

PhD Thesis Summary

 Securing the IoT infrastructure through blockchain

solutions

Florin Răstoceanu

 Thesis advisor:

Prof. PhD. eng. Răzvan-Victor Rughiniș

BUCHAREST

2023

UNIVERSITY POLITEHNICA OF BUCHAREST
FACULTY OF AUTOMATIC CONTROL AND

COMPUTERS

Contents
Abstract .. 2

1. Introduction .. 3

1.1. Motivation .. 3

1.2. Objectives .. 4

2. IoT infrastructure security.. 5

2.1. Cybersecurity areas in IoT .. 5

2.2. Security architectures specific to IoT infrastructures ... 6

2.3. Cryptographic key management ... 7

2.4. Cryptographic key generation methods - random number generators 7

2.5. Lightweight cryptographic algorithms .. 8

2.6. Cryptographic management for security protocols used in IoT...................................... 9

2.7. Access and identity management .. 9

2.7.1. Authentication methods ... 9

2.7.2. Authorisation methods ... 10

2.7.3. Classification of identity management systems ... 10

2.8. Applicability of blockchain technology in IoT ... 10

2.8.1. Security aspects of blockchain technology .. 10

2.8.2. Blockchain applications in IoT .. 12

3. Blockchain solutions for IoT security .. 12

3.1. Analysis of the possible use of blockchain technology in IoT 13

3.2. IoT- BC integration solution ... 13

3.2.1. Architectural features of fog computing technology ... 13

3.2.2. Securing a fog computing architecture using BC .. 14

3.2.3. Description of the proposed architecture ... 14

3.3. Cryptographic key negotiation protocol for an IoT-BC architecture 16

3.3.1. Proposed solution ... 16

3.3.2. Solution analysis .. 18

3.3.2.1. Security analysis ... 18

3.3.2.2. Performance analysis.. 18

3.4. Integration of IoT nodes into BC using FPGA ... 19

3.4.1. Sensor node implementation solution using FPGA for integration with BC 19

3.4.2. Experiments and results ... 21

4. Entropy source for use in IoT applications .. 23

4.1. Entropy source with sensor data ... 23

1

4.2. Entropy source analysis, testing and validation .. 23

4.2.1. Entropy estimation methodology ... 23

4.2.2 Entropy source analysis, testing and validation methodology 24

4.2.2.1. Noise source analysis .. 25

4.2.2.2. Entropy source stability analysis .. 28

4.2.2.3. Resistance to attacks ... 31

4.2.2.4. Entropy source performance analysis .. 33

5. Random number generator for use in IoT applications ... 35

5.1. The proposed solution ... 35

5.2. Analysis and evaluation of the proposed solution .. 37

5.2.1. Security analysis .. 37

5.2.2. Efficiency analysis ... 38

6. Conclusions .. 41

Bibliography .. 42

2

Abstract

The Internet of Things (IoT) is constantly progressing, continuously influencing the

quality of our lifes through a multitude of useful and easy-to-use applications, but at the same

time, exposing our personal data to significant security threats. The specificity of IoT

architectures, which foresee the interconnection between classic computer networks and living

beings, requires the commitment to an increased degree of security. This is more difficult to

achieve due to IoT architectures’ specific aspects, such as the heterogeneity of devices or the

limited resources they have available. The need for security is noteworthy, as cyber-attacks

targeting IoT devices increased exponentially latterly.

In this thesis I propose a series of solutions aiming at improving security in IoT

infrastructures. Basic security services such as confidentiality, integrity, authentication and

non-repudiation can be implemented using cryptographic protocols and mechanisms. They can

provide the desired degree of security only if they use cryptographic keys and random input

parameters. Considering these aspects, but also the specificity of the IoT environment, I

approach the issue of security on several levels.

First, I identified ways to integrate blockchain technology with an IoT architecture to

provide support for the implementation of security services. The use of IoT nodes, that also

provide specific blockchain functionalities, was analyzed from the point of view of resources

and costs. In this sense, I propose the usage of IoT nodes within a fog computing architecture

as blockchain nodes with functionalities adapted to the available resources and the

implementation of IoT nodes using two types of FPGA architectures.

The blockchain ledger is used as a source of trust in implementing a simple and secure

session key negotiation protocol. The solution provides increased security by using

cryptographically secure primitives. Taking into account the simplicity of the solution and the

selection of appropriate cryptographic functions, optimized power consumption is provided for

resource-constrained IoT devices.

The effectiveness of the cryptographic algorithms is closely related to the cryptographic

keys used, which must be random and cannot be deduced by potential attackers. The keys can

only be generated using properly evaluated random generators, with enhanced security and

efficiency features. Considering these aspects, I propose a random number generator solution

that uses a lightweight encryption algorithm and fulfills high security properties by re-

initializing the inputs with fresh entropy at each call.

The desired degree of unpredictability for the inputs of random number generator can

be achieved by using sources capable of providing an appropriate level of entropy. In this

respect, the entropy source must be stable, resistant to attacks and efficient to be used in IoT

environments. The solution proposed in this thesis uses randomness generated by motion

sensors. In this way, resources already existing in IoT platforms are used to ensure efficiency.

Using an original and comprehensive analysis methodology for the source of entropy in terms

of noise acquisition method, stability and attack resistance, I have validated the entropy source

to be applied in IoT applications using motion sensors.

The solutions proposed in this thesis can ensure the protection of data transmitted in

IoT environments by using the blockchain ledger as a trust anchor within a key establishment

protocol and secure mechanisms to generate random numbers and entropy. Proven power

efficiency through platform-specific implementations is qualifying these solutions as fitting in

IoT applications.

3

1. Introduction

The Internet of Things (IoT) is spreading fast and is increasingly present in our lives. A

thing can be a smart device (smart watch, printer, fridge, washing machine, car, drone, smart

home, smart lock, etc), an implant that monitors and regulates a person's heartbeat or blood

sugar levels, or a smart chip implanted in an animal on a farm. Something can be considered

part of the IoT if it is connected to a network and has the ability to exchange data with other

components in the system [1]. Through the IoT infrastructure, using sensors and actuators a

connection is made between the Internet, seen as a global network of computers, and other

devices with computer addresses, the natural environment, represented by people, animals or

elements in nature [2].

IoT infrastructure involves interconnecting computer networks with living things or

elements in nature. Thus, risks in the cyber environment are transferred to the latter, bringing

much more serious and harder damages. Ensuring security in such systems is all the more

important as the adoption of this technology in our lives is taking place at an increasing pace.

According to www.statista.com [3], in 2020 there were approximately 9.7 billion active IoT

devices and the number is expected to triple in ten years to 29.4 billion. On the other hand,

cyber-attacks targeting IoT devices have increased alarmingly recently. For example,

Symantec reported a 600% increase in attacks from 2016 to 2017 [4], and in the first half of

2021, Kaspersky reported 1.5 billion attacks deployed against IoT devices.

1.1. Motivation

Ensuring security in such a diverse and complex environment is fraught with many issues

specific to IoT devices. First and foremost, this system is highly heterogeneous. There are a

multitude of devices on the market today that differ in operating systems, network interfaces,

protocols used, security mechanisms and functions implemented. To address these issues, new

technologies must be identified that build on IoT security architectures. As specified in the

National Institute of Standards and Technology (NIST) report on cybersecurity standardization

for IoT [1], blockchain (BC) technology has significant potential in this area. Providing security

in a decentralised way offers certain advantages to the IoT environment compared to traditional

solutions relying on Public Key Infrastructure (PKI). Using blockchain technology can turn

certain disadvantages into advantages. Thus, the large number of IoT devices can be beneficial

to ensure better decentralisation and increase trust in the deployed solution, but it can also

provide high availability by ensuring a sufficient number of entities to validate transactions.

The immutability feature can provide the possibility to store data that cannot be modified,

which can be very useful for event auditing functions. Even the heterogeneous nature of IoT

infrastructures can be assimilated, as blockchain technology only needs an address and the

ability to communicate in peer-to-peer networks.

On the other hand, with few exceptions, developers are focused on ensuring the

interconnectivity of devices and much less on ensuring their security. This is difficult to achieve

considering that many of them have low processing and storage capacity or no permanent

4

power supply, running on battery power. In this case, the implementation of classical

cryptography is almost impossible to achieve and solutions for cryptographic algorithms,

protocols and mechanisms adapted to resource-constrained devices need to be found.

Cryptography is used to provide basic security services such as confidentiality, integrity,

authentication and non-repudiation. To ensure their robustness and resistance to different types

of attacks, the whole security infrastructure must be considered. Figure 1.1 shows all its

elements.

1.2. Objectives

The aim of the thesis is to identify solutions for providing security in IoT infrastructures.

This objective can be achieved on several levels, given the security service implementation

flow as shown in Figure 1.1 and the constraints specific to the IoT environment.

The first objective is to identify solutions for integrating blockchain technology into IoT

infrastructures, with the aim of providing secure and efficient methods to implement mutual

authentication and privacy services for communications between different IoT devices. This

objective can be achieved by:

- Identifying the optimal ways in which blockchain technology can support an IoT

infrastructure to bring benefits superior to classical solutions using PKI;

- Proposing a common IoT - BC architecture and optimising it in terms of resources

and costs;

- Identify optimal architectural solutions for hardware platforms used to deploy IoT

nodes, but which also provide functionality specific to BC nodes.

The second objective is to identify a simple and secure solution for a protocol used to

establish the encryption and authentication keys needed to secure communications between

IoT nodes. This objective can be achieved by:

- Ensuring compatibility with blockchain technology;

- Optimal integration with resource-constrained IoT devices;

- Optimising power consumption using appropriate cryptographic mechanisms and

functions;

Figure 1.1 Security services implementation flow

Entropy

source
Random number

generator

Random sequences

(cryptographic keys, seed,

nonce, random numbers)
Noise Source

Security

protocols

Cryptographic

algorithms

Confidentiality

Authentication

Integrity

Non-repudiation

Security

services

Trust root

5

- Ensuring a level of security that does not allow the compromise of the data being

transported.

The third objective is to identify a random number generator that provides the highest

degree of security but can be deployed on IoT devices with limited resources. This objective

can be achieved by:

- Identifying a solution that provides the highest degree of security, given the

randomness of the generated data and the cryptographic strength of the

deterministic component of the generator;

- Optimising the efficiency of the random number generator in terms of resources

consumed relative to the speed and volume of data generated.

The fourth objective is to identify an entropy source that can be deployed with minimal

resources on IoT devices, but which provides a enough entropy to be used in a cryptographic

context. This objective can be achieved by:

- Identifying an entropy source that uses as few resources as possible, possibly using

from existing resources on IoT nodes;

- Estimating the level of entropy generated using standardised and reliable

methodologies;

- Optimize the efficiency of the entropy source by optimal parameterization in

different operating cases;

- Applying an entropy source testing and evaluation methodology to analyze the

behavior of the entropy source in different use cases, over the long term, and its

resistance to different types of attacks.

2. IoT infrastructure security

In this chapter I have presented key issues related to the security of IoT infrastructures.

I have treated the issue from the point of view of the state of the art, presenting also theoretical

notions that define the concepts developed in the following chapters of the thesis.

 2.1. Cybersecurity areas in IoT

To ensure security in an IoT ecosystem, several aspects need to be considered according

to the NIST report on standardizing the IoT cybersecurity environment [1]. Among the most

important are the following:

 Cryptographic techniques implemented to ensure the protection of stored or

transmitted sensitive data. The biggest challenge here is the limited resources

specific to many IoT devices;

 Security assessment which aims to ensure the following: implementation of

security mechanisms in the IT system or product, performing security tests to

validate a certain level of security, applying universal metrics to measure the

strength of the implemented cryptographic mechanisms and functions;

6

 Physical security which aims to protect IoT devices against passive or intrusive

attacks designed to extract cryptographic keys or sensitive data. To prevent such

attacks, filters can be applied to the power supply or enclosures can be built that

do not allow radiation to be emitted outside. In [5] we conducted a study that

simulates and models the electromagnetic field of a sensor node enclosure.

 Security of hardware/software components by ensuring that they have no known

vulnerabilities;

 Identity and access management by ensuring discretionary access to data of

different entities represented by people, organizations, hardware devices,

software applications;

 Network security which ensures the secure management, operation and use of

data;

 Risk management of product development and delivery, which addresses issues

related to how to ensure that products are delivered to specification.

2.2. Security architectures specific to IoT infrastructures

Most scientific papers address security in close relation to system architecture.

Architectures presented in the literature are composed of 3, 4 or 5 levels.

The simpler architectures are presented on three basic levels: perception, network and

application. The perception level is present in any architecture and represents the connection

to the environment. It is made up of sensors and actuators embedded in the sensor node, which

has the ability to transmit the accumulated data to the next transport or network level. The

transport/network layers provide connectivity and message transmission to the other layers. On

the third layer run various applications that aggregate the accumulated sensor data and give it

a clear and precise purpose. Application maintenance, access control and software security

updates are performed at this level.

Additional layers have been introduced to better integrate the heterogeneous and complex

nature of IoT systems. Thus, after the transport layer, an additional layer has been added to act

as an intermediate processing layer for data before it is sent to the application layer. This can

be identified in the literature under different names: middleware or services. This layer

provides the interoperability and scalability needed to offer services to users without the

hardware component. Service management and database access are provided at this level.

The third type of IoT system architecture is the five-layer architecture. In such an

architecture, an additional layer is introduced above the application layer. In most papers it can

be identified by the name of business layer. This layer is responsible for managing the IoT

system as a whole, providing business models, graphs, structured data tables based on

information from the application layer. In another five-layer approach, the last layer is the user

interface.

7

2.3. Cryptographic key management

The security analysis of a cryptographic system assumes that the cryptographic

algorithms are known and that its strength lies in its ability to protect the cryptographic keys

used. In this sense, the use and protection of cryptographic keys throughout their lifecycle is as

important as the protection of sensitive data. The life cycle of cryptographic keys, shown in

Figure 2.1, comprises, depending on the use of the keys, the following stages: generation,

storage, transport, import, export, use and destruction or zeroization.

The ways in which key management systems can be implemented vary from case to

case. Symmetric keys must be in the possession of the correspondents. They can be distributed

electronically or manually using other methods of protection during transport. Distribution by

electronic methods requires the provision of confidentiality, integrity and authentication

services, which can be achieved using other cryptographic keys, which are often asymmetric

keys. These must also be distributed. In this case, distribution is achieved using a Public Key

Infrastructure (PKI). A PKI system is a centralised digital certificate management structure.

2.4. Cryptographic key generation methods - random number generators

According to NIST [6], a random number generator is a device or algorithm capable of

generating random sequences of bits that have the properties of being statistically independent

and uniformly distributed. Random number generators can be of two types: deterministic and

non-deterministic. Deterministic Random Number Generators (DRNGs) are built on an

algorithm that uses a secret initial random value, also called seed, to generate longer sequences

of random numbers. They are called pseudo-random number generators. Non-deterministic

random number generators (TRNGs) use entropy sources, based on noise sources obtained

from random physical phenomena or random events.

Zeroizare

Usage

Storage

Export

Transport

Import

Generation

Random number

generators

Physical overwrite/

destroy storage media

Cryptographic algorithms

Encrypted /protected by

zeroization mechanism

Electronic

(encrypted format)

/Manual

Figure 2.1 Cryptographic keys life cycle

8

 While non-deterministic sources can generate random numbers with maximum entropy,

they have a low generation speed relative to the needs of most cryptographic applications. For

this reason, deterministic generators are used because they can generate at much higher speeds.

They use inputs from noise sources, which can be entropy sources or non-deterministic

generators.

Entropy sources consist of a noise source, a conditional function, which may be

optional, and a suite of health tests. The noise source is the element that generates the

randomness of the entropy source. It contains the elements that give non-deterministic

character to the data generated by the entropy source. Noise sources can be classified into two

types: software and hardware. Software noise derives its randomness from the randomness of

various processes and events specific to operating systems. These types of noise sources require

operating systems where many processes are running or where operator intervention is

frequent. Since operator activity on IoT devices is low, processes are limited due to power

consumption or there are no operating systems. These solutions are not suitable for use in IoT.

Typically, noise sources are based on physical phenomena that occur randomly. Existing

solutions use diodes, FPGA circuits or the randomness of some IoT sensors [7][8].

2.5. Lightweight cryptographic algorithms

 The IoT infrastructure contains a multitude of devices that have limited resources, such

as RFID devices or different types of sensors. These devices allocate very few resources to

ensuring data security. This has created a need to develop cryptographic algorithms that

maintain a sufficient level of security but do not use too many resources. In conclusion, an

implementation is a trade-off between security, performance and cost. An algorithm with good

performance and low cost will be exposed to side-channel attacks. If measures are implemented

to prevent these types of attacks, costs increase and performance decreases. The role of

lightweight algorithms is to find the optimal solution to achieve all these goals in a satisfactory

way. Depending on the implementation mode, software or hardware, efficiency can be evaluated

differently.

 For hardware implementations, memory consumption and the size of the

implementation, expressed in the number of ports used, matter. This should be as small as

possible. Other important parameters are:

 processing speed, expressed as the number of bytes processed per second;

 latency, which measures the time elapsed from setting up the circuit to obtaining the

output sequences;

 power consumption measured in Watts.

 In the case of software implementations, important parameters are: RAM consumption,

which is the amount of memory required for an algorithm run, source code size, processing

speed and power consumption.

9

2.6. Cryptographic management for security protocols used in IoT

In this chapter, specific issues related to cryptographic key management for the

following protocols used in IoT infrastructures are presented:

 Bluetooth Low Energy (BLE) protocol;

 IEEE 802.15.4 protocol;

 Zigbee protocol;

 LoRaWAN protocol;

 Z-Wave protocol;

 IEEE 802.11 protocol - Wi-Fi Protected Access;

 TLS protocols - Transport Layer Security.

2.7. Access and identity management

IoT has introduced the concept that entities are interconnected. In order to achieve a secure

context in which they can communicate, a mechanism is first needed to identify them. Identity

refers to a set of information used to uniquely identify an entity in a given context. For example,

a person can be identified at work by a set of attributes such as name, job title, job type and in

an online shop by attributes such as name and bank account.

 An Identity and Access Management (IAM) system looks at the lifecycle of identities,

which includes operations to register, update and revoke them. Within a system, the IAM must

provide three security services: authentication, authorisation and audit. For example, in the case

of an operator seeking access to a service, the authentication operation consists of entering the

credentials for the claimed identity and the authorisation operation, which verifies the

credentials and makes the decision whether or not to grant access. All these operations are

monitored and recorded by the audit service.

2.7.1. Authentication methods

Authentication methods can be classified according to the credentials used. These can be

of several types, as follows:

 username or ID and a password;

 credentials that refer to "something" that is owned. In the case of individuals, that

"something" can be a unique password generator, a card, a token or a smartphone, . In

the case of IoT devices, that "something" refers to an internally stored secret on the

basis of which, using an algorithm, the authenticity of the invoked identity can be

proven;

 credentials that refer to "what you are". In the case of individuals, it is biometric data

and in the case of IoT devices it is PUFs (Physical Unclonable Function). These are

physical objects (semiconductor devices, microprocessors) that provide unique

responses that can be assimilated with fingerprints;

 context-related credentials. These are usually used in a complementary role. For

example, for people it can represent GPS location combined with time information and

10

for IoT devices, it can represent features related to geographical location and

communication technology.

2.7.2. Authorisation methods

Different types of authorisation methods are used in IoT systems, each with their

advantages and disadvantages. These can be classified according to the access control model.

 DAC (Discretionary Access Control) - the owner of the IoT device decides the access

rules that can restrict the time period access is granted, the operations available and the

entities that have access;

 MAC (Mandatory Access Control) - authorisation is granted gradually depending on

the type of access owned;

 RBAC (Role Based Access Control) - there are multiple roles to which permissions are

granted and each user is assigned one or more roles depending on their responsibilities;

 ABAC (Attribute-Based Access Control) - more flexibility in that instead of defining a

static role, it uses a set of policies to grant access;

 Cap-BAC (Capability-Based Access Control) is a token-based access control model

that stores access rights for users who own them.

Other conventional authorization methods are presented in: Lattice-Based Access Control,

Context-Based Access Control, Chinese Wall Lattice Model, Identity-Based Access Control.

2.7.3. Classification of identity management systems

Identity Management Systems (IMS) have evolved with technology. Five types of such

systems can now be identified [9]:

 Isolated;

 Centralized;

 Federated;

 User-centric;

 Self-sovereign.

2.8. Applicability of blockchain technology in IoT

2.8.1. Security aspects of blockchain technology

Blockchain technology has at its core a ledger database made up of chained blocks (see

Figure 2.2). The link between blocks is made using hash functions, in the sense that one block

contains the hash of the previous block in addition to time, transaction or date information.

Thanks to this design pattern, the immutability property is ensured, which means that in order

to change the information in one block, all blocks succeeding it will have to be changed. This

is not easy to achieve, as the register is stored in a distributed way by network members, who

11

continuously update it according to the rules of a consensus protocol. To be successful,

however, it requires the consensus of more than 50% of the network members.

 The consensus protocol is one of the key elements ensuring security in blockchain.

Based on it, network members validate the insertion of a block into the existing chain.

Currently, several types of such protocols have been proposed, each with its advantages and

disadvantages. They have the following characteristics:

- Proof of Work (PoW) - the most popular being used in Bitcoin and Ethereum. The

main idea of this protocol is to use computing power to validate the block that is to

be introduced. To do this, miners who are part of the users of the network try to

identify a number that, together with the actual data in the block, has a hash with

certain characteristics. This can be achieved by successive attempts. Computational

power is required to compute the respective hash function. Even though it offers a

high degree of security, this type of protocol is energy intensive;

- Proof of Stake (PoS). In this case, miners are chosen from among the network

members, who make available some of the virtual coins they hold. If they do not

validate correctly, they will lose the coins made available. This type of protocol will

soon be implemented in Ethereum and similar variants are used in other blockchains

such as Elrond;

- Proof of Capacity (PoC), where miners make a certain amount of storage capacity

available to the network, which proves a certain degree of interest in order for the

system to work correctly;

- Proof of Authority (PoA), which is based on the reputation of the miners selected

for validation.

 Another important aspect, which also influences security, is the type of blockchain.

Each blockchain has rules that can allow anyone to participate in the network or limit

participation only by permission. Depending on the application these two types can offer

Figure 2.2 Blockchain arhitecture

Header

Content

HASH bloc n-2

Nonce

Timestamp

HASH bloc n-1

Tranzactions

Block n-1

Block n

Header

Content

HASH bloc n-1

Nonce

Timestamp

HASH bloc n

Tranzactions

Header

Content

HASH bloc n

Nonce

Timestamp

HASH bloc n+1

Tranzactions

Block n+1

Bloc n

12

certain advantages. The first type allows unlimited access to the network, thus ensuring full

decentralisation and transparency. In this case there is no central authority and the anonymity

of participants is ensured. The second model is suitable for use in organisations where

anonymity of members is not required. This model offers only partial decentralisation which

may provide some security in case of an attack from outside. Due to the limited number of

participants this architecture offers higher speeds and increased scalability. It can also provide

better protection of the data stored in the registry since access is restricted.

2.8.2. Blockchain applications in IoT

The advantages of blockchain technology has allowed it to be used in applications in

many fields. In addition to the financial field, established through cryptocurrency applications,

other areas of interest are mentioned in [10], such as:

- cyber security;

- government applications;

- registration and management of property (houses, land) or valuables (cars, phones);

- identity management;

- reputation management system;

- intellectual property;

- fundraising;

- energy systems;

- IoT applications.

IoT applications are classified into several types: providing cyber protection in energy

systems, providing cyber protection in transportation systems, providing cyber protection in

aviation systems, food safety systems, smart homes, military applications such as IoBT

(Internet of Battle Things), access management system or public key management system..

3. Blockchain solutions for IoT security

This chapter presents some solutions for using blockchain technology to ensure IoT

security. After analysing the advantages and disadvantages of using blockchain technology in

IoT, two solutions for IoT integration with BC are proposed. The first solution presents a fog

computing architecture model, which integrates a blockchain to use its security properties in

order to achieve a trust relationship between network members. Using the blockchain for

storing identity keys, a simple and secure protocol for establishing session keys and

authentication is proposed. The solution is evaluated in terms of computational power and cost

and compared to a classical solution with TLS and PKI. The second solution proposes the use

of FPGA technology for IoT integration with BC. Thus, two FPGA architectures are proposed

to implement sensor nodes with the dual role of sensor nodes and BC nodes. The proposed

solutions are implemented on several FPGA circuit families with different power consumption

and resources.

13

3.1. Analysis of the possible use of blockchain technology in IoT

Ensuring security in IoT infrastructures requires appropriate technologies. Blockchain

technology has certain advantages that can qualify it for this purpose. The following are some

of its features that prove its integration into IoT infrastructure:

 Decentralisation offers the possibility that transactions are not validated by a

central entity, which could be overloaded in case of a large number of

transactions or in case of Denial of Service (DoS) attacks;

 Immutability - transactions stored in the BC ledger, cannot be modified. This

allows IoT devices to easily and securely verify stored data;

 Data resilience is ensured by the fact that nodes are in possession of a copy of

the blockchain database;

 Cryptographic support, as blockchain technology relies on functions that can

provide privacy, integrity and authentication services;

 Trust - blockchain can provide trust between network members without the need

for a central authority;

 Audit - blockchain technology offers the possibility to record transactions in the

ledger in a secure and immutable way, which can be viewed by all members of

the network.

 At the same time, the features of an IoT infrastructure are compatible with blockchain

technology. A large number of nodes are needed to ensure the best possible decentralisation,

which IoT infrastructures fulfil. Since a large number of nodes can be active in an IoT

infrastructure at any given point in time, this is an advantage for a blockchain infrastructure,

which needs entities to validate transactions.

On the other hand, integrating the two technologies also comes with certain challenges.

The blockchain technology requires certain resources that not all IoT nodes have (low

computing capacity, storage capacity and limited number of transactions).

At present, not all the problems that could arise when integrating the two technologies

are solved. The challenge is to find architectures that integrate the two technologies to take

advantage of the benefits that blockchain technology brings to security, but that mitigate as far

as possible the shortcomings of implementing blockchain in IoT.

3.2. IoT- BC integration solution

3.2.1. Architectural features of fog computing technology

IoT applications use data acquired from sensors. Most of the time the amount of data

collected by sensors is very large. Much of this data is not used directly and needs to be

processed. Since the devices through which the data is collected do not have enough computing

power, it was decided to collect the data in the cloud, where it is processed and distributed to

specific applications. Often, sensor nodes are distributed over a large geographical area or are

located in places where communication networks are not available to support the transfer of

14

large volumes of data. In these cases, long delays in data transfer or significant loss of

information can occur, which can adversely affect the quality of service. One of the solutions

that can solve these problems is to create an intermediate layer of devices between the sensor

nodes and the Cloud. This architecture is called fog computing. Fog computing is a

decentralised architecture, specific to IoT architectures, which carries part of the services

available in the Cloud to the edge of the network. This type of architecture has the advantage

of bringing specific computing resources from the Cloud close to where the data is acquired.

In this way, complex data processing algorithms or artificial intelligence can be used to

efficiently sort data on devices located close to where it is created. This improves efficiency by

reducing the amount of data transferred to the Cloud.

 In [11], NIST described this architecture as a cloud-based ecosystem in which fog

computing serves the final IoT devices. The architecture is built on four tiers. The first tier

consists of end IoT devices, represented by sensors and actuators. Data are collected by devices

in the next level, called mist. On this layer are various specialised sensor nodes that are

implemented using mainly microcontrollers or microcomputers. These have low computing

power. This layer is the link to the next layer - fog computing, which is made up of nodes with

much higher computing power, storage capacity and network resources than the devices on the

mist layer. These can be powerful network devices such as gateways, routers, or computers

with high computing power such as servers and mini data centres - cloudlets.

 3.2.2. Securing a fog computing architecture using BC

Blockchain technology has the resources to provide security services. Because it is built

on a decentralised infrastructure, it has the potential to provide security in a fog computing

architecture. Nodes that decide, based on a consensus protocol, which data is recorded in the

BC ledger, provide security in the BC. The larger the number of nodes and the more

geographically distributed they are over a larger area, the stronger the security provided by the

network. Such features can be provided by a fog computing architecture.

In current architectures, security is provided centrally through public key

infrastructures. In this way, a trusted entity issues - signs - digital certificates for all members

of the network. These digital certificates contain a pair of asymmetric keys that provide

cryptographic protection in different security services. There is uncertainty, however, whether

these systems are suitable for IoT infrastructures. A first argument would be that the very large

number of IoT devices could not be served promptly and efficiently by such an infrastructure.

Another argument is the processing capacity of some IoT devices, which do not support such

technology. This uncertainty is also fuelled by the fact that the PKI infrastructure is centralised

and therefore insufficiently transparent. Blockchain has the ability to solve these problems.

3.2.3. Description of the proposed architecture

The proposed solution integrating blockchain technology into a fog computing

architecture aims to provide a secure context for ensuring mutual authentication, confidentiality

services and integrity. The challenge here is to identify ways in which the two technologies can

15

be integrated in such a way as to bring benefits superior to traditional solutions using PKI. The

proposed architecture and the experimental results obtained have been published in the paper

[12].

The use of BC in a PKI infrastructure may encounter certain problems. The first

problem concerns the resources needed to provide the basic functions of the BC. Consensus

protocols such as PoW require significant computing power. Solutions to replace this protocol

with less power consuming ones do not fully solve the problem. Considerable power is also

required to provide communication capabilities between nodes. In the solution proposed in

Figure 3.1, the functions of the BC nodes are implemented on nodes specific to the fog

computing architecture, which have sufficient computing power. Thus, devices in the Cloud or

on the FOG layer are assigned the BC nodes that perform basic functions such as mining and

register storage. Resource-constrained FOG layer devices or MIST layer devices are assigned

functions such as validating or querying the BC ledger. Other nodes can participate in the BC

network as users, who have direct access to the blockchain or via a node with which it has

already established a trusted connection.

 To validate the proposed solution, we have implemented a smart contract through which

an IoT node can interact with the BC. The implementation and testing was performed using the

Remix IDE and Ganache environment, which simulates the Ethereum blockchain. The

functions implemented in the smart contract were as follows:

- IoT node registration - records information about an IoT node : device ID, identity

key and IP address;

- Modify IoT node - change IP address or identity key;

- Read IoT node information - read IP address or identity key;

Table 3.1 shows the costs of implementing the smart contract on the Ethereum

blockchain. From the results presented in the table, it can be seen that the highest costs are

required to create the contract in BC. The cost of registering a node is 10 cents and for

modification, the cost is reduced to half. For costs reading data from the BC are zero. The price

estimates shown in the table are based on the average price over the last year (16.05.2022 -

16.05.2023).

MIST nodes

Cloud

IoT nodes

FOG

nodes

BC users
Utilizatori BC

Simple BC nodes / BC users

Complete/Simple BC nodes

Complete BC nodes

Figure 3.1 Fog computing - blockchain architecture

16

Table 3.1 Smartcontract costs

Transaction type Ethereum

gas

Gas (gwei)

price

ETH ETH

price ($)

Price

($)

Contract creation 267.177 31,42 0,000267177 1.535,31 0,41

IoT node registration 65.672 31,42 0,000065672 1.535,31 0,10

IoT node

modification

29.472 31,42 0,000029472

1.535,31 0,05

The costs required to implement and maintain such a solution have been calculated for

1000 IoT devices and compared to traditional solutions with PKI certificates. For comparison,

we used the information available on the clickSSL.net website [13]. Table 3.2 shows the total

costs for the two solutions. In the case of the solution with BC, the costs of registering IoT

devices and the annual costs of replacing the encryption key are included. In the case of the

PKI solution, the costs of issuing digital certificates for IoT devices for different periods of

time are included.

Table 3.2 Costs comparison

Period Price 1 year ($) Price 3 years ($) Price 5 years ($)

Proposed solution 101,23 191,73 1236,03

PKI solution 14.000 36.000 50.000

3.3. Cryptographic key negotiation protocol for an IoT-BC architecture

3.3.1. Proposed solution

 The proposed solution uses distributed blockchain technology as a security anchor to

establish trust relationships between members of an IoT network and then, through message

exchanges, establishes encryption and authentication keys. Figure 3.2 shows the architecture

of the solution. An IoT node wishing to initiate a communication session with another node

needs its identity key. This identity key can be found in a blockchain where nodes have been

registered beforehand. The architecture presents two types of nodes. F-type IoT nodes, which

have enough resources to participate in the blockchain, will query the BC registry to find out

the identity key of the correspondent. These can be FOG or MIST type nodes with roles as

nodes with active functions in the BC or just users of the BC. The second type of nodes are N

nodes, which do not have sufficient resources to access the BC but use an F node to access the

BC ledger.

17

In order to ensure that the protocol generates session keys in the desired security

context, it is necessary to perform some operations beforehand. First the IoT nodes must be

registered in the blockchain. This can be done using a smart contract presented earlier. It must

contain the node's identity key and some information necessary to identify it: id, IP address,

etc. The steps required to register a node in the BC are as follows:

- The IoT node generates a pair of identity keys using the elliptic curve x25519;

- The IoT node calls a smart contract through which it registers the public part of

the identity key together with the necessary identification information in the BC.

This operation can also be performed by the owner of the IoT node as a BC user;

- Each node will be identified by a unique Id, which is the hash of the public

identity key, calculated with the SHA256 function;

- Each node of type N will receive by a secure method the identity key of the node

F to which it is assigned.

Depending on the type of nodes, the protocol has a different number of steps. In the

case of type N nodes, two more steps are added, in which it requests and receives from the

type F node, to which it is affiliated, the identity key of the correspondent. The cryptographic

functions used in the protocol are as follows:

- generation of authentication and encryption keys - HKDF function (key, salt). The

key represents the secret generated using the elliptic curve x25519 from the private

part of the sender's identity key and the public part of the receiver's key. The salt

represents a random number. To ensure that a different key is generated, each time

the salt will be different;

S
te

p
 1

Id
en

ti
ty

 N
b

 k
ey

 r
eq

u
es

t

S
te

p
 5

Id
en

ti
ty

 N
a

k
ey

 r
eq

u
es

t

S

tep
 2

Id

en
tity

 N
b

 k
ey

S
tep

 6

Id
en

tity
 N

a k
ey

Na

aa

 Step 3
 Communication initialisation

Blockchain

Nb

Step 6

Communication -answer

Fa

Fb

Figure 3.2 Architecture of the key negotiation protocol

18

- message encryption is performed with the AES cryptographic algorithm in CBC

mode with a key length of 32 bytes and an initialisation vector of 16 bytes;

- message authentication is performed with HMAC SHA 256 algorithm. Each

message is authenticated. The recipient will verify the authenticity of the message

upon receipt.

3.3.2. Solution analysis

3.3.2.1. Security analysis

All sensitive information that could provide opportunities for attacks is encrypted and

all messages are authenticated. The encryption and authentication keys used are different for

each individual message due to the use of a different and random salt when generating them.

Cryptographic operations are performed using strong and secure algorithms: AES 256 for

symmetric encryption, HMAC SHA 256 for integrity and authentication, HKDF for key and

secret generation and elliptic curve x25519 for asymmetric encryption.

3.3.2.2. Performance analysis

In order to highlight the low power consumption required to negotiate a session key

using the presented protocol, a comparison with TLS 1.2 and TLS 1.3 protocols has been made.

The implementation hasbeen performed on the B-L475E-IOT01A platform, developed by

STMicroelectronics..

Table 3.3 Energy consumption of cryptographic functions

Cryptographic function Energy consumed (Wh)

ECDH signing (32 bytes) 206,955

ECDH signature verification (32 bytes) 131,5872

x25519 secret generation 15,33168

x25519 key generation 15,22872

HMAC SHA256 (32 bytes) 0,0575316

SHA 256 (334 bytes) 0,074646

HKDF SHA256 0,177021

ENC AES CBC 128 (16 bytes) 0,01340352

DEC AES CBC 128 (16 bytes) 0,0132561

ENC AES GCM 128 (16 bytes) 0,0946737

DEC AES GCM 128 (16 bytes) 0,0815346

ENC AES CBC 256 (32 bytes) 0,0231984

DEC AES CBC 256 (32 bytes) 0,0229086

In my calculations I have only taken into account the cryptographic functions used.

Their implementation was done using the wolfSSL software library. The energy consumed was

calculated by multiplying the current, measured during the execution of each function, by the

time required to execute that function and by the supply voltage (5V). The microcontroller

current was measured on pin JP5 of the electronic board.

19

Table 3.3 shows the results obtained from the implementation of the cryptographic

functions used by the compared protocols. As can be seen from the table, the energy required

to execute the signature and signature verification functions is much higher than that required

for the encryption or hash calculation operations.

The energy required for the entire key generation process, corresponding to each

participating node, is shown in Table 3.4.

Table 3.4 Energy consumed during session key negotiation

Protocol Node Consumed energy (Wh)

TLS 1.2 Client/Server 647,82

TLS 1.3 Client/Server 740,88

Proposed

solution

Na 46,80

Nb 46,98

Fa 15,84

Fb 15,84

As can be seen, the proposed solution consumes much less energy than TLS protocols.

This is because it is much simpler than the TLS solution, which has been designed to cater for

much more diverse and complex situations. For low complexity IoT applications, the proposed

solution can provide a high degree of security using significantly less resources.

3.4. Integration of IoT nodes into BC using FPGA

3.4.1. Sensor node implementation solution using FPGA for integration with BC

In the study published in [14] we described a solution to implement a sensor node using

FPGA circuitry to be integrated into the BC. A node implemented with FGPA circuits can

provide communication interfaces with sensors but also with interfaces specific to a blockchain

node, thus fulfilling both roles.

Depending on the hardware resources of the FPGA circuit, the node can perform

various roles in the BC. The following will present two specific FPGA circuit architectures and

the specific functions they can perform.

 Classic FPGA architecture for an IoT sensor node

In the proposed architecture (Figure 3.3) all component blocks are implemented using

the logic gates provided by the FPGA. This architecture has the advantage that it is very flexible

and can adapt to the type and number of sensors it needs to serve, but can also have blockchain-

specific data processing blocks implemented. In this case, the best energy consumption can be

achieved for the implementation of these functionalities.

20

 FPGA SoC architecture for an IoT sensor node

This type of FPGA architecture has dedicated processing modules included in the

hardware-processing block. Only advanced circuit families such as Zynq-700, Zynq Ultra

Scale+, Cyclone V have architectures of this type. These circuits are part of the System on a

Chip (SoC) category that integrates processing units together with several types of controllers

and can be used to implement monitoring, memory and dedicated encryption modules. In order

to function properly, this block requires external RAM, which is energy intensive. These

advantages of SoC architectures greatly increase capacity and processing speed,

recommending them for applications requiring high throughput, high processing power and

data acquisition from many sensor nodes. Taking these aspects into account, it can be stated

that this architecture can be used for hybrid nodes integrating both BC node and IoT sensor

node functionality.

In the proposed architecture (Figure 3.3) the sensor interface is implemented as in the

previous version, using logic gates. The BC interface is implemented using dedicated blocks

in the hardware processing block. In this way, the interface is provided with the resources it

needs.

DATA BUS

BRAM

?

BC

Interface

SPI

I2C

UART

Communication

block (P2P)

BC operations

Sensor

node

interface

SPI

I2C

CAN

UART

ADC

Processing

block

DSP

Sensor data

processing

block

Memory

Controller

Controller

system

TEMAC

Figure 3.3 Classic FPGA architecture for a sensor node

21

 3.4.2. Experiments and results

Solutions for implementing IoT nodes using FPGA circuits were analyzed in the study

we published in [14]. The experiments were conducted in two stages. In the first stage I

implemented three of the most widely used communication blocks: SPI, I2C and TEMAC. The

aim of the experiment was to identify the resource requirements used to implement these blocks

needed for any IoT node. In this way, the resources available for implementing the other BC

specific functions can be calculated. In the second stage of the experiment, I have realized an

optimized implementation of the SHA256 function, intensively used for mining operations in

blockchain architectures using the PoW consensus protocol.

Table 3.5 shows the resources required to implement the most commonly used

communication modules expressed in Look-Up-Tables (LUTs). This information is very useful

in the process of designing an IoT node and selecting the type of FPGA circuit that will meet

the communication needs of the node.

Memory

Controller

Processing

block

BC Interface

D

A

T

A

B

U

S

M

U

X

Comms Controller

SPI

I2C

UART

Ethernet

Hardware processing block

DATA BUS

Sensor

node

interface

SPI

I2C

CAN

UART

ADC

 BC

Comms

block (P2P)

System

Controller

BC operations

block

Sensor data

processing

block

TEMAC

DSP BRAM

?

Figure 3.4 FPGA SoC architecture for a sensor node

22

Table 3.5 Communication block resources needed for implementation

Module LUTs

TEMAC 1256

SPI 164

I2C 216

In the second part of the experiments, we have made a runtime-optimized

implementation of the SHA 256 function. The SHA 256 module was implemented in 64 clocks

for a 512-bit input block, using only 1152 LUTs.

This implementation of the SHA 256 function was realized using clocks from several

FPGA families. Implementations were performed on both resource-constrained circuits and

circuits with multiple available resources within the same family.

From the results presented in Table 3.6 it can be deduced that circuits with very few

resources and low power consumption can be used for the implementation of the SHA 256

function at an acceptable speed. FPGA platforms containing Virtex 7 type circuits can be

intensively used for validation. In these cases, speeds close to 1 Tbit/s have been achieved. If

power consumption is important, an optimal variant can be chosen in terms of speed/power

ratio. In this case, the best results were obtained with the Artix 7 FPGA XC7A12T and the

Zynq 7000 FPGA SoC XC7Z007S.

Table 3.6 Results of SHA 256 implementation on different FPGA circuits

FPGA family Architecture

type

Available

LUTs

SHA256

cores

Maxim

frequency (MHz)

Speed

(Gbit/s)

Curent

Iccq(mA)

Spartan 6 –

XC6SLX9

FPGA 5720 3 69,46 1,66 4,9

Spartan 6 –

XC6SLX150T

FPGA 92152 78 69,46 43,44 63

Artix 7 – XC7A12T FPGA 8000 5 138,7 5,5 51

Artix 7 – XC7A200T FPGA 134600 115 138,7 127,6 268

Kintex 7 – XC7K70T FPGA 41000 34 151,5 41,2 208

Kintex 7 –

XC7K480T

FPGA 298600 257 151,5 311,4 840

Virtex 7 –

XC7V585T

FPGA 364200 314 196,1 492,6 1597

Virtex 7 –

XC7VX1140T

FPGA 712000 473 196,1 966,3 3698

Zynq 7000 –

XC7Z007S

FPGA SoC 14400 12 138,7 13,3 172

Zynq 7000 –

XC7Z020

FPGA SoC 53200 46 138,7 51,3 437

Zynq 7000 –

XC7Z030

FPGA SoC 76600 66 151,5 79,9 437

Zynq 7000 –

XC7Z100

FPGA SoC 277400 240 151,5 290,8 1095

23

4. Entropy source for use in IoT applications

In this chapter, I propose a model of an entropy source specific to the IoT environment,

which extracts its data from motion sensors. The proposed solution is subjected to a complex

testing and evaluation methodology, with the aim of identifying the level of entropy generated

in different usage scenarios, analyzing the stability of the source in the long term and in case

of passive and active attacks. It also sought to identify parameters for optimising the

performance of the entropy source in terms of power consumption and generation speed.

4.1. Entropy source with sensor data

One solution that can meet the specific requirements of an IoT platform is an entropy

source that extracts its noise from data collected from sensors. This solution can be

implemented on any sensor node. The only issues that need to be taken into account are the

sensor types and characteristics. Since it uses sensor data, it can be said that it mostly uses

resources already existing on the platform. Finally yet importantly, this solution provides full

access to the noise source that can be analysed in detail.

Figure 4.1 shows the sensor entropy source that I proposed in the paper [7]. In this

architecture, the noise source can retrieve data from the following motion sensors:

accelerometer, magnetometer and gyroscope. Following the analysis of the emitted entropy,

the least significant 8 bits of the sensor-generated sequences were chosen. These data are

converted to digital format and then processed using the SHA256 function. This is used to

concentrate the entropy and to smooth the output data. The entropy source is continuously

health-checked for errors.

4.2. Entropy source analysis, testing and validation

4.2.1. Entropy estimation methodology

The entropy estimation methodology of the proposed solution was analyzed based on

the NIST recommendations in [15]. It involves an initial estimate of the entropy of the noise

source and then an estimate of the output of the entropy source, using data collected

immediately after its restart. If the estimates obtained at restart are not less than half of the

Sensor

Physical

phenomenon
AD

converter

Raw data processing

block (SHA 256)

Health

tests

Figure 4.1 Entropy source architecture with sensors

24

originally estimated entropy value, the final entropy of the source will be the minimum of the

previously estimated values, i.e. Hinit - the initial entropy, Hline and Hcol the entropies

estimated from the data collected at restart. Entropy is estimated using minimum entropy.

 To estimate the initial Hinit entropy, 1,000,000 sequences collected directly from the

noise source are used. The length of the sequences are 8 bits. In the case of a motion sensor the

least significant bits provide based source the highest unpredictability.

Depending on the type of data the source can generate, entropy is evaluated differently.

For non-independent or uniformly distributed data the method with estimators is applied. This

method is also used for sensor-based entropy sources. Thus, the entropy of the collected data

is calculated using a number of 10 different estimators, which analyse different statistical

properties. Finally, the lowest entropy value obtained by the estimators is considered.

If the final entropy is not maximum, a conditioning function can be used (see Figure

4.2). For this purpose we used the SHA 256 function which computes a summary from a

number of sequences containing 512 bits of entropy. In this case the SHA 256 function acts as

an entropy concentrator. The number of sequences used at the input of the function is calculated

according to the number of entropy bits contained in a sequence.

4.2.2 Entropy source analysis, testing and validation methodology

The entropy source must be capable of providing a certain level of entropy under all

conditions of use. For this reason, the analysis of an entropy source has to take into account

multiple aspects related to the underlying physical phenomenon of the noise source and the

stability of the source over time and under different conditions of use. In the following, I will

present an original and comprehensive methodology for testing and validating sensor-based

entropy sources, based on the NIST recommendations in [15]. In Figure 4.3 a summary of the

methodology for motion sensor-based entropy source analysis and evaluation is presented.

[512/Ne]+1

sequences

256 bits

Ne bits

8 bit

Conditioning

function (SHA

256)

Figure 4.2 Entropy uniformization method

25

4.3.2.1. Noise source analysis

4.2.2.1. Noise source analysis

In the analysis of the noise source, we started from its construction model, presented in

Figure 4.4, trying to identify the influence of each element in the entropy value of the output

data.

o Physical phenomenon

The experiments were carried out using three different types of platforms to capture

five types of movement.

 Platform 1 is a B-L475E-IOT01A electronic board used as a sensor node for

IoT applications;

 Platform 2 consists of an Arduino UNO acquisition board and an MPU 9250

motion sensor, which contains an accelerometer, a gyroscope and a

magnetometer.

 Platform 3 uses the motion sensors from a mobile phone. In the experiments,

we captured data from the sensors while the sensors were subjected to five types

of motion.

The results of the experiments can be found in Table 4.1 for accelerometers in Table

4.2 for gyroscopes and in Table 4.3 for magnetometers. A few observations can be drawn from

the analysis of these results:

 in all situations the sensors generated entropy. The larger or faster the motion

applied to the accelerometer and gyroscope sensors, the higher the entropy

value;

 entropy is achieved even when no additional motion is applied to the sensors;

Figure 4.4 Noise source model

Sampling

frequency

Noise source

analysis

Purchasing

platform

Bandwidth

Physical

phenomenon

Measurement

range

Long-term

analysis

Restart

analysis

Entropy source

stability

Output data

Health tests

Resistance of the entropy

source to attacks

Noise source

Passive

attacks

Active

attacks

Entropy source performance

analysis

Power

consumption

Generation

speed

Figure 4.3 Entropy source analysis and assessment methodology

random data

Physical

phenomenon
Sensor

Analog to digital

converter
Microcontroller

26

 a repetitive motion does not negatively influence entropy, on the contrary it

achieves the best results.

Table 4.1 Influence of motion type on accelerometer entropy

 Movement

type

Platform

Static

(no movement)

Car on the

move

Rotation

Running

Walking

Platform 1 0,1997 0,7424 - - -

Platform 2 0,2210 0,6846 0,8544

Platform 3 - 0,5019 - 0,4021 0,2905

Table 4.2 Influence of motion type on gyroscope entropy

 Movement

type

Platform

Static

(no movement)

Car on the

move

Rotation

Running

Walking

Platform 1 0,0551 0,4147 - - -

Platform 2 0,1207 0,4348 0,8299 - -

Platform 3 - 0,3598 - 0,2942 0,2335

Table 4.3 Influence of motion type on magnetometer entropy

 Movement

type

Platform

Static

(no movement)

Car on the

move

Rotation

Platform 1 0,4368 0,5690 -

Platform 2 0,0025 0,0049 0,1566

o Measuring range and bandwidth

The second factor that can influence the entropy value is the configuration of the sensor

parameters used. For this purpose, the possibilities of parameterisation of motion sensors were

studied in detail and it was found that some parameters influence the entropy level and others

have no effect on it.

The results are presented in Table 4.4 for the accelerometer in Table 4.5 for the gyroscope

and in Table 4.6 for the magnetometer.

27

Table 4.4 Influence of measurement range and bandwidth on accelerometer entropy

 Measurement range

Bandwidth

2 g

4 g

8 g

3330 Hz 0,6438 0,5133 0,4194

417 Hz 0,4957 0,3831 0,3382

53 Hz 0,3049 0,2549 0,1904

Table 4.5 Influence of measurement range and bandwidth on gyroscope entropy

 Measurement range

Bandwidth

245 dps

500 dps

1000 dps

1250 Hz 0,3931 0,4337 0,3356

312 Hz 0,3401 0,2386 0,2118

22 Hz 0,2094 0,1736 0,1083

Table 4.6 Influence of measurement range on magnetometer entropy

Measurement range 4 Gauss 8 Gauss 12 Gauss

 0,4414 0,4137 0,3850

 From the results presented in Table 4.4, Table 4.5 and Table 4.6 it is obvious that the

entropy level decreases directly proportional to the value of the measurement range and

inversely proportional to the bandwidth.

o Sampling frequency

 The sampling frequency could be an element influencing the entropy value. To

determine this, sensor data were acquired at different sampling frequencies. The influence of

other factors on entropy values was isolated and tests were performed with only one platform.

No additional motion was applied to the sensors. The results are presented in Table 4.7 for the

accelerometer and in Table 4.8 for the gyroscope. The conclusion that emerge from these

results is that the sampling frequency does not influence the entropy value.

Table 4.7 Influence of sampling frequency on accelerometer entropy

 Sampling frequency/ Bandwidth Accelerometer

6660 Hz / 1666 Hz 0,6212

3330 Hz / 1666 Hz 0,6142

28

Table 4.8 Influence of sampling frequency on gyroscope entropy

 Sampling frequency/ Bandwidth Gyroscope

6660 Hz / 173 Hz 0,2278

3330 Hz / 172 Hz 0,2414

o Acquisition platform

Another element that could influence entropy is the acquisition platform. Even if the same

type of platform is used, some elements of the platform could introduce additional noise or

measurement errors, which can influence the entropy value one way or the other. To investigate

this, we compared the entropy values extracted from two identical MPU9250 sensors connected

to three Arduino UNO acquisition boards and one Arduino Atmega 256 platform. Tests were

performed for two of the sensors: the accelerometer and the gyroscope. The results are

presented in Table 4.9 for the accelerometer and in Table 4.10 for the gyroscope. Comparing

the entropy values obtained in all the cases analysed, it can be seen that in the case of the

accelerometer the entropy values are very close and in the case of the gyroscope there are small

but insignificant variations.

Table 4.9 Influence of acquisition platform on accelerometer entropy

Acquisition platform MPU9250 Sensor - 1 MPU9250 Sensor - 2

Arduino UNO - board 1 0,4618 0,4626

Arduino UNO - board 2 0,4660 0,4618

Arduino UNO - board 3 0,4671 0,4671

Atmega 256 0,4670 0,4571

Table 4.10 Influence of acquisition platform on gyroscope entropy

Acquisition platform MPU9250 Sensor - 1 MPU9250 Sensor - 2

Arduino UNO - board 1 0,2690 0,2708

Arduino UNO - board 2 0,2371 0,2400

Arduino UNO - board 3 0,2513 0,2586

Arduino Atmega 256 0,2258 0,2387

4.2.2.2. Entropy source stability analysis

o Long-term analysis

More important than the amount of entropy source can generate is the ability to

maintain this level of entropy over time. This requires analysing the level of entropy generated

over time and counting the number of failures that result from health tests. In addition, the

29

behaviour of the source in different operating modes can provide information on how the

entropy source is implemented and used.

 In Table 4.11 for the accelerometer, in Table 4.12 for the gyroscope and in Table 4.13

for the magnetometer the minimum, maximum and average entropy values calculated for each

case are shown. The standard deviation is also calculated to show variations in entropy values

over a long time. From the values presented, it can be seen that, the entropy values in all the

analysed cases, do not vary very much. The standard deviation is of the order of 10-2.

Table 4.11 Long-term entropy analysis for the accelerometer

 Stability analysis

parameter

Platform/movement type

Average

entropy

value

Minimum

value

entropy

Maximum

entropy

value

Standard

deviation

Number

of sets

Platform 1-no movement 0,6499 0,6379 0,6638 0,0058 100

Platform 1- moving car 0,8480 0,8076 0,8878 0,0263 10

Platform 2-no movement 0,4732 0,4503 0,5086 0,0139 30

Table 4.12 Long-term entropy analysis for the gyroscope

 Stability analysis

parameter

Platform/movement type

Average

entropy

value

Minimum

value

entropy

Maximum

entropy

value

Standard

deviation

Number

of sets

Platform 1-no movement 0,4154 0,3427 0,4619 0,0222 100

Platform 1- moving car 0,4295 0,3564 0,5132 0,0475 10

Platform 2-no movement 0,2347 0,1840 0,2745 0,0287 30

Table 4.13 Long-term entropy analysis for the magnetometer

 Stability analysis

parameter

Platform/movement type

Average

entropy

value

Minimum

value

entropy

Maximum

entropy

value

Standard

deviation

Number

of sets

Platform 1-no movement 0,4411 0,4189 0,4658 0,0108 100

Platform 1- moving car 0,5521 0,4964 0,5970 0,0268 10

o Restart analysis

 Entropy sources may operate differently immediately after restart compared to

operation in a normal regime.

In order to determine the behavior of the motion sensor-based entropy source on restart,

we restarted it 1,000 times, each time collecting 1,000 sequences from each sensor. After each

stage of data collection, the source was shut down for a 15-minute interval, the time required

to simulate the platform returning to a resting state. From the collected data, a matrix of Mi,j

30

with 1,000 rows and 1,000 columns was created. Concatenating the data by rows and then by

columns creates two data sets.

For the data collected, health tests were validated using the software library in [16]. In

Table 4.14 the entropy values obtained for the two datasets are presented. It can be seen that

the entropy values obtained at restart are higher than those obtained in normal operation, thus

it can be stated that the entropy source is not negatively influenced by the values collected at

restart.

Table 4.14 Restart analysis

Sensor type Entropy in normal

operation

Entropy at restart -

concatenated data

set on lines

Entropy on restart -

concatenated data set

on columns

Accelerometer 0,63 0,90 0,88

Gyroscope 0,34 0,47 0,50

Magnetometer 0,41 0,46 0,43

o Health tests

The solution presented in this thesis implements two continuous health tests presented in

[15]: the repetition test and the adaptive proportions test.

To analyse the stability of the entropy source we estimated over a long period the number

of errors reported by the two health tests mentioned above. The conclusions of this analysis are

important to decide whether the proposed solution is suitable for use in real applications. If the

number of errors were very frequent, the availability of the source would be reduced, as would

the speed of generation. To support this analysis, we counted the errors reported by the health

tests for different values of probability α. In order to obtain the best possible accuracy of the

results, the experiments were performed using a large number of sequences. 100,000,000

sequences were extracted from each of the three sensors: accelerometer, gyroscope and

magnetometer. The results are presented in Table 4.15 for the repetition test and in Table 4.16

for the adaptive proportions test.

Table 4.15 Repetition test

Sensor

α

Accelerometer Gyroscope Magnetometer

C Number of

errors

C Number of

errors

C Number of

errors

2-20 4 10 8 0 7 0

2-15 3 1075 6 2 5 10

31

Table 4.16 Adaptive proportions test

Sensor

 α

Accelerometer Gyroscope Magnetometer

C Number of

errors

C Number of

errors

C Number of

errors

2-20 38 0 120 0 89 0

2-10 30 0 105 0 76 0

2-5 24 0 94 0 67 0

 From the analysis of the results presented in the above tables it can be seen that no

errors are reported, with one exception. Only in the case of the accelerometer a number of ten

errors were reported over the period analysed for the repetition test, which means that the

entropy source could generate an error at an interval of 785 days.

4.2.2.3. Resistance to attacks

o Passive attacks

In order to analyze the resilience of the presented solution in case of a side-channel attack,

I conducted an experiment where I collected data simultaneously with two identical acquisition

platforms. In the experiment I tried, as far as possible, to have the data acquisition performed

under the same conditions for the two platforms. The sequences extracted with the two

platforms were analysed using two mathematical tools used to compare data strings: the

Pearson correlation coefficient and the Hamming distance.

Data was extracted for each axis for all three-motion sensors: accelerometer, gyroscope and

magnetometer. In order to analyse whether the correlation depends on the entropy level

generated by the source, we collected data from the sensors in several situations. Different

entropy levels were obtained by parameterizing the sensors.

Table 4.17 shows the Pearson coefficient values calculated for different values of entropy

generated by the accelerometer, gyroscope and magnetometer. The analysis was performed on

strings containing 512 bits of entropy, twice the size of a symmetric key. Depending on the

entropy generated by the sensor, the analysed string has a different size (Ni). As can be seen

from the values present in the table, the correlation between the two strings is almost non-

existent. It also does not depend on the entropy value or the length of the data string.

32

Table 4.17 Correlation analysis using Pearson coefficient

Sensor Accelerometer Gyroscope Magnetometer

Entropy 0,64 0,38 0,19 0,43 0,23 0,10 0,44 0,41 0,38

Ni 100 168 337 148 269 591 145 155 167

P - Y-axis 0,0813 0,0695 0,0520 0,0626 0,0582 0,0807 0,0748 0,0812 0,0665

P - X-axis 0,0744 0,0634 0,0509 0,0636 0,0607 0,0524 0,0603 0,0616 0,0760

P - Z-axis 0,0836 0,0637 0,0649 0,0619 0,0593 0,0581 0,0682 0,0672 0,0733

Table 4.18 shows the values obtained for Hamming distances in all the cases presented

above. The table also shows the mean deviations of these values for each sensor and entropy

level analysed. It was chosen to present the results in this form because it can provide a better

representation of the correlation between the two analysed strings. The calculation formula for

the mean deviation is shown in (4.1).

DH =
|𝐷𝐻𝑥−4|+ |𝐷𝐻𝑦−4|+|𝐷𝐻𝑧−4|

3
 (4.1)

Table 4.18 Correlation analysis using Hamming distance

Sensor Accelerometer Gyroscope Magnetometer

Entropy 0,64 0,38 0,19 0,43 0,23 0,10 0,44 0,41 0,38

Mean deviation 0,03 0,38 0,73 0,02 0,84 1,54 0,13 0,34 0,47

P - Y-axis 4,05 4,13 4,98 3,96 3,22 2,44 4,04 3,74 5,10

P - X-axis 4,01 5,02 3,42 3,98 3,39 2,28 4,26 3,36 4,10

P - Z-axis 3,95 3,99 3,36 4,03 2,84 2,66 3,90 3,86 3,77

 From the analysis of the Table 4.18 it can be seen that the Hamming distance values are

around 4, which means that the data are not correlated. However, it can be seen from the

analysis of the mean deviation values that the degree of correlation increases as the entropy

level decreases.

o Active attacks

 In the case of entropy sources based on data collected from sensors, passive attacks are

performed to reduce the entropy level. In this study, we analyzed the source's resistance to four

types of attacks:

 the repetitive rotational motion on the sensors was analysed in the noise source

analysis. The results showed that the entropy value increased due to more motion

being applied to the sensors. The conclusion would be that it is almost impossible

to reproduce a perfect repetitive motion so as to cause identical values to be

generated;

 sensor saturation - in this way the output values of the sensors could be maximum,

reducing the entropy value to zero. To detect such attacks, the proposed solution

33

has implemented health tests capable of quickly identifying such abnormal

behavior;

 sampling frequency could influence the entropy values generated by the source.

This issue was analysed in the noise source analysis. The results presented in Table

4.7 and Table 4.8 shows that sampling frequency does not influence entropy;

 ambient temperature. To analyze the influence of this attack on entropy values we

collected data from the sensor platform while it was operating at temperature

extremes ranging from -18ºC to +82ºC. The estimated entropy values under these

conditions were compared with values obtained at a typical operating temperature

of +23ºC. Analysing the results presented in Table 4.19 it can be concluded that at

low temperatures does not negatively affected the entropy level and high

temperatures increase the entropy of the collected data.

Table 4.19 Analysis of the influence of temperature on entropy

Temperature

Sensor type

-18°C

+23ºC

+82ºC

Accelerometer 0,6313 0,6379 0,7596

Gyroscope 0,4393 0,4153 0,4637

Magnetometer 0,4500 0,4411 0,6365

 4.2.2.4. Entropy source performance analysis

 Generation speed

The calculation of the entropy source generation rate was performed for each of the three

sensors analysed: accelerometer, gyroscope and magnetometer. Execution times were

estimated with the microcontroller's internal clock.

The following aspects have been taken into account in the calculation of the generation

speed:

- the entropy source generates 256-bit sequences containing 256 bits of entropy. For this

purpose, a sufficiently large number of sequences must be acquired from the sensor to contain

512 bits of entropy (twice as large as the source output, as recommended by NIST in [15]);

- the execution time considered is the time required to extract one sequence for each sensor

axis: x-axis, y-axis and z-axis, summed with the time required to execute the SHA256 function.

 In Table 4.20 the generation rates obtained for the three sensors are presented together

with the extraction times for the sequences and the entropy values used in the calculations.

34

Table 4.20 Entropy source generation speed

Sensor type Accelerometer Gyroscope Magnetometer

Sequence

extraction time

(µs)

2560 2560 1540

Entropies per bit

sequence

0,63 0,34 0,42

Generation speed

(Kb/s)

2,88 1,56 3,12

As can be seen from the results presented in Table 4.20, the highest speed was obtained

for the magnetometer, although the accelerometer generates the most entropy per bit. This is

because the extraction time for the magnetometer is smaller than that for the accelerometer.

o Consumption analysis

The entropy source current consumption analysis was performed for each of the three

analysed zenograms: accelerometer, gyroscope and magnetometer. Execution times were

estimated with the microcontroller's internal clock.

The following aspects were taken into account in the consumer analysis:

- the entropy source generates 256-bit sequences containing 256 bits of entropy, which

means that the number of sequences used is dependent on the entropy value;

- the value of the current consumed by the platform takes into account the current consumed

by the sensor IDD_S (as reported in the datasheet), the current consumed by the microcontroller

- IDD_MCU_S during data collection from the sensor and the current consumed by the

microcontroller for the calculation of the SHA256 function (measured on pin JP5 of the

microcontroller);

Table 4.21 shows the following information: the number of bits that can be generated with

a 1000 mAh battery, the current values and the entropy values used in the calculations.

Table 4.21 Consumption analysis for entropy source

Sensor type Accelerometer Gyroscope Magnetometer

IDD_S (mA) 13,81 13,81 13,81

IDD_MCU_S (mA) 0,16 0,49 0,27

Entropies per bit sequence 0.63 0,34 0,42

Number of bits generated (Mb) 485,07 303,30 508,30

As can be seen from the results presented in Table 4.21, the solution using the

magnetometer has the lowest current consumption and generate the highest number of bits

using the current from a 1000 mAh battery.

35

5. Random number generator for use in IoT applications

In this chapter, I propose a secure random number generator for use on resource-

constrained IoT devices. After analyzing the challenges of implementing random number

generators in IoT applications and the security levels they can achieve, a solution that uses

limited resources and provides the strongest level of security is proposed. The proposed

solution is optimized by performing experiments through which an optimal solution for the

noise source and deterministic algorithm is identified. Finally, a security and efficiency

analysis is carried out and a comparison is made with a classical solution based on the AES

algorithm in CTR mode.

5.1. The proposed solution

The proposed random number generator is designed to be implemented on IoT devices.

The solution to be presented below takes into account the resource-constrained requirements

specific to IoT devices while ensuring the highest degree of security required of random

number generators. The general scheme of the random number generator solution is shown in

Figure 5.1. To ensure the security properties while using limited resources, we selected a

lightweight algorithm implemented in an Authenticated Encryption with Associated Data

(AEAD) scheme. This scheme uses a 128-bit-long message (plaintext). The encryption key

used by the algorithm is regenerated for each call of the random number generator function.

Since it represents the output of an entropy source, its value cannot be estimated. At each

iteration of the algorithm the nonce, a randomly generated number at the initialisation of the

generator using the entropy source, is incremented.

Tag = Exit Cypher text

Message Key Nonce

1

Entropy

source

Lightweight algorithm

- AEAD scheme -

Figure 5.1 Implementation scheme of the random number

generator

36

All inputs to the generator are generated using the entropy source in the initialization

phase. The outputs of the generator are 128-bit blocks of data. To generate larger data

sequences the algorithm runs in a loop, in the sense the ciphertext is used as message in the

next iteration. The output data is represented by the tag value, which is an authentication code

for the message. This scheme of using output data has the advantage that it allows variable

length data to be generated. The fact that the use of the tag for the output data was chosen has

the advantage that the internal parameters of the algorithm, such as the message and ciphertext,

are not exposed at the output of the generator for use by a possible attacker.

The entropy source extracts its randomness from motion sensor data. This solution was

chosen because it is very easy to implement in many IoT applications that use such sensors,

and no additional hardware is needed to realize it. The MPU 9250 multi-chip module was used

to implement the entropy source. It contains three types of MEMS (Micro Electro-Mechanical

Systems) three-axis sensors: accelerometer, gyroscope and magnetometer.

The data extracted from the sensors is digitised on 16 bits, but not all of these bits are

entropy carriers. From the analysis I conducted in the [8] on similar sensors, with the same

settings, data being collected when the axes were not moving, it can be seen (Figure 5.2 for the

accelerometer and Figure 5.3 for the gyroscope) that only the least significant bits on each axis

can generate entropy.

Figure 5.2 Estimated entropy for the bits on each axis for the accelerometer

Figure 5.3 Estimated entropy for the bits on each axis for the gyroscope

Given this, the proposed entropy source solution extracts the least significant 4 bits from

each sensor axis, which it concatenates to create 128-bit sequences needed for the DRBG

inputs.

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7 8

En
tr

o
p

y
le

ve
l

Position of the least significant bits

Axis X

Y axis

Z-axis

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7 8

En
tr

o
p

y
le

ve
l

Position of the least significant bits

Axis X

Y axis

Z-axis

37

5.2. Analysis and evaluation of the proposed solution

5.2.1. Security analysis

 In order to perform the security analysis of the proposed solution, I have taken into

account the requirements proposed by the German Federal Office for Information Security in

the methodology for the evaluation of random number generators AIS 20/ AIS 30, originally

published in 2011 in [17] and updated in 2022 in [18]. This methodology supports the security

assessment of random number generators using Common Criteria standard.

The solution proposed in this study complies with the functional requirements of PTG.3

class according to AIS 20/AIS 30 recommendations. This class recommends the most secure

random number generator scheme with the following security properties:

- Backward secrecy;

- Forward secrecy;

- Enhanced backward secrecy;

- Enhanced forward secrecy;

 The last, but most important, aspect concerns the randomness of the data generated. We

evaluated the random number generator using the NIST_STS statistical test battery. The tests

were performed on data sequences of 131,072 bytes. Since a statistical evaluation is more

accurate the larger the volume of data tested, we applied the tests for a number of 1,000 distinct

sequences for each case analyzed.

 The test results are presented in Table 5 1. Analysing the results, it can be seen that for

all cases, only one or two tests or subtests failed. Considering this, as well as the fact that all

relevant tests passed, it can be considered that all the solutions analysed show very good

randomness properties.

38

Table 5 1 Statistical test results

RNG type Generated data

output size

Past tests Failed tests

RNG_Comet

128 bits 186 of 187 The Non-overlapping Template

Matching Test - 1 subtest

4096 bits 187 of 187

1 Mb 187 of 187

RNG_Sparkle

128 bits 186 of 187 The Random Excursions Variant

Test - 1 subtest

4096 bits 187 of 187

1 Mb 185 of 187 The Non-overlapping Template

Matching Test - 2 subtests

RNG_Romulus

128 bits 185 of 187 The Non-overlapping Template

Matching Test - 2 subtests

4096 bits 185 of 187 The Non-overlapping Template

Matching Test - 2 subtests

1 Mb 183 of 187 The Discrete Fourier Transform

(Spectral) Test

The Non-overlapping Template

Matching Test - 3 subtests

RNG_Photon

128 bits 187 of 187

4096 bits 186 of 187 The Random Excursions Variant -

Test 1 subtest

1 Mb 186 of 187 The Discrete Fourier Transform

(Spectral) Test

5.2.2. Efficiency analysis

In order to identify the solution that offers the best efficiency in terms of power consumed

and resources required for implementation, I conducted a series of experiments. The elements

we considered in the analysis were: making data collection from the entropy source more

efficient, identifying a cryptographic algorithm for DRNG that would require the least

resources, and implementing the solution on a platform that can also be used in IoT

applications.

In order to identify the optimal entropy source I analysed the entropy generated by the

accelerometer and gyroscope. In order to obtain the highest entropy level in the situation where

the sensors are not moving I analysed in the paper [7] the possibility of parameterization of the

sensors. Thus, I found that the bandwidth and the measurement range can influence the entropy

level generated by the sensors. The tests showed that setting the measurement range to the

lowest value (2g for accelerometer and 245 dps for gyroscope) and the bandwidth to the highest

value (3330 Hz for accelerometer and 1250 Hz for gyroscope) gives the highest values for

entropy.

39

Since we noticed that the data extraction times from the sensors are different, we tried

different combinations for the two sensors. In Table 5.2 the times required for data extraction

in these cases are presented, together with the entropy level of the extracted data.

Table 5.2 Entropy source generation speed

Sensor type Axe Entropy Extraction time for 1

entropy bit (ns)

Gyroscope X 4,35 204,60

Gyroscope Y 4,51 197,34

Gyroscope Z 4,43 200,90

Gyroscope XYZ 4,48 96,73

Accelerometer X 2,71 697,42

Accelerometer Y 3,02 625,83

Accelerometer Z 2,92 647,26

Accelerometer XYZ 3,3 232,32

Accelerometer /

Gyroscope

XYZ 3,4 157,84

The following optimization was aimed at identifying an optimal lightweight algorithm

variant for the DRNG implementation. An Arduino Mini board was used to implement the

algorithms. Tests were performed for different lightweight algorithms. To demonstrate that the

proposed solution brings performance improvements, we compared the results obtained with

the AES_CTR solution proposed by NIST in [6].

First, I looked at the resources needed to implement the solution. Table 5.3 shows, for

each implementation, the storage space for the source code and the dynamic memory required

to run it. The values are given in number of bytes and as a percentage of total available memory.

Analysing the results it can be seen that the solutions presented require a memory capacity

comparable to the AES_CTR variant, with the exception of the Romulus algorithm. In contrast,

AES CTR requires about 30% more dynamic memory.

Second, I analyzed the random number generation speeds for all five implementations.

Tests were performed for generating the most common key sizes (128, 256, 512 , 1024, 2048,

4096 bits) but also longer sequences of 1Kb and 10 Kb. Analysing the results presented in

Table 5.3 Resources needed to implement the RNGs

Type RNG Space stored program Dynamic memory

Byte count Percent Byte count Percent

RNG_Photon 9322 28% 601 29%

RNG _Sparkle 7418 22% 523 25%

RNG _Romulus 15584 48% 523 25%

RNG _Comet 8226 25% 523 25%

RNG_AES_CTR 8494 26% 841 41%

40

Figure 5.4 it can be seen that only the solutions implemented with the Comet and Sparkle

algorithms manage to achieve better generation speeds than the AES_CTR variant.

Figure 5.4 RNG generation speeds

We also looked at the DRNG variants in terms of power consumption. Measurements

were made, using the FLUKE 8864A professional multimeter to measure the current on the

power supply of the Arduino Mini board while running on it the program that generates 128-

bit sequences, re-initialization being performed at each iteration. Since the MPU9250 sensor is

powered from the Arduino Mini board, the measured current represents the total amount

required to run the RNG. With this value available, it can be accurately estimated the battery

capacity required to power this solution for generating a given amount of random data.

Table 5.4 shows the power consumed by the five solutions and the number of keys

generated with a 1000 mAh battery. The power was calculated by multiplying the current

consumed by the Arduino Mini board by its supply voltage of 5V. The current value is an

average of the values recorded over a period of 10s. The current consumption of the

microcontroller measured in the standby state is 0.257 mA, much lower than in the running

state. Thus, it can be stated that the number of keys generated with a 1000 mAh battery can

also be obtained under real conditions.

Table 5.4 Consumption analysis for RNG solutions

Type RNG Power

consumption

(mW)

Number of keys

generated with a 1000

mAh battery

RNG_Sparkle 87,0 18.91*106

RNG_Comet 86,5 19.98*106

RNG_Photon 88,0 16.53*106

RNG_Romulus 88,5 17.59*106

AES_CTR 86,5 18.62*106

0,00

50,00

100,00

150,00

200,00

250,00

128 256 512 1024 2048 4096 1Kb 10Kb

Sp
ee

d
 (

K
b

/s
)

Output size (bits)

DRBG_Photon

DRBG_Romulus

DRBG_Comet

CTR_DRBG

DRBG_Sparkle

41

Analysing the values in Table 5.4 it can be seen that the best performance can be

obtained using the Comet algorithm, followed by Sparkle and the AES_CTR solution.

6. Conclusions

The analysis of the current security context in IoT infrastructures indicates that there

are still enough problems to be solved in this area. In this thesis, several solutions are presented

that bring improvements to ensure the security of data carried on IoT devices.

The thesis includes original theoretical and practical contributions in the field of

ensuring data security in restrictive IoT environments. Thus, architectural solutions, integration

of different technologies, analysis methodologies and security or efficiency analyses are

proposed. The main contributions are described in detail below:

 Architectural solution for integrating blockchain technology into a fog computing

IoT infrastructure. Following an analysis to identify the type of IoT architecture for

which the implementation of BC functionalities is feasible, I proposed the optimal

solution;

 Architectural solutions for implementing the functionalities of an IoT sensor node

and a BC node on FPGA platforms. I proposed two solutions, taking into account

power consumption. I have implemented essential components to provide the

functionalities of a sensor node and a BC node on FPGA platforms with different

resources;

 Simple, efficient and secure protocol for establishing session keys for deployment

on IoT nodes. The protocol was implemented on a platform used in IoT, equipped

with a microcontroller. I performed an analysis in terms of power consumption and

execution speed. The solution uses the Ethereum blockchain platform as a trusted

source, using a smart contract for this purpose. The proposed solution has been

benchmarked in terms of efficiency and cost against the classical TLS - PKI

protocol solution;

 Efficient entropy source solution with data extracted from sensors. The solution

has been optimized by identifying sensor parameters to generate maximum entropy

under different conditions of use. The generated entropy level was evaluated using

NIST standard metrics. I realized a performance analysis of the source in terms of

power consumption and generation rate;

 Original noise source analysis methodology that collects data from motion sensors.

The analysis was performed considering the source components: physical

phenomenon, sensor and acquisition platform. For this purpose, I realized a series

of experiments highlighting the influence of each element on the entropy value;

 Methodology of entropy source stability analysis. The analysis was carried out on

two levels. I performed a long-term analysis to identify behavior of the source in

time and an analysis of the entropy level after restart;

42

 Methodology for analysing the attack resistance of an entropy source collecting

sensor data. I have detailed and performed two types of attacks. The first type of

attack was passive. It was performed on a side-channel, attempting data estimation

using an identical acquisition platform. The second type of attacks were active. I

constructed a series of attacks to detect source behaviour under cyclic motion,

saturation, operation at extreme temperatures and changes in sampling frequency;

 Original, secure and efficient random number generator solution for use in

restrictive IoT environments. The implementation of the solution was performed on

a resource-constrained microcontroller. I performed an analysis from the point of

view of consumed resources, power consumption and security, including the

estimation of the randomness of the generated data, security properties and

cryptographic strength of the deterministic component.

Bibliography

[1] M. Hogan, B. Piccaretta, “NISTIR 8200 - Interagency Report on the Status of International

Cybersecurity Standardization for the Internet of Things (IoT)”, November 2018

[2] https://ro.wikipedia.org/wiki/Internet, accesat la 16.03.2021

[3] https://www.statista.com/statistics/1194682/iot-connected-devices-vertically/ accesed on

16.03.2022

[4] 2018 Internet Security Threat Report, Symantec Corporation, March 2018.

[5] A. Boteanu, F. Răstoceanu, I. Rădoi, C. Rusea, ” Modeling and simulation of electromagnetic

shielding for IoT sensor nodes case”, 2019 International Conference on Speech Technology and

Human-Computer Dialogue (SpeD), 10-12 October 2019

[6] E. Barker, J. Kelsey, “NIST Special Publication 800-90C (Second Draft)-Recommendation for

Random Bit 5 Generator (RBG) Constructions”, Aprilie 2016

[7] F. Rastoceanu, R. Rughinis, S.D. Ciocirlan, M. Enache, “Sensor-Based Entropy Source Analysis

and Validation for Use in IoT Environments”, Electronics , 10(10), 1173, 2021

[8] F. Rastoceanu, B.I. Ciubotaru, I. Radoi, C.V. Marian, “Extented Analysis Using NIST

Methodology of Sensors Data Entropy, U.P.B. Sci. Bull., Series C, Vol. 83, Iss. 2, 2021

[9] X. Zhu, I. Badr, “A Survey on Blockchain-based Identity and Access Management Systems for

Internet of Things”, 2018 IEEE Confs on Internet of Things, Iulie 2018

[10] D. B. Rawat , V. Chaudhary, R. Doku, “Blockchain Technology: Emerging Applications and

Use Cases for Secure and Trustworthy Smart Systems”, J. Cybersecur. Priv. , 1(1), 4-18, 2021

[11] Michaela Iorga, Larry Feldman, Robert Barton Michael, J. Martin, Nedim, Goren Charif

Mahmoudi, NIST Special Publication 500-325 - Fog Computing Conceptual Model, March 2018,

https://doi.org/10.6028/NIST.SP.500-325

[12] F. Rastoceanu and R. Rughinis, "Blockchain Solution for Securing Fog-Computing

Communications in IoT Applications," 2022 14th International Conference on Communications

(COMM), 2022, pp. 1-6, doi: 10.1109/COMM54429.2022.9817211

[13] https://www.clickssl.net/low-cost-rapidssl-certificate, accesat la 15.09.2023

[14] F. Rastoceanu, I Radoi, ”FPGA based architecture for securing IoT with blockchain ” 2019

International Conference on Speech Technology and Human-Computer Dialogue (SpeD), 2019, pp

https://ieeexplore.ieee.org/xpl/conhome/8895628/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8895628/proceeding
https://doi.org/10.6028/NIST.SP.500-325
https://www.clickssl.net/low-cost-rapidssl-certificate

43

[15] M.S. Turan, E. Barker, J. Kelsey, K. McKay, “NIST Special Publication 800-90B-

Recommendation for the Entropy Sources Used for Random Bit Generation”, Ianuarie 2018

[16] https://github.com/usnistgov/SP800-90B_EntropyAssessment, accesat la data de 05.10.2023.

[17] W. Killmann, W. Schindler, “A proposal for: Functionality classes for random number

generators”, Septembrie 2011

[18] Matthias Peter, Werner Schindler, A Proposal for Functionality Classes for Random Number

Generators Version 2.35 – DRAFT, September 2, 2022

