

University POLITEHNICA of Bucharest

Automatic Control and Computers Faculty

Automation and Industrial Informatics Department

New Integrated Services for Orientation and Accessibility in a

Smart Campus with Multiple Locations

A dissertation submitted to the Doctoral School of Automatic Control

and Computers University Politehnica of Bucharest in partial fulfillment

of the requirements for the degree of Doctor of Philosophy

Drd.Ing. Ioan DAMIAN

Bucharest 2023

ABSTRACT

The issue of orientation and accessibility is present especially in a large public space. This thesis

approaches this issue from a pedestrian routing perspective, which comes to the aid of newcomers,

persons with special needs, and protection against the risks of pandemics. A thorough investigation

of the state of the art showed that there are different solutions regarding this problem, with a

possible direction towards a smart campus concept by employing maps and guiding tools, with the

help of different technologies. However, each approach tries to tackle a different problem, making

difficult the process of centralization for the end user. Thus, the research objectives of this thesis

are to add personal contributions regarding services that improve the overall experience of the end

user, to mitigate standard risk situations with better integration strategies, to employ community-

and data-driven information, and to create the configuration for validation. The research method

chosen for this thesis considers general scenarios to determine end-user experience, public space

representation, service-oriented architecture, multicriterial routing service employed with policies

resources, and the development of a platform to validate them. The original research contributions

refer to developing a model inspired by weighted graphs to support multicriterial pedestrian

routing, integration of real-world user needs with policies resources, the definition of the general

workflow, and detailed architecture for a platform to support routing services. The proposed

policies are resources that change the underlying graph model based on users’ needs, making the

system user driven. The thesis proposed algorithms for these policies were implemented and

validated. They target community votes, avoiding crowded areas, avoiding polluted areas,

sheltering from unfavorable weather conditions, and considering accessibility for reduced mobility

needs. The correspondent services that offer end users the experience of orientation and navigation

were developed under a new platform. The end user calls the pathfinding algorithm exposed by

this platform to obtain orientation information. Moreover, the user is provided with generated

navigation recommendations in textual and graphical forms, based on the route resulting from the

execution of the pathfinding algorithms. The new platform was implemented and validated with

test scenarios against conditions based on real-life loading requirements. These requirements were

deducted by researching real buildings’ layouts and the real numbers of participants at different

universities. The results obtained from performance testing prove that the platform is viable and

can serve between 1000 and 5000 virtual users (numbers comparable to real-life scenarios) with

average request times between 500ms and 4500ms and below 4% percentage of failed requests.

ACKNOWLEDGMENTS

My thanks go to my Scientific Coordinator Professor Anca Daniela Ioniță , for her

professionalism, extensive knowledge, patience, and finesse. Her relentless advice

impacted enormously my thought and my Ph.D. studies.

I would like to thank my committee that guided me in the last years , for their

extensive involvement and constructive criticism, Professor Mariana Mocanu,

Professor Silvia Anton, and Professor Adriana Olteanu.

I would also like to thank my colleagues Florin Lăcătușu and Marian Lăcătușu for

their unique points of view, and for our conversations and collaboration.

Also, I would like to thank my mother, father, my aunt, Ana, and my sisters, Ecaterina

and Elena, for their patience with me and continuous encouragement.

Table of Contents
List of Tables .. 6

List of Figures ... 6

1 Introduction ... 7

1.1 Context and Motivation .. 7

2 Analysis of the State of the Art ... 9

2.1 Route Planning ... 9

2.2 Mobility and Accessibility in a Public Space .. 9

2.3 Avoiding Crowds ... 10

2.4 Trends for the User Interface ... 10

2.5 Lessons Learned ... 11

3 Research Objectives .. 12

3.1 Services for Improved Accessibility in a Public Space .. 12

3.2 Services for Reducing Pandemic Risks .. 12

3.3 Data- and Community-Driven Pedestrian Routing .. 13

3.4 Configuration and Validation for a University Campus .. 13

4 Research Method .. 14

4.1 Scenario Analysis ... 14

4.2 Public Space Representation .. 15

4.3 Service-Oriented Design .. 15

4.4 Multi-Policy Pedestrian Routing .. 16

4.5 Validation for a University Campus .. 18

5 Research Contributions on Orientation and Accessibility Services 19

5.1 Route Finding Based on Multicriterial Weighted Graphs .. 19

5.2 Graph-Based Model of the Public Space ... 20

5.2.1 Navigation scenario for public spaces .. 22

5.3 Routing Policies ... 23

5.3.1 Multi-policy pedestrian routing algorithm .. 24

5.3.2 Community feedback algorithm ... 25

5.3.3 Crowd avoiding algorithm .. 27

5.3.4 Pollution avoiding algorithm .. 28

5.3.5 Weather condition shelter algorithm ... 30

5.3.6 Reduced mobility algorithm ... 31

5.4 General Workflow for the Platform ... 32

5.4.1 Visualization design for the bootstrap phase .. 33

5.4.2 Platform phases. Example of a university campus ... 33

5.5 Integrated System for Orientation and Accessibility ... 34

5.5.1 Software architecture .. 34

5.5.2 RESTful services .. 36

5.5.3 Recommendation system .. 39

6 Evaluation and Validation of the Integrated Orientation and Accessibility Services 41

6.1 Evaluation Method ... 41

6.1.1 Performance evaluation .. 42

6.2 Results .. 42

6.2.1 Example for the locomotory policy applied for a university campus 42

6.2.2 Performance results ... 44

6.3 Discussion .. 46

6.3.1 Results interpretation .. 46

6.3.2 Real-life loading requirements .. 46

7 Conclusion .. 47

7.1 Summary of the Original Contributions ... 47

7.2 List of Publications... 48

7.3 Future Perspectives .. 49

References ... 50

List of Tables

Table 1. Public Space Visual Maps Upload Service Technical Overview

Table 2. Public Space Meta-Data Upload Service Technical Overview

Table 3. Extra Information Upload Service Technical Overview

Table 4. Route Service Technical Overview

Table 5. Directions Service Technical Overview

Table 6. Map Service Technical Overview

Table 7. Graph Resource Management Service Technical Overview

Table 8. Policy Management Service Technical Overview

List of Figures

Figure 1. Pedestrian routing system.

Figure 2. The user has to call services for each need.

Figure 3. Centralized graph model for particular policies.

Figure 4. General weighted graph for multicriterial routing algorithm.

Figure 5. Building graph model with policies attached.

Figure 6. Hypothetical building and it’s respective Graph model.

Figure 7. Administrator and User main operations with the platform.

Figure 8. System as Service Oriented Architecture.

Figure 9. Developed User Interface with navigation details.

Figure 10. Developed visual map with route inside a real public space.

Figure 11. The path between ED117 and ED012. Comparison between 0-policy and locomotory

policy.

Figure 12. Average response times for 0-policy vs 1-policy vs 2-policy.

Figure 13. Failure rates for 0-policy vs 1-policy vs 2-policy.

7

1 Introduction

1.1 Context and Motivation

University campuses are vast and unknown places for a fresh student, very different from a high

school setting [1]. It is overwhelming being in a vast and complex place like a university campus

for the first time, especially when you need precise and predictable indications of how to reach a

specific class in a specific building. It is highly important to be able to orientate in these

circumstances because it provides you with a sense of belonging and certainty to plan your

activities. Nowadays we have many smart devices that can provide us with complex and accurate

information, and yet we can get lost in a new place or not be able to predict our steps in real life

based on information from a smart solution. The concept of the smart campus should provide a

holistic approach to the academic experience, where students or other stakeholders could benefit

from the aid of different technologies, and navigation and orientation benefits could be provided

under this concept as well. However, we have to consider the fact that many universities were built

when the “smart” concept was not yet created [2]. Thus, the architecture of the buildings or the

connections between them were not created considering modern factors (like inclusivity, scaling

with information technology, etc.). For example, the most impacted persons trying to navigate a

complex building topology are persons with locomotor disabilities.

The general solution is to offer stakeholders information in the form of maps and guiding tools, to

support navigation and decision-making. Yet, because every university campus is a unique place,

the requirements to build such a solution must be custom-made for that specific university. The

complexity that a university campus implies stands in the diversity of environments (outside vs.

inside), the different level (stairs, floors, etc.), and the difficulty of some topologies vs. others.

Current research brings solutions to some aspects of the issue, all in the direction of the “smart”

campus, such as the landscape of the campus [3], i-campus [4], smart city [5][6], event-based

navigation [7], iBeacon navigation [8], a mobile social network in a smart campus [9].

These applications that provide users with real-time directions about their navigation routes are a

state of practice. However, pedestrians mostly rely on traditional orientation methods, although

getting to the destination in large public spaces such as transportation hubs, commercial centers,

and university campuses, has become more and more complicated and it sometimes leads to delays

with unpleasant effects. The various solutions to this problem are generally focused on specific

requirements, separately treating problems such as pedestrian safety, optimum wayfinding, or

routing of emergency personnel.

An integrative solution is proposed in this thesis in the form of a services platform, by using general

services accessible to all the users on a university campus. The services presented in this thesis are

completely built by the author of this thesis (based on typical data for a smart campus), among

those, there are information integration services with external services (they act as consumers of

third-party services). All services are based on a light model of the campus (which represents the

topology of the campus), a model which is also presented as a contribution in this thesis, with the

8

main purpose of flexibility and versatility (it takes into consideration future changes of the services

and the addition of new services).

Typically, the role of humans is to consume services from various cyber-physical systems

characteristic of smart buildings or a smart city in general. Yet, recent approaches show that their

role can be substantially extended to become contributors to the systems, by providing machine-

readable information, making or validating decisions, interacting with the system, or even

assuming the role of actuators [10]. This active presence of human agents leads to the development

of socio-cyber-physical systems (SCPS). Such an example is given in [10] for planning the

evacuation routes in emergencies when relevant information should not only be acquired from

sensors, but also from people in the affected area. The human inputs and their contributions to

making and following decisions may be integrated into the overall controlled system in a large

variety of ways, such as inputs, perturbations, actuators, or feedback. People can thus intervene in

multiple ways in the coupling between perception and action [11].

The thesis is placed in the context of providing navigational and accessibility directions to persons

inside a university campus. This is important for offering visitors customizable experiences, by

considering a range of possible needs and preferences as inputs of the routing services. It mainly

targets newcomers, who require navigational information paired with customization criteria.

Relevant examples are available for smart campus models that must be person-centric [12], where

the benefit to people is put above other technology-driven reasons. Software services allow people

to acquire a more accurate perception of the public space, and to stay in contact with other people.

This kind of perception has similarities with the case of robots that need to navigate in the same

environment as people [13]; the idea is that a person’s perception and actions are influenced by

other persons in the same environment and the technology embedded in the navigation solution.

Another area that impacted our study is the intelligent decision component; a person-centric smart

campus application should provide the user with the safety and understanding of their

surroundings, especially in the case of navigation and accessibility—an idea that is more broadly

approached in [14].

We investigated solutions to help people based on personal specific needs, for example, the

impossibility to use stairs or to go through narrow doors, the preference for a less crowded or less

polluted path, the necessity to avoid rain, etc. These concerns of accessibility and epidemiological

safety are timely and need to be treated in an integrated way. Nonetheless, we want these services

to be community-driven, an approach that has been widely adopted for car routing applications. A

public space topological map contains a limited number of access points, as entrances. One can

consider this as a mathematical finite set because it is difficult to add “real” resources (to infinity)

in a public space that is already established; for example, a new room cannot be easily added inside

a building, as it would require it to be built physically. Nonetheless, the layout of a public space

can withhold a multitude of configurations, i.e., a building can be renamed, a large room can be

divided into smaller (or laboratories) rooms, etc. It is also possible to have various preferences or

limitations that further complicate the routing, e.g., someone with locomotory issues cannot follow

the same path as the others, or, in the case of the COVID-19 pandemic, people need to interact less

and still conduct their daily duties [15]. We want to address these diverse criteria in an integrated

9

way, but still, allow flexibility concerning people’s choices. This is possible based on a general-

purpose graph modelling that is dynamically adapted according to various considerations such as:

taking into account the feedback from other pedestrians walking in the same public space; trying

to avoid crowded areas at all costs; avoiding any polluted areas based on data originating from

sensors; not getting exposed to the rain by asking for real-time data from weather APIs; and not

being able to use stairs because of temporary or permanent special locomotory needs [16][17].

They correspond to policies that can be applied to the routing services; when many pedestrians

request routing directions in multiple manners (with 0-policy, 1-policy, 2-policy, etc.), the service

recalculates the weights inside the graph for each invocation, so each person has a particular output

tailored by his or her special needs.

2 Analysis of the State of the Art

In this section, we included an analysis of the state of the art across all the related fields to this

thesis. This chapter aims to put in perspective what others had accomplished and how we can

improve on top of their research, or originally use this research in very specific parts in this thesis.

2.1 Route Planning

Route planning is made between remote locations that do not have the same address. There is

significant scientific work regarding the algorithms for navigation using GPS (Global Positioning

System); most of them are based on analyzing and processing graph data for maps, but also other

real-time data regarding crowds, traffic jams, accidents, and other events that may influence the

selected route. They are multi-objective algorithms, trying to find a route that will not only

minimize the distance, but also the time, or a route selected to go through certain points on the

map (touristic objectives or other locations). The algorithms in this area are oriented toward four

types of travel: wheel vehicles (cars, trucks) with graph-based pathfinding algorithms [18], railway

(trains), which are simpler to solve and based on a graph theory approach [19], sea travel (ships)

based on a multi-scale visibility graph [20], and foot travel (pedestrians) based on graph

wayfinding on cognitive principles [21].

2.2 Mobility and Accessibility in a Public Space

Inclusive navigation for stakeholders. For mobility and orientation inside a public space

(particularly a campus), there are several ways to go from one place to another: using bicycles,

electric scooters, personal electric vehicles [22], or travelling as a pedestrian. Another specific

issue is route generation for people with disabilities, e.g., visually impaired persons [23].

Hierarchical indoor visibility-based graph. Based on a hierarchical indoor visibility-based

graph (HiVG) for navigation guidance in multi-story buildings [24], WRLD is an example of a

specialized software solution for navigation and orientation (indoors and outdoors) in real-world

environments [25].

10

Indoor positioning. Indoor positioning system can be implemented using a K nearest neighbor

algorithm against a floor map layout [26], [27]. Other solution involves Bluetooth receptors and

Beacons [28].

IoT technology. Long Range (LoRa) technology [29] can be used to implement an IoT solution

based on environment variables. The IoT technology is used in multiple related applications, as

summarized in [30].

Connectivity infrastructure. The idea of a smart university campus is approached by Fortes et

al. as “Smart Tree” [31] [32].

Mobile device interactions. The interface with the user is on mobile phones most of the time, but

in some situations, to reduce the costs, a set of embedded indicators can be used for outdoor or

indoor navigation [33], (for freshmen) [34].

2.3 Avoiding Crowds

A more recent topic is related to disease control, particularly the COVID-19 pandemic. It is

especially relevant for public spaces, where crowds are very likely to form. This problem

introduces a supplementary set of constraints regarding path planning and tracking, whereas it does

not fundamentally modify the algorithms and methods used in route planning in public spaces such

as campuses. Of course, when trying to control the spread of a disease one must impose a set of

restrictions on traffic; in this case, one refers to pedestrian mobility and not to vehicles.

University campuses are places where COVID-19 transmission can have a high impact on

stakeholders due to the mobility of the affected persons. There is a dependency between pedestrian

dynamics and epidemiology [35], aerosol transmission [36], the mathematical modelling of disease

spreading [37], and the risks of students’ exposure to COVID-19 in a university building [38] or

other urban settlements [39].

From the point of view of mobility and route planning, disease control influences the way such

algorithms are defining the routes, e.g., by indicating different routes for pedestrians inside

buildings [40], [41].

Software and hardware application design can offers strategies on how air sensors can be used to

indicate accurately the risks of COVID-19 [42]. Bidila et al. state clearly that it is easy to violate

procedures (without intention) and that in absence of testing (for people and surface) the risk of

contamination is difficult to compute. They propose a low-cost and implementable solution (IoT

with a dual monitoring system of air quality) to warn people when their local density becomes a

risk factor.

2.4 Trends for the User Interface

In this subsection, we present research made related to the trends for the user interface, based on

our research on the following topics, we remark:

• Graphic User Interface is not always superior to Text User Interface [43]

11

• Interface for navigation – continuous repositioning of users to the next intermediary point

[44]

• Social inclusive public space – space adaptation to opposing exclusivity [45]

• Spatial concepts and relationships – user-centric space design [46]

• GPS vs indications from people – often complementary [47]

• Directional map information order – to streamline information assimilation [48]

• Relational Database System for Images [49]

• APIs – practical reuse and productivity [50]

2.5 Lessons Learned

In our research, we followed how others achieved similar goals to this thesis. Thus, the main topics

we researched are route planning, mobility in public spaces, avoiding crowds, and user experience.

Route planning was researched to get a high-level point of view towards routing in a global scope,

not only pedestrian routing. Mobility in public spaces was researched with an accent on pedestrian

navigation and how others are using various technologies to achieve navigation in such spaces.

Avoiding crowds was researched as an extension and opportunity to make users feel secure during

pandemic times; it is an extension because one of the original contributions of this thesis is a

mechanism to avoid crowds in a public space. User experience was researched to understand how

users can be offered all the details and consume the services we efficiently developed for this

thesis.

The result of this analysis is that a system that uses extensively different technologies (mostly

smart technologies) is not only hard to implement in the real world (offering thin chances for a

real implementation) but also hard to implement and rely on in vast public spaces such as

universities campuses over extensive periods. Moreover, the user and the administrator of the

public space require complex actions to consume, respectively to produce data.

The parameters we deducted from our research to use for our global thesis scope, is that technology

should be consumed by the users more efficiently, under the forms of services, in particular web

services, over minimal and easy-to-understand visual interfaces. These services should have the

option to customize the experience for each user, and these services should be mobile, thus

accessible over mobile data on personal devices.

The decision for this thesis’s original contributions was to create a user interface that provides the

user with visual images of the layout of the public space that contains general indications for

traversal. These images are created based on the images uploaded by an administrator in the

platform and on top of it, the platform will create visual directions for the user, customized by her

or his needs. Images will be stored on a server and be able to be fetched by the user at any time.

Nonetheless, the user will be offered simple indications in the user interface (intuitive text to

compensate for the visual part of navigation).

12

3 Research Objectives

In this section, we discuss the problematics of research, desired results, and specifications of

development for our objectives, which together will provide the global objective of the thesis.

3.1 Services for Improved Accessibility in a Public Space

Universities and other public spaces are places with many architectural complexities. Therefore,

various complications may be perceived by the participants inside these public spaces. The main

difficulty for the end-user is the complexity of the navigation. Navigation in a public space means

traversing it to reach a destination. The stress of the time limit is also added to the navigation

complexity. The time limit stress is increased if other factors (external or internal) are present. An

external factor could be that the public space is hard to navigate because it has a complex

architectural layout. An internal factor could be that the user is suffering from locomotory issues.

If these complications are not dealt with, the end-user will feel stressed and will have an overall

bad user experience.

A user with locomotory issues has other needs if she or he must traverse the public space than a

user that does not suffer from those. This particular user must be provided with different navigation

directions than a user that does not suffer from those. If we do not make this distinction, the user

that suffers from locomotory issues will have a bad user experience or, worse, her or his safety

would be compromised. Every user must be treated with equality and inclusion in the mind.

Another problem when offering navigation services to users is on what channel are the services

delivered. Because of the nature of the services that need to be provided to the end user, these

solutions must be accessed easily and at any time.

The complete problem that needs to be solved is: to provide participants in the public space with

services that take into consideration the possibility of participants having locomotory issues.

The solutions are: navigation services that can be accessed easily and at any time by the

participants and offer customized solutions for the participants’ needs.

The specifications are: to offer these services on mobile phones connected with mobile data.

Thus, the user will act as a client and the services will be provided by a server that is a different

entity from the client. We built our solution around mobile phones and mobile data because they

are popular, users already know how to operate them, and the services we provide do not need to

include extensive training for the user.

3.2 Services for Reducing Pandemic Risks

Public spaces are usually visited by large crowds. But large crowds are susceptible to pandemics,

like the one we have been through, the SARS-COV-2 pandemic.

13

Crowds in a public space can build spontaneously, especially in a small building, and this crowd

would provide a bigger probability of transmission. It would also impact free navigation from one

point of public space to another.

The complete problem is: to extend navigation services to take into consideration the impact of

crowds inside the public space and provide alternative routes for the users to reach their

destination.

The solutions must shelter the users from the potential pathways that contain crowds, thus reducing

the risks of pandemics. The pathways provided by the navigation service in these cases try to guide

people through portions of the public space that were not visited lately (if they were not visited

lately there is a smaller chance of crowds building up there spontaneously).

The specifications must extend the functionality of the navigation service. A module that can be

opted by the user’s choice, thus user-driven, a module that automatically increases the crowd

factors inside a public space. The crowd factors automatic update is used to show the portions of

the public space that can have the potential to build large crowds, where the risks of a pandemic

increase substantially.

3.3 Data- and Community-Driven Pedestrian Routing

Participants in a public space can be looked at as a community. This community is diverse, and

each participant has needs that are different from other participants. The public space might not be

updated to each of the user’s needs, but users can drive the representation of the public space. For

example, users should be allowed to vote if a portion of the public space respects some community-

set criteria.

Data for the representation of the public space can be uploaded from other sources as well. The

reality of the public space does not change, but the circumstances for it do. An example would be

the weather conditions for the public space. In this case, the public space does not change, the

architectural layout is still the same, but some architectural features can be impacted by weather.

Another example would be the air quality inside the public space.

The complete problem is to build solutions to adapt external data and community data to extend

the experience of the user inside the public space.

The solutions are services that allow integrations in the platform, to extend the representation of

the public space.

The specifications are to allow the administrators to integrate data from external sources and help

the end-users. The end-user is invoking the base navigation services with the options that point to

external or internal data.

3.4 Configuration and Validation for a University Campus

As an example of public space, we choose a university campus for our proof-of-concept. This

choice comes as the output of an analysis depending on two factors: configuration and validation.

14

Given our academic inclinations, we can model the services for a university campus in an effective

manner. Also, a university campus can include various participants, thus multiple needs. The

structure of the university campus is mostly static, meaning the architectural features do not change

dynamically depending on certain events. A university campus can have multiple buildings and

most probably, different administrators.

The complete configuration problem is to create an extensible configuration of the university

campus that can support users’ needs.

The configuration solution is to allow the administrators to decide the granularity of architectural

details the model for the university campus will have when used by the end users.

The configuration specifications are to allow the administrator to upload configuration details

regarding the real university campus, and configuration details that must follow guidelines

supported by the platform.

The complete validation problem: the configuration of the public space is valid if the user can use

the information provided by the platform, to decide while inside the university campus.

The validation solution: to build on top of the configuration initiated by the administrator in the

configuration step.

The validation specification: to create services that are decoupled from the configuration code and

object of the public space.

4 Research Method

In this section, we discuss general scenarios that we analyzed to determine the final form of the

services we offer to the end user. We discuss the service-oriented approach we chose to achieve

the design for these services as well as their implementation. We discuss multi-policy pedestrian

routing where we explain what the policy means for our platform and how it helps the user to have

a customized experience using the navigation solution. We discuss the validation of this thesis

contributions for a university campus and why we chose to focus on this topic for this thesis and

the proof-of-concept presented later in this thesis.

4.1 Scenario Analysis

People easily navigate public spaces they are very familiar with. However, when removing that

familiarity, navigation and orientation become complex. To understand the scenarios a person is

faced with in a public space that is not well known to her or him, we have to analyze what a public

space looks like in the first place, and then what is the purpose of that public space.

Navigation prerequisites scenarios. To navigate a public space, people need to know where they

are going (know their destination/recognize they arrived at their destination) and know what

direction they should have (to be pointed in the right direction/recognize subsequent intermediary

points along the waypoints of interest).

15

Navigation complexity scenarios. The complexity of the public space dictates the complexity of

the navigation for the user. Not knowing how to navigate different kinds of complexities could

imply an additional cost (lost time, or lost orientation); this is why destination recognition and

direction matter in our platform design.

Custom-use complexity scenarios. Different users’ needs involve other types of difficulties that

a navigation platform should consider. Multiple scenarios can be mentioned here, such as

locomotory complexity (that should be the most important aspect for a person with locomotory

issues), crowd avoiding complexity (in case users want to avoid crowds that are created without a

known-before pattern inside a public space), third party complexity (in case users want to get a

correct recommendation for their navigation, considering data that originates from external

providers, e.g., weather information).

4.2 Public Space Representation

At the center of the platform described in this thesis is the modelling of the public space. This

model must express the reality and offer this information for building the necessary services for

the users. This information must be easily stored, maintained, and used for navigation algorithms.

These are the reasons why we chose our model for the public space to be a general-purpose

weighted graph.

• A general-purpose weighted graph is a structure that is created around the idea of

neighbors.

• A general-purpose weighted graph has standardized algorithms for querying a path inside

it. This implies that algorithms are well-known and tested, thus, the end users will be

reliably provided with navigation information. A general-purpose weighted graph has

multiple ways to be configured: nodes, edges, and weights.

• A general-purpose weighted graph can then be created from multiple data points, in our

proof-of-concept presented in the following chapters we describe how from simple static

data represented in an Excel sheet in a particular format, we built the underlying graph

model used by all platform services.

The granularity of the graph representation can be set by the needs of the public space or expanded

in the future. In our proof-of-concept we chose the granularity of the basis graph model as follows:

• the graph nodes represent each architecture topology like rooms, hallways, stairs etc.

• edges between nodes are direct abstract connections (can be read as one node is a neighbor

of another)

• the graph weights represent the users’ needs (they are updatable quantifications regrading

what the user needs from the navigation)

4.3 Service-Oriented Design

Our design is based on exposing services for wayfinding, to help people choose the most

appropriate route for walking through a public space and getting to their desired destination. The

16

core of the system is the capability to model the real-world space in a graph-like structure, to enable

the adaptability of routing algorithms, as detailed by Costa et al. in [51]. The route adopted by each

person influences the overall pedestrian flow, and the routing services also take into account the

feedback given by the community of people who benefit from such services (Figure 1).

Figure 1. Pedestrian routing system.

The routing service takes as input the nodes generated by administrators and external parameters,

such as weather, epidemiologic risk, personal issues such as locomotory difficulties, or

emergencies. For this reason, the nodes must be created in conformity with a model that supports

such policies; therefore, these policies need to be known before the actual real-world resources are

modelled as nodes. For the system to be more robust, these policies represent a resource inside the

system, exposed by other services; they should be a source of compliance for the nodes that are

created by invoking them. The services are written in a client–server architecture that expose

HTTP endpoints.

4.4 Multi-Policy Pedestrian Routing

Our design is based on the idea that a public space that offers a platform for navigation and

orientation needs to take into consideration end-users needs. And needs from users are technically

infinite. As much as we can presume the needs of the user, the truth will always be held by the end

user.

Multiple graph models. One way to satisfy all needs is to create multiple graph models of the

public space, multiple models for the weights inside the graphs, and/or multiple algorithms that

could transform all data into an ordered sequence that can be provided to the user to navigate with.

This method would include a lot of storage structures and costs, more maintenance on the models

and more specialized information that an administrator would have to continue maintaining it, thus

more training. This approach (Figure 2) presents an issue on how to solve the integration of all

17

different graph models (that represent the needs of users), if a user has multiple needs (for example

a user wants the less crowded and with the least locomotory difficulties).

Centralized graph model with dynamically generated weights. Another way to satisfy all needs

is to create a base graph model to represent a public space first and to enable weights to represent

the needs of the users. A great weight on an edge from the graph would mean a greater cost for the

user to use in the real world what is represented by that portion of the public space. Thus, weights

are dynamically generated, and user driven. Meaning the user selects when she/he wants to travel

the public space considering several needs. Selecting multiple needs upfront and not relying on a

different model for different needs is a more scalable and modular approach than the former one

presented. This approach resembles a multi-filter set on a search (of a database for example).

The latter approach, based on a graph with dynamically generated weights, was applied in this

thesis (Figure 3). The manner we enable multiple needs of the user to exist in the platform is by

creating policies. Policies are resources that are stored in the platform and describe how the

weights of the graph are affected if the end user invokes the same policies. We called them policies

because they have the form of a contract, a contract that is created by a party (administrator), a

contract that has points of interest like where it gets the data that represents the needs of the user,

a contract that describes how it processes the data to be understood by the underlying object which

is the graph model and the navigation algorithm, and a contract that can be invoked by the end-

user to be provided with the benefits of that contract.

Figure 2. The user has to call services for each need.

18

Figure 3. Centralized graph model for particular policies.

4.5 Validation for a University Campus

There are many types of public spaces that may have been chosen for our proof-of-concept to

validate our system design, but we choose a university campus to verify and validate our system

is more efficient due to several considerations.

University campuses are not as closed as public spaces (police station/hospital), because they are

still encouraging free navigation, they do not serve the purpose of mass entertainment (mall) and

participants on a university campus do not indulge in spending time. University campuses are vast

areas where participants usually know only a part of it. University campuses are places where a

participant arrives with a defined and time-bound task. This implies urgency in resolving the task.

University campuses combine different categories of architectural topologies that are of interest to

the participants. These architectural topologies could ease or make the navigation of participants

more difficult. Therefore, there is a need to validate the proof-of-concept for a university campus

for users’ preferences.

Participants in a university campus have different tasks day by day and different needs that are

either of personal nature or objective nature (created by the university campus itself). These needs

are resolved with the help of policies, so that each participant feels included in the university

campus and has a good experience traversing this public space.

19

5 Research Contributions on Orientation and

Accessibility Services

In this section, we discuss the scientific contributions built on top of the details presented in the

previous sections:

• we chose a model that supports route finding based on multicriterial weighted graphs.

• we model the public space as a graph, and this is beneficial for route finding.

• we discuss the integration of multiple criteria to this graph, how we model criteria to fulfil

users’ needs and how it fits against a navigation scenario inside a public space.

• routing policies that are derived from the real-world needs of users and how they can extend

the purpose of the platform.

• the general workflow inside this platform where we describe how administrators and end-

users interact with the platform.

• the overall architecture that supports the outlined design and how services provide and

consume data inside the platform, as well as the visualization service for end-users.

5.1 Route Finding Based on Multicriterial Weighted

Graphs

We choose to represent a real-world public space as a graph, since graph theory already provides

algorithms that follow the behavior in the real world, where navigation from the current location

(node) towards a destination (node) is a set of steps that can be modelled with graph vertexes.

A one-criterion routing algorithm operates based on a weighted graph that only takes into

consideration the amount of consumption that it takes to traverse the resources (nodes). Let us

analyze an example of a weighted graph, where A, B, and C are nodes and X, Y, and Z costs to

navigate from A to B, B to C, and A to C, respectively. If on the route A → B → C, the cost

is X + Y, and it is more economical than choosing A → C that costs Z, then the chosen route should

be A → B → C.

This approach can be employed as a multicriterial algorithm. The changes towards the

multicriterial algorithm must be reflected both on the algorithm and on the representation; the

nodes should have special properties that the algorithm should take into consideration. Thus, the

weights of the dependencies (vertexes) become functions of the properties of the connected nodes,

as represented in Figure 4. Some properties of the nodes might not be interesting for certain

stakeholders. The nodes must have multiple properties that represent the interests of certain users;

such for a newsletter subscription, all people have interests, but often they are different from one

to another, and should not impact other people’s interests. A user may “call” the multicriterial

algorithm with his or her particular interests (nodes properties); thus, the multicriterial algorithm

calculates the output in a customizable manner.

20

Figure 4. General weighted graph for multicriterial routing algorithm.

In a generally weighted graph with three nodes, each connection between the nodes has a cost

known as weight in the graph theory. In the multicriterial approach, one can assume that there is a

function cost for computing the weight. Figure 4 depicts a weighted graph with three nodes, in a

similar connection configuration as in the example above. The difference is that the cost to traverse

nodes is no longer standalone information. Each node has designated properties. These properties

on each node represent how difficult it is to access this node. To traverse from one node to another,

a cost function that integrates the properties of the two nodes must be taken into consideration.

This approach lets us represent how hard it is to access a resource and abstract the cost between

two such resources. We consider that each of these properties has a numerical value, and the

function F is the SUM function, meaning that it adds all the properties and virtually changes the

weights of the graph. If these properties change dynamically, the weights of the graph also change

dynamically. If we abstract these properties under certain categories (or criteria), the users can call

the multicriterial routing algorithm giving these inputs. This means that the user wanting to

navigate in the building/campus/public space can minimize the impact for the given criteria (since

the base algorithm minimizes the navigation cost).

5.2 Graph-Based Model of the Public Space

The building graph model, represented in Unified Modeling Language, is given in Figure 5. Public

space includes several buildings and several connections between the buildings that are on-site. A

building’s attributes include namespace (i.e., the name of the building), the number of nodes

(corresponding to architectural features), and the number of connections between the nodes in the

same building. A connection has two properties (source and target) to represent the neighbors of a

node or building. Each node has node properties (see “*” to show the multiplicity > 0 in Figure 5),

including the type of node (hallway, stairs, room, etc.) and policies. A policy is defined by name,

21

data source (where the data come from, to build the particularities of the policy), and

“dataManipulation” (a procedure for how to interact with the data from the data source).

As explained previously, a node’s properties should be grouped under common criteria, to provide

the user with the possibility to invoke these criteria when calling the routing algorithm (otherwise

the algorithm cannot centralize information and create the weights on the graph); thus, one should

employ a specific abstraction to describe this requirement. For this purpose, we define a series of

policies to be available for the pedestrian who wants to obtain routing directions to reach the

desired destination. The policies are defined in our approach as rules on how the multicriterial

algorithm should compute the weights on a graph, where to retrieve or store information about

nodes, and how information from nodes should be used while the multicriterial algorithm is

running.

Such policies are applied to the entire graph and then they activate certain properties for each node;

the attribute “nodeProperties” from Figure 5 can be populated with data concerning the chosen

policies, to be then considered in the cost of each connection, by using the SUM function on all

data quantified from policy data. In this way, the algorithm minimizes the overall cost and outputs

the least cost route. Nonetheless, other properties of nodes can be populated with access data that

will be provided to the user as the route generator output.

Figure 5. Building graph model with policies attached.

22

5.2.1 Navigation scenario for public spaces
To analyze several scenarios, we will refer to Figure 6. This figure depicts the plan of a

hypothetical building with 2 entries connected to the outside of the building. The entries are named

“Entry 1” and “Entry 2”. “Hallway 1” is connected to both entries. “Room A” and “Room B” are

connected to “Hallway 1”, and the two rooms are not connected. For this case, it is needed a model

for the reality of the public space. A model that can be easily extendable if an architectural feature

would be created or destroyed in the reality. And a model that could run navigation algorithms for

the user. Such a model is a graph. A graph is an efficient representation of reality if correct

assumptions are made. A graph model made for the hypothetical building is shown below in Figure

6 next to the hypothetical building.

Figure 6. Hypothetical building and it’s respective Graph model.

The W1, W2, … W6 notations on the graph figure from Figure 6 represent the weights of the graph

that are attributed to the edges. The way we worked with weights in this model is to assume weights

are a general description of cost. The cost is quantifiable, which makes it measurable and easy to

integrate with other costs. This abstraction makes it possible to extend the functionality of the

services that run on top of this modelling, which is important for the overall thesis. For a simple

navigation scenario where one user needs to traverse the public space, the weights can be

considered a constant cost. And a navigation algorithm based on a graph representation (like

Dijkstra) is possible to output the shortest path possible between the starting point of the

navigation, and the destination set by the user.

23

5.3 Routing Policies

Typically, a route-generating algorithm for a graph follows the principle of reducing the cost of

travel; this can be realized as the shortest path, or as the most cost-efficient path, choosing the

route with the least cost to arrive at a destination. Our algorithm adopts the cost-efficient approach

for the following reasons:

• a cost-efficient path algorithm works on top of a weighted graph.

• a weighted graph can be created to quantify the difficulty of accessing a node.

• we integrate more diverse information (based on the users’ needs) in the weight value for

every vertex (policies, optionally used).

We decided to look at a node as a stand-alone concept such as a web page, and let the node dictate

how hard it is to be accessed, based on policies that are attached to it. The path-generating

algorithm looks at every node in the graph and decides, based on the policies given at the algorithm

call if passing through that node is desirable or not. These policies are quantified and provided as

a weight addition in every vertex that the node has, allowing us to use well-established graph path

generation algorithms.

Policy 1. Consider the community votes. A voting policy can offer to the general user the ability

to vote if a resource respects certain criteria. The votes in time add up and are quantified via a

mean value and considered when policy is requested.

Policy 2. Avoid crowded areas. Another policy, also driven by the community of pedestrians

using the routing service, considers the crowding factor. When users ask the system to obtain a

certain path, it means that, when accessing the constituent real-world locations, they occupy the

correspondent graph nodes. Many users might need to traverse some sections in the real world,

which are overlapped with other users’ sections, resulting from their need to find their way;

therefore, crowds can form spontaneously. The implementation of this policy is based on the

outputs of previous users’ routing needs, by increasing the weight of the constituent nodes. Thus,

when the next user calls the routing service with the policy to avoid crowds, the weights on the

links of the previously visited resources are increased, and the algorithm provides an alternative

route that is more cost-efficient (where the cost regards how crowded the space is). After a given

time interval, the weights on the nodes are automatically decreased if no longer provided by the

routing service, meaning that the correspondent locations become less crowded.

Policy 3. Avoid polluted areas. This policy is data-driven and can be applied if the public space

is provided with sensing devices to detect various physical quantities to characterize the air quality.

Policy 4. Shelter from unfavorable weather conditions. This policy also ensures a data-driven

routing, based on data originating from external providers, such as weather forecast providers. The

routing service takes into consideration minimizing the effect of external factors created by

weather conditions.

Policy 5. Consider accessibility for reduced mobility needs. This policy holds information about

the accessibility of public space locations that may create difficulties for users with reduced

mobility needs. When this policy is used in the routing algorithm, the calculated route eliminates

24

nodes or connections that lack accessibility, or at least the user is presented with information

regarding the potential risks in the real world.

5.3.1 Multi-policy pedestrian routing algorithm
0-Policy Routing Algorithm. By default, the underlying graph of a building has the weights of

all connections equal, because the nodes represent physical locations that are very close to each

other. This applies in the case of a 0-policy routing request, where the cost-efficient algorithm

prioritizes the path that cumulates a minimum value, i.e., the shortest path. Nonetheless, the users

indirectly increase the weights on the paths that were given as routing solutions if the user follows

the routing directions. This applies to 0-policy routing as well, because in case a user wants to

avoid crowded places, it is necessary to know what locations (graph nodes) were the most visited,

even if the users who requested the routing service have not selected Policy 2. If a node is present

in a routing path output calculated in the recent past, the crowding-factor property is increased

with a fixed amount; if a node has not been present in an output routing path, the crowding factor

is decreased with a fixed amount.

Multi-Policy Routing Algorithm. In the case of the multi-policy routing algorithm, each node

has specific properties that follow the policies, and these properties are used to update the weights

between nodes. The cost-efficient routing algorithm outputs the path that cumulates a minimum

value, which may not always be the shortest path, as it was in the case of the 0-policy request, but

the one that is the most convenient to the user given his or her needs. Each policy looks at the

specific node property/properties that indicate it. The policy looks at the paired properties on each

node; Algorithm 1 shows that the system always listens to the user’s requests and delivers the

output of the routing service calls. Certain details are necessary to compute the nodes’ properties

regarding how crowded they are:

• crowdProperty – designated property on the node for the crowd-avoiding policy

• increaseCrowd - the amount that the crowdProperty value on a node should increase after

it was given as a routing solution and the directions are followed by the user.

• crowdTimeStamp - when the crowdProperty was last updated.

• currentDate – the current date when the user call is made

Algorithm 1 Multi-policy pedestrian routing algorithm

Inputs: increaseCrowd

while routing service provided do

get from user call: start, finish, policies

for policy in policies:

switch policy:

Policy1: call community feedback algorithm

Policy2: call crowd avoiding algorithm

25

Policy3: call pollution avoiding algorithm

Policy4: call weather conditions algorithm

Policy5: call reduced mobility algorithm

end switch

receive customized_graph

end for

call multicriterial_route_finding_algorithm(customized_graph)

send directions to user

get from user call: accepted_directions

if accepted_directions

for element in path do

 if element.crowdTimeStamp is_aprox currentDate

 element.crowdProperty = element.crowdProperty + increaseCrowd

 element. crowdTimestamp = currentDate

 end if

end for

end if

end while

When the user calls the routing service, the system takes from the call details for start (the point

from which the navigation begins) and finish (the destination of the navigation). It computes the

path against the newly updated graph (customized_graph) taking as input start and finish and sends

the user the result obtained with the multicriterial routing algorithm. After this, for each node in

the path given to the user (if the node property crowdTimestamp is approximatively equal to the

currentDate timestamp), the crowdProperty for this node is increased with increaseCrowd

(configured to tell the crowdProperty by how much it should be increased after it was visited), and

the crowdTimestamp of this node is overwritten with the value of the currentDate.

5.3.2 Community feedback algorithm
After using the path given by the navigation service, the user can give some feedback if the path

was helpful and easy to use for her/his needs. This feedback takes the form of a vote, where the

user can vote from an interval, for example, 1 to 10, where 1 means the user would most likely

never want this path a second time she/he calls the navigation service, and 10 means the user would

most likely want this path a second time she/he calls the navigation service. These votes are stored

26

in the platform with the total number of votes (incrementally after each provided path is given to

the user, and the user votes it). When the next call for the navigation service is made with the

community feedback policy, the service will take into consideration previous feedback from users

and will increase the weights of the nodes that were included in the navigation service output that

the user voted with low desirable scores. Thus, the navigation service will compute a route that

intersects as little as possible the nodes that were not voted favorable by past users.

Algorithm 2 Community Feedback algorithm

Inputs: graph, communityFeedbackList, limit1, limit2, limit3, limit5, limit6

for node in graph do

get from communityFeedbackList nodeVoteScore

for connection in nodeConnections do:

if nodeVoteScore > limit1 and nodeVoteScore < limit2

addingUpNorm = 1

end if

if nodeVoteScore > limit2 and nodeVoteScore < limit3

addingUpNorm = 2

end if

if nodeVoteScore > limit3 and nodeVoteScore < limit4

addingUpNorm = 3

end if

if nodeVoteScore > limit4 and nodeVoteScore < limit5

addingUpNorm = 4

end if

if nodeVoteScore > limit5 and nodeVoteScore < limit6

addingUpNorm = 5

end if

weightConnection = weightConnection + addingUpNorm

end for

end for

return graph

27

5.3.3 Crowd avoiding algorithm
The method we model the crowd factor inside a public space is to increase the weight of the graph

accordingly to a crowd factor. This means that each user that traverses the graph, increases the

weights of the edges of the graph (representing the connection between the real architectural

features) that were visited. With the increased weights of the edges stored in the graph, the

navigation algorithm that runs on top of the graph will output another route than a route for a

previous user (if the real public space is constructed to offer it).

In our application, the graph crowd factor adds up each time, a user calls and accepts a route

provided by the navigation service. Because after some time the real architectural features could

be considered not occupied, the crowd factor has time to leave (TTL) attached to it. If that time

passes and no other navigation service call returns an architectural feature that previously increased

the connected weights, then, the increased weights are decreased by a leave factor.

The Crowd Avoiding Algorithm corresponds to Policy 2. As resulted from the previous description

of the Multi-Policy Routing algorithm, even if there is no policy selected, the underlying graph is

always updated with the increased weights on the sections that were most visited by other

pedestrians in a certain period. Algorithm 3 configurations:

• crowdProperty—the crowd value on the node (the bigger the value the most visited the

node is).

• crowdTimeStamp—when the crowdProperty was last updated.

• crowdTimeFrame ─ a time interval after which one considers that the crowdProperty value

on a node should be decreased.

• decreaseCrowdFactor ─ how much a crowdProperty on a node should decrease after the

crowdTimeframe expires.

Algorithm 3 Crowd avoiding algorithm

Inputs: decreaseCrowdFactor, crowdTimeFrame, graph, limit1, limit2, limit3, limit4,

limit5, limit6

for node in graph do

 get from Policy2: crowdProperty, crowdTimestamp

 timeDifference = currentDate – crowdTimestamp

 timeDifferenceFrame = timeDifference / crowdTimeFrame

 decreaseCrowdProperty = decreaseCrowdFactor X timeDifferenceFrame

 crowdProperty = crowdProperty – decreaseCrowdProperty

 if crowdProperty < 0

 crowdProperty = 0

 end if

28

 for connection in nodeConnections do:

 if crowdProperty > limit1 and crowdProperty < limit2

 addingUpNorm = 1

 end if

 if crowdProperty > limit2 and crowdProperty < limit3

 addingUpNorm = 2

 end if

 if crowdProperty > limit3 and crowdProperty < limit4

 addingUpNorm = 3

 end if

 if crowdProperty > limit4 and crowdProperty < limit5

 addingUpNorm = 4

 end if

 if crowdProperty > limit6

 addingUpNorm = 5

 end if

 weightConnection = weightConnection + addingUpNorm

 end for

 end for

 return graph

The algorithm proceeds with computing crowdProperty as the current crowdProperty minus

decreaseCrowdFactor, multiplied by the result of currentDate minus crowdTimestamp, and

divided by crowdTimeframe. In this manner, the crowdProperty is always updated based on how

much time has passed since the node was visited. If after this operation crowdProperty is less than

0, it means that a long time has passed since the node was visited, hence it is a viable node to be

visited for users who specifically chose to avoid crowds. After crowdProperty for this node is

computed, one updates the weight for each connection of this node. The five limits may be set to

adjust the weights by adding up a norming number, with respect to the degree of how much

crowding is considered appropriate.

5.3.4 Pollution avoiding algorithm
The pollution-avoiding policy increases the paired property of the nodes based on data gathered

from sensors; thus, a sensor value is mirrored on the paired node property. In the same way, as

29

explained in the above paragraph, the weights of the node with sensor policy are updated

accordingly when Policy 3 is invoked by the user, to favor the paths that contain nodes with the

smallest pollution values. Algorithm 4 configurations are sensorDataSource (data source

providing the readings from the air quality sensors); sensorValue (actual value converted to

addingUpNorm which is used for graph weight update).

Algorithm 4 Pollution avoiding algorithm

Inputs: graph, limit1, limit2, limit3, limit4, limit5, limit6

for node in graph do

get from SensorPolicy: sensorDataSource, sensorValue

sensorValue = call sensorDataSource

for connection in nodeConnections do:

if sensorValue > limit1 and sensorValue < limit2

addingUpNorm = 1

end if

if sensorValue > limit2 and sensorValue < limit3

addingUpNorm = 2

end if

if sensorValue > limit3 and sensorValue < limit4

addingUpNorm = 3

end if

if sensorValue > limit4 and sensorValue < limit5

addingUpNorm = 4

end if

if sensorValue > limit5 and sensorValue < limit6

addingUpNorm = 5

end if

weightConnection = weightConnection + addingUpNorm

end for

end for

return graph

30

Generally, a multi-policy algorithm needs norming. Our solution proposes that each data value is

mapped to a discrete value from the set {1, 2, 3, 4, 5}. In Algorithms 2, 3, 4, 5 and 6, these norming

numbers are added to the weights of the graph, thus representing desirability levels (1—very

desirable, 2—desirable, 3—neutral, 4—undesirable, 5—very undesirable).

5.3.5 Weather condition shelter algorithm
The weather policy can be invoked to help the users to cover unfavorable weather conditions

because the outside is more affected by the weather conditions, which means resources that are

located outside of buildings will be affected by the weather the most. The navigation service that

is invoked with this policy will send an inquiry about the weather conditions to an external source

(most likely a weather API). If this weather API will find favorable conditions that support

navigation outside of buildings, then the outside resources that support such a navigation will be

returned to the path for the user.

The description of the navigation service using this algorithm is in Algorithm 5 bellow:

Algorithm 5 Weather condition shelter algorithm

Inputs: graph, WeatherAPI, limit1, limit2, limit3, limit4, limit5, limit6

for node in graph do

get from WeatherAPI weather

for connection in nodeConnections do:

if connection == outside

if weather > limit1 and weather < limit2

addingUpNorm = 1

end if

if weather > limit2 and weather < limit3

addingUpNorm = 2

end if

if weather > limit3 and weather < limit4

addingUpNorm = 3

end if

if weather > limit4 and weather < limit5

addingUpNorm = 4

end if

if weather > limit5 and weather < limit6

31

addingUpNorm = 5

end if

end if

weightConnection = weightConnection + addingUpNorm

end for

end for

return graph

5.3.6 Reduced mobility algorithm
Public spaces should be inclusive spaces for any participant to navigate safely. This is another

scenario that we considered in our platform. This is where our abstract view on weight as cost

inside the graph helps support these scenarios. The cost could be considered by an end-user as the

difficulty of traversing a portion of public space. Difficulty can come from many criteria in the

case of people affected by locomotory issues. For example, stairs with no ramps, heavy doors,

different height levels on the floor, etc. These difficult architectural features are included in the

graph model, in a way that can increase the weights of the edges connected to those.

For a scenario where one user tries to access from “Outside” “Room A”, the graph model supports

the integration with a difficulty map. If we suppose the door of “Entry B” is heavy and the door of

“Entry A” is much suited for the locomotory issues, then the path containing “Entry A” will be

less costly thus, it will be provided to the end-user.

To establish the difficulty level of each architectural topology that represents a node in our graph

model, a platform administrator must upload to the platform what we refer to above as a difficulty

map. This difficulty map is created by assessing the real danger of an architectural topology. To

create such a difficulty map, a platform administrator could make use of multiple manuals that are

given to assess the risks of a building for users with locomotory issues. In our proof of concept, we

used the guidelines of [45].

Algorithm 6 Reduced mobility algorithm

Inputs: graph, locomotoryModel, limit1, limit2, limit3, limit5, limit6

for node in graph do

get from locomotoryModel locomotoryDifficulty

for connection in nodeConnections do:

if locomotoryDifficulty > limit1 and locomotoryDifficulty < limit2

addingUpNorm = 1

end if

32

if locomotoryDifficulty > limit2 and locomotoryDifficulty < limit3

addingUpNorm = 2

end if

if locomotoryDifficulty > limit3 and locomotoryDifficulty < limit4

addingUpNorm = 3

end if

if locomotoryDifficulty > limit4 and locomotoryDifficulty < limit5

addingUpNorm = 4

end if

if locomotoryDifficulty > limit5 and locomotoryDifficulty < limit6

addingUpNorm = 5

end if

weightConnection = weightConnection + addingUpNorm

end for

end for

return graph

5.4 General Workflow for the Platform

In our assumption, the data for a public service must be driven by the community that benefits

from it. Therefore, our platform has services that allow the administrators of any public space to

upload the version of the public space they need for their communities. Thus, we do not create a

static public space representation, but the administrator must create it. Once the representation is

created, it is uploaded to the platform that converts it to the graph model where other graph-related

operations, such as pathfinding, can run. The responsibility of the platform is to create the

conversion service. In other words, the map model, because it maps values understood and created

by the administrator to computation objects that could not be understood. The only way to respect

a correct flow of information between the administrator and the platform is a set of rules or

standards that can be easily understood by the administrators and easily implemented by the

platform.

The workflow presents 3 phases:

• bootstrap (that creates the computation resources)

• consumption (that consumes the API and services)

• maintenance (that implies all activities to keep the platform up-to-date and relevant) [52].

33

5.4.1 Visualization design for the bootstrap phase
In our proof-of-concept, we set those rules around the visualization of public spaces building plans

and the vicinity of architectural topologies indicated in those building plans. To be specific, we

implemented services to upload raster file images that are a scale representation of the buildings’

floors and an Excel file that represents what architectural topologies are in the vicinity of other

architectural topologies and at what coordinates, on which building’s plan. The same uploaded

images will be used by the navigation services to draw on top of them directions for the user’s call.

We chose Excel because it is easier to use for most people, including administrators of public

spaces. Any data provided by the administrator is used by the platform to create all the necessary

support objects for the main service which is the navigation service.

5.4.2 Platform phases. Example of a university campus
The bootstrap phase is where the administrator uploads via specialized platform service all the

necessary data into the platform to create the base graph model and the visual maps. For this phase,

the platform requires data that is easily comprehended by humans. At this moment the platform

can understand Excel files that store the intersections of the real public space resources and on

what plan they are found. This plan must correspond with the images of the plans that are uploaded

initially. The Excel file has a simple structure that can be easily created and understood by humans

(apart from how the base graph model looks like, or the node properties map), and the visual maps

are simple image files that are named in the same way they are referenced in the Excel file for the

correspondence. This is the most critical phase, without this phase, the users will not be able to

call the path service to get a route and an intuitive visual map through the public space.

The consumption phase is where the users are using the platform to find ways to move around the

public space, where the most important service is the path service that will provide them with the

route to be taken, human-readable directions, and visual maps. This path service can be called with

policies to consider what the user needs most when traversing the public space.

The maintaining phase is the phase where the resources generated from the bootstrap phase are

enhanced and maintained up to date. This phase is where the policies are created (from external

resources, like weather APIs, or internal resources, like crowding in the public space) to offer the

user a personalization option. Figure 7 displays the main operations the administrators and the

users can make on this platform, without the initial input from the administrators on the platform,

the user cannot start consuming its services.

34

Figure 7. Administrator and User main operations with the platform.

5.5 Integrated System for Orientation and Accessibility

The software architecture we chose for our design is based on a Service Oriented Architecture

(SOA) with the help of RESTful services. We chose to build the platform based on SOA because

it follows our design explained above that can be summarized as service-centered. The building

block of an SOA application is the service, which is a logical module that can fulfill the same

business function in a repeatable and predictable manner. We used RESTful web services that can

communicate with each other via an HTTP client. We chose to use RESTful web services, because

we considered the fact that mobile devices are popular nowadays and these devices can easily

communicate via an HTTP client, thus the entry point for the end users into the platform is less

costly or unfamiliar.

5.5.1 Software architecture
The system is designed with 3 sections depicted in Figure 8. One section is used for user interaction

with the platform. Another section is used for the development of platform RESTful web services

which are consumed by the User Interaction with the platform. Another section is used for data

sources that are consumed by the RESTful Webservices section. Each section communicates with

the other to fulfill the need of the end-user. Without one of these three sections the value would

not be provided to the user, or it would be provided with erroneous data.

35

Figure 8. System as Service Oriented Architecture.

The Interface helps the user and the administrator to reach the logic that the platform exposes.

The interface is used for dual scope. The first scope provides data to the platform web services,

and it consumes data from the platform web services. At this level, data is provided and consumed

via HTTP calls.

Platform Webservices are the endpoints that communicate with the backend of the platform

where the whole logic is created as RESTful web services. The platform Webservices are made to

consume data from the Interface and provide it to the backend and to consume data from the

backend and provide it to the Interface.

Public Space Representation Upload Services have the purpose of taking the representation data

for the public space (Excel, image files) provided by the administrator in the bootstrap phase of

the platform.

Path Generation Services take inputs from the user interface and in conjunction with the data

stored in the Graph Data Storage, Representation Storage, and Policy Data Storage, Third Party

36

Data Cloud sends it to the Path Generation Algorithm to return the path between the inputs given

by the user. Which is then pushed to the users as a response to their requests.

Resource Management Services take input from the administrator and update the information

stored in the Data Source section, in particular to Graph Data Storage and to the Policy Data

Storage.

Graph Storge is technologically independent, it can be stored on a Relational Data Base, or in an

object in memory and disk.

Representation Storage deals with the storage of image files that represent building plans.

Because these images must be sent to the user’s interface for easy consumption, they must be

shipped there with the help of the same web services the user is calling when sending requests.

Policy Data Storage is a storage of resources like the Graph Storage. These resources store

specific logics that is used by the Path Generation Algorithm to update the base graph in memory.

Third Party Data Cloud are resources stored possibly at the creation of the policies. Path

Generation Service will communicate to these Third-Party Data Cloud, to gather the information

that is mapped by the policy which references it.

Path Generation Algorithm is used to create a route through the graph version provided by Path

Generation Service (it could be the base graph in a 0-policy scenario or a weights-updated base

graph in an n-policy scenario). This algorithm is a standard Dijkstra Algorithm that only needs as

input traditional graph data and the points to create the route in between.

5.5.2 RESTful services
RESTful Services are used to transport data between the user and the platform. Each RESTful

Service has an endpoint and a data standard that needs to be respected for the data to travel inside

the system. The endpoint is of URL type and the standard is, generally in our proof-of-concept, a

JSON format, but we have cases when the standard must be file format.

Public Space Visual Maps Upload Service technical definition is described in Table 1. The scope

of this service is to take from the administrator an image that represents the public space, like a

scale image of a building floor and store it on the platform.

Table 1. Public Space Visual Maps Upload Service Technical Overview

Method POST

Endpoint /mapUpload

Data Type image type

Return 200 OK – for accepted image

400 Bad Request – for unaccepted image

Scope Upload image files representing the public space to the

platform.

37

Public Space Meta-Data Upload Service technical definition is described in Table 2. The aim of

this service is to take from the administrator a document that describes the layout of the building

to create the graph model for it, the end goal being to run a navigation algorithm on top of it.

Table 2. Public Space Meta-Data Upload Service Technical Overview

Method POST

Endpoint /metadataUpload

Data Type text type

Return 200 OK – for accepted document

400 Bad Request – for unaccepted document

Scope Upload meta-data document representing the public space

to the platform.

Additional to these 2 core services for the Public Space Representation Upload Services exists an

Extra Information Upload Service. Extra Information Upload has the scope to add data in a

document format, which can be used to describe the public space but is not as important as creating

the base graph model.

Table. 3 Extra Information Upload Service Technical Overview

Method POST

Endpoint /extrasUpload

Data Type text type

Return 200 OK – for accepted document

400 Bad Request – for unaccepted document

Scope Upload extra information document representing the

additional data (i.e. locomotory difficulty) about the

public space to the platform.

Path Generation Services are services that help the end user retrieve the most important aspect of

this platform, which is the navigation and orientation information that can be used effectively in

the real world. Path Generation Services contain 3 core services: Route Service, Directions

Service, Map Service.

The aim of the Route Service is to take the input of the user under a JSON format that contains the

start line, the finish line, and any optional policies opted by the end user. The technical definition

of the Route Service is found in Table 4.

38

Table. 4 Route Service Technical Overview

Method GET

Endpoint /route

Data Type JSON type

Return 200 OK – route between start line and finish line

Scope Provide the user an ordered sequential route. Containing

start line, ordered intermediary points, finish line.

Directions Service technical definition is described in Table 5. The aim of the Directions Service

is to provide the user with syntactic directions to follow the ordered sequential route provided by

the Route Service.

Table 5. Directions Service Technical Overview

Method GET

Endpoint /directions

Data Type JSON type with Route Service return

Return 200 OK – route between start line and finish line with

syntactic directions

Scope Provide the user an ordered sequential route with syntactic

directions.

Map Service technical definition is described in Table 6. The aim of the Map Service is to provide

the user with visual maps that can be followed to reach the destination.

Table 6. Map Service Technical Overview

Method GET

Endpoint /map

Data Type JSON type with Route Service return

Return 200 OK – visual map with route drawn between start line

and finish line

Scope Provide the user visual map with the route the user must

take.

Resource Management Services are services used to maintain the resources of the platform, such

as nodes of the graph or policies. Thus, Resource Management Services contain 2 core services,

Graph Resource Management Service and Policy Management Service.

The technical definition of Graph Resource Management Service is described in Table 7. The input

for this service is a node that needs maintenance.

39

Table 7. Graph Resource Management Service Technical Overview

Method POST

Endpoint /graph

Data Type JSON type with resource to change

Return 200 OK – if the resource was changed

400 Bad Request – if the resource was not found

Scope Provide the administrator the possibility to update small

details regarding the graph model.

The technical definition of Policy Management Service is described in Table 8. The scope of the

Policy Management Service is to add and change policies in the platform.

Table 8. Policy Management Service Technical Overview

Method POST

Endpoint /policy

Data Type JSON type with policy to change or create

Return 200 OK – if the policy was changed or created

400 Bad Request – if the policy was not found

Scope Provide the administrator the possibility to create and

maintain policies in the platform.

5.5.3 Recommendation system
The end goal of the platform is to offer the end users the ability to help themselves with the

decision-making process. The issue we are approaching in this thesis implies that an end-user is

faced with the unknown. To give some examples, either the user does not know how to reach a

destination, or what route is the safest. This aspect prevents the user to know upfront what her or

his options are to orientate. Therefore, when the platform offers the output for the navigation

service call, it has to present it in a clear, easy-to-follow, easy-to-trust manner. Trust is an impactful

element in the experience with any system, especially one that supports decision-making and

recommendations [53].

In this platform case, from the technical point of view, the service that the end user is most

interested in is the navigation service. The navigation service runs on top of the underlying graph

model of the public space. The navigation service also updates the weights of the underlying graph

based on the policies user invokes. From the user experience point of view, the orientation could

be overwhelming if she/he is new in that public space. For this issue, we use the visual maps the

administrator used in the bootstrap process, visual maps that are connected to the nodes that the

navigation service (via a recommendation system) uses and provides back to the user in the form

of indications. On top of these visual maps, the recommendation system draws arrows from the

start to the next intermediary position, then to the next intermediary position, and so on until the

finish position.

40

If the visual map has extensive details like the name of the architectural features, the user can use

them to find out that she/he is on the right path, also the user is syntactically given text instructions

with details like “turn left”, “turn right”, “go ahead”, etc.

Textual recommendations. Figure 9 displays the user interface for a navigation service call from

room ED003 to room ED012 in a proof-of-concept application created for our thesis scope for the

ED building of the Faculty of Automatic Control and Computers from the University Politehnica

of Bucharest. Figure 10 gives the output of the navigation service to the user in text format with

syntactic details, for example “from room ED 003”, “go ahead on”, or “go right on”, etc. These

details help the user to orientate and have a general direction for traversing the public space if

some indications in the real world (like room names) are missing.

Visual recommendations. Figure 10 displays a route inside the ED building of the Faculty of

Automatic Control and Computers from the University Politehnica of Bucharest that is provided

to the end-user that requested details in Figure 9. This kind of visual map with red arrows are

provided to the user when she/he calls the navigation service.

Figure 9. Developed User Interface with navigation details.

41

Figure 10. Developed visual map with route inside a real public space.

6 Evaluation and Validation of the Integrated

Orientation and Accessibility Services

In this section we discuss how we conducted verification and validation for our platform. We

discuss the evaluation method we used for this orientation and accessibility platform, discussing

what computational resources we used and what cases we chose for the validation. We discuss

results for the validation platform (set up for the Faculty of Automatic Control and Computers),

the algorithms we used, performance and visual experience for the end user. We discuss the results

and how we can assess what it would be different in other real-life-scenarios.

6.1 Evaluation Method

The development of these routing services relies on the Service-Oriented Architecture (SOA) and

the webservices are based on a RESTful approach. The administrators can access an interface to

42

map the real-world resource objects (that represent points of interest, i.e., physical locations that

are important for the public space) to the computational ones inside the graph. We refer to these

computational objects as resources, which are dynamic objects that can be interrogated and

updated, but they represent a real-world object at the same time. It is first important to establish a

general-purpose lightweight graph model, in order to have the option to easily adapt the resources

in the future. This general-purpose graph operates with concepts such as resources and

dependencies (nodes and vertexes, respectively). The resources need to have the possibility to

evolve in time and provide information to the stakeholders. The configuration provides resources

that support multiple properties, based on all stakeholders’ needs (policies). We shifted from a

standalone cost (which in the end would be a particular value stored in a database) to a cost

integrated in the resource properties to store it with other properties a physical resource might have

in a database, and to expose it as a resource on REST webservices. The connection data remain

unaffected.

6.1.1 Performance evaluation
For the testing scope, we modeled a building in our faculty with the method described in Chapter

5. The resulted graph contains 107 nodes and 338 connections between them. The performance

tests were executed for 1000, 2000, 3000, 4000, and 5000 Virtual Users (VUs); the selection of

these numbers of users are further discussed in Section 6.3.2 related to Real-Life Loading

Requirements. These VUs are spawned in the system with the total number desired for VUs,

divided by 10 per second. For example, when testing the system with 1000 VUs, the spawn factor

is 100 VUs/s, for 2000 VUs it is 200 VUs/s, and so on. After reaching the desired number of VUs

in the system, the test continues for 60 s, and after that the VUs are evicted from the system; thus,

the system does not receive requests any longer. The requests are sent to the system after a random

time, between 0.5 s and 2 s.

The tests were run on a machine with Intel(R) Core (TM) i5-1035G1 CPU and 8 GB RAM, to

evaluate whether it can deal with the stress from real users on a real-world architectural topology,

thus offering a reliable service. The users call the services to compute the route between two points,

with a random start and finish taken from the nodes list. This thesis presents the results for three

of the test cases, executed with the setup described above:

• The 0-policy routing.

• The 1-policy routing for Policy 2. Avoid crowded areas.

• The 2-policy routing for Policy 2. Avoid crowded areas + Policy 3. Avoid polluted areas.

6.2 Results

6.2.1 Example for the locomotory policy applied for a university campus
This section describes our approach to solving accessibility and navigation needs for public spaces,

considering possible locomotory constraints of users. It presents how to model a public space, how

to make this model extensible, how to integrate the policy concept, and how to provide information

to the end-user.

43

The test cases described in this thesis are indoor and intra-level navigation inside the ED building

(between two floors, one on top of the other). The purpose is to verify that the services provide the

user who does not opt for a locomotory policy with the shortest path toward the destination, and

the user who opted for a locomotory policy with the safest path, including warning messages about

the existing risks.

Let us consider two test cases, one with no policy selected and one with the locomotory policy.

Both have the same start and destination points sent to the path generation algorithm, to obtain a

comparison between the zero-policy and one-policy scenarios. The evaluation is based on:

• Criterion 1. The length of the recommended path

• Criterion 2. Whether or not there are edges that are impossible to access for a person with

disabilities, e.g., stairs without a ramp, or doors that are too narrow for wheelchairs.

• Criterion 3. The difficulty level from the point of view of persons with locomotory

impairments, due to ramps, heavy doors, or narrow spaces.

The chosen start point in our tests is room ED117, situated on the first floor of the ED building,

connected to Hallway B from the first floor. The chosen destination point in our test is room

ED012, situated on the ground floor of the ED building, connected to Hallway C on the ground

floor. Figure 11 displays the output of the path generation algorithm without the option for the

locomotory policy, and the output with the option for the locomotory policy.

Interpreting Figure 11, one observes that the directions provided to the user suggest him/her to

take the shortest path in the graph, corresponding in reality to the main staircase in ED, which is

closer to ED117. This solution responds to Criterion 1, but it fails to fulfill Criterion 2, therefore

it is not suitable for a pedestrian with locomotory impairments. Then, the navigation continues to

the destination on the ground floor of the building.

Interpreting Figure 11, note that the directions provided are beneficial for a person with locomotory

impairments; they guide the pedestrian on the safest way (Criterion 3) and not on the shortest one

(Criterion 1). In this case, the service returns a path including an elevator, which is more suited to

the person with locomotory issues, and Criterion 2 is fulfilled.

44

Figure 11. The path between ED117 and ED012. Comparison between 0-policy and locomotory

policy.

Nonetheless, information about the risks is provided; the risk of the elevator is “close space”, as

defined by the locomotory policy model.

6.2.2 Performance results
To better visualize how the services perform under different policies, Figure 12 depicts a graph

that shows the average response time against VUs for the three test cases mentioned. One can

notice that the best average response time curve belongs to the 0-policy test; for this one, the

services use the least computational effort. For the cases with 1-policy and 2-policy, the average

response time curves become higher with the number of users (e.g., for 4000 VUs and 5000 VUs);

however, even for this load, the differences between 0-policy, 1-policy, and 2-policy are under

1500ms, keeping the performance still acceptable for the end user.

45

Figure 12. Average response times for 0-policy vs 1-policy vs 2-policy.

Another factor that directly impacts the end user is the failure rate of the routing services. In Figure

13, one can observe failure rates (%) against the number of VUs calling the routing services for

the three test cases considered. The failure rates are in general under 4%, and higher for more VUs.

For different numbers of policies applied, the values of the failure rate are rather close to each

other, proving that the system is built to handle all cases in the same manner, without a strong

impact from VUs and the computational effort involved.

Figure 13. Failure rates for 0-policy vs 1-policy vs 2-policy.

46

6.3 Discussion

6.3.1 Results interpretation
To analyze if the obtained results indicate a good user experience of the routing services, let us

analyze Figure 12 and Figure 13. We notice that there are differences between 0-policy, 1-policy,

and 2-policy testing results but, in each case, the difference between 2000, 3000, 4000, and 5000

VUs is negligible regarding the response time; the failure rate is 0% for 1000 VUs, in the 0-policy

and 1-policy scenarios, and under 4% for a larger number of users in all scenarios. The requests

per second are substantially similar for all three test cases, assessing that the routing service can

handle these sorts of loads reliably. The response time indicator can be assessed in comparison

with a typical web page surfing, where 1 to 2 s to load the content represent the user preference,

and maximum 5 s to load the page is also considered acceptable, according to [54]. Our services

are more computing extensive than a simple web page retrieval, but they remain within the same

preferred values. A more modular software architecture would offer the possibility to scale

different modules. Scaling and distribution can offer better performance results, especially in

production [55]; moreover, the way to store the underlying graph impacts how one retrieves data

from it.

6.3.2 Real-life loading requirements
The number of virtual users used for testing was deducted from studying real-life requirements for

various universities, in order to test the application as closely as possible to reality.

Real-life requirements for a university campus may result from studying the admission rates in

each year from some well-known universities in the world. University of Cambridge had 3528

newcomers in 2019, 3465 in 2018, and 3480 in 2017, according to [56]. University of Oxford

admitted 3280 new students in 2019, 3309 in 2018, and 3270 in 2017 [57]. University College

London had 9145 newcomers in 2019, 6110 in 2018, and 5885 in 2017. Eidgenössische Technische

Hochschule Zürich had 3357 newcomers in 2020 [58]. Imperial College of London had 3045

freshmen in 2019, 2845 in 2018, and 2795 in 2017 [59]. University of Edinburgh received 7344

newcomers in 2019, 6346 in 2018, and 6221 in 2017 [60].

Then, let us also distribute the total number of students against the total possible number of years

needed to obtain a bachelor’s degree. In this manner, one can extrapolate that from a university

that has approximately 25,000 students, such as the one used for our tests, on a median span of 4

years for bachelor’s degree, 6000 new students come each year.

Considering that not everyone accesses the routing services at the same time, the selection of loads

used in our tests, i.e., the number of Virtual Users, follow the reality as closely as possible. For a

different kind of public space, such as a transportation hub, these requirements may differ.

47

7 Conclusion

To conclude, the problem of pedestrian routing generally covers the following aspects: how to

model the graph that corresponds to the real-world space, how to traverse the graph according to

various cost functions, and how to consider other specific concerns for certain categories of people.

It needs to map abstract mathematical knowledge to the concrete architectural elements, the

circumstances of the moment, and the different pedestrians’ needs. This thesis proposed a service-

oriented design that considers all these aspects for delivering customized routing directions in a

public space, by choosing from a set of policies. Two of them are driven by the community, by

considering the votes of other pedestrians walking in the same public space, or by avoiding the

places frequented by many other people. The other two are driven by data originating from multiple

sources, such as sensors for measuring air quality or external weather monitoring services. In

addition, a supplementary policy considers special needs for persons with reduced mobility.

When adding supplementary policies, the tests for up to 5000 Virtual Users showed a small

difference in response times (less than 1 s) and also in failure rates (less than 0.8%)—even if the

execution was not carried out in a high-performance environment. Therefore, providing such

software services, including the flexibility in choosing specific combinations of policies, is

accessible when managing a public space. The loading tests proved that the routing services can

support high loads of requests in a public space infrastructure modelled with a medium-sized

granularity.

Our recommendation when implementing this kind of platform is to start with the most suited

graph model that represents the real public space. The representation granularity matters, and it is

better to conduct an analysis beforehand, to determine what the specific points of interest are and

to set the edges connecting the points of approximately the same size as in reality. Furthermore, it

is recommended to determine the types of persons who use the public space. Lastly, our

recommendations for assuring the right performance in very large public spaces are in the direction

of an appropriate modularization strategy, deployment, and scaling, to offer even better

performance and user experience under high loads.

7.1 Summary of the Original Contributions

The original contributions presented in this thesis fall in the categories of navigation and

orientation services for smart public spaces. To summarize our original contributions, we mention

the questions that determined us to develop them.

A high-level view of personal contributions presented in this thesis are:

- Analysis of the state of the art for navigation and orientation software

- Definition of a set of scenarios for navigation and orientation inside a university campus

- Propose an approach for pedestrian routing based on multiple policies (crowd-avoiding,

locomotory constraints, community votes, avoid polluted areas, avoid unfavorable weather

conditions)

48

- Design the algorithm for policy-based graph routing

- Create REST services to manage a user-centric navigation platform

- Integrate external information to be integrated with the recommended navigation for the

end user

- Elaborate a model for an example of the university campus

- Configure the algorithms for accessibility

- Develop a service-oriented platform that integrates the services to manipulate models,

maps, and flexible navigation solutions

- Validate the proposed approach for a university campus

- Evaluate the performance

- Discuss the opportunity of applying this approach based on the study of existing campuses

needs

7.2 List of Publications

1. Ioan Damian, Anca Daniela Ionita, Restful Services for Orientation and Accessibility in

a University Campus; University Politehnica of Bucharest Scientific Bulletin (2021)–

Series C Rank: Q4 (Electrical Engineering and Computer Science); Impact factor 0.37;

WOS:000628640200003

2. Ioan Damian, Marian Lacatusu, Anca Daniela Ionita, Florin Lacatusu, Software Services

to Support Faculty Management in Times of Pandemic, 15th International Technology,

Education and Development Conference (INTED 2021) Proceedings (2021), pp. 4634-

4639, IATED Digital Library, doi: 10.21125/inted.2021.0943

3. Ioan Damian, Anca Daniela Ionita, Silvia Oana Anton, Community - and Data-Driven

Services for Multi-Policy Pedestrian Routing, Sensors (2022) Rank: Q2 (Engineering,

Electrical & Electronic), Impact factor: 3.576, WOS: 000817661800001

4. Florin Lacatusu, Ioan Damian, Anca Daniela Ionita, Marian Lacatusu, Smart Building

Manager Software in Cloud, University Politehnica of Bucharest Scientific Bulletin

(2021)– Series C Rank: Q4 (Electrical Engineering and Computer Science); Impact factor

0.37; WOS: 000741473700003

5. Marian Lacatusu, Florin Lacatusu, Ioan Damian, Anca Daniela Ionita, Multicloud

Deployment to Support Remote Learning, 15th International Technology, Education and

Development Conference (INTED 2021) Proceedings (2021), pp. 4601-4606, IATED

Digital Library, doi: 10.21125/inted.2021.0936

6. Ioan Damian, Marian Lacatusu, Florin Lacatusu, Anca Daniela Ionita, Web Services for

Guiding Persons with Locomotor Impairments in Public Spaces, 2022 26th International

Conference on System Theory, Control and Computing (ICSTCC), 2022, pp.639-644,

IEEE, INSPEC, doi:10.1109/ICSTCC55426.2022.9931861, WOS: 000889980600107

7. Marian Lacatusu, Anca Daniela Ionita, Florin Lacatusu and Ioan Damian, "Decision

support for multicloud deployment of a modeling environment," 2022 IEEE 18th

49

International Conference on Intelligent Computer Communication and Processing (ICCP),

Cluj-Napoca, Romania, 2022, pp. 247-251, doi: 10.1109/ICCP56966.2022.10053951

8. Florin Lacatusu, Anca Daniela Ionita, Marian Lacatusu, Ioan Damian and Daniela Saru,

"A Comparison of Cloud Edge Monitoring Solutions for a University Building," 2022

IEEE 18th International Conference on Intelligent Computer Communication and

Processing (ICCP), Cluj-Napoca, Romania, 2022, pp. 253-257, doi:

10.1109/ICCP56966.2022.10053978

7.3 Future Perspectives

To talk about future perspectives, we must start with the original contributions presented in this

thesis. These are the points we wish to evolve in the future, and we see it is possible at this moment

to do so.

The small footprint application is a strong point for our thesis, but the real benefit can only be

observed in production. This means that a platform with our design must be deployed to a Cloud

solution, thus a Cloud deployment strategy must be formulated.

A core feature of the platform remains the model related to the graph-like representation. This

feature is not meant to be changed for reasons we discussed above in the modelling chapters. A

future development is to represent the public space with components from CAD, for which other

modelling modules must be implemented. What could change is to add more navigation

algorithms, which may be general-purpose so they could be integrated with the policies of the

platform.

The policies aspect of the platform must not be changed, it is a core feature and the only way it

could integrate multiple interests of the users inside the platform. What could be extended concerns

the services that model the interaction with the reality and the storage and use inside the platform.

Another future perspective is to develop system-based push-notification that can help stakeholders

be more aware if a certain portion of the public space is no longer accessible, for example, if a

hallway was closed during the day, and maybe in the morning was still open.

A future perspective regarding the experience for the users is to integrate the platform with smart

device platforms. Smart devices like smartwatches are still components that could benefit from

technical advancement in the next years, and we believe that integration to these is an important

aspect, since they are particularly popular amongst younger generations.

50

References

1. Ioan Damian, Anca Daniela Ionita, Restful Services for Orientation and Accessibility in a

University Campus; University Politehnica of Bucharest Scientific Bulletin (2021)– Series

C (Electrical Engineering and Computer Science)

2. Florin Lacatusu, Ioan Damian, Anca Daniela Ionita, Marian Lacatusu, Smart Building

Manager Software in Cloud, University Politehnica of Bucharest Scientific Bulletin

(2021)– Series C (Electrical Engineering and Computer Science)

3. R. Drober, Campus Landscape – Functions, Forms, Features, John Wiley & Sons, 2000,

pp. 10-60

4. M. Hamblen, "Just what is a smart City?," 2015. [Online]. Available:

https://www.computerworld.com/article/2986403/just-what-is-a-smart-city.html.

[Accessed 17 December 2020]

5. T. Nam et al, "Conceptualizing smart city with dimensions of technology, people, and

institutions" in 12th Annual International Digital Government Research Conference:

Digital Government Innovation in Challenging Times, 2011.

6. S. Bendre et al, "Event Based Campus Navigation System" International Journal of

Computer Science and Information Technologies, vol. 7, no. 1, pp. 462-464, 2016.

7. D. Merode et al, "Smart Campus based on iBeacon Technology" in International

Symposium on Ambient Inteligence end Embedded System, 2015.

8. J. Yim et al, "Design and Implementation of a Smart Campus guide Android App", in Appl

Math Inf Sci, vol. 8, no. 1, pp.47-53, 2014.

9. L. Kwok, "A vision for the development of i-campus," Smart Learning Environments, vol.

2, pp. 1-12, 2015.

10. Calinescu, R.; Cámara, J.; Paterson, C. Socio-cyber-physical systems: Models,

opportunities, open challenges. In Proceedings of the 5th International Workshop on

Software Engineering for Smart Cyber-Physical Systems, SEsCPS@ICSE, Montreal, QC,

Canada, 28 May 2019; pp. 2–6.

11. Martensen, B. The Perception-Action Hierarchy and its Implementation Using Binons

(Binary Neurons). In Proceedings of the 10th Annual International Conference on

Biologically Inspired Cognitive Architectures (BICA), Seattle, WA, USA, 15–18 August

2019; pp. 489–500.

12. Ebrahim, A. People-Centric Smart Campus. In Proceedings of the 2021 International

Conference on Transport and Smart Cities (ICoTSC 2021), Frankfurt, Germany, 17

December 2021; pp. 264–267.

51

13. Sánchez, C.M.; Zella, M.; Capitán, J.; Marrón, P.J. From Perception to Navigation in

Environments with Persons: An Indoor Evaluation of the State of the Art. Sensors 2022,

22, 1191.

14. Coito, T.; Firme, B.; Martins, M.S.E.; Vieira, S.M.; Figueiredo, J.; Sousa, J.M.C.

Intelligent Sensors for Real-Time Decision-Making. Automation 2021, 2, 62–82.

15. Ioan Damian, Marian Lacatusu, Anca Daniela Ionita, Florin Lacatusu, Software Services

to Support Faculty Management in Times of Pandemic, 15th International Technology,

Education and Development Conference (INTED 2021) Proceedings (2021), pp. 4634-

4639, IATED Digital Library, doi: 10.21125/inted.2021.0943

16. Ioan Damian, Anca Daniela Ionita, Silvia Oana Anton, Community- and Data-Driven

Services for Multi-Policy Pedestrian Routing. Sensors. 2022, 22(12):4515. doi:

https://doi.org/10.3390/s22124515

17. Ioan Damian, Marian Lacatusu, Florin Lacatusu, Anca Daniela Ionita, Web Services for

Guiding Persons with Locomotor Impairments in Public Spaces, 2022 26th International

Conference on System Theory, Control and Computing (ICSTCC), 2022, pp.639-644,

IEEE, INSPEC, doi:10.1109/ICSTCC55426.2022.9931861

18. Ntakolia, C.; Iakovidis, D.K. A swarm intelligence graph-based pathfinding algorithm

(SIGPA) for multi-objective route planning. Comput. Oper. Res. 2021, 133, 105358.

19. Wang, D.; Chen, X.; Huang, H. A graph theory-based approach to route location in railway

interlocking. Comput. Ind. Eng. 2013, 66, 791–799.

20. Wu, G.; Atilla, I.; Tahsin, T.; Terziev, M.; Wang, L.C. Long-voyage route planning method

based on multi-scale visibility graph for autonomous ships. Ocean Eng. 2021, 219, 108242.

21. Kielar, P.M.; Biedermann, D.H.; Kneidl, A.; Borrmann, A. A unified pedestrian routing

model for graph-based wayfinding built on cognitive principles. Transp. A Transp. Sci.

2018, 14, 406–432.

22. Zhao, J.; Fang, Z. Research on Campus Bike Path Planning Scheme Evaluation Based on

TOPSIS Method: Wei’shui Campus Bike Path Planning as an Example. Procedia Eng.

2016, 137, 858–866.

23. Najjar, A.B.; Al-Issa, A.R.; Hosny, M. Dynamic indoor path planning for the visually

impaired. J. King Saud Univ. Comput. Inf. Sci. 2022, in press.

24. Zhou, Z.; Weibel, R.; Richter, K.-F.; Huang, H. HiVG: A hierarchical indoor visibility-

based graph for navigation guidance in multi-storey buildings. Comput. Environ. Urban

Syst. 2022, 93, 101751.

25. WRLD Environments Cases. Indoor Navigation. Benefits and Use Cases. Available online:

https://www.wrld3d.com/blog/indoor-navigation/ (accessed on 20 March 2021).

52

26. Wang, J.; Hu, A.; Liu, C.; Li, X. A Floor-Map-Aided WiFi/Pseudo-Odometry Integration

Algorithm for an Indoor Positioning System. Sensors 2015, 15, 7096–7124.

27. Prandi, C.; Delnevo, G.; Salomoni, P.; Mirri, S. On Supporting University Communities in

Indoor Wayfinding: An Inclusive Design Approach. Sensors 2021, 21, 3134.

28. Ferreira, J.C.; Resende, R.; Martinho, S. Beacons and BIM Models for Indoor Guidance

and Location. Sensors 2018, 18, 4374.

29. Mataloto, B.; Ferreira, J.C.; Resende, R.; Moura, R.; Luís, S. BIM in People2People and

Things2People Interactive Process. Sensors 2020, 20, 2982.

30. Lin, Y.-B.; Chou, S.-L. SpecTalk: Conforming IoT Implementations to Sensor

Specifications. Sensors 2021, 21, 5260.

31. Fortes, S.; Hidalgo-Triana, N.; Sánchez-La-Chica, J.-M.; García-Ceballos, M.-L.;

Cantizani-Estepa, J.; Pérez-Latorre, A.-V.; Baena, E.; Pineda, A.; Barrios-Corpa, J.;

García-Marín, A. Smart Tree: An Architectural, Greening and ICT Multidisciplinary

Approach to Smart Campus Environments. Sensors 2021, 21, 7202.

32. Tseng, K.-H.; Chung, M.-Y.; Chen, L.-H.; Chang, P.-Y. Green Smart Campus Monitoring

and Detection Using LoRa. Sensors 2021, 21, 6582.

33. Dasler, P.; Malik, S.; Mauriello, M.L. “Just Follow the Lights”: A Ubiquitous Framework

for Low-Cost, Mixed Fidelity Navigation in Indoor Built Environments. Int. J. Hum.-

Comput. Stud. 2021, 155, 102692.

34. Chou, T.-L.; ChanLin, L.-J. Augmented Reality Smartphone Environment Orientation

Application: A Case Study of the Fu-Jen University Mobile Campus Touring System.

Procedia-Soc. Behav. Sci. 2012, 46, 410–416.

35. Li, C.-Y.; Yin, J. A pedestrian-based model for simulating COVID-19 transmission on

college campus. Transp. A Transp. Sci. 2022, 1–25.

36. Zhao, M.; Zhou, C.; Chan, T.; Tu, C.; Liu, Y.; Yu, M. Assessment of COVID-19 aerosol

transmission in a university campus food environment using a numerical method. Geosci.

Front. 2022, 101353.

37. Muller, K.; Muller, P.A. Mathematical modelling of the spread of COVID-19 on a

university campus. Infect. Dis. Model. 2021, 6, 1025–1045.

38. Bartolucci, A.; Templeton, A.; Bernardini, G. How distant? An experimental analysis of

students’ COVID-19 exposure and physical distancing in university buildings. Int. J.

Disaster Risk Reduct. 2022, 70, 102752.

39. von Seidlein, L.; Alabaster, G.; Deen, J.; Knudsen, J. Crowding has consequences:

Prevention and management of COVID-19 in informal urban settlements. Build. Environ.

2020, 188, 107472.

53

40. Polanco, L.D.; Siller, M. Crowd management COVID-19. Annu. Rev. Control 2021, 52,

465–478.

41. Geneletti, D.; Cortinovis, C.; Zardo, L. Simulating crowding of urban green areas to

manage access during lockdowns. Landsc. Urban Plan. 2022, 219, 104319.

42. T. Bidila, R.N. Pietraru, A.D Ionita, A. Olteanu “Monitor Indoor Air Quality to Assess the

Risk of COVID-19 Transmission” 23rd International Conference on Control Systems and

Computer Science Technologies, CSCS 2021 ; : 356-361, 2021.

43. Chen JW, Zhang J. “Comparing Text-based and Graphic User Interfaces for novice and

expert users.” AMIA Annu Symp Proc. 2007 Oct

44. Julian Keil, Dennis Edler, Lars Kuchinke, Frank Dickmann “Effects of visual map

complexity on the attentional processing of landmarks”. PLoS One 2020 March

45. Landman K. “Inclusive public space: rethinking practices of mitigation, adaptation, and

transformation”. Urban Des Int. 2020

46. Van Hoogdalem, H., Van Der Voordt, T. J. M., & Van Wegen, H.B.R. “Comparative

floorplan-analysis as a means to develop design guidelines.” Journal of Environmental

Psychology, 1985

47. Yu Li, Weijia Li, Yingying Yang, Qi Wang “Feedback and Direction Sources Influence

Navigation Decision Making on Experienced Routes”. Front. Psychol., September 2019

48. Hermann Bulf, Maria Dolores de Hevia, Valeria Gariboldi, Viola Macchi Cassia “Infants

learn better from left to right: a directional bias in infants’ sequence learning”. Sci Rep

2017

49. Chang, N. S., & Fu, K. S. “A relational database system for images.” Lecture Notes in

Computer Science, 1980

50. Mark Wallis, Frans Henskens, Michael Hannaford “A Distributed Content Storage Model

for Web Applications”. Conf. INTERNET 2010

51. da Fontoura Costa, L.; Oliveira, O.N., Jr.; Travieso, G.; Rodrigues, F.A.; Boas, P.R.V.;

Antiqueira, L. Analyzing and Modeling Real-World Phenomena with Complex Networks:

A Survey of Applications. Adv. Phys. 2011, 60, 329–412.

52. Bauer, V., & Heinemann, L. “Understanding API Usage to Support Informed Decision

Making in Software Maintenance.” 2012 16th European Conference on Software

Maintenance and Reengineering

53. Nunes, I., Jannach, D. A systematic review and taxonomy of explanations in decision

support and recommender systems. User Model User-Adap Inter 27, 393–444 (2017)

54. Bartuskova, A.; Krejcar, O. Loading Speed of Modern Websites and Reliability of Online

Speed Test Services. In Computational Collective Intelligence. Lecture Notes in Computer

54

Science; Núñez, M., Nguyen, N., Camacho, D., Trawiński, B., Eds.; Springer: Cham,

Switzerland, 2015; Volume 9330.

55. Alshinina, R.; Elleithy, K. Performance and Challenges of Service-Oriented Architecture

for Wireless Sensor Networks. Sensors 2017, 17, 536.

56. UCAS. End of Cycle 2016 Data Resources DR4_001_02 Main Scheme Acceptances by

Provider. Available online: https://www.ucas.com/data-and-analysis/ucas-undergraduate-

releases/ucas-undergraduate-end-cycle-data-resources/applicants-and-acceptances-

universities-and-colleges-2016

57. University of Oxford. Annual Admissions Statistical Report: May 2020. Available online:

https://www.ox.ac.uk/sites/files/oxford/AnnualAdmissionsStatisticalReport2021.pdf

58. UCAS. 2020 Entry Provider-Level End of Cycle Data Resources. Available online:

https://www.ucas.com/data-and-analysis/undergraduate-statistics-and-reports/ucas-

undergraduate-end-cycle-data-resources-2020/2020-entry-provider-level-end-cycle-data-

resources

59. ETH. ETH in Figures. Available online: https://ethz.ch/en/the-eth-zurich/portrait/eth-

zurich-in-figures.html

60. University of Edinburgh. Undergraduate Admissions Statistics. Available online:

https://www.ed.ac.uk/student-recruitment/admissions-advice/admissions-statistics

