost platform that is easy to build and operate,
allowing for further exploration and experimentation in autonomous drone operations
using onboard cameras.

Overview of marker systems

Multiple fiducial marker systems have been proposed in the literature. Table 3.1 provides
an overview of the analyzed marker systems by presenting their name, the year of their
first publication, an example of the fiducial markers, and the area of application. The
marker systems in the table are listed in ascending order by the year of their appearance.

Several fiducial marker systems have been proposed, having different particular prop-
erties that provide robustness. ARToolKit [98] uses a white square with a black border
and can be customized to include a distinctive symbol as a marker but with decreased
reliability [107]. ARTag [100] uses an array of black and white squares instead of a
symbol, making it more robust [108]. AprilTag [103], while similar to the ARTag, brings
several improvements in terms of detection speed. ArUco [106, 109] is a similar type of
square-shaped marker with information coded in black and white that can be customized
in terms of size. Other notable systems that use square-shaped fiducial markers are
Cybercode [99] and CALTag [102].

A visually appealing solution, ChromaTag [87] uses a chromatic marker to reduce false
positives. Circular fiducial markers [110], such as the Rune-Tag [104] and CCTag [105],
offer resistance to occlusion and are used in location and position estimation and camera
calibration. FourierTag [101] allows for a gradual degradation of the number of data bits

11
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Table 3.1 Fiducial marker systems.

Marker Year Marker example Used in

ARToolkit [98] 1999 Augmented reality

Cybercode [99] 2000 Augmented reality

ARTag [100] 2005 Augmented reality

FourierTag [101] 2007 Robotics, Virtual reality

CALTag [102] 2010 Camera calibration

AprilTag [103] 2011 Augmented reality, Camera calibration,
Robotics

Rune-Tag [104] 2011 Localisation, position estimation

CCTag [105] 2012 Camera calibration

ArUco [106] 2014 Augmented reality, Camera calibration,
Robotics

ChromaTag [87] 2017 Robotics

that can be extracted, improving detection at distance. Depending on the application
requirements, these markers have different performances.

Comparison of marker systems performance

Marker systems have been compared in various studies based on metrics such as false
positive rate, inter-marker confusion rate, minimal marker size, immunity to lighting
conditions, and distance detection. ARTag [100, 108] was compared to other systems
like Data Matrix, Maxicode, QR Code, ARSTudio, and ARToolkit, and found to have
better performance in detecting markers at long distances, with less distortion, and
allowing 3D pose estimation. Rune-Tag [104] and CCTag [111] are circular fiducial
marker systems that offer resistance to occlusion, with Rune-Tag having higher accuracy
for position estimation and CCTag having the highest detection rate of all in terms of
distance, occlusion, and motion blur.
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In addition, comparisons between marker systems such as ArUco, AprilTag, ARTag, and
ChromaTag [110, 87] have shown differences in performance based on metrics such as
light variation, floor pattern, image blur level, and detection distance. AprilTag [83] had
the best detection rate for distance variations, while ARTag had the lowest. ArUco and
AprilTag detected the marker in 90% of cases for orientation variations, while ARTag
only detected it in 45%. ChromaTag was found to be faster in marker detection compared
to other systems, but should be used when the task involves detecting a marker from
a short distance and positioned perpendicular to the camera, while AprilTag should be
used for detection from a greater distance or a sharp angle. A new approach for the
ArUco marker called ArUco3 [112] was proposed, resulting in faster marker detection
by detecting the marker in an image smaller than the original.

3.3 Fiducial Markers Performances

The performance of different marker parameters is an important subject when choosing
what type of marker is appropriate in critical scenarios. Three open-source fiducial
marker systems [110], ArUco, AprilTag, and CCTag, have not been compared despite
previous studies [87] showing varying performance results between them [112]. We
tested against each other, in different conditions, with markers having a value of 10 as
ID.

3.3.1 Comparison Methods

The experimental setup displayed in Figure 3.1 consists of testing the performance of
different markers while varying several parameters.

(a) Right view (b) Center view (c) Left view

Fig. 3.1 Setup
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These parameters of interest include the type of marker, the distance to the camera, the
brightness of the light, and the exposure time. Three 10cm x 10cm size markers were
printed on separate A4 sheets of paper and placed on a tripod one by one. Another tripod
was used for varying the distance to the camera. In the end, by varying the distance, the
light, the exposure time, and the angular velocity of the camera, we managed to create a
vast data set, collecting a total of 13200 pictures.

The main testing scenarios include a fixed camera scenario and a moving camera sce-
nario:

- the fixed scenario displayed in Figure 3.2. tested all three markers, at a constant
exposure of 3000 µs, in two lighting conditions of 100 and 500 lx, and from a varying
distance of 50, 100, 150, 200, and 250 cm.

(a) 100 lx, 50 cm (b) 500 lx, 50 cm (c) 500 lx, 100 cm (d) 500 lx, 250 cm

Fig. 3.2 Apriltag: distance variation and light intensity variation

- the moving scenario displayed in Figure 3.3. tested all three markers, at varying
exposure times between 1000 µs and 18 000 µs, in varying lighting conditions between
100 and 500 lx, from a varying distance of 50, 100, and 150 cm, and varying another
parameter, the angular velocity, from 45 °/s to 180 °/s.

(a) 1000 µs (b) 18 000 µs (c) 45 °/s (d) 180 °/s

Fig. 3.3 CCTag: exposure time variation and angular velocity variation

3.3.2 Results

The algorithms for each marker system were run on a Linux 18.04 system installed
on an HP ProBook 440 G4 Notebook PC with the following specifications: Intel Core
i7-7500U Intel HD Graphics 620, 2.7 GHz, up to 3.5 GHz with Intel Turbo Boost
technology, 4 MB L3 cache.
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3.3.2.1 Distance variation

The data set contains pictures where the distance between the marker and the camera is
from 50 to 250 cm, and the size of the markers is 10 cm x 10 cm. For moving pictures, we
observed that CCTag had the highest detection rate for distances of 50 and 100 cm, with
a percentage of 74.64% and 56.14% of correct positives, respectively. In addition, we
noticed that on the distance of 250 cm, we did not manage to obtain a 100% performance
as with ArUco and AprilTag. We can therefore conclude that the maximum detection
distance of the CCTag markers is 200 cm at most between the camera and the marker, at
a marker size of 10 cm x 10 cm.

3.3.2.2 Intensity of light variation

In order to determine the performance of the three systems considering variations in light
intensity, we analyzed two situations, the first with artificial light from the laboratory
turned on, called light (325 lx), and the second without artificial light, called dark (175 lx).
Considering the distance-based results, we decided that there was no need to run and
display the results for the fixed images anymore.

We observed there was a small difference between dark and light conditions on all
3 systems, with a surprising finding that CCTag had a higher detection rate in dark
conditions; and a lower detection rate in light conditions. This is due to the fact that we
started from a small exposure of 1000 microseconds and went up to 18 000 µs. More
precisely, long exposures of 15 000− 18 000µs bring a disadvantage to light pictures
and an advantage to dark ones in the CCTag system.

3.3.2.3 Angular velocity variation

In this subsection, we focus only on the pictures taken while the camera was moving
using the servo motor at five different angular velocities: 45, 60, 90, 135, 180 °/s; with
840 pictures per each angular velocity.

What we noticed from the results was that as the angular velocity increases, the detection
rate of all markers decreases, which is expected because the higher the angular velocity,
the more blurry the pictures become. The second thing we noticed is that throughout all
the runs, the markers have kept their place in the hierarchy, thus AprilTag had the lowest
detection rate of all three, followed by ArUco and CCTag. The first place with the best
detection rate was CCTag. If at the angular velocity of 45 °/s the scores concerning the
number of detected markers were relatively close (CCTag = 670, ArUco = 645, AprilTag
= 616), there were higher disparities at the angular velocity of 180 °/s(CCTag = 323,
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ArUco = 246, AprilTag = 185). Regarding the latter scenario, it can be observed that
CCTag detected almost twice as much as AprilTag.

3.3.2.4 Resistance to occlusion

To test the resistance to occlusion, we took a picture where the marker was alternately
covered on its left, right, top, and bottom half with a blue square. We observed that
AprilTag and ArUco were not immune to occlusion: when an object was placed in front
of the marker, the algorithm stopped detecting the marker. On the contrary, CCTag was
able to successfully detect 3 out of 4 pictures.

This made us conclude that CCTag is resistant to occlusion. Moreover, we also identified
this as the reason why it had the highest detection rate in previous tests on moving
pictures. When the pictures are moved, the entire marker is no longer visible, but only a
part of it, as if it was hidden behind an object.

3.3.2.5 Performance of algorithms

To analyze the performance of the algorithms, we started a clock just before calling the
detection function and stopped it immediately thereafter. We ran the algorithms of the
three systems on the fixed data set separately from the moving set and averaged how
long it took for the algorithms to detect whether or not there is a marker in a picture.

The marker system with an outstanding 2 ms performance was ArUco, which we then
used as a benchmark for the other 2 systems. Dividing the running time of AprilTag by
the running time of ArUco, we concluded that AprilTag was about 5 times slower than
ArUco on still images and about 4 times slower on moving ones. CCTag had a rather
low performance, respectively 58 and 55 times slower than ArUco.
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3.4 Drone Traking using Fiducial Markers

In this section, we propose and test a novel, low-cost quadrotor drone platform capable
of visual servoing using an onboard camera placed on an active gimbal and onboard
computation.

3.4.1 Proposed Solution Design

PWMPWM
I²C

Optical Flow
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LIDAR-Lite v3

Arduino Pro Micro

Data aggregator software
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Fig. 3.4 The hardware architecture. In this figure, the clear rectangles represent hardware components
or PCBs (printed circuit board) containing several components, the orange-filled rectangles represent
the software modules, the dotted lines represent power connections and the solid lines represent digital
communication lines.

1

2

3

4 `

Fig. 3.5 The UAV side view and bottom view. Legend: (1) Battery, (2) RC Radio Receiver and Telemetry,
(3) Gimbal and Camera, (4) GPS Receiver, Arduino, Optical Flow Sensor, Height Lidar, NVIDIA Jetson
Board

The UAV designed for this work is a custom-made quadcopter, built on a carbon fiber
frame spanning 70cm, which is shown in Fig. 3.5. It is equipped with 4 brushless motors,
KDE Direct 2814XF, that drive 12-inch plastic propellers, a gimbaled camera, an on-
board computer, a flight control system, and other sensors like GPS, IMU, rangefinder,
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Camera

IMU

DC Fan

Roll Servo

Drone 
attachment

Roll Arm

Pitch Arm

Pitch Servo

Fig. 3.6 The gimbal assembly. It is composed of two mini RC Servos, the camera, the IMU, and a cooling
fan for the camera. All the components are linked through three 3D-printed parts.

and optical flow. To power all of these components we used a Lipo battery from Gens,
which is a 4S battery with 6750 mAh autonomy and 70C discharging rate.

The Flight Control Software that we chose was INAV, an open-software solution to
control multirotor drones which is a fork of Cleanflight software. Compared to the other
programs, INAV is built with a strong focus on GPS and waypoint navigation. INAV is
fully compatible with the flight controller that we chose and with the INAV Configurator.
It also provides us with access to modify any setting without the need to reprogram the
controller.

We display the hardware architecture in Fig. 3.4. We have built the drone around three
main components: Nvidia Jeson Nano for visual detection and tracking, Holybro Kakute
F7 HDV for flight control, and Arduino Pro Micro for aggregating data from sensors.

In Fig. 3.6 there is the gimbal assembly. The mechanical part is built from 3D-printed
components designed by us. To drive de arms of the gimbal we used two servos. On the
head of this gimbal, we mounted a monochrome camera, model Basler daA1280-54um.
This camera was chosen for its global shutter, which helps us to reduce de number of
blurred images.

In the end, we created a test platform for our algorithms with the total cost of 1400 euros.
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Fig. 3.7 Data flow

3.4.2 Visual Processing

As can be seen in Fig. 3.7 we have two large blocks in which we process the information
coming from the camera and sensors. The first block is the Nvidia Jetson development
board. First of all, we take images from the Basler camera at a resolution of 1280x960
pixels. For each frame, we apply the Apriltag 2 marker detection algorithm[113]. If the
marker was found, we generate a position vector of the marker relative to the camera
plane. At the same time, we read the values from the IMU of the camera, over which
we apply a complementary filter to obtain the orientation of the camera in space. Thus
with these two pieces of information, we know with high accuracy what was the position
of the camera when the respective frame was made, and we can build the vector to the
target relative to the drone plane.

The second block represented by the Kakute F7 HDV board that runs INAV 2.5 flight
control software [114], generates the commands for the drone’s motors to move towards
the target, as well as the commands for the gimbal’s servos so that the camera keeps the
target in the foreground. At this point, we know both the target position relative to the
drone and the estimated position of the drone, the latter being calculated by the INAV
software flight control, which takes data from drone sensors such as the IMU, the optical
flow sensor, and the rangefinder. With these two pieces of information, we calculate the
commands for the position controller of the drone and the gimbal.
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3.4.3 Experiments

To test our platform we prepared a task in which the drone has to hover above a target
using only onboard visual feedback and computation. On the ground, we printed
an AprilTag fiducial marker [113, 115] which the drone uses as a target. For image
processing, we used the AprilTag library running on the Jetson Nano. The experimental
setup is presented in Figure 3.8. For experiment initiation and for safety, the drone has a
manual override using the remote control.

Fig. 3.8 The drone flying in our office. The image was taken after the targe was acquired and the camera
was automatically oriented towards the target.

The drone takes off under manual control and is manually driven above the target.
Once the visual system detects the fiducial marking the drone starts autonomous flying,
controlling the drone height (1.4m), drone position, and camera gimbal orientation.
We evaluated the reliability of the entire system over approximately 80 minutes of
experiments in which the drone remained stably above the target. Small oscillations of
less than 10cm are observed due to the inherent noise in the system. Various disturbances
are applied by manually pushing the drone or sending movement commands through
the radio remote. Additionally, we manually moved the target on the ground to test the
drone’s ability to maintain lock.

To test the step response of the system, we placed two markers approximately 80cm apart
and we manually covered them alternatively, forcing the drone to move from one position
to the other. The data collected in one such motion is presented in Figure 3.9. The
gimbal quickly orients itself towards the new target and maintains target lock regardless
of the drone’s attitude (the drone needs to pitch towards the target in order to advance,
thus orienting the camera away from the target).
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Fig. 3.9 Step response.

3.5 Conclusions and Further Work

We design, implement, and evaluate a novel, low-cost (1400 EUR) replicable drone
platform capable of autonomous flight, with a gimbaled camera and onboard vision. We
demonstrated its performance in flight in a target-tracking experiment. Compared to
commercial offerings, the user has total control over the hardware and software.

After comparing the performance of the three fiducial marker systems using multiple
criteria, we can conclude that CCTag can be used with confidence in real-time detections
and in situations that involve occlusion. However, ArUco is a better alternative when
only detection speed is considered. The latter obtained the best running time of only
2 ms. AprilTag also performed well on various metrics, but not as well as CCTag and
ArUco. It should also be noted that neither AprilTag nor ArUco is occlusion resistant: if
an object covers part of the fiducial marker, the algorithms no longer detect the marker.

CCTag is a fiducial marker system that has special properties, such as an outstanding
detection rate on blurred pictures or resistance to occlusion. However, the performance
of the algorithm in terms of run time is rather low. Therefore, further work will focus on
a deeper understanding of the algorithm behind the CCTag fiducial marker system with
the aim of improving its runtime performance.
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Chapter 4

Ubiquitous Positioning

4.1 Introduction

Ultra-wideband (UWB) technology has experienced a revival during the past few years,
mainly for its high-accuracy ranging and localization capabilities. It is estimated that
more than 1 billion UWB devices will be shipped by 2025, and that over the next 5–10
years all smartphones will have UWB capabilities [116].

UWB-based localization systems usually consist of a mobile node that needs to be
localized, called tag, and several fixed nodes with known locations, called anchors, which
communicate with the tag and aid the localization process. Range-based localization is
arguably the most popular localization technique since it provides the highest accuracy
and, at least in systems using two-way ranging, clock synchronization is not required
neither between the anchors and the tag nor between the anchors themselves [117, 118].

Time-difference of arrival (TDOA) is an alternative localization method that uses the
difference between the arrival times of two packets (usually, exchanged by the tag and
two anchors) [119]. By computing the TDOA for more anchor pairs, the tag’s location
can be found at the intersection of multiple hyperbolas [120].

In this chapter, we propose, implement and evaluate a novel, efficient TDMA scheduling
scheme for TDOA localization called FlexTDOA. In FlexTDOA, there is no single
reference anchor; instead, all the anchors in the system can be configured to take turns in
transmitting the synchronization beacon. Similarly, the order of the anchors that respond
to the beacon changes in a round-robin manner. Therefore, depending on the needs of
the system, fewer anchors than the maximum available can respond to a beacon, which
reduces clock drift errors caused by the delay between the first and the last response,
while allowing all anchors to participate in the localization process. FlexTDOA therefore
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exploits the full channel diversity of the environment, is not subject to single-link failures,
and can maintain small errors even in large networks.

We implement FlexTDOA in a localization system based on the Qorvo DW3000 UWB
chipset [121]. We compare the proposed system against the classic TDOA approach
and the standard range-based multilateration algorithm in a deployment of ten anchors
and one tag in an office environment, in both line-of-sight (LOS) and non-line-of-sight
(NLOS) conditions. We also evaluate the impact of several parameters on the ranging
and localization accuracy, such as: the number of responses for each synchronization
beacon for different system update rates, the number of anchors in the system, and the
impact of changing the initiator and/or the order of responses.

4.2 Related work

In the following, we will review the most important previous works on TDOA localiza-
tion, with a focus on DL TDOA schemes that offer the best multi-user scalability.

4.2.1 Scalable UWB Localization

In [122], a DL TDOA localization system that implements a clock synchronization
protocol with a reference anchor is proposed. The authors mention that the system does
not scale to large anchor networks. In a setup of eight anchors, the system obtained a 2D
localization root-mean-squared error (RMSE) of 14 cm and a 3D RMSE of 28 cm. In
a comparable setup of seven anchors in LOS (but over a slightly smaller tracking area
than the one in [122]), FlexTDOA obtained a 2D RMSE of 7 cm and a 3D RMSE of
13.26 cm, so twice as small as the ones in [122].

In [123], the authors propose a DL TDOA scheme in which the anchors respond only to
the previously-transmitted message instead of responding to a single synchronization
beacon, as in our case. Although named concurrent ranging, the works in [124, 125]
essentially implement the classic DL TDOA scheme. In [126], a TDOA localization
system implemented using UWB devices called ATLAS is introduced. A localization
system named VULoc that follows the principles of DL TDOA has recently been proposed
in [127]. Perhaps the most significant difference between VULoc and FlexTDOA is that
we also propose a flexible, highly-configurable TDMA scheme for anchor transmissions,
whereas in [127] it is mentioned that VULoc does not need a scheduling protocol because
tags are passive.
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Although it does not implement a DL TDOA scheme, the work in [128] proposes a scal-
able UL TDOA localization scheme called TALLA. The high-precision synchronization
necessary for TDOA localization is maintained by a server.

Another important contribution of our work is that we evaluated the performance of a
DL TDOA localization system in NLOS conditions experimentally, since most previous
works either consider only LOS scenarios or base their observations on simulated data.
In [127], the proposed TDOA system is also evaluated in NLOS conditions and an anchor
selection method based on an empirically-chosen confidence parameter is proposed.

In [129], the authors propose a sensor placement strategy for cluttered environments
that is validated through experimental data. A UL TDOA localization system that takes
into account NLOS conditions has been proposed and evaluated experimentally [130].
In [131], the authors propose an algorithm to select anchor pairs in a UL TDOA by
taking into account errors caused by NLOS propagation.

4.2.2 Clock Offset Correction

In our TDOA scheme, we avoid tracking the clock parameters using Kalman filters like
in previous works [122, 132]. Instead, we correct the relative clock offset between two
devices directly at the receiver using the CFO estimation feature of the DW3000 chipset.
The method has been described in [133] and the systematic error has been derived
for single-sided two-way ranging (SS-TWR), A-TDOA, and SS-TWR with A-TDOA
extension. The method has been evaluated experimentally but only for TWR schemes. A
similar CFO correction is evaluated for a TDOA scheme in [134]. However, the proposed
TDOA scheme is based on the alternative double-sided TWR (AltDS-TWR) method, in
which the tag is active, which is different from the DL TDOA schemes evaluated in our
work.

4.3 Background

In this section, we introduce the basic principles of the localization methods proposed
in our system. For more in-depth details on UWB ranging and localization, we refer
the reader to the papers [135, 136]. In Section 4.3.1 and 4.3.2 we explain how distance
measurements and, respectively, TDOA measurements are obtained using UWB devices.
In Section 4.3.3, we describe the two approaches we use to solve the system of equations
in order to estimate the user’s location: either least-squares minimization between the
measured and the calculated ranges or an extended Kalman filter (EKF). In Section 4.3.4
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we describe the scheduling scheme implemented in the proposed FlexTDOA localization
system.

ANA0 Tag...

...

time

(a) Range-based localization

A0 A1 AN Tag...

...

(b) Downlink (DL) TDOA

Fig. 4.1 Localization based on TWR or on DL TDOA (the time periods are not to scale).

4.3.1 Two Way Ranging

Range-based localization uses distances between a mobile target, called tag, and anchors
with known locations to compute the location of the tag at the intersection of circles (in
a 2D space) or spheres (in a 3D space) with a radius equal to the anchor–tag distances
and centered at the anchors.

To avoid synchronizing the anchors and the tag, the distances are usually obtained using
TWR by exchanging at least two messages between the tag and each anchor [135]. We
implemented the SS-TWR variant which uses two message exchanges between each
anchor and the tag, illustrated in Fig. 4.1a. The measured distance between a tag and an
anchor Ai is obtained as:

d̃TAi = c · ∆T T
i −∆Ti

2
, (4.1)

where c is the speed of light. ∆Ti is the time between the arrival of the tag’s request at
anchor Ai and the anchor’s transmission of the response message, as measured by the
anchor. Similarly, ∆T T

i is the time between the tag’s transmission of the request and the
arrival of the anchor’s response, as measured by the tag.

SS-TWR based localization (which we will alternatively call TWR localization) is
attractive because it enables centimeter-level localization and does not need any syn-
chronization between the devices. However, it does not scale well when increasing the
number of anchors and tags, since it needs pair-wise message exchanges between each
anchor and each tag in the system.
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4.3.2 Time Difference of Arrival

An alternative localization technique uses the time difference between the arrival of two
messages either at one device or at multiple clock-synchronized devices[118].

To avoid synchronizing the anchors, we use a DL TDOA variant with reference and
responding anchors previously used in [122, 132, 124, 125] The scheme is illustrated in
Fig. 4.1b. Anchor A0 is the initiator and transmits a broadcast message, received by the
tag at time T0. Anchors A1 to AN receive the message and then wait a period ∆Ti which
includes the processing time and a delay necessary to avoid overlapping transmissions
from successive anchors. The tag receives the responses at times T1 to TN .

For the general case in which Ai is the initiator and Aj is the responder, let us denote by
∆Ti j ≜ Tj −Ti the difference between the time at which the tag receives the response (Tj)
and the time at which the tag receives the request (Ti). In order to obtain the estimated
TDOA between the tag and the anchors Ai and Aj denoted by t̃TAiA j , we need to subtract
the processing time ∆Tj and the TOF between anchors Ai and Aj (denoted by ti j) from
the timestamp difference ∆Ti j:

t̃TAiA j = Tj −Ti −∆Tj − ti j, (4.2)

The TOF ti j is usually known because the anchors are placed at fixed, known locations.

4.3.3 Localization Algorithms

So far, we have discussed the basic principles to obtain the ranges or the range differences
between the anchors and the tag. We aim to estimate the user’s location, thus, we
implemented two localization algorithms, each capable of operating with either TWR or
TDOA data, each suiting different needs.

The first algorithm, AlgMin, solves the localization problem for a series of consecutive
measurements using squared error minimization. This algorithm does not track the
user’s location nor does it smooth the location estimates, and it is therefore suitable to
evaluate the impact of several parameters (e.g., the number of responses or anchors) on
the localization accuracy.

The second algorithm, AlgEKF, solves the localization problem using an EKF, by
incrementally updating the location with each additionally available measurement. This
approach is advantageous because we do not need to wait for the minimum number of
measurements (four in the case of TWR localization and five for TDOA localization)
in order to update the tag’s location. However, it smooths the location estimates and
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hides the impact of noisy measurements, which is why we use it only when we compare
several setups that generate a different number of equations per time slot in Section 4.5.3.

4.3.4 Scheduling

In the “classic” TDOA approach, there is a single designated reference anchor which
broadcasts the synchronization message, to which the rest of the anchors respond in
a predefined order. Instead, we propose, implement, and evaluate a flexible TDOA
scheduling scheme in which all the anchors in the system can play the role of the initiator
and the order of responses can also change.

Slot 1 Slot 2 Slot M ...

Guard
Aj

RESP ...
Aj+k(mod N) 

RESP
Process
RESP

Process
REQ

tguard tsubslot
req

tsubslot
resp

Frame

Ai
REQ

Fig. 4.2 TDMA schedule used for both TDOA and TWR localization. Each slot in a frame belongs to a
node that is the initiator in that slot and decides which K nodes to interrogate (depending on the current
scheme).

We propose and implement a time-division multiple access (TDMA) scheme shown
in Fig. 4.2, which can be configured for either TWR or TDOA localization. At this
point, we do not differentiate between anchors and tags and instead consider all of them
equally participating nodes. The distinction will be made according to the implemented
localization method.

The TDMA scheme is organized in time slots, which are comprised of a broadcast
message sent by an initiating node, which we will call a request, and K responses from
other nodes, where K < N and N is the number of nodes in the system. Each response
will provide a TWR measurement between the initiator node and the responding node
and a TDOA measurement for each of the other nodes listening to the exchange. Inside
a time slot, each transmission by a node occurs in a subslot with duration tsubslot. At the
beginning of a time slot, there is a guard time, followed by the request of the initiating
node. The request includes the number of nodes that will respond, their ID, and the order
of their response. All the listening nodes in the system process the request. If the initiator
requested a response from the listening node in the subslot with index k ∈ {1, ...,K}, the
node will wait a period of (k− 1)× tsubslot and then answer. During the last part of a
time slot, the initiator processes the responses.
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The time slots are organized in frames (Fig. 4.2). Each frame contains M time slots,
each of them assigned to one of the nodes (anchors or tags). To configure the TDMA
scheme to perform TWR localization, the tag will be set as initiator in all slots and the
anchors will be the responders. In one time slot with K responses, the tag obtains K raw
distance measurements which are input to the multilateration system to estimate the tag’s
location.

To perform DL TDOA localization, only the anchors will be initiators, interrogating
other anchors, while the tag will be a passive listener. Depending on how we choose the
initiators and the responders, we can derive four variants of TDOA localization:

• Fixed initiator, fixed responders (FI-FR), or the “classic” TDOA, which has a
single initial anchor and all other anchors respond in a fixed order according to
their index.

• Fixed initiator, changing responders (FI-CR), which also has a single initial anchor,
but other anchors respond in a cyclical order.

• Changing initiator, fixed responders (CI-FR), which has multiple initial anchors,
and all other anchors respond in a fixed order.

• Changing initiator, changing responders (CI-CR), which has multiple initial an-
chors, but other anchors respond in a cyclical order. This method is opposed,
developed, and validated by the author of the thesis.

We note that the TDMA scheme also allows the anchors to localize themselves using
TWR.

4.4 Evaluation Methodology

In this section, we present the localization system used to evaluate the TWR and TDOA
algorithms. In Section 4.4.1, we describe the hardware used; in Section 4.4.2, we present
the settings used for the UWB radio, scheduling algorithm, and EKF. In Section 4.4.3,
we describe the environment in which we acquired the measurements and the placement
of the anchors.
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4.4.1 Hardware System Design

For the experimental evaluation, we designed and fabricated our own UWB node, shown
in Fig. 4.3, using the Qorvo DWM3000 wireless transceiver [121], which implements
the IEEE 802.15.4 standard [137].

At the core of the UWB node is an Arm Cortex-M4 based STM32F429ZIT6 micro-
controller [138]. The UWB node is powered by a single Li-ion rechargeable battery
providing over 15h of autonomy.

Fig. 4.3 Custom build UWB Node: a completed hardware and software UWB node which is battery
powered and capable to expose ranging information over multiple serial communication interfaces.

4.4.2 System Settings

We configured the UWB transceiver to operate on channel 5 (6.5 GHz) with a preamble
length of 128 symbols, a 6.8 Mb/s data rate, and a pulse repetition frequency of 64 MHz.
The duration of one time slot in the TDMA scheme is shown in Fig. 4.2.

tTS = tguard + treq
subslot + treq

process +K∗ tresp
subslot + tresp

process (4.3)

Table 4.1 shows the duration of one time slot for each number of responders.

Table 4.1 Duration of one time slot (tTS) for each number of responders K.

K 1 2 3 4 5 6 7 8 9

tTS(ms) 3.35 4.20 5.05 5.90 6.75 7.60 8.45 9.30 10.15

For both EKF filters (based on TWR and TDOA measurements) we chose a standard
deviation of the model uncertainty of σ2

Q = 100 cm2, which accounts for the motion of
the tag between measurements and assumes a maximum speed of the tag of 10 cm/s. We
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chose a standard deviation of σ2
R = 10 cm2 for the measurement noise, which was based

on the measurement noise we obtained during experiments.

For the EKF filter used for the self-localization of the anchors, we used σ2
Q = 1 cm2

because the anchors are static. The location of the anchors is determined once, at the
beginning of the experiments, and kept fixed thereafter.

4.4.3 Environment and Anchor Placement

Fig. 4.4 Office setup.
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Fig. 4.5 Setup of the anchors and the tag in the (a) xy and (b) xz planes. The anchors are denoted by A0
to A9. We evaluate the localization accuracy at four positions of the linear actuator, along which the tag
moves, denoted by P1 to P4.

We evaluate the localization systems in the office shown in Fig. 4.4. The 3D anchor
placement is shown more clearly in Fig. 4.5. Five of the anchors (A0 to A3 and A9) are
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fixed on the ceiling using metallic bars, while the rest of the anchors are either placed
on the ground (A4) or on tables (A5 to A8). The location of the anchors is determined
using the self-localization algorithm described in Section 4.3.3 and validated using a
laser level and a laser rangefinder, both with mm-level precision.

To accurately measure the ground truth (GT) of the tag, we have built a custom electronic
linear actuator shown in Fig. 4.6.

Fig. 4.6 Ground truth linear actuator: An aluminum trolley that carries the tag and returns over USB the
position of the tag relative to the zero point of the actuator.

4.5 Evaluation of System Parameters

In this section, we evaluate the impact of several factors on localization accuracy: the
order of response of an anchor, the number of responses in a time slot for the maximum
update rate of the localization system and for lower update rates, and the number of
anchors available. We evaluate these parameters for localization algorithms that use
distance measurements (obtained using TWR), which we call “TWR localization,” and
for the proposed FlexTDOA system, called simply “TDOA localization.” The goal of the
comparison between TWR and TDOA localization is to evaluate the impact of system
parameters of both distance and TDOA measurements.

Unless explicitly mentioned, we use the AlgMin algorithm described in Section 4.3.3 to
estimate the user’s location.

We will use boxplots to illustrate the error distributions. In a boxplot, such as the ones in
Fig. 4.7, the box is drawn from the first to the third quartiles (or, respectively, the 25th

and the 75th percentiles), which is also known as the interquartile range (IQR). Boxplots
drawn for samples that can take negative and positive values (e.g., the distance and
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TDOA errors) have whiskers that extend from the 5th to the 95th percentiles. For strictly
positive errors (for instance, the localization errors which are computed as the Euclidean
distance between the estimated and the ground truth locations), the whiskers extend
from the 0th to the 95th percentiles. The reasoning is that, when we plot the distribution
of absolute errors, we are interested in the minimum value of the error. We omit to
plot the outliers for simplicity. We will frequently report the 95th percentile, which we
will alternatively call the 95% error (or P95) for short, which represents the value below
which 95% of the errors are found.
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Fig. 4.7 The distribution of (a) TWR and (b) TDOA errors (expressed in cm using the speed of light)
against the order of response aggregated over all anchors.

4.5.1 Order of Response

First, we investigate how the TWR or TDOA measurement error changes depending on
the order of the response in a time slot.

To evaluate the magnitude of the errors, we perform an experiment in which the tag is
kept unmoved to avoid any accuracy loss due to the movement of the tag. We configure
the system to compute either the distance (using TWR) between each anchor and the tag
or the TDOA between the tag and each pair of anchors. We use the maximum number of
anchors (N = 10) and of responses (K = 9 for TDOA and K = 10 for TWR).

Fig. 4.7 shows the TWR and TDOA error distributions for each order of response.

4.5.2 Number of Responses

Since the TWR and TDOA measurement error increases with the order of response in
the time slot, we investigate to what extent the localization accuracy changes with the
number of responses in a time slot.

For this evaluation, we use N = 10 anchors, but we vary the number of responses
K ∈ {1, ...,9} and let the tag move on the trolley.
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The results seem counter-intuitive because the system generates about 300 measurements
per second which is enough to approach the maximum theoretical performance given the
relatively slow speed of the tag of 10 cm/s.

Fig. 4.8 shows the localization error of TWR and TDOA localization with a varying
number of responses.
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Fig. 4.8 Localization error of TWR and TDOA localization depending on the number of responses in a slot.
The error increases for more responses due to the longer period between the first and the last response,
which increases the effect of clock drift estimation error.
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Fig. 4.9 (a) The number of TWR/TDOA measurements (Nmeas) obtained per second vs. the number of
responses (K) in a slot and (b) the ratio between Nmeas and the number of messages (Nmsg) obtained per
second vs. K.

4.5.3 Number of Responses for Different Tag Speeds

Although using only one response per time slot yields the smallest error spread, this
configuration has at least two disadvantages. First, over a fixed time period, the number
of TDOA measurements decreases with the number of responses per time slot, because of
the overhead added by the initiator’s request. This trend is illustrated in Fig. 4.9a, which
shows the number of distance or TDOA measurements (Nmeas) obtained per second for
K ∈ 1, ...,9 responses.

Second, because of the same reason, the energy consumed by the tag to receive a certain
number of TDOAs increases as the number of responses decreases. We can compute
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the ratio between the number of measurements and the number of exchanged messages
(Nmsg) over the same time period, which is an indicator of the efficiency of the tag. This
ratio (denoted by Rm) is illustrated in Fig. 4.9b.

we evaluate how the 3D localization error changes with K when we keep constant over
the same time period either the total transmission time (TTX) or the number of exchanged
messages (Nmsg).

Additionally, to measure the effect on errors of a tag that is moving faster than our ground
truth trolley, we deliberately slow down our system by introducing some idle time. To
achieve all this, we group one or more time slots plus some of the necessary idle time in
a frame that has a fixed length which we called the repetition period (Fig. 4.10), called
Trep ∈ {0.02,0.5,1} s.

Slot 1 Slot 2 Slot NTS Idle Slot 1 Slot 2 Slot NTS Idle... ... ...

Trep

TTX tTS

Fig. 4.10 To evaluate the optimal K under various simulated situations (time constraints, energy constraints,
and tag speed), we create localization frames of fixed duration Trep, containing NTS time slots and the
required idle time. Each time slot contains one request and K responses. We do two experiments: (1) we
vary NTS and K while keeping the total air time (TTX =NTS∗tTS) constant, thus simulating time constraints,
and (2) we vary NTS and K but we keep the total number of messages exchanged (Nmsg = NTS ∗ (K+1))
constant, thus simulating energy constraints. In both cases, we vary the idle time to simulate a tag moving
at various speeds.

In both experiments, we used N = 10 anchors and varied the number of responses
K ∈ {1,4,9}. We, therefore, aimed to find the repetition time (or tag speed) for which
more TDOA measurements compensate for the clock drift error incurred by a higher
number of responses either when we have a fixed time budget (TTX) or a fixed energy
budget (Nmsg). We consider that the number of received messages is proportional to the
energy consumed by the tag. For the evaluation, we perform the localization using the
AlgEKF algorithm.

4.5.3.1 Same Transmission Time

We first evaluate how the 3D localization error changes when the total transmission time
(TTX) is constant and the number of responses varies. In all three experiments, during
each repetition period, we have approximately 10 ms of transmission time, the rest being
idle time, as seen in Table 4.2.

Fig. 4.11 shows the error distributions for all combinations of number of responses and
number of TDOA measurements per repetition period ((K,Nmeas)) and for all repetition
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Table 4.2 Setup for experiments with approximately the same transmission time (TTX).

K NTS Nmeas TTX (ms)

9 1 9 10.15
4 2 8 11.80
1 3 3 10.05

periods (Trep). Therefore, at a high tag speed or a low update rate, it is preferable to use
a high number of responses.

K = 9
Nmeas = 9

K = 4
Nmeas = 8

K = 1
Nmeas = 3

0

10

20

30

40

50

60

3D
 l

oc
. 

er
ro

r 
(c

m)

Same time

Trep = 0.02 s
Trep = 0.5 s
Trep = 1 s

Fig. 4.11 Error distributions for the same TX time (TTX). By increasing Trep, we simulate a higher speed
of the tag.

4.5.3.2 Same Number of Messages

We consider that the energy consumed by the tag is proportional to the number of
received messages denoted by Nmsg.

As seen in Table4.3, we keep the number of messages (Nmsg) fixed during each repetition
period and we vary the repetition time as in the previous experiment. Fig. 4.12 shows the
error distributions for a fixed number of exchanged messages. Similar to the previous
case, for a high update rate, K = 1 is the optimal number of responses. However, as Trep

increases, it is more beneficial to have more TDOAs than to minimize the clock drift
error.
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Fig. 4.12 Error distributions for the same number of transmitted messages (Nmsg).
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Table 4.3 Setup for experiments with the same number of messages (Nmsg).

K NTS Nmeas Nmsg

9 1 9 10
4 2 8 10
1 5 5 10

4.5.4 Number of anchors

We evaluate the 3D localization error while varying the number of anchors participating
in the localization between 5 and 10.

Fig. 4.13 shows the 3D localization error for TWR and TDOA localization when varying
the number of anchors. The general trend is that the localization error decreases for more
anchors.
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Fig. 4.13 The 3D localization error of range-based localization depending on the number of devices.

4.6 Comparison of Localization Methods

In this section, we compare the localization accuracy of the considered localization
methods. In Section 4.6.1, we first compare the four variants of TDOA localization
presented in Section 4.3.4: FI-FR (or the classic TDOA), FI-CR, CI-FR, and CI-CR
(or FlexTDOA). The goal is to evaluate the improvement brought by changing only the
initiator, only the list of responders, or both. In Section 4.6.2, we compare only the
classic TDOA, FlexTDOA, and TWR localization in a NLOS scenario. Throughout this
section, we use the AlgMin algorithm to estimate the user’s location.

4.6.1 Fixed vs. Changing Initiator and/or Response Order

In this part, we evaluate to what extent the channel diversity improves the localiza-
tion accuracy in LOS conditions. We evaluate the localization errors for (N,K) ∈
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{(5,4),(7,6),(10,9)}1 at three positions of the rail on which the tag moves, denoted
by P1, P2, and P3 in Fig. 4.5. Position P1 is in the center of the room, parallel to the
XY plane, where we should have the highest accuracy. Position P2 and P3 are inclined
relative to the XY plane so that we can evaluate the errors at multiple tag heights.

Fig. 4.14 shows the distributions of the localization errors for the classic TDOA (FI-FR)
and FlexTDOA (CI-CR) aggregated over all considered locations.
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Fig. 4.14 Distributions of the localization errors of classic TDOA (FI-FR) and FlexTDOA (CI-CR), in
LOS, aggregated over all the evaluated positions (P1, P2, P3).

4.6.2 NLOS Propagation

Obstacles between the nodes of a localization system are common in real-life scenarios.
Therefore, in this part, we evaluate the performance of the three localization approaches
considered so far: based on TWR, the classic TDOA, and FlexTDOA.

We performed measurements at two positions of the rail on which the tag moves. The
positions are denoted by P1 and P4 in Fig. 4.5. At P1, we placed a panel covered in
aluminum foil between the anchor A1 and the tag, shown in Fig. 4.15a. At P4, we placed
two such panels, shown in Fig. 4.15b.

We perform the experiments for N ∈ {5,7,10} anchors. For TDOA localization, we
use K = N− 1 responses, while for TWR we use K = N responses. Fig. 4.16 shows
the distribution of 3D localization errors aggregated over both locations. FlexTDOA
achieves lower errors than the classic TDOA in all NLOS scenarios.

In TDOA localization, if the obstacle is between the initiating anchor and the tag,
it incurs an error in all the TDOAs from that time slot. This is where FlexTDOA
is more advantageous than the classic TDOA: by changing the initiating anchor, we
ensure enough channel diversity to improve the robustness of the location estimate if the
initiating anchor is obstructed.

1In each case, K = N−1 so that, even for a fixed order of responses, all anchors get to participate in
the localization process.
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(a) (b)

Fig. 4.15 Photos of the setups used to obtain NLOS measurements. The setup in Fig. 4.15a, which
corresponds to the actuator position P1 from Fig. 4.5, includes one aluminum panel placed as an obstruction
between anchor A1 and the tag. The setup in Fig. 4.15a, which corresponds to the actuator position P4
from Fig. 4.5, includes two aluminum panels placed as obstructions. The rightmost aluminum panel
blocks the LOS between the tag and A1 and partially A5 while the leftmost aluminum panel blocks A0 and
A9. There is significant interference due to multipath propagation for A4, A7, and A8.
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Fig. 4.16 Distributions of localization errors in NLOS using TWR, classic TDOA (FI-FR), and FlexTDOA
(CI-CR), aggregated over both NLOS scenarios (at location P1, with one obstruction, and at location P4,
with two obstructions).

4.7 Conclusions

In this paper, we propose, implement, and evaluate a novel, flexible TDMA scheduling
scheme for TDOA localization that fully exploits the channel diversity in the envi-
ronment. We compared FlexTDOA, the proposed method, against the classic TDOA
implementation with a fixed reference anchor and responder list and against range-based
localization in a deployment of up to ten anchors and one tag in an office environment.

FlexTDOA achieves lower localization errors than the classic TDOA in most scenarios,
with and without obstructions. In LOS, the improvement in the median accuracy brought
by FlexTDOA compared to the classic TDOA is modest (2–3 cm) because the initiator in
the classic TDOA already has a good link to the tag. However, the robustness brought by
the increased diversity is evident in NLOS, where FlexTDOA reduces 95th percentile of
the localization error with up to 38% compared to the classic TDOA. Overall, FlexTDOA
achieves a median localization error of 13–17 cm in LOS and 15–22 cm when one or
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more anchors are in NLOS with the tag (the error depends on how many anchors are
used).

While TWR localization yields the highest accuracy among all methods, it has poor
scalability with a growing number of anchors and responders. In contrast, FlexTDOA
can scale to an unlimited number of tags.

In the future, we will scale up the proposed system to a multi-room or building environ-
ment which will require several issues to be addressed: pairs of anchors that are not in
communication range, system calibration (self-localization) for the sparsely connected
network, and an efficient TDMA scheme that reuses slots for out-of-range nodes.
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Chapter 5

Navigation without GPS

5.1 Introduction

The transport industry faces a challenging business environment with low-profit margins,
leading companies to seek ways to optimize every aspect of their operations [139].
One major expense for transport companies is the lack of regular tire checks and non-
compliant tire usage, which can result in serious accidents, increased fuel consumption,
and environmental pollution. Tire conditions are regulated in most countries and the
EU [140], with legal requirements for tire grooves. However, the checks are subject to
limitations, including difficulties in digitization, tracking tire conditions, and purchasing
new tires, leading to poor fleet management.

Based on these requirements in collaboration with the TSG Romania [141] we work on
a research project to improve the quality of transportation and to reduce the losses of
the companies caused by the defective condition of the tires. The scope of the project
was to build a custom solution to measure the degree of tire wear to help transportation
companies optimize some aspects of the transport process.

The solution that we implemented was a terrestrial robot capable of autonomous naviga-
tion under cars and trucks in a park station and automatically detecting the degree of tire
wear. To make this robot navigate autonomously we implemented two algorithms: one
for navigation and the other one for positioning the robot under the car. These algorithms
are based on LIDAR techniques and optical flow-based dead reckoning, respectively. To
detect the degree of tire wear we use the triangulation method.
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5.2 Hardware System Design

Our wheel wear measurement system consists of a small terrestrial robot shown in
Figure 5.1 along with its main components. The robot is named TireBot, and is 28 cm
long, 25 cm wide and 20 cm tall.

(a) 3d model of the robot with highlights for the main parts.

(b) Fully assembled robot with suspension joints capable of maintaining traction on bumpy roads.

Fig. 5.1 TireBot: an autonomous mobile robot capable of moving under cars and trucks and automatically
detecting the degree of wear of their tires.

As seen in Fig. 5.2, we mounted the laser at 10° to the camera and 45 mm distance,
which resulted in th distance between the camera sensor and the point of intersection
of the normal at the center of the camera sensor and the laser beam being 255 mm. The
system was mounted to scan the tire from the sides of TireBot. With this setup, TireBot
can measure the tire parameter from the maximum distance of about 30 cm and from
both sides of the robot, as the gimbal has a 180° steering angle.
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Fig. 5.2 Laser beam camera alignment

We are processing information and controlling TireBot using two computing boards:
the Raspberry Pi 4 [142], which is the main processing board (called Main Boardin
future references), and the Arduino Due based on the Atmel SAM3X8E ARM Cortex-
M3 CPU [143], which is the low-level control board (called Control Boardin future
references).

5.3 LIDAR-based Navigation

The navigation stack is comprised of three main modules: the navigation and planning
state machine (which can be seen in Fig. 5.3), the Control Boardwhich handles the
low-level control, and the link layer between the two.

5.3.1 The Navigation State Machine

The state machine developed for navigating the robot has the task to position it in the
scanning area of each wheel of a car.
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Fig. 5.3 The Navigation State Machines

The input data for the state machine is the output of the LIDAR sensor, which consists
of 720 distances (equally distributed in a circle, meaning that every measured point has
an angle resolution of 0.5°) representing points where a surface/object is present.
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During a state, we issue move commands to the link layer, which are defined as a relative
position (x,y) in mm and rotation ∠yaw in rad, where we wish the robot to move to. All
the movements are relative to the robot’s point of reference as shown in Fig. 5.4.

Fig. 5.4 Tirebot coordinate system.

Next, the flow through the state machine will ve explained, where the red dots are what
the robot perceives as a wheel, the green dots are ignored because they are outside the
quadrants where the robot searches for the wheels, and the blue dots represent the robot
(four dots represent the wheels of the robot and the additional dot in the center is the
rotation center of the robot).

• In the first stage of the algorithm, S1, we identify the left and right wheels as being
the points closest in the (−π

2 ,0) and (0, π

2 ) sectors respectively, as it can be seen
in Fig. 5.5a and Fig. 5.5b. After reaching the target, we align with the car’s axis
using again the closest points in the (−π,0) and (0,π) sectors, rotating in order to
position our heading as the bisector of the angle created by the 2 points and our
origin.

• In state S2 the robot rotates with −π

2 towards the wheel as in Fig. 5.5c.

• State S3 is used to move the robot in the scanning area of the left tire (relative to
the robot) as in Fig. 5.5d.

• Because of the errors in the input and in the robot’s movement, after reaching the
general scanning area, a finer step is performed.
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• State S4 is a state in which we scan the depths of the grooves of the left tire. It will
be described in section 5.5.

• In state S5 we return to the middle of the wheel’s axle as in Fig. 5.5e, a movement
similar to S1.

• State S6 is used to move the robot in the scanning area of the other tire as in
Fig. 5.5f. Similar to state S3, finer movements are performed.

• State S7 is a state in which we scan the depths of the grooves of the tire.

• In state S8 we return to the middle of the wheel’s axle as in Fig. 5.5g.

• In state S9 the robot rotates with π

2 as in Fig. 5.5h.

• State S10 is the next state if there are more wheel axles remaining to be scanned.
This is done to pass the previous axle and be able to move back to state S1 and
continue scanning the remaining wheels. The new position can be seen in Fig. 5.5i.

• State S11 is the next state if there are no other wheel axles to be scanned. In this
state, the robot aligns with the car’s center axis as in Fig. 5.5j.

• In state S12 the robot will try to return to the front of the car by moving backwards
as in Fig. 5.5k.

5.3.2 Link Layer between State Machine and Control Board

This link layer has as an input a move command formed by the (x,y) point, which
is the desired position relative to the current position of the robot, and ∠yaw angle,
which is the desired orientation compared to the actual orientation. The purpose of this
part in the navigation stack is to transform the target robot state into simple rotate and
f orward/backward move commands.

5.3.3 Low-Level Control

To control the movement of the robot’s servo motor, turn the laser on/off, or read the
optical flow sensors into the Main Board, we use the Control Boardas an intermediary.
The Main Boardissues commands through the serial interface such as: move a certain
distance, rotate a certain degree, rotate the servo a certain degree, toggle the laser, and
get displacement distance from the optical flow sensors.
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(a) Lidar view in S1. Start position. (b) Lidar view in S1. Aligned with the axle. (c) Lidar view in S2.

(d) Lidar view in S3. (e) Lidar view in S5. (f) Lidar view in S6.

(g) Lidar view in S8. (h) Lidar view in S9. (i) Lidar view in S10.

(j) Lidar view in S11. (k) Lidar view in S12.

Fig. 5.5 The state machine for navigation

To execute the command received from “Link Layer between State Machine and Control
Board”, on the Control Boardthere are implemented two PID controllers one for each
wheel of the robot.
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5.4 Localization through Dead Reckoning

Starting from the purpose of this robot to run under cars or trucks, we had to implement
a localization solution for it so that it knows where it is located at any moment and how
to return to the docking station. Because it will be under the car most of the time we
cannot use a GPS-based solution for localization, because the signal will be blocked by
the car and generally the GPS has an error over 1 m.

Our solution to localize the robot under the car is based on the dead reckoning method.
We chose to use an optical flow sensor that can measure displacement through image
processing. For our application, we read the data from these sensors, and through
integration, we obtain the relative position to the starting point.

To implement the localization algorithm with this setup we analyzed three different cases
of motion of the robot which can appear:

• straight forward, it can seen in Fig. 5.6a

• rotation in place, it can seen in Fig. 5.6b

• rotation on an arc of a circle, it can seen in Fig. 5.7

(a) Description of straight forward motion of the robot. (b) Description of rotation in place of the robot.

Fig. 5.6 Straight forward and rotation in place movements

For all cases the position of the robot (x,y) can be computed by knowing the following
values, where:

• (x0,y0) is the initial point

• D is the distance between the center of the rotation axis of the robot and the optical
flow sensor.
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• ∆xs and ∆ys are movement variations recorded by sensors

• θ is the angle yaw of the robot

Fig. 5.7 Description of robot rotation on an arc of a circle.

5.4.1 Results

This solution helps us to map the movement of the robot under the car and know at any
moment where it is. Fig. 5.8 illustrates the trajectories of the robot when it performs a
scan. Also, this solution is integrated with the navigation part to compensate for wheel
slip. When the robot moves, we compare the distance and rotation that the robot has to
do, with the displacement recorded by this solution. If they are not the same, the robot
adapts the command to the motor controller until the robot reaches the desired position.

Fig. 5.8 Real-time trajectories of the robot when it performs a scan.
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5.5 Positioning Through Computer Vision

In this chapter, we proposed a triangulation method that uses an optical solution to
determine the distance between the camera and the tread of the tire. The optical solution
is built from a video camera and a laser. A schematic depiction of the key steps of the
suggested solution for computing the distance is shown in Fig. 5.9.

Fig. 5.9 Workflow of Proposed Solution

5.5.1 Positioning by Triangulation

To calculate distances and depth maps to various objects or to sketch the contour of the
things under study, we used a laser and a camera, as demonstrated in Fig. 5.10a. We
schematically draw this technique in Fig. 5.10b:

(a) Method based on laser and camera.[144] (b) Geometric scheme.[144]

Fig. 5.10 Triangulation schematic.

In order to be able to compute the depth of the tread, it is essential to know: the angle
between the camera and the laser itself α (in Fig. 5.10b), and the distance between the
laser’s and the camera’s LCp (in Fig. 5.10b). Both the angle and the distance mentioned
was defined in Section 5.2, also the focal length of the camera is known from the technical
information of the lenses used for the camera (CpCL in Fig. 5.10b).

Based on the specification of the camera sensor, we know the size of each pixel and we
can calculate the millimeter-long distance of CpPp in Fig. 5.10b. Knowing all data we
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can calculate:
CLP =

BCL · sin(180°−α)

sin(α −β )
(5.1)

According to the triangulation principles, the only way to determine the distance of any
point from the camera is to know which pixel of the image it is represented in. The
formulas described above regarding triangulation are valid, however, they do not account
for lens imperfections (distortion) or the addition of a filter between the lens and the
camera. For our implementation, we used an empirical method to calibrate and find the
corresponding pixel for each distance where the laser beam can be located. This method
naturally maintains the theory of the triangulation process.

As shown in Fig. 5.11 the tirebot, including the camera and laser, was mounted in front
of a white wall parallel to it. Then, we moved the robot from 10cm with a step of 1 cm
up to 35 cm away from the wall, took an image at every step, and saved it. Based on the
captured image and the distance where it was taken, we applied interpolation to obtain a
function that takes a given pixel index as an input and returns a specific distance.

Fig. 5.11 Calibration setup to determine the relationship between pixel position and distance to the laser
beam.

5.5.2 Image Acquisition

For an accurate measurement of the groove depth on the tire, the angle at which the laser
wave strikes the tire is important. The ideal situation is when the sensor of the camera is
parallel to the surface of the wheel. If this condition is not met, the measured distances
will be greater than the real ones.

Due to the camera and laser frame being mounted on a gimbal, the optical assembly can
be turned until the camera becomes parallel to the front of the tire, which makes the
optimal position possible to find.

In Fig. 5.12 we show how the optical system is turned to the position for scanning the
tire.
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Fig. 5.12 Example of the optimal position for the camera and laser beam.

Finally, the first step of the positioning algorithm returns two images with the tire viewed
at 90 degrees, Fig. 5.13.

(a) Laser beam OFF (b) Laser beam ON

Fig. 5.13 The input images in the two cases

5.5.3 Ambient Light Correction

Detecting the laser beam in the image and measuring the real value of the depth of the
tire might be difficult because of the ambient light and its reflections. To reduce the
effect of ambient light we chose to take two images of the tire, one when the laser is
off, and the other one when the laser is on, and then subtract one from the other. The
resulting image can be seen in Fig. 5.14.
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Fig. 5.14 The input image resulted from the pixel difference between the images in the Fig. 5.13.

5.5.4 Pixel to Distance Conversion

At this step, we use as input the image from Fig. 5.14. According to the explanations on
triangulation in Section 5.5.1, in the image, the laser beam on the surface of the tire is
lower than the laser beam on the tread. From the image, we extract an array that contains
the brightest pixel on every column and its index. This array represents the laser beam
on the tire. The obtained array is converted into a distance using the principles from
Section 5.5.1. In Fig. 5.15 the measured distances are displayed.

Fig. 5.15 Distances between the camera and the laser beam in cm.

5.5.5 Achieving Robustness

Based on our navigation, the tire can only be positioned between 5cm and half a meter
away from the camera. We remove all the distances that are above or under the imposed
limit, and as observed in Fig. 5.16, all the distances measured at this step are between
the imposed limits.
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Fig. 5.16 Distances between the camera and the laser beam after removing the outliers.

5.5.6 Determining the Tire Profile

Because the shape of the signal does not correspond to the real shape of the tire, we
implemented a solution to find an approximation of the signal using a parabola of
a second-degree function, which will then be subtracted from the actual signal. In
Fig. 5.17a, multiple generated parabolas approximating the signal were drawn, and in
Fig. 5.17b, the signal after subtraction.

(a) The shape of the parabolas fitted to the shape of the tire. (b) Distances between the camera and the laser beam after
compensating for the shape of the tire.

Fig. 5.17 Tire Profile approximation

5.5.7 Removal of Margins

To eliminate the possibility of still having outliers caused by ambient light and/or to
eliminate the edges of the tire, we made another refinement step. We started from the
assumption that the surface of the tire is the closest object to the camera, so the furthest
distance cannot exceed the cutLimit. This step returns all values under cutLimit, as seen
in Fig. 5.18.

52



Solutions for Robotics in GPS-Denied Environments

Fig. 5.18 Final signal shape of distances between the camera and the laser beam after a new outliers
removal.

5.5.8 Depth Scanning Method

To finally return the depth of all steps and detect how many there are, we implemented
an algorithm that uses a sliding window technique to determine the difference between
the largest and smallest distance. It slides through the signal from one end to the other
and returns the difference between the maximum value and the minimum value included
in the window. The lower values represent the tire surface area and the higher values
represent the tread depth.

(a) Sliding window moving on the final signal shape. (b) Depth variation of the tire profile.

Fig. 5.19 Input(a) and output(b) images from the depth scanning algorithm

We illustrated in Fig. 5.19a the total number of depth fluctuations found during the input
signal and the value of the depths are shown in Fig. 5.19b. As a result, the maximum
depth that was detected for the tire under study in this chapter was 5.32mm, which is not
far from the manually scanned depth of 5.22mm.
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5.6 Outcomes Assessment

To demonstrate the efficiency of the algorithms used to calculate tire wear using po-
sitioning principles, we created a database of 360 photos, which is equivalent to 180
different tires. There are two images of each tire, given the method used for ambient light
adjustment: one image with the laser on and one with the laser off. For every automatic
scan of the tire, we manually measured on-site the ground truth wear of the tire with a
digital caliper made specifically to gauge groove depth, as depicted in Fig.5.20

Fig. 5.20 Manual measurement of tire tread with a digital caliper.

The dataset for testing comprises different variations such as: tire type, tire wear de-
gree, tread shape, environmental temperature, environmental illumination, car shapes
(resulting in varying measurement distances and angles).

We ran the algorithm for the 180 tires and we obtained the error distribution illustrated
in Fig.5.21 and an average inaccuracy of 0.28mm. As can be seen, the error distribution
naturally takes the shape of a normal distribution with its center at 0mm. This means that
the majority of automatic scans produced results that were comparable to those performed
manually, which represent the standard in the current experiment, thus demonstrating
the accuracy of the automatic approach to detecting tire wear.

Fig. 5.21 Error distribution for 180 tires.

The majority of automated measurements have produced acceptable errors, such that
83.62% of scans had an inaccuracy smaller than 0.5mm. This proportion demonstrates
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the method’s efficacy and expanded possibilities. Also at the same time, we measured
∆time needed for finding the position of the laser beam projected on the tire. We may
observe from Fig.5.22 the distribution of running time that was obtained by running the
algorithm 150 times.

Fig. 5.22 Distribution of running time for 150 algorithm runs.

Due to tire outline approximation, the algorithm is not deterministic. The proposed
method produces different values for the maximum depth for each of the repeated runs
on the data set, on the same tire, and from the same perspective. After 150 runs, the
average depth of the tire is 5.32mm, resulting in an error of 0.1mm compared to the real
value of 5.22mm. The distribution of the depth values acquired for one of the scanned
tires is shown in Fig. 5.23.

Fig. 5.23 Error distribution at multiple runs on the same tire.

5.7 Conclusions

We design, implemented, and evaluated a novel solution for tire wear measurements. The
solution is represented by an autonomous mobile robot that can move under parked cars
or trucks and scans their tires using an optical system consisting of a camera and a linear
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laser. The robot can measure the degree of tire wear automatically, precisely, objectively,
and periodically, leading to increased profit for transport companies, less lost time for
traffic participants, better safety on the roads, as well as to a cleaner environment. Wear
detection was tested on 180 tires obtaining an average error of 0.28 mm with a run time
of 1.65 s. Also, 83.62% of scans had an inaccuracy smaller than 0.5 mm.
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Chapter 6

Conclusions

6.1 Obtained Results

The importance of optimizing the navigation of small autonomous robots in GPS-denied
environments cannot be overstated, as these robots are increasingly being utilized in
a wide variety of industrial, commercial, and various specialized applications. While
advancements in sensors, algorithms, and wireless communication technologies have
made autonomous robots more ubiquitous, they still face many limitations in terms of
physical size, electrical power availability, and price tag. Therefore, it is crucial to de-
velop smart, efficient, and flexible solutions that utilize smaller computing platforms and
lighter, more affordable sensors to empower these robots to navigate their surroundings.
The present doctoral thesis provides exploratory insights, designs, implementations, and
validated solutions for positioning and navigation of autonomous robots in GPS-denied
scenarios, both indoors and outdoors. By testing out these solutions on real-life applica-
tions, the thesis is contributing to the development of practical and effective methods for
optimizing the navigation of autonomous robots in a wide range of contexts.

The research has focused on identifying and further developing the best methods for
localization in GPS-denied environments for small, power-constrained autonomous
robots. Additionally, the thesis has investigated and proposed solutions for improvements
in positioning accuracy, using new wireless chips in small-scale, embedded system based
robots. Finally, the thesis has proposed a novel approach for improved real-time relative
positioning between two 3D systems, such as an aerial drone and a mobile target.

The first main contribution of the thesis consists of a comprehensive study on drone
tracking with an active gimbal system using a sensor fusion approach. Firstly, a hardware
architecture was designed to validate the proposed approach for asset tracking. The
architecture integrates data from multiple sensors in a sensor-fusion type system, and
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a complete hardware set-up was implemented based on commercial grade drone parts
and integrating multiple sensors, including Inav integration, GPS data, OpticalFlow data,
RangeFinder data, optical camera data, a powerful Jetson Nano processing platform, and
additional electronics for control and power management. Secondly, a new detection and
control algorithm was proposed, implemented, and validated for controlling the drone
through a real-time adjustment system relative to a moving target. The algorithm was
deployed on the proposed hardware set-up and found to afford a significantly enhanced
target acquisition and target lock solution. Thirdly, a novel classification for current
fiducial marker systems was proposed. To test out the system, a data set comprised of
13200 pictures was developed, and a testing methodology was proposed and tested on
three fiducial marker systems on the proposed data set, together with a hardware set-up
for assessing extra parameters such as performance at certain angular velocities.

For the second main contribution of the thesis, concerning positioning, the development
and validation of a hardware architecture for an improved indoor high precision localiza-
tion system using the novel proposed approach FlexTDOA were proposed. A complete
test bed was designed, built and tested, comprising an array of custom-made sensor nodes
for testing, adjusting and improving the proposed algorithm. Secondly, two methods
were developed to measure distances between nodes: the first is based on Single-Sided
Two-Way Ranging (SS-TWR), which uses two message exchanges between two nodes,
and the second is based on the Time Difference of Arrival (TDOA), which uses the time
difference between the arrival of two messages. Two algorithms were also implemented
that use TWR or TDOA measurements to compute the location of the node that is tracked.
The first algorithm computes the location of the moving tag iteratively using an Extended
Kalman Filter (EKF), and the second algorithm computes the location using least square
error minimization between the measured and the calculated distances. Thirdly, a custom
flexible time-division multiple-access (TDMA) scheme was developed, based on an ap-
proach where anchors do not need to have their clocks synchronized. Fourthly, based on
the above a complex software system named FlexTDOA was proposed and tested out, as
a custom localization method with both fixed and mobile anchors, that is simultaneously
fast, precise, and scalable. Fifthly, a ground-truth system was designed, implemented,
and validated in order to have a reference point for the experimental results involving
indoor positioning. Lastly, the localization accuracy of FlexTDOA was evaluated in
different scenarios, varying the number of responses, the order of responses, and the
number of anchors, both in Line of Sight (LOS) and in Non-Line of Sight (NLOS)
scenarios. The effect of the physical speed of the tag on the choice of optimum system
parameters was also simulated and evaluated. FlexTDOA was compared against the
classic TDOA approaches and range-based localization - and found to have several
distinct advantages.
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The third main contribution of the thesis concerns navigation without GPS. For this sec-
tion, a new technique for automated tire wear measurements was proposed, emphasizing
practicality and mobility in real-world scenarios. The research contributions include
the design of a hardware architecture that was tested in both laboratory and industrial
settings, along with the implementation of a robust mathematical model for tire depth
extraction from automatically obtained images. Additionally, an autonomous driving
system was developed that fuses data from LIDAR and optical flow sensors, to enable
the robot to self-navigate around a given truck, identify tire position and self-position
for optimal image acquisition. Multiple hardware subsystems were designed and tested
to ensure a robust, efficient hardware implementation that addresses various real-world
problems. A communication API was implemented between the image processing and
navigation planning board and the speed control and acquisition board. Overall, the
proposed approach shows promising results for accurate tire wear measurements and
provides a practical and efficient solution for real-world applications.

The following subsections present a detailed outline of the original contributions of the
thesis in relation to the state of the art, and the scientific publications resulting from the
doctoral research.
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6.2 Original Contributions

• Fast and Reliable Real-Time Tracking of Moving Targets

– I designed a hardware architecture to validate the proposed approach for
using an active gimbal system for asset tracking that integrates data from
multiple sensors in a sensor-fusion type of approach.

– I implemented a complete hardware set-up, based on commercial-grade
drone parts and integrating multiple sensors, including - Inav integration,
GPS data, OpticalFlow data and RangeFinder data, camera data together
with a powerful Jetson Nano processing platform and additional electronics
for control and for power management, in order to test out the proposed
approach.

– I proposed, implemented, and validated a new detection and control algorithm
for controlling the drone through a real-time adjustment system relative to a
moving target, which allows for a much better target acquisition and target
lock in real-world environments.

– I proposed a classification for current fiducial marker systems.

– I developed a data set of 13200 pictures for testing out the system.

– I proposed a testing methodology and tested three fiducial marker systems
with the help of the obtained data set, together with a hardware set-up for
assessing extra parameters (e.g.: performance at certain angular velocities).

• Ubiquitous Positioning

– I designed a hardware architecture to validate the proposed approach
(FlexTDOA) for an improved indoor high-precision localization system.

– I designed, built, and tested a complete test bed - comprising an array of
custom-made sensor nodes for testing, adjusting, and improving the proposed
algorithm.

– I developed two methods to measure distances between nodes. The first
is based on Single-Sided Two-Way Ranging (SS-TWR) which uses two
message exchanges between two nodes, and the second is based on the Time
Difference of Arrival (TDOA), which uses the time difference between the
arrival of two messages.

– I implemented two algorithms that use TWR or TDOA measurements to
compute the location of the node that we track. The first algorithm computes
the location of the moving tag iteratively, using an Extended Kalman Filter
(EKF) and the other algorithm computes the location using a least square
error minimization between the measured and the calculated distances.
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– I developed a custom flexible time-division multiple-access (TDMA) scheme
in which time is divided into slots, which manages the moments when every
anchor can start communication. In each time slot, one anchor interrogates
one or more anchors, which respond in the same slot. The anchors do not
need to have their clocks synchronized.

– I proposed and tested out a complex software system named FlexTDOA,
which is a custom localization method that uses time-difference of arrival
(TDOA) measurement so that the user device remains passive and can com-
pute its location simply by listening to the communication between the fixed
anchors, ensuring the scalability of the system.

– I designed, implemented, and validated a ground-truth system in order to
have a validated reference point for the experimental results involving indoor
positioning.

– I evaluated the localization accuracy of FlexTDOA in different scenarios
such as varying the number of responses, the order of responses, and the
number of anchors, in Line of Sight (LOS) and Non Line of Sight(NLOS)
scenarios. Also, I simulated and evaluated the effect of the physical speed of
the tag on the choice of optimum system parameters.

– I compared FlexTDOA against the classic TDOA approach and range-based
localization in a deployment of ten anchors and one tag, both with and
without obstructions.

• Navigation without GPS

– I designed a hardware architecture to provide a new technique for automated
tire wear measurements - with a focus on a practical and mobile solution that
can be deployed swiftly in real-world scenarios.

– I built a complete hardware and software implementation - in order to test
out the proposed approach both in a laboratory scenario and in an industrial
or practically relevant scenario (such as an industrial parking lot with real
trucks).

– I implemented a robust mathematical model for a multi-stage processing
Algorithm, in order to extract the tire depth from images in a broad case of
scenarios, under less-than-ideal conditions. The algorithm first receives as
input a black and white image of the wheel, on which a laser line beam was
projected. It then has 5 processing steps: the first detects the laser line in
the image and converts it into a distance on a graph; the second removes
outliers caused by sunlight; the third removes the distortions caused by the
camera lens; the fourth removes the edges of the signal (because they are
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representative of the edges of the envelope), and the last step determines the
depth variation using a sliding window.

– I implemented and tested an autonomous driving system that fuses data from
optical flow sensors and LIDAR to allow the robot to self-navigate around
the truck and find the truck tires.

– I designed and tested out multiple hardware subsystems, in order to ob-
tain a robust hardware implementation, accounting for multiple real-world
problems (e.g.: an advanced power management system).

– I implemented a communication API between the image processing and
navigation planning board, and the speed control and acquisition board.

62



Solutions for Robotics in GPS-Denied Environments

6.3 List of Original Publications

Journals

• George-Cristian Pătru, Laura Flueratoru, Iuliu Vasilescu, Dragos, Niculescu,
and Daniel Rosner. FlexTDOA: Robust and Scalable Time-Difference of Arrival
Localization Using Ultra-Wideband Devices. IEEE Access, 11:28610–28627,
2023. [145]

• Vladimir Tanasiev, George Cristian Pătru, Daniel Rosner, Gabriela Sava, Horia
Necula, and Adrian Badea. Enhancing environmental and energy monitoring of
residential buildings through iot. Automation in Construction, 126:103662, 2021.
[146]

Journals: accepted to publication

• George-Cristian PĂTRU, Alina-Irina PÎRVAN, Daniel ROSNER and Răzvan-
Victor RUGHINIS, . Fiducial marker systems overview and empirical analysis of
ArUco, AprilTag and CCTag. University POLITEHNICA of Bucharest Scientific
Bulletin. Series C: Electrical Engineering and Computer Science. 2023

Conferences

• George-Cristian Pătru, Iuliu Vasilescu, Daniel Rosner, and Dan Tudose. Aerial
drone platform for asset tracking using an active gimbal. In 2021 23rd Inter-
national Conference on Control Systems and Computer Science (CSCS), pages
138–142. IEEE, 2021. [147]

• George-Cristian Pătru, Dumitru-Cristian Trancă, Ciprian-Marian Costea, Daniel
Rosner, and Răzvan-Victor Rughinis, . Lora based, low power remote monitoring
and control solution for industry 4.0 factories and facilities. In 2019 18th RoEduNet
Conference: Networking in Education and Research (RoEduNet), pages 1–6. IEEE,
2019. [148]

• Denis Ilie-Ablachim, George Cristian Pătru, Iulia-Maria Florea, and Daniel
Rosner. Monitoring device for culture substrate growth parameters for precision
agriculture: Acronym: Monisen. In 2016 15th RoEduNet Conference: Networking
in Education and Research, pages 1–7. IEEE, 2016. [149]

• Alina Irina Pîrvan, George Cristian Pătru, Dumitru Cristian Trancă, Cristian
Contas, el, and Daniel Rosner. Infrastructure independent rail quality diagnosis and
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monitoring system. In 2019 18th RoEduNet Conference: Networking in Education
and Research (RoEduNet), pages 1–5. IEEE, 2019. [150]

• Andrei-Bogdan Stanescu, Vlad-Ioan Pantea, and George Cristian Patru. Appli-
cation of mobile technology in sport leisure time activities. In The International
Scientific Conference eLearning and Software for Education, volume 3, page 215.
" Carol I" National Defence University, 2017. [151]

• Dumitru-Cristian TRANCĂ, Eugen BUZILĂ, Daniel Rosner, George Cristian
PĂTRU, and Răzvan Victor RUGHINIS, , . Intact industrial internet of things com-
munication solution. University POLITEHNICA of Bucharest Scientific Bulletin.
Series C: Electrical Engineering and Computer Science, 2018. [152]

• Vladimir Tanasiev, Horia Necula, Adrian Alistar, George Cristian Pătru, and
Adrian Badea. Energy-efficient solution for smart lighting through iot. In 2021
10th International Conference on ENERGY and ENVIRONMENT (CIEM), pages
1–4. IEEE, 2021. [153]

• Andra-Laura Antonache, Silvia Cristina Stegaru, Mihail-Bogdan Carutas, iu, and
Cristian Patru. Modeling a thermal area for energy consumption estimation using
artificial neural networks. In 2020 19th RoEduNet Conference: Networking in
Education and Research (RoEduNet), pages 1–4. IEEE, 2020. [154]

• Daniel Marian Nicolescu, Răzvand Tătăroiu, Dumitru Cristian Trancă, and George
Cristian Pătru. Logger and analyser for modbus-based industrial networks.
In 2020 19th RoEduNet Conference: Networking in Education and Research
(RoEduNet), pages 1–4. IEEE, 2020. [155]
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