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Abstract 
 

The Internet of Things (IoT) is constantly progressing, continuously influencing the 

quality of our lifes through a multitude of useful and easy-to-use applications, but at the same 

time, exposing our personal data to significant security threats. The specificity of IoT 

architectures, which foresee the interconnection between classic computer networks and living 

beings, requires the commitment to an increased degree of security. This is more difficult to 

achieve due to IoT architectures’ specific aspects, such as the heterogeneity of devices or the 

limited resources they have available. The need for security is noteworthy, as cyber-attacks 

targeting IoT devices increased exponentially latterly. 

In this thesis I propose a series of solutions aiming at improving security in IoT 

infrastructures. Basic security services such as confidentiality, integrity, authentication and 

non-repudiation can be implemented using cryptographic protocols and mechanisms. They can 

provide the desired degree of security only if they use cryptographic keys and random input 

parameters. Considering these aspects, but also the specificity of the IoT environment, I 

approach the issue of security on several levels. 

First, I identified ways to integrate blockchain technology with an IoT architecture to 

provide support for the implementation of security services. The use of IoT nodes, that also 

provide specific blockchain functionalities, was analyzed from the point of view of resources 

and costs. In this sense, I propose the usage of IoT nodes within a fog computing architecture 

as blockchain nodes with functionalities adapted to the available resources and the 

implementation of IoT nodes using two types of FPGA architectures. 

The blockchain ledger is used as a source of trust in implementing a simple and secure 

session key negotiation protocol. The solution provides increased security by using 

cryptographically secure primitives. Taking into account the simplicity of the solution and the 

selection of appropriate cryptographic functions, optimized power consumption is provided for 

resource-constrained IoT devices. 

The effectiveness of the cryptographic algorithms is closely related to the cryptographic 

keys used, which must be random and cannot be deduced by potential attackers. The keys can 

only be generated using properly evaluated random generators, with enhanced security and 

efficiency features. Considering these aspects, I propose a random number generator solution 

that uses a lightweight encryption algorithm and fulfills high security properties by re-

initializing the inputs with fresh entropy at each call. 

The desired degree of unpredictability for the inputs of random number generator can 

be achieved by using sources capable of providing an appropriate level of entropy. In this 

respect, the entropy source must be stable, resistant to attacks and efficient to be used in IoT 

environments. The solution proposed in this thesis uses randomness generated by motion 

sensors. In this way, resources already existing in IoT platforms are used to ensure efficiency. 

Using an original and comprehensive analysis methodology for the source of entropy in terms 

of noise acquisition method, stability and attack resistance, I have validated the entropy source 

to be applied in IoT applications using motion sensors. 

The solutions proposed in this thesis can ensure the protection of data transmitted in 

IoT environments by using the blockchain ledger as a trust anchor within a key establishment 

protocol and secure mechanisms to generate random numbers and entropy. Proven power 

efficiency through platform-specific implementations is qualifying these solutions as fitting in 

IoT applications.  
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1. Introduction 
 

The Internet of Things (IoT) is spreading fast and is increasingly present in our lives.  A 

thing can be a smart device (smart watch, printer, fridge, washing machine, car, drone, smart 

home, smart lock, etc), an implant that monitors and regulates a person's heartbeat or blood 

sugar levels, or a smart chip implanted in an animal on a farm. Something can be considered 

part of the IoT if it is connected to a network and has the ability to exchange data with other 

components in the system [1]. Through the IoT infrastructure, using sensors and actuators a 

connection is made between the Internet, seen as a global network of computers, and other 

devices with computer addresses, the natural environment, represented by people, animals or 

elements in nature [2]. 

IoT infrastructure involves interconnecting computer networks with living things or 

elements in nature. Thus, risks in the cyber environment are transferred to the latter, bringing 

much more serious and harder damages. Ensuring security in such systems is all the more 

important as the adoption of this technology in our lives is taking place at an increasing pace. 

According to www.statista.com [3], in 2020 there were approximately 9.7 billion active IoT 

devices and the number is expected to triple in ten years to 29.4 billion. On the other hand, 

cyber-attacks targeting IoT devices have increased alarmingly recently. For example, 

Symantec reported a 600% increase in attacks from 2016 to 2017 [4], and in the first half of 

2021, Kaspersky reported 1.5 billion attacks deployed against IoT devices. 

 

 

1.1. Motivation 

 

Ensuring security in such a diverse and complex environment is fraught with many issues 

specific to IoT devices. First and foremost, this system is highly heterogeneous. There are a 

multitude of devices on the market today that differ in operating systems, network interfaces, 

protocols used, security mechanisms and functions implemented. To address these issues, new 

technologies must be identified that build on IoT security architectures. As specified in the 

National Institute of Standards and Technology (NIST) report on cybersecurity standardization 

for IoT [1], blockchain (BC) technology has significant potential in this area. Providing security 

in a decentralised way offers certain advantages to the IoT environment compared to traditional 

solutions relying on Public Key Infrastructure (PKI). Using blockchain technology can turn 

certain disadvantages into advantages. Thus, the large number of IoT devices can be beneficial 

to ensure better decentralisation and increase trust in the deployed solution, but it can also 

provide high availability by ensuring a sufficient number of entities to validate transactions. 

The immutability feature can provide the possibility to store data that cannot be modified, 

which can be very useful for event auditing functions.  Even the heterogeneous nature of IoT 

infrastructures can be assimilated, as blockchain technology only needs an address and the 

ability to communicate in peer-to-peer networks. 

On the other hand, with few exceptions, developers are focused on ensuring the 

interconnectivity of devices and much less on ensuring their security. This is difficult to achieve 

considering that many of them have low processing and storage capacity or no permanent 
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power supply, running on battery power. In this case, the implementation of classical 

cryptography is almost impossible to achieve and solutions for cryptographic algorithms, 

protocols and mechanisms adapted to resource-constrained devices need to be found. 

Cryptography is used to provide basic security services such as confidentiality, integrity, 

authentication and non-repudiation. To ensure their robustness and resistance to different types 

of attacks, the whole security infrastructure must be considered. Figure 1.1 shows all its 

elements.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2. Objectives 

 

The aim of the thesis is to identify solutions for providing security in IoT infrastructures. 

This objective can be achieved on several levels, given the security service implementation 

flow as shown in Figure 1.1 and the constraints specific to the IoT environment.  

The first objective is to identify solutions for integrating blockchain technology into IoT 

infrastructures, with the aim of providing secure and efficient methods to implement mutual 

authentication and privacy services for communications between different IoT devices. This 

objective can be achieved by: 

- Identifying the optimal ways in which blockchain technology can support an IoT 

infrastructure to bring benefits superior to classical solutions using PKI; 

- Proposing a common IoT - BC architecture and optimising it in terms of resources 

and costs; 

- Identify optimal architectural solutions for hardware platforms used to deploy IoT 

nodes, but which also provide functionality specific to BC nodes. 

The second objective is to identify a simple and secure solution for a protocol used to 

establish the encryption and authentication keys needed to secure communications between 

IoT nodes. This objective can be achieved by: 

- Ensuring compatibility with blockchain technology; 

- Optimal integration with resource-constrained IoT devices; 

- Optimising power consumption using appropriate cryptographic mechanisms and 

functions; 

Figure 1.1 Security services implementation flow 
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- Ensuring a level of security that does not allow the compromise of the data being 

transported. 

The third objective is to identify a random number generator that provides the highest 

degree of security but can be deployed on IoT devices with limited resources. This objective 

can be achieved by: 

- Identifying a solution that provides the highest degree of security, given the 

randomness of the generated data and the cryptographic strength of the 

deterministic component of the generator; 

- Optimising the efficiency of the random number generator in terms of resources 

consumed relative to the speed and volume of data generated. 

The fourth objective is to identify an entropy source that can be deployed with minimal 

resources on IoT devices, but which provides a enough entropy to be used in a cryptographic 

context. This objective can be achieved by: 

- Identifying an entropy source that uses as few resources as possible, possibly using 

from existing resources on IoT nodes; 

- Estimating the level of entropy generated using standardised and reliable 

methodologies; 

- Optimize the efficiency of the entropy source by optimal parameterization in 

different operating cases; 

- Applying an entropy source testing and evaluation methodology to analyze the 

behavior of the entropy source in different use cases, over the long term, and its 

resistance to different types of attacks. 

 

2. IoT infrastructure security 
 

In this chapter I have presented key issues related to the security of IoT infrastructures. 

I have treated the issue from the point of view of the state of the art, presenting also theoretical 

notions that define the concepts developed in the following chapters of the thesis. 

 

   2.1. Cybersecurity areas in IoT 

  

To ensure security in an IoT ecosystem, several aspects need to be considered according 

to the NIST report on standardizing the IoT cybersecurity environment [1]. Among the most 

important are the following: 

 Cryptographic techniques implemented to ensure the protection of stored or 

transmitted sensitive data. The biggest challenge here is the limited resources 

specific to many IoT devices; 

 Security assessment which aims to ensure the following: implementation of 

security mechanisms in the IT system or product, performing security tests to 

validate a certain level of security, applying universal metrics to measure the 

strength of the implemented cryptographic mechanisms and functions; 
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 Physical security which aims to protect IoT devices against passive or intrusive 

attacks designed to extract cryptographic keys or sensitive data. To prevent such 

attacks, filters can be applied to the power supply or enclosures can be built that 

do not allow radiation to be emitted outside. In [5] we conducted a study that 

simulates and models the electromagnetic field of a sensor node enclosure. 

 Security of hardware/software components by ensuring that they have no known 

vulnerabilities; 

 Identity and access management by ensuring discretionary access to data of 

different entities represented by people, organizations, hardware devices, 

software applications; 

 Network security which ensures the secure management, operation and use of 

data; 

 Risk management of product development and delivery, which addresses issues 

related to how to ensure that products are delivered to specification. 

  
 

2.2. Security architectures specific to IoT infrastructures 

 

 

Most scientific papers address security in close relation to system architecture. 

Architectures presented in the literature are composed of 3, 4 or 5 levels.  

The simpler architectures are presented on three basic levels: perception, network and 

application. The perception level is present in any architecture and represents the connection 

to the environment. It is made up of sensors and actuators embedded in the sensor node, which 

has the ability to transmit the accumulated data to the next transport or network level. The 

transport/network layers provide connectivity and message transmission to the other layers. On 

the third layer run various applications that aggregate the accumulated sensor data and give it 

a clear and precise purpose.  Application maintenance, access control and software security 

updates are performed at this level.  

Additional layers have been introduced to better integrate the heterogeneous and complex 

nature of IoT systems. Thus, after the transport layer, an additional layer has been added to act 

as an intermediate processing layer for data before it is sent to the application layer. This can 

be identified in the literature under different names: middleware or services. This layer 

provides the interoperability and scalability needed to offer services to users without the 

hardware component. Service management and database access are provided at this level.  

The third type of IoT system architecture is the five-layer architecture. In such an 

architecture, an additional layer is introduced above the application layer. In most papers it can 

be identified by the name of business layer. This layer is responsible for managing the IoT 

system as a whole, providing business models, graphs, structured data tables based on 

information from the application layer.  In another five-layer approach, the last layer is the user 

interface.   
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2.3. Cryptographic key management 

 

The security analysis of a cryptographic system assumes that the cryptographic 

algorithms are known and that its strength lies in its ability to protect the cryptographic keys 

used. In this sense, the use and protection of cryptographic keys throughout their lifecycle is as 

important as the protection of sensitive data.  The life cycle of cryptographic keys, shown in 

Figure 2.1, comprises, depending on the use of the keys, the following stages: generation, 

storage, transport, import, export, use and destruction or zeroization.  

The ways in which key management systems can be implemented vary from case to 

case. Symmetric keys must be in the possession of the correspondents. They can be distributed 

electronically or manually using other methods of protection during transport. Distribution by 

electronic methods requires the provision of confidentiality, integrity and authentication 

services, which can be achieved using other cryptographic keys, which are often asymmetric 

keys. These must also be distributed. In this case, distribution is achieved using a Public Key 

Infrastructure (PKI).  A PKI system is a centralised digital certificate management structure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4. Cryptographic key generation methods - random number generators  

 

According to NIST [6], a random number generator is a device or algorithm capable of 

generating random sequences of bits that have the properties of being statistically independent 

and uniformly distributed.  Random number generators can be of two types: deterministic and 

non-deterministic. Deterministic Random Number Generators (DRNGs) are built on an 

algorithm that uses a secret initial random value, also called seed, to generate longer sequences 

of random numbers. They are called pseudo-random number generators. Non-deterministic 

random number generators (TRNGs) use entropy sources, based on noise sources obtained 

from random physical phenomena or random events.  

Zeroizare 

Usage 

 

Storage 

Export 

 

Transport 

 

Import 

 

Generation 

 

Random number 

generators 

Physical overwrite/ 

destroy storage media 

Cryptographic algorithms 

Encrypted /protected by 

zeroization mechanism 

Electronic       

(encrypted format) 

/Manual 

 

Figure 2.1 Cryptographic keys life cycle 



8 

 

 While non-deterministic sources can generate random numbers with maximum entropy, 

they have a low generation speed relative to the needs of most cryptographic applications. For 

this reason, deterministic generators are used because they can generate at much higher speeds. 

They use inputs from noise sources, which can be entropy sources or non-deterministic 

generators.   

Entropy sources consist of a noise source, a conditional function, which may be 

optional, and a suite of health tests. The noise source is the element that generates the 

randomness of the entropy source. It contains the elements that give non-deterministic 

character to the data generated by the entropy source. Noise sources can be classified into two 

types: software and hardware. Software noise derives its randomness from the randomness of 

various processes and events specific to operating systems. These types of noise sources require 

operating systems where many processes are running or where operator intervention is 

frequent. Since operator activity on IoT devices is low, processes are limited due to power 

consumption or there are no operating systems. These solutions are not suitable for use in IoT. 

Typically, noise sources are based on physical phenomena that occur randomly. Existing 

solutions use diodes, FPGA circuits or the randomness of some IoT sensors [7][8]. 

  

2.5. Lightweight cryptographic algorithms 

 

 The IoT infrastructure contains a multitude of devices that have limited resources, such 

as RFID devices or different types of sensors. These devices allocate very few resources to 

ensuring data security. This has created a need to develop cryptographic algorithms that 

maintain a sufficient level of security but do not use too many resources. In conclusion, an 

implementation is a trade-off between security, performance and cost. An algorithm with good 

performance and low cost will be exposed to side-channel attacks. If measures are implemented 

to prevent these types of attacks, costs increase and performance decreases. The role of 

lightweight algorithms is to find the optimal solution to achieve all these goals in a satisfactory 

way. Depending on the implementation mode, software or hardware, efficiency can be evaluated 

differently.  

 For hardware implementations, memory consumption and the size of the 

implementation, expressed in the number of ports used, matter. This should be as small as 

possible. Other important parameters are: 

 processing speed, expressed as the number of bytes processed per second; 

 latency, which measures the time elapsed from setting up the circuit to obtaining the 

output sequences; 

 power consumption measured in Watts.  

 In the case of software implementations, important parameters are: RAM consumption, 

which is the amount of memory required for an algorithm run, source code size, processing 

speed and power consumption.  
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2.6. Cryptographic management for security protocols used in IoT 

 

In this chapter, specific issues related to cryptographic key management for the 

following protocols used in IoT infrastructures are presented: 

 Bluetooth Low Energy (BLE) protocol; 

 IEEE 802.15.4 protocol; 

 Zigbee protocol; 

 LoRaWAN protocol; 

 Z-Wave protocol; 

 IEEE 802.11 protocol - Wi-Fi Protected Access; 

 TLS protocols - Transport Layer Security. 

 

2.7. Access and identity management 

 

IoT has introduced the concept that entities are interconnected. In order to achieve a secure 

context in which they can communicate, a mechanism is first needed to identify them. Identity 

refers to a set of information used to uniquely identify an entity in a given context. For example, 

a person can be identified at work by a set of attributes such as name, job title, job type and in 

an online shop by attributes such as name and bank account. 

   An Identity and Access Management (IAM) system looks at the lifecycle of identities, 

which includes operations to register, update and revoke them. Within a system, the IAM must 

provide three security services: authentication, authorisation and audit. For example, in the case 

of an operator seeking access to a service, the authentication operation consists of entering the 

credentials for the claimed identity and the authorisation operation, which verifies the 

credentials and makes the decision whether or not to grant access. All these operations are 

monitored and recorded by the audit service. 

 

2.7.1. Authentication methods  

 

Authentication methods can be classified according to the credentials used. These can be 

of several types, as follows: 

 username or ID and a password; 

 credentials that refer to "something" that is owned. In the case of individuals, that 

"something" can be a unique password generator, a card, a token or a smartphone, . In 

the case of IoT devices, that "something" refers to an internally stored secret on the 

basis of which, using an algorithm, the authenticity of the invoked identity can be 

proven; 

 credentials that refer to "what you are". In the case of individuals, it is biometric data 

and in the case of IoT devices it is PUFs (Physical Unclonable Function). These are 

physical objects (semiconductor devices, microprocessors) that provide unique 

responses that can be assimilated with fingerprints;  

 context-related credentials. These are usually used in a complementary role. For 

example, for people it can represent GPS location combined with time information and 
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for IoT devices, it can represent features related to geographical location and 

communication technology. 

   

2.7.2. Authorisation methods 

 

Different types of authorisation methods are used in IoT systems, each with their 

advantages and disadvantages. These can be classified according to the access control model.  

 DAC (Discretionary Access Control) - the owner of the IoT device decides the access 

rules that can restrict the time period access is granted, the operations available and the 

entities that have access; 

 MAC (Mandatory Access Control) - authorisation is granted gradually depending on 

the type of access owned; 

 RBAC (Role Based Access Control) - there are multiple roles to which permissions are 

granted and each user is assigned one or more roles depending on their responsibilities; 

 ABAC (Attribute-Based Access Control) - more flexibility in that instead of defining a 

static role, it uses a set of policies to grant access; 

 Cap-BAC (Capability-Based Access Control) is a token-based access control model 

that stores access rights for users who own them. 

Other conventional authorization methods are presented in: Lattice-Based Access Control, 

Context-Based Access Control, Chinese Wall Lattice Model, Identity-Based Access Control.  

 

 

2.7.3. Classification of identity management systems 

 

Identity Management Systems (IMS) have evolved with technology. Five types of such 

systems can now be identified [9]:  

 Isolated; 

 Centralized; 

 Federated; 

 User-centric; 

 Self-sovereign.  

 

2.8. Applicability of blockchain technology in IoT 

2.8.1. Security aspects of blockchain technology 
    

Blockchain technology has at its core a ledger database made up of chained blocks (see 

Figure 2.2). The link between blocks is made using hash functions, in the sense that one block 

contains the hash of the previous block in addition to time, transaction or date information. 

Thanks to this design pattern, the immutability property is ensured, which means that in order 

to change the information in one block, all blocks succeeding it will have to be changed. This 

is not easy to achieve, as the register is stored in a distributed way by network members, who 
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continuously update it according to the rules of a consensus protocol. To be successful, 

however, it requires the consensus of more than 50% of the network members.  

 

 

 

 

 

 

 

 

 

 

 

 The consensus protocol is one of the key elements ensuring security in blockchain. 

Based on it, network members validate the insertion of a block into the existing chain. 

Currently, several types of such protocols have been proposed, each with its advantages and 

disadvantages. They have the following characteristics: 

- Proof of Work (PoW) - the most popular being used in Bitcoin and Ethereum. The 

main idea of this protocol is to use computing power to validate the block that is to 

be introduced. To do this, miners who are part of the users of the network try to 

identify a number that, together with the actual data in the block, has a hash with 

certain characteristics. This can be achieved by successive attempts. Computational 

power is required to compute the respective hash function. Even though it offers a 

high degree of security, this type of protocol is energy intensive; 

- Proof of Stake (PoS). In this case, miners are chosen from among the network 

members, who make available some of the virtual coins they hold. If they do not 

validate correctly, they will lose the coins made available. This type of protocol will 

soon be implemented in Ethereum and similar variants are used in other blockchains 

such as Elrond; 

- Proof of Capacity (PoC), where miners make a certain amount of storage capacity 

available to the network, which proves a certain degree of interest in order for the 

system to work correctly; 

- Proof of Authority (PoA), which is based on the reputation of the miners selected 

for validation. 

 Another important aspect, which also influences security, is the type of blockchain. 

Each blockchain has rules that can allow anyone to participate in the network or limit 

participation only by permission. Depending on the application these two types can offer 

Figure 2.2 Blockchain arhitecture 
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certain advantages. The first type allows unlimited access to the network, thus ensuring full 

decentralisation and transparency. In this case there is no central authority and the anonymity 

of participants is ensured. The second model is suitable for use in organisations where 

anonymity of members is not required. This model offers only partial decentralisation which 

may provide some security in case of an attack from outside. Due to the limited number of 

participants this architecture offers higher speeds and increased scalability. It can also provide 

better protection of the data stored in the registry since access is restricted. 

 

2.8.2. Blockchain applications in IoT 

 

The advantages of blockchain technology has allowed it to be used in applications in 

many fields. In addition to the financial field, established through cryptocurrency applications, 

other areas of interest are mentioned in [10], such as:  

- cyber security; 

- government applications; 

- registration and management of property (houses, land) or valuables (cars, phones); 

- identity management; 

- reputation management system; 

- intellectual property; 

- fundraising; 

- energy systems; 

- IoT applications.  

IoT applications are classified into several types: providing cyber protection in energy 

systems, providing cyber protection in transportation systems, providing cyber protection in 

aviation systems, food safety systems, smart homes, military applications such as IoBT 

(Internet of Battle Things), access management system or public key management system..  

 

3. Blockchain solutions for IoT security 
 

This chapter presents some solutions for using blockchain technology to ensure IoT 

security. After analysing the advantages and disadvantages of using blockchain technology in 

IoT, two solutions for IoT integration with BC are proposed. The first solution presents a fog 

computing architecture model, which integrates a blockchain to use its security properties in 

order to achieve a trust relationship between network members. Using the blockchain for 

storing identity keys, a simple and secure protocol for establishing session keys and 

authentication is proposed.  The solution is evaluated in terms of computational power and cost 

and compared to a classical solution with TLS and PKI. The second solution proposes the use 

of FPGA technology for IoT integration with BC. Thus, two FPGA architectures are proposed 

to implement sensor nodes with the dual role of sensor nodes and BC nodes. The proposed 

solutions are implemented on several FPGA circuit families with different power consumption 

and resources. 
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3.1. Analysis of the possible use of blockchain technology in IoT 
 

Ensuring security in IoT infrastructures requires appropriate technologies. Blockchain 

technology has certain advantages that can qualify it for this purpose. The following are some 

of its features that prove its integration into IoT infrastructure: 

 Decentralisation offers the possibility that transactions are not validated by a 

central entity, which could be overloaded in case of a large number of 

transactions or in case of Denial of Service (DoS) attacks; 

 Immutability - transactions stored in the BC ledger, cannot be modified. This 

allows IoT devices to easily and securely verify stored data; 

 Data resilience is ensured by the fact that nodes are in possession of a copy of 

the blockchain database; 

 Cryptographic support, as blockchain technology relies on functions that can 

provide privacy, integrity and authentication services; 

 Trust - blockchain can provide trust between network members without the need 

for a central authority; 

 Audit - blockchain technology offers the possibility to record transactions in the 

ledger in a secure and immutable way, which can be viewed by all members of 

the network.  

 At the same time, the features of an IoT infrastructure are compatible with blockchain 

technology. A large number of nodes are needed to ensure the best possible decentralisation, 

which IoT infrastructures fulfil. Since a large number of nodes can be active in an IoT 

infrastructure at any given point in time, this is an advantage for a blockchain infrastructure, 

which needs entities to validate transactions.  

On the other hand, integrating the two technologies also comes with certain challenges. 

The blockchain technology requires certain resources that not all IoT nodes have (low 

computing capacity, storage capacity and limited number of transactions).  

At present, not all the problems that could arise when integrating the two technologies 

are solved. The challenge is to find architectures that integrate the two technologies to take 

advantage of the benefits that blockchain technology brings to security, but that mitigate as far 

as possible the shortcomings of implementing blockchain in IoT.  

 

 

3.2. IoT- BC integration solution 

3.2.1. Architectural features of fog computing technology 

  

IoT applications use data acquired from sensors. Most of the time the amount of data 

collected by sensors is very large. Much of this data is not used directly and needs to be 

processed. Since the devices through which the data is collected do not have enough computing 

power, it was decided to collect the data in the cloud, where it is processed and distributed to 

specific applications. Often, sensor nodes are distributed over a large geographical area or are 

located in places where communication networks are not available to support the transfer of 
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large volumes of data. In these cases, long delays in data transfer or significant loss of 

information can occur, which can adversely affect the quality of service. One of the solutions 

that can solve these problems is to create an intermediate layer of devices between the sensor 

nodes and the Cloud. This architecture is called fog computing.  Fog computing is a 

decentralised architecture, specific to IoT architectures, which carries part of the services 

available in the Cloud to the edge of the network. This type of architecture has the advantage 

of bringing specific computing resources from the Cloud close to where the data is acquired. 

In this way, complex data processing algorithms or artificial intelligence can be used to 

efficiently sort data on devices located close to where it is created. This improves efficiency by 

reducing the amount of data transferred to the Cloud.  

 In [11], NIST described this architecture as a cloud-based ecosystem in which fog 

computing serves the final IoT devices. The architecture is built on four tiers. The first tier 

consists of end IoT devices, represented by sensors and actuators. Data are collected by devices 

in the next level, called mist. On this layer are various specialised sensor nodes that are 

implemented using mainly microcontrollers or microcomputers. These have low computing 

power. This layer is the link to the next layer - fog computing, which is made up of nodes with 

much higher computing power, storage capacity and network resources than the devices on the 

mist layer. These can be powerful network devices such as gateways, routers, or computers 

with high computing power such as servers and mini data centres - cloudlets.  

  

 3.2.2. Securing a fog computing architecture using BC  

 

Blockchain technology has the resources to provide security services. Because it is built 

on a decentralised infrastructure, it has the potential to provide security in a fog computing 

architecture. Nodes that decide, based on a consensus protocol, which data is recorded in the 

BC ledger, provide security in the BC. The larger the number of nodes and the more 

geographically distributed they are over a larger area, the stronger the security provided by the 

network. Such features can be provided by a fog computing architecture.  

In current architectures, security is provided centrally through public key 

infrastructures. In this way, a trusted entity issues - signs - digital certificates for all members 

of the network. These digital certificates contain a pair of asymmetric keys that provide 

cryptographic protection in different security services.  There is uncertainty, however, whether 

these systems are suitable for IoT infrastructures. A first argument would be that the very large 

number of IoT devices could not be served promptly and efficiently by such an infrastructure. 

Another argument is the processing capacity of some IoT devices, which do not support such 

technology. This uncertainty is also fuelled by the fact that the PKI infrastructure is centralised 

and therefore insufficiently transparent. Blockchain has the ability to solve these problems.  

 

3.2.3. Description of the proposed architecture 

  

The proposed solution integrating blockchain technology into a fog computing 

architecture aims to provide a secure context for ensuring mutual authentication, confidentiality 

services and integrity. The challenge here is to identify ways in which the two technologies can 
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be integrated in such a way as to bring benefits superior to traditional solutions using PKI.   The 

proposed architecture and the experimental results obtained have been published in the paper 

[12]. 

 

The use of BC in a PKI infrastructure may encounter certain problems. The first 

problem concerns the resources needed to provide the basic functions of the BC. Consensus 

protocols such as PoW require significant computing power. Solutions to replace this protocol 

with less power consuming ones do not fully solve the problem. Considerable power is also 

required to provide communication capabilities between nodes. In the solution proposed in 

Figure 3.1, the functions of the BC nodes are implemented on nodes specific to the fog 

computing architecture, which have sufficient computing power. Thus, devices in the Cloud or 

on the FOG layer are assigned the BC nodes that perform basic functions such as mining and 

register storage. Resource-constrained FOG layer devices or MIST layer devices are assigned 

functions such as validating or querying the BC ledger. Other nodes can participate in the BC 

network as users, who have direct access to the blockchain or via a node with which it has 

already established a trusted connection.  

 

 

 

 

 

 

 

 

 

 

 

 

 To validate the proposed solution, we have implemented a smart contract through which 

an IoT node can interact with the BC. The implementation and testing was performed using the 

Remix IDE and Ganache environment, which simulates the Ethereum blockchain. The 

functions implemented in the smart contract were as follows: 

- IoT node registration - records information about an IoT node : device ID, identity 

key and IP address; 

- Modify IoT node - change IP address or identity key; 

- Read IoT node information - read IP address or identity key; 

Table 3.1 shows the costs of implementing the smart contract on the Ethereum 

blockchain. From the results presented in the table, it can be seen that the highest costs are 

required to create the contract in BC. The cost of registering a node is 10 cents and for 

modification, the cost is reduced to half. For costs reading data from the BC are zero. The price 

estimates shown in the table are based on the average price over the last year (16.05.2022 -

16.05.2023).  

 

MIST nodes 
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IoT nodes 
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Complete BC nodes 

Figure 3.1 Fog computing - blockchain architecture 
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Table 3.1 Smartcontract costs 

Transaction type Ethereum 

gas 

Gas (gwei) 

price 

ETH  ETH 

price ($) 

Price 

($) 

Contract creation 267.177 31,42 0,000267177 1.535,31 0,41 

IoT node registration 65.672 31,42 0,000065672 1.535,31 0,10 

IoT node 

modification 

29.472 31,42 0,000029472 

 

1.535,31 0,05 

 

The costs required to implement and maintain such a solution have been calculated for 

1000 IoT devices and compared to traditional solutions with PKI certificates. For comparison, 

we used the information available on the clickSSL.net website [13]. Table 3.2 shows the total 

costs for the two solutions. In the case of the solution with BC, the costs of registering IoT 

devices and the annual costs of replacing the encryption key are included. In the case of the 

PKI solution, the costs of issuing digital certificates for IoT devices for different periods of 

time are included. 

 

Table 3.2 Costs comparison 

Period Price 1 year ($) Price 3 years ($) Price 5 years ($) 

Proposed solution 101,23 191,73 1236,03 

PKI solution 14.000 36.000 50.000 

 

 

3.3. Cryptographic key negotiation protocol for an IoT-BC architecture 

3.3.1. Proposed solution 

 

 The proposed solution uses distributed blockchain technology as a security anchor to 

establish trust relationships between members of an IoT network and then, through message 

exchanges, establishes encryption and authentication keys. Figure 3.2 shows the architecture 

of the solution. An IoT node wishing to initiate a communication session with another node 

needs its identity key. This identity key can be found in a blockchain where nodes have been 

registered beforehand. The architecture presents two types of nodes. F-type IoT nodes, which 

have enough resources to participate in the blockchain, will query the BC registry to find out 

the identity key of the correspondent. These can be FOG or MIST type nodes with roles as 

nodes with active functions in the BC or just users of the BC. The second type of nodes are N 

nodes, which do not have sufficient resources to access the BC but use an F node to access the 

BC ledger.  
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In order to ensure that the protocol generates session keys in the desired security 

context, it is necessary to perform some operations beforehand. First the IoT nodes must be 

registered in the blockchain. This can be done using a smart contract presented earlier. It must 

contain the node's identity key and some information necessary to identify it: id, IP address, 

etc. The steps required to register a node in the BC are as follows: 

- The IoT node generates a pair of identity keys using the elliptic curve x25519; 

- The IoT node calls a smart contract through which it registers the public part of 

the identity key together with the necessary identification information in the BC. 

This operation can also be performed by the owner of the IoT node as a BC user; 

- Each node will be identified by a unique Id, which is the hash of the public 

identity key, calculated with the SHA256 function; 

- Each node of type N will receive by a secure method the identity key of the node 

F to which it is assigned. 

Depending on the type of nodes, the protocol has a different number of steps. In the 

case of type N nodes, two more steps are added, in which it requests and receives from the 

type F node, to which it is affiliated, the identity key of the correspondent. The cryptographic 

functions used in the protocol are as follows: 

- generation of authentication and encryption keys - HKDF function (key, salt). The 

key represents the secret generated using the elliptic curve x25519 from the private 

part of the sender's identity key and the public part of the receiver's key. The salt 

represents a random number. To ensure that a different key is generated, each time 

the salt will be different; 
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Figure 3.2 Architecture of the key negotiation protocol 
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- message encryption is performed with the AES cryptographic algorithm in CBC 

mode with a key length of 32 bytes and an initialisation vector of 16 bytes; 

- message authentication is performed with HMAC SHA 256 algorithm. Each 

message is authenticated. The recipient will verify the authenticity of the message 

upon receipt.  

 

3.3.2. Solution analysis  

3.3.2.1. Security analysis  

 

All sensitive information that could provide opportunities for attacks is encrypted and 

all messages are authenticated. The encryption and authentication keys used are different for 

each individual message due to the use of a different and random  salt when generating them. 

Cryptographic operations are performed using strong and secure algorithms: AES 256 for 

symmetric encryption, HMAC SHA 256 for integrity and authentication, HKDF for key and 

secret generation and elliptic curve x25519 for asymmetric encryption. 

 

3.3.2.2. Performance analysis 

 

In order to highlight the low power consumption required to negotiate a session key 

using the presented protocol, a comparison with TLS 1.2 and TLS 1.3 protocols has been made. 

The implementation hasbeen performed on the B-L475E-IOT01A platform, developed by 

STMicroelectronics..  

 

Table 3.3 Energy consumption of cryptographic functions 

Cryptographic function Energy consumed (Wh) 

ECDH signing ( 32 bytes) 206,955 

ECDH signature verification ( 32 bytes) 131,5872 

x25519 secret  generation 15,33168 

x25519 key generation 15,22872 

HMAC SHA256  ( 32 bytes) 0,0575316 

SHA 256  (334 bytes) 0,074646 

HKDF SHA256 0,177021 

ENC AES CBC 128 ( 16 bytes) 0,01340352 

DEC AES CBC 128 ( 16 bytes) 0,0132561 

ENC AES GCM 128 ( 16 bytes) 0,0946737 

DEC AES GCM 128 ( 16 bytes) 0,0815346 

ENC AES CBC 256 ( 32 bytes) 0,0231984 

DEC AES CBC 256 ( 32 bytes) 0,0229086 

 

In my calculations I have only taken into account the cryptographic functions used. 

Their implementation was done using the wolfSSL software library. The energy consumed was 

calculated by multiplying the current, measured during the execution of each function, by the 

time required to execute that function and by the supply voltage (5V). The microcontroller 

current was measured on pin JP5 of the electronic board.  
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Table 3.3 shows the results obtained from the implementation of the cryptographic 

functions used by the compared protocols. As can be seen from the table, the energy required 

to execute the signature and signature verification functions is much higher than that required 

for the encryption or hash calculation operations.  

The energy required for the entire key generation process, corresponding to each 

participating node, is shown in Table 3.4. 

 

Table 3.4 Energy consumed during session key negotiation 

Protocol Node Consumed energy (Wh) 

TLS 1.2 Client/Server 647,82 

TLS 1.3 Client/Server 740,88 

 

Proposed 

solution 

Na 46,80 

Nb 46,98 

Fa 15,84 

Fb 15,84 

 

As can be seen, the proposed solution consumes much less energy than TLS protocols. 

This is because it is much simpler than the TLS solution, which has been designed to cater for 

much more diverse and complex situations. For low complexity IoT applications, the proposed 

solution can provide a high degree of security using significantly less resources.  

 

3.4. Integration of IoT nodes into BC using FPGA 

3.4.1. Sensor node implementation solution using FPGA for integration with BC 

 

In the study published in [14] we described a solution to implement a sensor node using 

FPGA circuitry to be integrated into the BC. A node implemented with FGPA circuits can 

provide communication interfaces with sensors but also with interfaces specific to a blockchain 

node, thus fulfilling both roles.  

Depending on the hardware resources of the FPGA circuit, the node can perform 

various roles in the BC. The following will present two specific FPGA circuit architectures and 

the specific functions they can perform. 

 

 Classic FPGA architecture for an IoT sensor node 

 

In the proposed architecture (Figure 3.3) all component blocks are implemented using 

the logic gates provided by the FPGA. This architecture has the advantage that it is very flexible 

and can adapt to the type and number of sensors it needs to serve, but can also have blockchain-

specific data processing blocks implemented. In this case, the best energy consumption can be 

achieved for the implementation of these functionalities. 
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 FPGA SoC architecture for an IoT sensor node 

 

This type of FPGA architecture has dedicated processing modules included in the 

hardware-processing block. Only advanced circuit families such as Zynq-700, Zynq Ultra 

Scale+, Cyclone V have architectures of this type. These circuits are part of the System on a 

Chip (SoC) category that integrates processing units together with several types of controllers 

and can be used to implement monitoring, memory and dedicated encryption modules. In order 

to function properly, this block requires external RAM, which is energy intensive. These 

advantages of SoC architectures greatly increase capacity and processing speed, 

recommending them for applications requiring high throughput, high processing power and 

data acquisition from many sensor nodes. Taking these aspects into account, it can be stated 

that this architecture can be used for hybrid nodes integrating both BC node and IoT sensor 

node functionality.  

In the proposed architecture (Figure 3.3) the sensor interface is implemented as in the 

previous version, using logic gates. The BC interface is implemented using dedicated blocks 

in the hardware processing block. In this way, the interface is provided with the resources it 

needs. 
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Figure 3.3 Classic FPGA architecture for a sensor node 
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 3.4.2. Experiments and results 

  

Solutions for implementing IoT nodes using FPGA circuits were analyzed in the study 

we published in [14]. The experiments were conducted in two stages. In the first stage I 

implemented three of the most widely used communication blocks: SPI, I2C and TEMAC.  The 

aim of the experiment was to identify the resource requirements used to implement these blocks 

needed for any IoT node. In this way, the resources available for implementing the other BC 

specific functions can be calculated.  In the second stage of the experiment, I have realized an 

optimized implementation of the SHA256 function, intensively used for mining operations in 

blockchain architectures using the PoW consensus protocol. 

Table 3.5 shows the resources required to implement the most commonly used 

communication modules expressed in Look-Up-Tables (LUTs). This information is very useful 

in the process of designing an IoT node and selecting the type of FPGA circuit that will meet 

the communication needs of the node.  
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Table 3.5 Communication block resources needed for implementation 

Module LUTs 

TEMAC 1256 

SPI 164 

I2C 216 

 

In the second part of the experiments, we have made a runtime-optimized 

implementation of the SHA 256 function. The SHA 256 module was implemented in 64 clocks 

for a 512-bit input block, using only 1152 LUTs.  

This implementation of the SHA 256 function was realized using clocks from several 

FPGA families. Implementations were performed on both resource-constrained circuits and 

circuits with multiple available resources within the same family. 

From the results presented in Table 3.6 it can be deduced that circuits with very few 

resources and low power consumption can be used for the implementation of the SHA 256 

function at an acceptable speed. FPGA platforms containing Virtex 7 type circuits can be 

intensively used for validation. In these cases, speeds close to 1 Tbit/s have been achieved. If 

power consumption is important, an optimal variant can be chosen in terms of speed/power 

ratio. In this case, the best results were obtained with the Artix 7 FPGA XC7A12T and the 

Zynq 7000 FPGA SoC XC7Z007S. 

 

Table 3.6 Results of SHA 256 implementation on different FPGA circuits 

FPGA family Architecture 

type 

Available 

LUTs  

SHA256 

cores 

Maxim 

frequency (MHz) 

Speed 

(Gbit/s) 

Curent 

Iccq(mA) 

Spartan 6 – 

XC6SLX9 

FPGA 5720 3 69,46 1,66 4,9 

Spartan 6 – 

XC6SLX150T 

FPGA 92152 78 69,46 43,44 63 

Artix 7 – XC7A12T FPGA 8000 5 138,7 5,5 51 

Artix 7 – XC7A200T FPGA 134600 115 138,7 127,6 268 

Kintex 7 – XC7K70T FPGA 41000 34 151,5 41,2 208 

Kintex 7 – 

XC7K480T 

FPGA 298600 257 151,5 311,4 840 

Virtex 7 – 

XC7V585T 

FPGA 364200 314 196,1 492,6 1597 

Virtex 7 – 

XC7VX1140T 

FPGA 712000 473 196,1 966,3 3698 

Zynq 7000 – 

XC7Z007S 

FPGA SoC 14400 12 138,7 13,3 172 

Zynq 7000 – 

XC7Z020 

FPGA SoC 53200 46 138,7 51,3 437 

Zynq 7000 – 

XC7Z030 

FPGA SoC 76600 66 151,5 79,9 437 

Zynq 7000 – 

XC7Z100 

FPGA SoC 277400 240 151,5 290,8 1095 
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4. Entropy source for use in IoT applications 
 

In this chapter, I propose a model of an entropy source specific to the IoT environment, 

which extracts its data from motion sensors. The proposed solution is subjected to a complex 

testing and evaluation methodology, with the aim of identifying the level of entropy generated 

in different usage scenarios, analyzing the stability of the source in the long term and in case 

of passive and active attacks. It also sought to identify parameters for optimising the 

performance of the entropy source in terms of power consumption and generation speed. 

 

4.1. Entropy source with sensor data 

 

One solution that can meet the specific requirements of an IoT platform is an entropy 

source that extracts its noise from data collected from sensors. This solution can be 

implemented on any sensor node. The only issues that need to be taken into account are the 

sensor types and characteristics. Since it uses sensor data, it can be said that it mostly uses 

resources already existing on the platform. Finally yet importantly, this solution provides full 

access to the noise source that can be analysed in detail.   

Figure 4.1 shows the sensor entropy source that I proposed in the paper [7]. In this 

architecture, the noise source can retrieve data from the following motion sensors: 

accelerometer, magnetometer and gyroscope. Following the analysis of the emitted entropy, 

the least significant 8 bits of the sensor-generated sequences were chosen. These data are 

converted to digital format and then processed using the SHA256 function. This is used to 

concentrate the entropy and to smooth the output data. The entropy source is continuously 

health-checked for errors.  

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Entropy source analysis, testing and validation 

4.2.1. Entropy estimation methodology 

 

The entropy estimation methodology of the proposed solution was analyzed based on 

the NIST recommendations in [15]. It involves an initial estimate of the entropy of the noise 

source and then an estimate of the output of the entropy source, using data collected 

immediately after its restart. If the estimates obtained at restart are not less than half of the 
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originally estimated entropy value, the final entropy of the source will be the minimum of the 

previously estimated values, i.e. Hinit - the initial entropy, Hline and Hcol the entropies 

estimated from the data collected at restart.  Entropy is estimated using minimum entropy.  

 To estimate the initial Hinit entropy, 1,000,000 sequences collected directly from the 

noise source are used. The length of the sequences are 8 bits. In the case of a motion sensor the 

least significant bits provide based source the highest unpredictability.  

Depending on the type of data the source can generate, entropy is evaluated differently. 

For non-independent or uniformly distributed data the method with estimators is applied. This 

method is also used for sensor-based entropy sources. Thus, the entropy of the collected data 

is calculated using a number of 10 different estimators, which analyse different statistical 

properties. Finally, the lowest entropy value obtained by the estimators is considered.  

If the final entropy is not maximum, a conditioning function can be used (see Figure 

4.2 ). For this purpose we used the SHA 256 function which computes a summary from a 

number of sequences containing 512 bits of entropy. In this case the SHA 256 function acts as 

an entropy concentrator. The number of sequences used at the input of the function is calculated 

according to the number of entropy bits contained in a sequence.  

 

 

 

 

 

 

 

 

 

 

4.2.2 Entropy source analysis, testing and validation methodology 

 

The entropy source must be capable of providing a certain level of entropy under all 

conditions of use. For this reason, the analysis of an entropy source has to take into account 

multiple aspects related to the underlying physical phenomenon of the noise source and the 

stability of the source over time and under different conditions of use. In the following, I will 

present an original and comprehensive methodology for testing and validating sensor-based 

entropy sources, based on the NIST recommendations in [15]. In Figure 4.3 a summary of the 

methodology for motion sensor-based entropy source analysis and evaluation is presented. 
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Figure 4.2 Entropy uniformization method 



25 

 

 

 

 

 

 

 

 

 

 

 

4.3.2.1. Noise source analysis 

 

 

 

 

4.2.2.1. Noise source analysis 

 

In the analysis of the noise source, we started from its construction model, presented in 

Figure 4.4, trying to identify the influence of each element in the entropy value of the output 

data.  

 

 

 

o Physical phenomenon  

 

The experiments were carried out using three different types of platforms to capture 

five types of movement.  

 Platform 1 is a B-L475E-IOT01A electronic board used as a sensor node for 

IoT applications;  

 Platform 2 consists of an Arduino UNO acquisition board and an MPU 9250 

motion sensor, which contains an accelerometer, a gyroscope and a 

magnetometer. 

 Platform 3 uses the motion sensors from a mobile phone. In the experiments, 

we captured data from the sensors while the sensors were subjected to five types 

of motion.  

The results of the experiments can be found in Table 4.1 for accelerometers in Table 

4.2 for gyroscopes and in Table 4.3 for magnetometers. A few observations can be drawn from 

the analysis of these results: 

 in all situations the sensors generated entropy. The larger or faster the motion 

applied to the accelerometer and gyroscope sensors, the higher the entropy 

value; 

 entropy is achieved even when no additional motion is applied to the sensors;  

Figure 4.4 Noise source model 
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 a repetitive motion does not negatively influence entropy, on the contrary it 

achieves the best results.  

 

Table 4.1 Influence of motion type on accelerometer entropy 

          Movement  

type 
 

Platform 

Static                   

(no movement) 

Car on the 

move 

 

Rotation 

 

Running 

 

Walking 

Platform 1 0,1997 0,7424 - - - 

Platform 2 0,2210   0,6846 0,8544   

Platform 3 - 0,5019 - 0,4021 0,2905 

 

Table 4.2 Influence of motion type on gyroscope entropy 

          Movement 

type 
 

Platform 

Static              

(no movement) 

Car on the 

move 

 

Rotation 

 

Running 

 

Walking 

Platform 1 0,0551 0,4147 - - - 

Platform 2 0,1207 0,4348 0,8299 - - 

Platform 3 - 0,3598 - 0,2942 0,2335 

 

Table 4.3 Influence of motion type on magnetometer entropy 

          Movement 

type 
 

Platform 

Static              

(no movement) 

Car on the 

move 

Rotation 

Platform 1 0,4368 0,5690 - 

Platform 2 0,0025 0,0049 0,1566 

 

o Measuring range and bandwidth 

 

The second factor that can influence the entropy value is the configuration of the sensor 

parameters used. For this purpose, the possibilities of parameterisation of motion sensors were 

studied in detail and it was found that some parameters influence the entropy level and others 

have no effect on it.  

The results are presented in Table 4.4 for the accelerometer in Table 4.5 for the gyroscope 

and in Table 4.6 for the magnetometer.  
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Table 4.4 Influence of measurement range and bandwidth on accelerometer entropy 

          Measurement range 
 

 

Bandwidth 

 

2 g 

 

4 g 

 

8 g 

3330 Hz 0,6438 0,5133 0,4194 

417 Hz 0,4957 0,3831 0,3382 

53 Hz 0,3049 0,2549 0,1904 

 

Table 4.5 Influence of measurement range and bandwidth on gyroscope entropy 

          Measurement range 
 

 

Bandwidth 

 

245 dps 

 

500 dps 

 

1000 dps 

1250 Hz 0,3931 0,4337 0,3356 

312 Hz 0,3401 0,2386 0,2118 

22 Hz 0,2094 0,1736 0,1083 

 

 

Table 4.6 Influence of measurement range on magnetometer entropy 

Measurement range 4 Gauss 8 Gauss 12 Gauss 

 0,4414 0,4137 0,3850 

 

 From the results presented in Table 4.4, Table 4.5 and Table 4.6 it is obvious that the 

entropy level decreases directly proportional to the value of the measurement range and 

inversely proportional to the bandwidth.   

 

o Sampling frequency 

 

 The sampling frequency could be an element influencing the entropy value. To 

determine this, sensor data were acquired at different sampling frequencies. The influence of 

other factors on entropy values was isolated and tests were performed with only one platform. 

No additional motion was applied to the sensors. The results are presented in Table 4.7 for the 

accelerometer and in Table 4.8 for the gyroscope. The conclusion that emerge from these 

results is that the sampling frequency does not influence the entropy value. 
 

Table 4.7 Influence of sampling frequency on accelerometer entropy 

        Sampling frequency/ Bandwidth Accelerometer 

6660 Hz / 1666 Hz 0,6212 

3330 Hz / 1666 Hz 0,6142 
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Table 4.8 Influence of sampling frequency on gyroscope entropy 

     Sampling frequency/ Bandwidth Gyroscope 

6660 Hz / 173 Hz 0,2278 

3330 Hz / 172 Hz 0,2414 

 

o Acquisition platform 

 

Another element that could influence entropy is the acquisition platform. Even if the same 

type of platform is used, some elements of the platform could introduce additional noise or 

measurement errors, which can influence the entropy value one way or the other. To investigate 

this, we compared the entropy values extracted from two identical MPU9250 sensors connected 

to three Arduino UNO acquisition boards and one Arduino Atmega 256 platform. Tests were 

performed for two of the sensors: the accelerometer and the gyroscope. The results are 

presented in Table 4.9 for the accelerometer and in Table 4.10 for the gyroscope. Comparing 

the entropy values obtained in all the cases analysed, it can be seen that in the case of the 

accelerometer the entropy values are very close and in the case of the gyroscope there are small 

but insignificant variations.   

 

Table 4.9 Influence of acquisition platform on accelerometer entropy 

Acquisition platform MPU9250 Sensor - 1 MPU9250 Sensor - 2 

Arduino UNO - board 1 0,4618 0,4626 

Arduino UNO - board 2 0,4660 0,4618 

Arduino UNO - board 3 0,4671 0,4671 

Atmega 256 0,4670 0,4571 

 

Table 4.10 Influence of acquisition platform on gyroscope entropy 

Acquisition platform MPU9250 Sensor - 1 MPU9250 Sensor - 2 

Arduino UNO - board 1 0,2690 0,2708 

Arduino UNO - board 2 0,2371 0,2400 

Arduino UNO - board 3 0,2513 0,2586 

Arduino Atmega 256 0,2258 0,2387 

 

4.2.2.2. Entropy source stability analysis 

o Long-term analysis 

 

More important than the amount of entropy source can generate is the ability to 

maintain this level of entropy over time. This requires analysing the level of entropy generated 

over time and counting the number of failures that result from health tests. In addition, the 
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behaviour of the source in different operating modes can provide information on how the 

entropy source is implemented and used. 

 In Table 4.11 for the accelerometer, in Table 4.12 for the gyroscope and in Table 4.13 

for the magnetometer the minimum, maximum and average entropy values calculated for each 

case are shown. The standard deviation is also calculated to show variations in entropy values 

over a long time. From the values presented, it can be seen that, the entropy values in all the 

analysed cases, do not vary very much. The standard deviation is of the order of 10-2.  

 

Table 4.11 Long-term entropy analysis for the accelerometer 

             Stability   analysis 

parameter 

Platform/movement type 

Average 

entropy 

value 

Minimum 

value 

entropy 

Maximum 

entropy 

value 

 

Standard 

deviation 

 

Number 

of sets 

Platform 1-no movement  0,6499 0,6379 0,6638 0,0058 100 

Platform 1- moving car 0,8480 0,8076 0,8878 0,0263 10 

Platform 2-no movement  0,4732 0,4503 0,5086 0,0139 30 

 

Table 4.12 Long-term entropy analysis for the gyroscope 

             Stability  analysis 

parameter 

Platform/movement type 

Average 

entropy 

value 

Minimum 

value 

entropy 

Maximum 

entropy 

value 

 

Standard 

deviation 

 

Number 

of sets 

Platform 1-no movement  0,4154 0,3427 0,4619 0,0222 100 

Platform 1- moving car 0,4295 0,3564 0,5132 0,0475 10 

Platform 2-no movement  0,2347 0,1840 0,2745 0,0287 30 

 

Table 4.13 Long-term entropy analysis for the magnetometer 

             Stability analysis 

parameter 

Platform/movement type 

Average 

entropy 

value 

Minimum 

value 

entropy 

Maximum 

entropy 

value 

Standard 

deviation 

Number 

of sets 

Platform 1-no movement  0,4411 0,4189 0,4658 0,0108 100 

Platform 1- moving car 0,5521 0,4964 0,5970 0,0268 10 

  

o Restart analysis 

 

 Entropy sources may operate differently immediately after restart compared to 

operation in a normal regime.  

In order to determine the behavior of the motion sensor-based entropy source on restart, 

we restarted it 1,000 times, each time collecting 1,000 sequences from each sensor. After each 

stage of data collection, the source was shut down for a 15-minute interval, the time required 

to simulate the platform returning to a resting state. From the collected data, a matrix of Mi,j 
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with 1,000 rows and 1,000 columns was created.  Concatenating the data by rows and then by 

columns creates two data sets.  

For the data collected, health tests were validated using the software library in [16]. In 

Table 4.14 the entropy values obtained for the two datasets are presented. It can be seen that 

the entropy values obtained at restart are higher than those obtained in normal operation, thus 

it can be stated that the entropy source is not negatively influenced by the values collected at 

restart.   

 

Table 4.14 Restart analysis 

Sensor type Entropy in normal 

operation 

Entropy at restart - 

concatenated data 

set on lines 

Entropy on restart - 

concatenated data set 

on columns 

Accelerometer 0,63 0,90 0,88 

Gyroscope 0,34 0,47 0,50 

Magnetometer 0,41 0,46 0,43 

 

o Health tests 

 

The solution presented in this thesis implements two continuous health tests presented in 

[15]: the repetition test and the adaptive proportions test.  

To analyse the stability of the entropy source we estimated over a long period the number 

of errors reported by the two health tests mentioned above. The conclusions of this analysis are 

important to decide whether the proposed solution is suitable for use in real applications. If the 

number of errors were very frequent, the availability of the source would be reduced, as would 

the speed of generation. To support this analysis, we counted the errors reported by the health 

tests for different values of probability α. In order to obtain the best possible accuracy of the 

results, the experiments were performed using a large number of sequences.  100,000,000 

sequences were extracted from each of the three sensors: accelerometer, gyroscope and 

magnetometer. The results are presented in Table 4.15 for the repetition test and in Table 4.16 

for the adaptive proportions test. 

 

Table 4.15 Repetition test 

Sensor 

     

α 

Accelerometer  Gyroscope Magnetometer 

C Number of 

errors 

C Number of 

errors 

C Number of 

errors 

2-20 4 10 8 0 7 0 

2-15 3 1075 6 2 5 10 
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Table 4.16 Adaptive proportions test 

Sensor 

 

      α 

Accelerometer  Gyroscope Magnetometer 

C Number of 

errors 

C Number of 

errors 

C Number of 

errors 

2-20 38 0 120 0 89 0 

2-10 30 0 105 0 76 0 

2-5 24 0 94 0 67 0 

 

 From the analysis of the results presented in the above tables it can be seen that no 

errors are reported, with one exception. Only in the case of the accelerometer a number of ten 

errors were reported over the period analysed for the repetition test, which means that the 

entropy source could generate an error at an interval of 785 days.  

 

4.2.2.3. Resistance to attacks 

o Passive attacks 

 

In order to analyze the resilience of the presented solution in case of a side-channel attack, 

I conducted an experiment where I collected data simultaneously with two identical acquisition 

platforms. In the experiment I tried, as far as possible, to have the data acquisition performed 

under the same conditions for the two platforms. The sequences extracted with the two 

platforms were analysed using two mathematical tools used to compare data strings: the 

Pearson correlation coefficient and the Hamming distance.  

Data was extracted for each axis for all three-motion sensors: accelerometer, gyroscope and 

magnetometer. In order to analyse whether the correlation depends on the entropy level 

generated by the source, we collected data from the sensors in several situations. Different 

entropy levels were obtained by parameterizing the sensors.    

Table 4.17 shows the Pearson coefficient values calculated for different values of entropy 

generated by the accelerometer, gyroscope and magnetometer. The analysis was performed on 

strings containing 512 bits of entropy, twice the size of a symmetric key. Depending on the 

entropy generated by the sensor, the analysed string has a different size (Ni). As can be seen 

from the values present in the table, the correlation between the two strings is almost non-

existent. It also does not depend on the entropy value or the length of the data string. 
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Table 4.17 Correlation analysis using Pearson coefficient 

Sensor Accelerometer Gyroscope Magnetometer 

Entropy 0,64 0,38 0,19 0,43 0,23 0,10 0,44 0,41 0,38 

Ni 100 168 337 148 269 591 145 155 167 

P - Y-axis 0,0813 0,0695 0,0520 0,0626 0,0582 0,0807 0,0748 0,0812 0,0665 

P - X-axis 0,0744 0,0634 0,0509 0,0636 0,0607 0,0524 0,0603 0,0616 0,0760 

P - Z-axis 0,0836 0,0637 0,0649 0,0619 0,0593 0,0581 0,0682 0,0672 0,0733 

 

Table 4.18 shows the values obtained for Hamming distances in all the cases presented 

above. The table also shows the mean deviations of these values for each sensor and entropy 

level analysed. It was chosen to present the results in this form because it can provide a better 

representation of the correlation between the two analysed strings. The calculation formula for 

the mean deviation is shown in (4.1).   

 

DH = 
|𝐷𝐻𝑥−4|+ |𝐷𝐻𝑦−4|+|𝐷𝐻𝑧−4|

3
     (4.1) 

 

Table 4.18 Correlation analysis using Hamming distance 

Sensor Accelerometer Gyroscope Magnetometer 

Entropy 0,64 0,38 0,19 0,43 0,23 0,10 0,44 0,41 0,38 

Mean deviation  0,03 0,38 0,73 0,02 0,84 1,54 0,13 0,34 0,47 

P - Y-axis 4,05 4,13 4,98 3,96 3,22 2,44 4,04 3,74 5,10 

P - X-axis 4,01 5,02 3,42 3,98 3,39 2,28 4,26 3,36 4,10 

P - Z-axis 3,95 3,99 3,36 4,03 2,84 2,66 3,90 3,86 3,77 

 

 From the analysis of the Table 4.18 it can be seen that the Hamming distance values are 

around 4, which means that the data are not correlated. However, it can be seen from the 

analysis of the mean deviation values that the degree of correlation increases as the entropy 

level decreases.  

 

o Active attacks 

 

 In the case of entropy sources based on data collected from sensors, passive attacks are 

performed to reduce the entropy level. In this study, we analyzed the source's resistance to four 

types of attacks: 

 the repetitive rotational motion on the sensors was analysed in the noise source 

analysis. The results showed that the entropy value increased due to more motion 

being applied to the sensors. The conclusion would be that it is almost impossible 

to reproduce a perfect repetitive motion so as to cause identical values to be 

generated; 

 sensor saturation - in this way the output values of the sensors could be maximum, 

reducing the entropy value to zero. To detect such attacks, the proposed solution 
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has implemented health tests capable of quickly identifying such abnormal 

behavior; 

 sampling frequency could influence the entropy values generated by the source. 

This issue was analysed in the noise source analysis. The results presented in Table 

4.7 and Table 4.8 shows that sampling frequency does not influence entropy; 

 ambient temperature. To analyze the influence of this attack on entropy values we 

collected data from the sensor platform while it was operating at temperature 

extremes ranging from -18ºC to +82ºC. The estimated entropy values under these 

conditions were compared with values obtained at a typical operating temperature 

of +23ºC. Analysing the results presented in Table 4.19 it can be concluded that at 

low temperatures does not negatively affected the entropy level and high 

temperatures increase the entropy of the collected data. 

 

Table 4.19 Analysis of the influence of temperature on entropy 

Temperature 

 

Sensor type 

 

-18°C 

 

+23ºC 

 

+82ºC 

Accelerometer 0,6313 0,6379 0,7596 

Gyroscope 0,4393 0,4153 0,4637 

Magnetometer 0,4500 0,4411 0,6365 

 

 4.2.2.4. Entropy source performance analysis 

 

 Generation speed 
 

The calculation of the entropy source generation rate was performed for each of the three 

sensors analysed: accelerometer, gyroscope and magnetometer. Execution times were 

estimated with the microcontroller's internal clock.  

The following aspects have been taken into account in the calculation of the generation 

speed: 

- the entropy source generates 256-bit sequences containing 256 bits of entropy. For this 

purpose, a sufficiently large number of sequences must be acquired from the sensor to contain 

512 bits of entropy (twice as large as the source output, as recommended by NIST in [15]); 

- the execution time considered is the time required to extract one sequence for each sensor 

axis: x-axis, y-axis and z-axis, summed with the time required to execute the SHA256 function. 

 In Table 4.20 the generation rates obtained for the three sensors are presented together 

with the extraction times for the sequences and the entropy values used in the calculations.  
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Table 4.20 Entropy source generation speed 

Sensor type Accelerometer Gyroscope Magnetometer 

Sequence 

extraction time 

(µs) 

2560 2560 1540 

Entropies per bit 

sequence 

0,63 0,34 0,42 

Generation speed 

(Kb/s) 

2,88 1,56 3,12 

 

As can be seen from the results presented in Table 4.20, the highest speed was obtained 

for the magnetometer, although the accelerometer generates the most entropy per bit. This is 

because the extraction time for the magnetometer is smaller than that for the accelerometer.   

o Consumption analysis 

 

The entropy source current consumption analysis was performed for each of the three 

analysed zenograms: accelerometer, gyroscope and magnetometer. Execution times were 

estimated with the microcontroller's internal clock. 

The following aspects were taken into account in the consumer analysis: 

- the entropy source generates 256-bit sequences containing 256 bits of entropy, which 

means that the number of sequences used is dependent on the entropy value;  

- the value of the current consumed by the platform takes into account the current consumed 

by the sensor IDD_S (as reported in the datasheet), the current consumed by the microcontroller 

- IDD_MCU_S during data collection from the sensor and the current consumed by the 

microcontroller for the calculation of the SHA256 function (measured on pin JP5 of the 

microcontroller); 

Table 4.21 shows the following information: the number of bits that can be generated with 

a 1000 mAh battery, the current values and the entropy values used in the calculations.   

   

Table 4.21 Consumption analysis for entropy source 

Sensor type Accelerometer Gyroscope Magnetometer 

IDD_S (mA) 13,81 13,81 13,81 

IDD_MCU_S (mA) 0,16 0,49 0,27 

Entropies per bit sequence 0.63 0,34 0,42 

Number of bits generated (Mb) 485,07 303,30 508,30 

 

As can be seen from the results presented in Table 4.21, the solution using the 

magnetometer has the lowest current consumption and generate the highest number of bits 

using the current from a 1000 mAh battery.  
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5. Random number generator for use in IoT applications 
 

In this chapter, I propose a secure random number generator for use on resource-

constrained IoT devices. After analyzing the challenges of implementing random number 

generators in IoT applications and the security levels they can achieve, a solution that uses 

limited resources and provides the strongest level of security is proposed. The proposed 

solution is optimized by performing experiments through which an optimal solution for the 

noise source and deterministic algorithm is identified. Finally, a security and efficiency 

analysis is carried out and a comparison is made with a classical solution based on the AES 

algorithm in CTR mode. 

 

5.1. The proposed solution 

 

The proposed random number generator is designed to be implemented on IoT devices. 

The solution to be presented below takes into account the resource-constrained requirements 

specific to IoT devices while ensuring the highest degree of security required of random 

number generators. The general scheme of the random number generator solution is shown in 

Figure 5.1. To ensure the security properties while using limited resources, we selected a 

lightweight algorithm implemented in an Authenticated Encryption with Associated Data 

(AEAD) scheme. This scheme uses a 128-bit-long message (plaintext). The encryption key 

used by the algorithm is regenerated for each call of the random number generator function. 

Since it represents the output of an entropy source, its value cannot be estimated. At each 

iteration of the algorithm the nonce, a randomly generated number at the initialisation of the 

generator using the entropy source, is incremented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tag = Exit Cypher text 

Message Key Nonce 
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Entropy 

source 

Lightweight algorithm   

- AEAD scheme - 

Figure 5.1 Implementation scheme of the random number 

generator 
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All inputs to the generator are generated using the entropy source in the initialization 

phase. The outputs of the generator are 128-bit blocks of data. To generate larger data 

sequences the algorithm runs in a loop, in the sense the ciphertext is used as message in the 

next iteration. The output data is represented by the tag value, which is an authentication code 

for the message. This scheme of using output data has the advantage that it allows variable 

length data to be generated. The fact that the use of the tag for the output data was chosen has 

the advantage that the internal parameters of the algorithm, such as the message and ciphertext, 

are not exposed at the output of the generator for use by a possible attacker.  

The entropy source extracts its randomness from motion sensor data. This solution was 

chosen because it is very easy to implement in many IoT applications that use such sensors, 

and no additional hardware is needed to realize it. The MPU 9250 multi-chip module was used 

to implement the entropy source. It contains three types of MEMS (Micro Electro-Mechanical 

Systems) three-axis sensors: accelerometer, gyroscope and magnetometer.  

The data extracted from the sensors is digitised on 16 bits, but not all of these bits are 

entropy carriers. From the analysis I conducted in the [8] on similar sensors, with the same 

settings, data being collected when the axes were not moving, it can be seen (Figure 5.2 for the 

accelerometer and Figure 5.3 for the gyroscope) that only the least significant bits on each axis 

can generate entropy.   

 

 
Figure 5.2 Estimated entropy for the bits on each axis for the accelerometer 

 

Figure 5.3 Estimated entropy for the bits on each axis for the gyroscope 

Given this, the proposed entropy source solution extracts the least significant 4 bits from 

each sensor axis, which it concatenates to create 128-bit sequences needed for the DRBG 

inputs.  
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5.2. Analysis and evaluation of the proposed solution 

5.2.1. Security analysis 

 

 In order to perform the security analysis of the proposed solution, I have taken into 

account the requirements proposed by the German Federal Office for Information Security in 

the methodology for the evaluation of random number generators AIS 20/ AIS 30, originally 

published in 2011 in [17] and updated in 2022 in [18]. This methodology supports the security 

assessment of random number generators using Common Criteria standard.   

The solution proposed in this study complies with the functional requirements of PTG.3 

class according to AIS 20/AIS 30 recommendations. This class recommends the most secure 

random number generator scheme with the following security properties: 

- Backward secrecy; 

- Forward secrecy; 

- Enhanced backward secrecy; 

- Enhanced forward secrecy; 

 The last, but most important, aspect concerns the randomness of the data generated. We 

evaluated the random number generator using the NIST_STS statistical test battery. The tests 

were performed on data sequences of 131,072 bytes. Since a statistical evaluation is more 

accurate the larger the volume of data tested, we applied the tests for a number of 1,000 distinct 

sequences for each case analyzed.  

 The test results are presented in Table 5 1. Analysing the results, it can be seen that for 

all cases, only one or two tests or subtests failed. Considering this, as well as the fact that all 

relevant tests passed, it can be considered that all the solutions analysed show very good 

randomness properties.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 

 

Table 5 1 Statistical test results 

RNG type Generated data 

output size    

Past tests Failed tests 

 

RNG_Comet 

128 bits  186 of 187 The Non-overlapping Template 

Matching Test - 1 subtest 

4096 bits 187 of 187  

1 Mb 187 of 187  

 

 

RNG_Sparkle 

128 bits 186 of 187 The Random Excursions Variant 

Test - 1 subtest 

4096 bits 187 of 187  

1 Mb 185 of 187 The Non-overlapping Template 

Matching Test - 2 subtests 

 

RNG_Romulus 

128 bits 185 of 187 The Non-overlapping Template 

Matching Test - 2 subtests 

4096 bits 185 of 187 The Non-overlapping Template 

Matching Test - 2 subtests 

1 Mb 183 of 187 The Discrete Fourier Transform 

(Spectral) Test 

The Non-overlapping Template 

Matching Test - 3 subtests 

 

RNG_Photon 

128 bits 187 of 187  

4096 bits 186 of 187 The Random Excursions Variant -

Test 1 subtest 

1 Mb 186 of 187 The Discrete Fourier Transform 

(Spectral) Test 

 

5.2.2. Efficiency analysis 

 

In order to identify the solution that offers the best efficiency in terms of power consumed 

and resources required for implementation, I conducted a series of experiments. The elements 

we considered in the analysis were: making data collection from the entropy source more 

efficient, identifying a cryptographic algorithm for DRNG that would require the least 

resources, and implementing the solution on a platform that can also be used in IoT 

applications.  

In order to identify the optimal entropy source I analysed the entropy generated by the 

accelerometer and gyroscope. In order to obtain the highest entropy level in the situation where 

the sensors are not moving I analysed in the paper [7] the possibility of parameterization of the 

sensors. Thus, I found that the bandwidth and the measurement range can influence the entropy 

level generated by the sensors. The tests showed that setting the measurement range to the 

lowest value (2g for accelerometer and 245 dps for gyroscope) and the bandwidth to the highest 

value (3330 Hz for accelerometer and 1250 Hz for gyroscope) gives the highest values for 

entropy.  



39 

 

Since we noticed that the data extraction times from the sensors are different, we tried 

different combinations for the two sensors. In Table 5.2 the times required for data extraction 

in these cases are presented, together with the entropy level of the extracted data. 

 

Table 5.2 Entropy source generation speed 

Sensor type  Axe Entropy  Extraction time for 1 

entropy bit (ns) 

Gyroscope X 4,35 204,60 

Gyroscope Y 4,51 197,34 

Gyroscope Z 4,43 200,90 

Gyroscope XYZ 4,48 96,73 

Accelerometer X 2,71 697,42 

Accelerometer Y 3,02 625,83 

Accelerometer Z 2,92 647,26 

Accelerometer XYZ 3,3 232,32 

Accelerometer / 

Gyroscope 

XYZ 3,4 157,84 

 

The following optimization was aimed at identifying an optimal lightweight algorithm 

variant for the DRNG implementation. An Arduino Mini board was used to implement the 

algorithms. Tests were performed for different lightweight algorithms. To demonstrate that the 

proposed solution brings performance improvements, we compared the results obtained with 

the AES_CTR solution proposed by NIST in [6].  

First, I looked at the resources needed to implement the solution. Table 5.3 shows, for 

each implementation, the storage space for the source code and the dynamic memory required 

to run it. The values are given in number of bytes and as a percentage of total available memory. 

Analysing the results it can be seen that the solutions presented require a memory capacity 

comparable to the AES_CTR variant, with the exception of the Romulus algorithm. In contrast, 

AES CTR requires about 30% more dynamic memory.  

 

 

 

Second, I analyzed the random number generation speeds for all five implementations. 

Tests were performed for generating the most common key sizes ( 128, 256, 512 , 1024, 2048, 

4096 bits) but also longer sequences of 1Kb and 10 Kb. Analysing the results presented in 

Table 5.3 Resources needed to implement the RNGs 

Type RNG Space stored program Dynamic memory 

Byte count Percent  Byte count Percent  

RNG_Photon 9322 28% 601 29% 

RNG _Sparkle 7418 22% 523 25% 

RNG _Romulus 15584 48% 523 25% 

RNG _Comet 8226 25% 523 25% 

RNG_AES_CTR 8494 26% 841 41% 
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Figure 5.4 it can be seen that only the solutions implemented with the Comet and Sparkle 

algorithms manage to achieve better generation speeds than the AES_CTR variant.  

 
Figure 5.4 RNG generation speeds 

We also looked at the DRNG variants in terms of power consumption. Measurements 

were made, using the FLUKE 8864A professional multimeter to measure the current on the 

power supply of the Arduino Mini board while running on it the program that generates 128-

bit sequences, re-initialization being performed at each iteration. Since the MPU9250 sensor is 

powered from the Arduino Mini board, the measured current represents the total amount 

required to run the RNG. With this value available, it can be accurately estimated the battery 

capacity required to power this solution for generating a given amount of random data.  

Table 5.4 shows the power consumed by the five solutions and the number of keys 

generated with a 1000 mAh battery. The power was calculated by multiplying the current 

consumed by the Arduino Mini board by its supply voltage of 5V.  The current value is an 

average of the values recorded over a period of 10s.  The current consumption of the 

microcontroller measured in the standby state is 0.257 mA, much lower than in the running 

state. Thus, it can be stated that the number of keys generated with a 1000 mAh battery can 

also be obtained under real conditions.  

 

Table 5.4 Consumption analysis for RNG solutions 

Type RNG Power 

consumption 

(mW) 

Number of keys 

generated with a 1000 

mAh battery 

RNG_Sparkle 87,0 18.91*106 

RNG_Comet 86,5 19.98*106 

RNG_Photon 88,0 16.53*106 

RNG_Romulus 88,5 17.59*106 

AES_CTR 86,5 18.62*106 
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Analysing the values in Table 5.4 it can be seen that the best performance can be 

obtained using the Comet algorithm, followed by Sparkle and the AES_CTR solution.  

 

6. Conclusions 
 

The analysis of the current security context in IoT infrastructures indicates that there 

are still enough problems to be solved in this area. In this thesis, several solutions are presented 

that bring improvements to ensure the security of data carried on IoT devices.   

The thesis includes original theoretical and practical contributions in the field of 

ensuring data security in restrictive IoT environments. Thus, architectural solutions, integration 

of different technologies, analysis methodologies and security or efficiency analyses are 

proposed. The main contributions are described in detail below: 

 Architectural solution for integrating blockchain technology into a fog computing 

IoT infrastructure. Following an analysis to identify the type of IoT architecture for 

which the implementation of BC functionalities is feasible, I proposed the optimal 

solution; 

 Architectural solutions for implementing the functionalities of an IoT sensor node 

and a BC node on FPGA platforms. I proposed two solutions, taking into account 

power consumption. I have implemented essential components to provide the 

functionalities of a sensor node and a BC node on FPGA platforms with different 

resources;    

 Simple, efficient and secure protocol for establishing session keys for deployment 

on IoT nodes. The protocol was implemented on a platform used in IoT, equipped 

with a microcontroller. I performed an analysis in terms of power consumption and 

execution speed. The solution uses the Ethereum blockchain platform as a trusted 

source, using a smart contract for this purpose. The proposed solution has been 

benchmarked in terms of efficiency and cost against the classical TLS - PKI 

protocol solution; 

 Efficient entropy source solution with data extracted from sensors.  The solution 

has been optimized by identifying sensor parameters to generate maximum entropy 

under different conditions of use. The generated entropy level was evaluated using 

NIST standard metrics. I realized a performance analysis of the source in terms of 

power consumption and generation rate; 

 Original noise source analysis methodology that collects data from motion sensors. 

The analysis was performed considering the source components: physical 

phenomenon, sensor and acquisition platform. For this purpose, I realized a series 

of experiments highlighting the influence of each element on the entropy value; 

 Methodology of entropy source stability analysis. The analysis was carried out on 

two levels. I performed a long-term analysis to identify behavior of the source in 

time and an analysis of the entropy level after restart; 
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 Methodology for analysing the attack resistance of an entropy source collecting 

sensor data. I have detailed and performed two types of attacks.  The first type of 

attack was passive. It was performed on a side-channel, attempting data estimation 

using an identical acquisition platform. The second type of attacks were active. I 

constructed a series of attacks to detect source behaviour under cyclic motion, 

saturation, operation at extreme temperatures and changes in sampling frequency; 

 Original, secure and efficient random number generator solution for use in 

restrictive IoT environments. The implementation of the solution was performed on 

a resource-constrained microcontroller. I performed an analysis from the point of 

view of consumed resources, power consumption and security, including the 

estimation of the randomness of the generated data, security properties and 

cryptographic strength of the deterministic component. 
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