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1 Introduction 

 The progress of new technologies in the last decades had as a result the significant 

development of multi-agent systems (MAS). This concept refers to the coordinated flight of two 

or more vehicles, called agents, for which various characteristics are imposed, having a common 

objective. Recently, the applications of these systems have achieved considerable interest, 

becoming a subject that has received special attention. The applicability area is continuously 

expanding, including both military and civil applications.  

 In research literature, the solutions proposed in the control of networked systems generally 

refer to two types of control: centralised and distributed. A comparative study of these approaches 

is represented by the paper [1] which includes theoretical notions related to their specific 

characteristics. The centralised system design involves the interconnection of all agents, which 

implies difficulties in data processing. This type of control requires high performance of the central 

controller and a single error of it influences the behaviour of the entire network. Compared to the 

centralised case, the distributed control assumes a specific structure, namely, the information 

transmission is achieved between certain pairs of agents. Significant theoretical results regarding 

this type of control are given in [2] and the progress on this topic is presented in [3]. Compared to 

the centralised case that presents difficulties in data processing, the efficiency of distributed control 

is observed, especially for systems with large number of agents.  

 Optimal control is a feature of modern control system design methods. The main aspects 

relate to obtaining the stability of the resultant system and satisfying certain restrictions associated 

with conventional control, giving the system the best characteristics for a specific model [4]. 

 In this thesis, the attention is directed to the study of the multi-agent system control 

problem. Unlike a single-agent system, specific problems arise regarding the design of control 

systems. A characteristic of these systems refers to the information transmission realized by 

communication channels, introducing new challenges in terms of the automatic control system 

design. Considering the external factors that can affect the objectives achievement, an optimal 

vehicle coordination solution is needed to achieve the desired performance of the entire network. 

These situations involve the failure of one or more members, the time delays effects or the 

overloading of communication channels that ensure the information transmission causing data 

packet drop out. These scenarios are the objectives of this work, their effects being analysed 

through the presented case studies.  

 The paper is structured in different parts as follows. Chapter 1 is a preliminary chapter 

presenting general considerations regarding previous approaches to the multi-agent system control 

problem and the main objectives of this thesis. The first method used in this study, linear quadratic 

regulator (LQR), is analysed in Chapter 2, establishing the specific aspects of the two types of 

control (centralised and distributed). The optimal control addressed in Chapter 3 aims to determine 

the solutions of the linear quadratic problem in the two considered cases, for which the decoupled 

dynamics of a vehicle is used. Chapter 4 formulates a detailed description of H∞ design for the two 

types of control. Chapter 5 is dedicated to the comprehensive exposition of case studies both in 

the situation of ideal communication between agents and in various scenarios that consider the 
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imperfections of information transmission channels. Chapter 6 gives the results of the H∞ design 

where the data packet drop out in the communication networks is represented by the Markov 

process. The relevant design steps for stochastic systems are formulated for systems consisting of 

N agents with identical dynamics. The last part of the case studies, described in Chapter 7, 

illustrates the capabilities of the H∞ controller for stochastic systems taking into account possible 

network data packet losses, using Markov processes. The characteristics of this design type are 

highlighted by the obtained time evolutions of two different flight configurations. Chapter 8 

relieves, through the stated conclusions, the results offered by the design methods proposed in this 

thesis.  

2 Linear Quadratic Design 

2.1 Preliminaries – LQR Problem Formulation; Graph Theory 

 LQR Problem Formulation 

 Considering the linear system of an aerial vehicle of form: 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) with 𝑥(0) = 𝑥0 (2.1) 

where x is the state vector, u is the control vector, and the cost function defined as: 

𝐽(𝑢) = ∫ (𝑥𝑇(𝑡)𝑄𝑥(𝑡) + 𝑢𝑇(𝑡)𝑅𝑢(𝑡))𝑑𝑡
∞

0
  (2.2) 

with the weighting matrices 𝑄 ≥ 0 and 𝑅 > 0, it is reminded that solving the linear quadratic 

problem consists in determining the optimal controller of form 𝑢(𝑡) = −𝐾𝑥(𝑡) that minimises the 

cost function (2.2).  

 Graph Theory 

 The flight of an agent network involves the coordination of several aerial vehicles for 

which their interconnection is defined by graph theory, the communication mode being explained 

in matrix form. Any graph is defined by specific matrix forms used in the stability analysis of flight 

formation members, detailed in [5]. 

2.2 Centralised Control 

 This chapter focuses on centralised control problem that involves communication between 

each pair of agents in both directions. To describe the necessary model to solve the linear quadratic 

problem, the dynamics of the system composed of N interconnected subsystems is defined. The 

cost function of the linear quadratic problem for N agents includes the dynamic behaviour of the 

systems, being defined as follows: 

𝐽(𝑢, 𝑥0) = ∫ (∑ (𝑥𝑖(𝑡)
𝑇𝑄𝑖𝑖𝑥𝑖(𝑡) + 𝑢𝑖(𝑡)

𝑇𝑅𝑖𝑖𝑢𝑖(𝑡)) + ∑ ∑ (𝑥𝑖(𝑡) −𝑁
𝑗≠𝑖

𝑁
𝑖=1

𝑁
𝑖=1

∞

0

𝑥𝑗(𝑡))
𝑇𝑄𝑖𝑗(𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)))𝑑𝑡.  

(2.3) 

 This can be rewritten as: 
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𝐽(𝑢(𝑡), 𝑥0) = ∫ (𝑥𝑇(𝑡)𝑄𝑓𝑥(𝑡) + 𝑢𝑇(𝑡)𝑅𝑓𝑢(𝑡))𝑑𝑡
∞

0
  (2.4) 

 Taking into account the initial conditions, the control law that minimizes the cost function 

(2.4) is defined as:  

𝑢 = −𝑅𝑓
−1𝐵𝑓

𝑇𝑃𝑓𝑥 (2.5) 

where 𝑃𝑓 represents the positive definite symmetric stabilising solution of the equation: 

𝐴𝑓
𝑇𝑃𝑓 + 𝑃𝑓𝐴𝑓 − 𝑃𝑓𝐵𝑓𝑅𝑓

−1𝐵𝑓
𝑇𝑃𝑓 + 𝑄𝑓 = 0.  (2.6) 

2.3 Distributed Control 

 Considering the main disadvantage of centralised control that needs to access information 

from all agents, the design of a distributed control is needed. Compared to the centralised case, 

distributed control requires a certain structure, namely, the communication is realized between 

certain agents, this fact being possible due to the controllers interconnection.  

 The paper [6] proposes a method to determine a suboptimal distributed controller for which 

it is necessary to define the interconnection way of the agents. Thus, a positive definite symmetric 

matrix denoted 𝑀 ∈ ℝ𝑁×𝑁 is introduced. The work demonstrates different ways of defining this 

matrix so that the system stability can be achieved. It is necessary to establish the minimum size 

for which the linear quadratic problem can be solved, given by the term 𝑁ℓ = 𝑑𝑚𝑎𝑥 + 1, where 

𝑑𝑚𝑎𝑥 represents the maximum number of connections for a node. Reference [6] sets various 

conditions for choosing the matrix 𝑀. 

 It is necessary to determine the positive definite symmetric solution 𝑃ℓ of the ARE 

associated with the centralised LQR problem of reduced size, corresponding to a number of 𝑁ℓ =

𝑑𝑚𝑎𝑥(𝒢) + 1 agents. 

𝐴ℓ
𝑇𝑃ℓ + 𝑃ℓ𝐴ℓ − 𝑃ℓ𝐵ℓ𝑅ℓ

−1𝐵ℓ
𝑇𝑃ℓ + 𝑄ℓ = 0 (2.7) 

where 𝑃ℓ is of form: 

𝑃ℓ =

[
 
 
 
𝑃ℓ11

𝑃ℓ12

𝑃ℓ12
𝑃ℓ11

⋯ 𝑃ℓ12

⋯ 𝑃ℓ12

⋮ ⋮
𝑃ℓ12

𝑃ℓ12

⋱ ⋮
⋯ 𝑃ℓ11]

 
 
 

.  (2.8) 

 To determine the positive definite symmetric solution 𝑃 needed to obtain the controller, 

the Riccati algebraic equation associated with the linear quadratic problem for a single agent is 

solved:  

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄1 = 0. (2.9) 

Furthermore, 𝑃ℓ11
= 𝑃 − (𝑁ℓ − 1)𝑃ℓ12

. The corresponding optimal controller has the following 

structure: 
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𝐾ℓ = [

𝐾1 𝐾2

𝐾2 𝐾1

⋯ 𝐾2

⋯ 𝐾2

⋮ ⋮
𝐾2 𝐾2

⋱ ⋮
⋯ 𝐾1

]. (2.10) 

3 Case Studies – Linear Quadratic Design 

 In the presented case studies, the two types of controller are analysed: centralised and 

distributed. In order to study the agents’ evolutions for the considered networks, the numerical 

simulations use the decoupled dynamics of an aerial unmanned vehicle (UAV), thus the 

performances of members for both longitudinal and lateral dynamics are analysed. In the 

considered case studies, the linearized state space equations of a vehicle are used.  

 The longitudinal motion of an aerial vehicle is characterized by the decoupled equations 

for the following states, 𝑥 = [𝑢 𝑤 𝑞 𝜃 ℎ]𝑇, whose state space expression is given by: 

[�̇� �̇� �̇� �̇� ℎ̇]𝑇 = 𝐴𝑙𝑜𝑛𝑔[𝑢 𝑤 𝑞 𝜃 ℎ]𝑇 + 𝐵𝑙𝑜𝑛𝑔 [
𝛿𝐸

𝛿𝑇
]. (3.1) 

 The matrix values corresponding to the longitudinal dynamics of an unmanned aerial 

vehicle are considered, according to [7]. In the lateral dynamics case, the state space system is 

defined by the five corresponding states 𝑥 = [𝑣 𝑝 𝑟 𝜑 𝜓]𝑇 as follows: 

[�̇� �̇� �̇� �̇� �̇�]𝑇 = 𝐴𝑙𝑎𝑡[𝑣 𝑝 𝑟 𝜑 𝜓]𝑇 + 𝐵𝑙𝑎𝑡 [
𝛿𝐴

𝛿𝑅
]. (3.2) 

3.1 Centralised Control 

 Longitudinal Dynamics 

 The four identical aerial vehicles of the network are assumed to have null initial conditions. 

The entire network is required to reach a desired altitude ℎ = 10 𝑚 and velocity 𝑢 = 3 𝑚/𝑠. 

Figure 3.1 and Figure 3.2 illustrate the time responses of the controlled system using linear 

quadratic method considering null initial conditions for each agent.  

  

             

Figure 3.1 Time evolution of velocity – 

centralised control 

Figure 3.2 Time evolution of altitude – 

centralised control 
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 Lateral dynamics 

 For the presented numerical simulations, the four aerial vehicles of the configuration are 

considered to have different initial conditions: the velocities 𝑣 and yaw angles 𝜓. To obtain the 

simulations in Figure 3.3, different initial velocities are imposed and the desired result is to reach 

and maintain a certain velocity value. This figure illustrates the time evolution of velocity where 

it can be observed that the networked agents reach the desired value, taking into consideration the 

different initial values. For the developments in Figure 3.4, the initial yaw angle value for each 

agent is assumed to be null. It can be seen that the entire network stabilises at the desired value in 

a few seconds, maintaining it throughout the simulation.  

 

             

3.2 Distributed Control 

 To study the characteristics of distributed control and to relieve the controller capabilities, 

two different configurations, illustrated in Figure 3.5 and Figure 3.6, are studied. 

                     

             

3.2.1. Longitudinal Dynamics 

 Configuration A 

 In order to analyse the longitudinal dynamics in the distributed control case, an aerial 

vehicles formation consisting of 4 agents with the configuration in Figure 3.5 is considered. The 

information transmission between agents is defined by the corresponding adjacency matrix with 

the expression (3.3). 

Figure 3.3 Time evolution of velocity – 

centralised control 

Figure 3.4 Time evolution of ψ – 

centralised control 

Figure 3.5 Configuration A Figure 3.6 Configuration B 
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𝒜(𝒢) =  [

0 1
1 0

0 0
1 0

0 1
0 0

0 1
1 0

] (3.3) 

 Following the gain matrix determination, the form of the distributed controller is analysed, 

in which 𝐾𝐷13
= 𝐾𝐷14

= 0,𝐾𝐷31
= 𝐾𝐷24

= 0  and 𝐾𝐷41
= 𝐾𝐷42

= 0. From Figure 3.5, it is 

observed that the communication between the pairs of agents (1,3) and (1,4) is not possible, which 

proves the existence of null terms on the corresponding position in the obtained controller. This 

property is proved for every agent of the network. Figure 3.7 and Figure 3.8 demonstrate the 

achievement of the desired performances by all networked members. 

   

 

 Configuration B 

This part of the work uses a new configuration consisting of an equal number of agents, 

but their arrangement and communication way are different comparative to the previous case. The 

analysed structure is illustrated in Figure 3.6, and the expression (3.4) defines the interconnection 

mode of the vehicles. 

𝒜(𝒢) =  [

0 1
1 0

1 0
0 1

1 0
0 1

0 1
1 0

] (3.4) 

From the velocity time evolution (Figure 3.9) it can be seen that all vehicles maintain the 

desired velocity value 𝑢 = 3𝑚/𝑠 throughout the time simulation. Figure 3.10 illustrated the 

behaviour of the flight formation for which it is necessary to reach the altitude value ℎ = 10 𝑚. 

 

 

Figure 3.7 Time evolution of velocity– 

distributed control – Config. A 
Figure 3.8 Time evolution of altitude – 

distributed control – Config. A 
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3.2.2. Lateral Dynamics 

 Configuration A 

Considering the decoupled aerial vehicle dynamics, it is required to study the lateral motion 

stability. The objectives involve reaching a desired velocity of the agents and maintain this value 

during the flight, illustrated in Figure 3.11. The numerical simulations in Figure 3.12 highlight the 

time response of the system in case of maintaining an imposed yaw angle value. 

   

  

 

 Configuration B 

Acquiring numerical simulations implies reaching pre-set performances. Rather, it is 

required that the aerial vehicles maintain desired velocity and yaw angle values throughout the 

simulation. Figure 3.13 and Figure 3.14 demonstrate both the system stability and the pre-set 

objectives achievement, taking into consideration the different initial imposed conditions.  

Figure 3.9 Time evolution of velocity  – 

distributed control – Config. B 
Figure 3.10 Time evolution of altitude – 

distributed control – Config. B 

Figure 3.11 Time evolution of velocity  – 

distributed control  – Config. A 
Figure 3.12 Time evolution of ψ – 

distributed control – Config. A 
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4 H∞ Design 

As a modern design technique, H∞ theory involves determining a controller that stabilises 

the closed loop system and achieving a design objective by minimizing the H∞ norm of a specific 

transfer function. The theoretical notions along with the specific properties are detailed treated in 

references [8], [9], [10].  

4.1 Preliminaries - H∞ Design 

Considering a network of identical vehicles, the dynamics is written as follows: 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵1𝑢1(𝑡) + 𝐵2𝑢2(𝑡)  

𝑦1(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢2(𝑡) (4.1) 

𝑦2(𝑡) = 𝑥(𝑡), 𝑡 ≥ 0  

where 𝑥 ∈ ℝ𝑛 is the state vector, 𝑢1 ∈ ℝ𝑚1 represents the exogenous input, 𝑢2 ∈ ℝ𝑚2  denotes the 

control input, 𝑦1 ∈ ℝ𝑝1 stands for the quality output and 𝑦2 is the measured output. Furthermore, 

to determine the solutions of H∞ problem, two conditions are assumed to be true: 𝐶𝑇𝐷 = 0 and 

𝐷𝑇𝐷 = 𝐼. 

4.2 Centralised Control 

The dynamic system of the formation is written in a compact form as follows: 

�̇̃�(𝑡) = �̃��̃�(𝑡) + �̃�1�̃�1(𝑡) + �̃�2�̃�2(𝑡)  

�̃�1(𝑡) = �̃��̃�(𝑡) + �̃��̃�2(𝑡) (4.2) 

�̃�2(𝑡) = �̃�(𝑡), 𝑡 ≥ 0   

For a given 𝛾 > 0, the following cost function is defined: 

Figure 3.13 Time evolution of velocity – 

distributed control – Config. B 

Figure 3.14 Time evolution of ψ – 

distributed control – Config. B 
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𝐽(𝑢11
, … , 𝑢1𝑁

, 𝑢21
, … , 𝑢2𝑁

) = ∫ [∑ (|𝑦1𝑖(𝑡)|
2 − 𝛾2|𝑢1𝑖(𝑡)|

2) +𝑁
𝑖=1

∞

0

1

2
∑ ∑ (𝑥𝑖(𝑡) − 𝑥𝑗(𝑡))

𝑇

𝑄𝑖𝑗 (𝑥𝑖(𝑡) − 𝑥𝑗(𝑡))
𝑁
𝑗=1,𝑗≠𝑖

𝑁
𝑖=1 ] 𝑑𝑡   

(4.3) 

 The state-feedback gain determination �̃� ∈ ℝ𝑚2𝑁×𝑛𝑁 involves solving the Riccati 

equation: 

�̃�𝑇�̃� + �̃��̃� + 𝛾−2�̃��̃�1�̃�1
𝑇�̃� − �̃��̃�2�̃�2

𝑇�̃� + �̃�𝑇�̃� = 0 (4.4) 

where �̃� ≥ 0 is the stabilising solution. Furthermore, the stabilising solution of Riccati equation 

(4.4) has the following structure: 

�̃� =

[
 
 
 
�̃�1 �̃�2

�̃�2 �̃�1

⋯ �̃�2

⋯ �̃�2

⋮ ⋮
�̃�2 �̃�2

⋱ ⋮
⋯ �̃�1]

 
 
 

 (4.5) 

where �̃�1 = 𝑋1 + (𝑁 − 1)𝑋2 and �̃�2 = 𝑋2, where 𝑋1 and 𝑋2 are the positive semidefinite 

stabilising solutions to the following Riccati equations 

𝐴𝑇𝑋1 + 𝑋1𝐴 + 𝑋1(𝛾
−2𝐵1𝐵1

𝑇 − 𝐵2𝐵2
𝑇)𝑋1 + 𝐶𝑇𝐶 = 0 (4.6) 

(𝐴 + (𝛾−2𝐵1𝐵1
𝑇 − 𝐵2𝐵2

𝑇)𝑋1)
𝑇𝑋2 + 𝑋2(𝐴 + (𝛾−2𝐵1𝐵1

𝑇 − 𝐵2𝐵2
𝑇)𝑋1) + 𝑁𝑋2(𝛾

−2𝐵1𝐵1
𝑇 −

𝐵2𝐵2
𝑇)𝑋2 + 𝑃𝑇𝑃 = 0. 

(4.7) 

Taking into consideration the state-feedback gain matrix structure, namely,  

�̃� = [

𝐹1 𝐹2

𝐹2 𝐹1

⋯ 𝐹2

⋯ 𝐹2

⋮ ⋮
𝐹2 𝐹2

⋱ ⋮
⋯ 𝐹1

] (4.8) 

the optimal state-feedback gains have the following expressions: 

𝐹1 = −𝐵2
𝑇(𝑋1 + (𝑁 − 1)𝑋2) 

(4.9) 
𝐹2 = 𝐵2

𝑇𝑋2. 

4.3 Distributed Control  

In the centralised controller case, where all agents are interconnected, the adjacency matrix 

has all extra-main diagonal elements equal to 1. Due to the limited information transmission 

between network members, in the case of distributed controller, its expression can be written using 

the adjacency matrix as: 

�̃�𝐷 = 𝐼𝑁 ⊗ 𝐹1 + 𝒜(𝒢) ⊗ 𝐹2. (4.10) 

The existence of null terms in the adjacency matrix introduces a new problem, namely, if 

the obtained distributed controller guarantees the system stability and ensures the required H∞ 

performances. Adopting the parameterization in [6] 

�̃�𝐷 = 𝐼𝑁 ⊗ 𝐹1 + 𝑎𝐼𝑁 ⊗ 𝐹2 + 𝑏𝒜(𝒢) ⊗ 𝐹2 (4.11) 
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the parameters 𝑎 and 𝑏 range is determined so that the closed-loop multi-agent system stability is 

obtained. Considering the notation 𝜇𝑖, 𝑖 = 1,… ,𝑁 corresponding to the adjacency matrix 𝒜(𝒢) 

eigenvalues, the following algorithm proposed in [11] is used to determine the necessary 

parameters to maintain the stability properties.  

Step 1. Determine 𝛿1 < 0 and 𝛿2 > 0 such that 𝛬(�̃�𝐷) ∈ ℂ−, ∀𝛿 ∈ [𝛿1, 𝛿2]; 

Step 2. Solve the systems of inequalities  

𝛿1 + 1 − 𝑁𝐿 + 𝑎 + 𝑏𝜇 < 0  

𝛿2 + 1 − 𝑁𝐿 + 𝑎 + 𝑏𝜇 > 0 (4.12) 

𝑏 > 0  

and  

𝛿1 + 1 − 𝑁𝐿 + 𝑎 + 𝑏𝜇 < 0  

𝛿2 + 1 − 𝑁𝐿 + 𝑎 + 𝑏𝜇 > 0 (4.13) 

𝑏 < 0  

where 𝜇 = 𝑚𝑖𝑛𝑖𝜇𝑖 and 𝜇 = 𝑚𝑎𝑥𝑖𝜇𝑖. 

5 Case Studies - H∞ Design 

The second design method analysed in this work, named H∞, assumes specific properties, 

requiring the definition of system equations for the considered network of form (4.1).  

5.1 H∞ Design in case of ideal communication channels 

5.1.1. Centralised Control 

 Longitudinal Dynamics 

   

   

Figure 5.1 represents the time evolution of velocity for the entire network for which it is 

required to reach and maintain the pre-set value 𝑢 = 3 𝑚/𝑠. Figure 5.2 illustrates the time 

evolution of altitude for the four agents of the interconnected system.  

Figure 5.1 Time evolution of velocity – 

centralised control 
Figure 5.2 Time evolution of altitude – 

centralised control 
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 Lateral Dynamics 

In the case of lateral dynamics, the time responses of velocity and altitude are analysed. 

Figure 5.3 shows the time response of velocity where the networked members are observed to 

reach the imposed value, maintaining it throughout the simulation, taking into consideration the 

different initial conditions. Figure 5.4 demonstrates the network capacity to stabilise at the desired 

yaw angle value. 

 

            

5.1.2. Distributed Control 

 Longitudinal Dynamics  

 Configuration B 

This part analyses the behaviour of the configuration in Figure 3.6, where all agents have 

an equal number of connections. Figure 5.5 shows the time evolution of velocity for which the 

imposed value 𝑢 = 3 𝑚/𝑠 is reached. Although the information transmission between certain pairs 

of agents is limited, the obtained distributed controller guarantees the system stability.  

 

  

  

Figure 5.3 Time evolution of velocity – 

centralised control 
Figure 5.4 Time evolution of ψ –

centralised  control 

Figure 5.5 Time evolution of velocity – 

distributed control – Config. B 
Figure 5.6 Time evolution of altitude – 

distributed control – Config. B 
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 Configuration F 

It is important to study the case where the maximum number of an agent connections 

considerably increases. Thus, the configuration in Figure 5.7 is considered, where 𝑑𝑚𝑎𝑥 = 7 for 

agent 1 and agent 2. Maintaining the same imposed conditions in the other analysed cases, the time 

responses of velocity and altitude shown in Figure 5.8 and Figure 5.9 are obtained.  

 

Figure 5.7 Configuration F 

 

             

 Lateral Dynamics 

 Configuration F 

   

 

Figure 5.8 Time evolution of velocity – 

distributed control – Config. F 

Figure 5.9 Time evolution of altitude – 

distributed control – Config. F 

Figure 5.10 Time evolution of velocity – 

distributed control  – Config. F 
Figure 5.11 Time evolution of ψ  – 

distributed control – Config. F 
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 To obtain the numerical simulations, the initial conditions considered in the previous cases 

are maintained. The time evolution of velocity shown in Figure 5.10 highlights the different initial 

values of the network agents and the null value maintenance throughout the simulation. The time 

evolution of yaw angle (Figure 5.11) reflects the controller capacity to obtain network stability, 

achieving the desired objectives. 

5.2 H∞ Design in case of time delays communication network 

Although time delays are a recent topic in recent literature, the challenge consists of 

developing control algorithms for aerial vehicles networks considering their effects. Thus, their 

impact on the decoupled dynamics of the vehicles is analysed, for different considered 

configurations. Hence, to analyse their influences, the first-order delay modelled with the Padé 

approximation is considered.  

5.2.1. Centralised Control 

 The time evolutions of the states corresponding to the decoupled dynamics of the vehicles 

reflect distinct behaviours for the two situations (the time-delays case and the ideal one). The 

presence of the considered time delay is reproduced by the offset between the two graphical 

representations, without affecting the network stability.  

5.2.2. Distributed Control 

 Longitudinal Dynamics 

 Configuration F 

Maintaining the same conditions imposed in the other analysed cases, the comparative 

graphic representations of the two states are obtained, illustrated in Figure 5.12 and Figure 5.13. 

The offset caused by the time-delays is observed, without affecting the network stability and the 

desired objectives achievement. 

 

           

 

Figure 5.12 The comparative time evolutions of 

velocity – distributed control – Config. F 
Figure 5.13 The comparative time evolutions 

of altitude – distributed control  – Config. F 
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 Lateral Dynamics 

 Configuration F 

In this part, it is desired to study the time-delays influences in a flight configuration case 

where the maximum number of connections of an agent significantly increases. Like the previous 

situations, the comparative time evolutions of velocity (Figure 5.14) and yaw angle (Figure 5.15) 

for each member are presented, where the offset due to the time delay is noted. The maximum 

reached value of the yaw angle corresponds to the agent 3 for which the initial velocity condition 

is maximum. Their progressive decrease is achieved according to the different initial velocity 

values.  

 

 

5.3 H∞ Design in case of failure communication  

Communication between agents plays an essential role in the automatic control system 

design. The data transmission can have an impact on the entire flight formation, therefore different 

situations involving interconnection failure are analysed. To study the time evolutions of the 

networked agents, the decoupled dynamics of two flight formations whose configurations are 

illustrated in Figure 5.16 (configuration C) and Figure 5.7 (configuration F) are considered. The 

interconnected systems equations, the initial conditions and the imposed objectives are the same 

as detailed for the ideal communication case.  

 

 Figure 5.16 Configuration C 

Figure 5.14 The comparative time evolutions of 

velocity – distributed control – Config. F 

 

Figure 5.15 The comparative time evolutions of ψ 

– distributed control – Config. F 
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5.3.1. Situation I 

The first analysed situation consists in the certain agents failure case. For the configuration 

in Figure 5.16, the failure of agent 2 is considered and for the Figure 5.7, the connection with agent 

2 and agent 5 is not possible.  

 Longitudinal Dynamics 

Firstly, the time evolutions of the two analysed states of configuration C are obtained, 

which are represented in Figure 5.17 and Figure 5.18. The simulations illustrate the detailed 

behaviour of the entire network in order to highlight the influence of agent 2 failure on the other 

agents. It can be seen that the connection loss of agent 2 has no significant effects on the network 

stability or the imposed objective achievement. This fact is highlighted by the small differences in 

the state evolutions in the mentioned period.  

          

               

 

          

Analysing the time evolutions of the two states of configuration F (Figure 5.19 and Figure 

5.20), differences in member behaviours are identified not only for the considered period. 

Considering the maximum number of connections for agent 2, the effects are not significant. 

Therefore, network stability and desired performance are obtained.  

 

Figure 5.17 Time evolution of velocity for 

config. C  – agent 2 failure 
Figure 5.18 Time evolution of altitude for 

config. C – agent 2 failure 

Figure 5.19 Time evolution for velocity for 

config. F – agent 2 and agent 5 failure 

Figure 5.20 Time evolution of altitude for 

config. F – agent 2 and agent 5 failure 
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 Lateral Dynamics 

  

          

From the graphical representations of the analysed states corresponding to the lateral 

dynamics presented in Figure 5.21 and Figure 5.22, it can be observed that the communication loss 

with agent 2, for a pre-set period, does not affect the desired performances. In the case of the 

configuration with a larger number of agents (configuration F), the comparative representations 

for both situations (ideal communication and imperfect connections) are illustrated in Figure 5.23 

and Figure 5.24. 

  

   

5.3.2. Situation II 

In the second studied scenario, the complete communication loss for the same limited 

period is considered. This case is analysed for the two above-mentioned configurations.  

 Longitudinal Dynamics  

The time evolutions of velocity (Figure 5.25) and altitude (Figure 5.26) are obtained, where 

the index 𝑖 denotes the states of the ideal case. It is noted that the effects of complete 

Figure 5.21 Time evolution of velocity for 

config. C – agent 2 failure 
Figure 5.22 Time evolution of yaw angle 

for config. C – agent 2 failure 

Figure 5.23 Time evolution of velocity for 

config. F – agent 2 and agent 5 failure 

Figure 5.24 Time evolution of yaw angle for 

config. F – agent 2 and agent 5 failure 
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communication loss for a determined period continue for a while after connections are re-

established. These aspects do not have a negative impact on desired performance.  

 

 

 

 Lateral Dynamics 

Similar to the previous situation, identical objectives are considered for the two different 

flight configurations, maintain the same periods of complete connections loss. The time evolutions 

of the states for the first configuration are presented in Figure 5.27 and Figure 5.28. 

   

 

 

6 H∞ Design for stochastic systems with Markov Chains 

In this part, the H∞ controller design for multi-agent systems with identical dynamics is 

considered, where the data loss in communication networks is represented by the Markov process. 

These models are used for the simulation and modelling of communication systems, addressed in 

works such as [12], [13], [14]. 

Figure 5.25 Time evolution of velocity for 

config. F – complete communication failure 
Figure 5.26 Time evolution of altitude for 

config. F – complete communication failure 

Figure 5.27 Time evolution of velocity for 

config. C - complete communication failure 

configurația F - pierdere totală a conexiunilor  

Figure 5.28 Time evolution of yaw angle for 

config. C - complete communication failure 
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6.1 Case of single agent 

The following linear stochastic system is considered 

�̇�(𝑡) = 𝐴(𝜂(𝑡))𝑥(𝑡) + 𝐵1(𝜂(𝑡))𝑢1(𝑡) + 𝐵2(𝜂(𝑡))𝑢2(𝑡)  

𝑦1(𝑡) = 𝐶(𝜂(𝑡))𝑥(𝑡) + 𝐷(𝜂(𝑡))𝑢2(𝑡) (6.1) 

𝑦2(𝑡) = 𝑥(𝑡)  

where the notations for system (4.1) hold and 𝜂(𝑡), 𝑡 ≥ 0 denotes the continuous Markov chain 

with the state space 𝒟 = {1,… , 𝑑} and 𝑃(𝑡) = [𝑝𝑖𝑗(𝑡)] = 𝑒𝛱𝑡, 𝑖, 𝑗 ∈ 𝒟, 𝑡 ≥ 0 is the probability 

transition matrix in which the stationary transition rate matrix of 𝜂 is 𝛱 = [𝜋𝑖𝑗] with 

∑ 𝜋𝑖𝑗 = 0, 𝑖 ∈ 𝒟𝑑
𝑗=1  and 𝜋𝑖𝑗 ≥ 0 if 𝑖 ≠ 𝑗. 

Definition 1 [15].  The stochastic system with Markov parameters  

�̇�(𝑡) = 𝐴(𝜂(𝑡))𝑥(𝑡) (6.2) 

is exponentially stable in mean square (ESMS) if there exists 𝛽 ≥ 1 and 𝛼 > 0 such that 

𝐸[|𝛷(𝑡)|2|𝑛(0) = 𝑖] ≤ 𝛽𝑒−𝛼𝑡, ∀𝑡 ≥ 0, 𝑖 ∈ 𝒟, where 𝛷(𝑡) represents the fundamental (random) 

solution of the differential system (6.2).  

Theorem 3 [15]. If the system of coupled Riccati equations  

𝐴𝑇(𝑖)𝑋(𝑖) + 𝑋(𝑖)𝐴(𝑖) + 𝑋(𝑖)(𝛾−2𝐵1(𝑖)𝐵1
𝑇(𝑖) − 𝐵2(𝑖)𝐵2

𝑇(𝑖))𝑋(𝑖) + ∑ 𝜋𝑖𝑗𝑋(𝑗)𝑑
𝑗=1 +

𝐶𝑇(𝑖)𝐶(𝑖) = 0  

(6.3) 

has a stabilising solution (𝑋(1),… , 𝑋(𝑑)) with 𝑋(𝑖) ≥ 0, ∀𝑖 ∈ 𝒟 for a certain value 𝛾 > 0, and 

namely, if the stochastic system with Markov chains 

�̇�(𝑡) = (𝐴(𝜂(𝑡)) + (𝛾−2𝐵1(𝜂(𝑡))𝐵1
𝑇(𝜂(𝑡)) − 𝐵2(𝜂(𝑡))𝐵2

𝑇(𝜂(𝑡)))𝑋(𝜂(𝑡))) 𝑥(𝑡) 

is ESMS, where 

𝐹(𝜂(𝑡)) = −𝐵2
𝑇(𝜂(𝑡))𝑋(𝜂(𝑡)), (6.4) 

then the control law 𝑢(𝑡) = 𝐹(𝜂(𝑡))𝑥(𝑡) stabilises the system (6.1) and 

𝐸[∫ (|𝑦1(𝑡)|
2 − 𝛾2|𝑢1(𝑡)|

2)
∞

0
𝑑𝑡] ≤ 0  (6.5) 

for ∀𝑢1 ∈ 𝐿𝜂
2 ([0,∞),ℛ𝑚1), where the quality output 𝑦1(𝑡) is determined with the initial condition 

𝑥(0) = 0 of the system (6.1).  

6.2 Multi-agent systems 

Theorem 4. (i) If the system of coupled Riccati equations  

�̃�𝑇(𝑖)�̃�(𝑖) + �̃�(𝑖)�̃�(𝑖) + �̃�(𝑖) (𝛾−2�̃�1(𝑖)�̃�1
𝑇
(𝑖) − �̃�2(𝑖)�̃�2

𝑇
(𝑖)) �̃�(𝑖) +

∑ 𝜋𝑖𝑗�̃�(𝑗)𝑑
𝑗=1 + �̃�𝑇(𝑖)�̃�(𝑖) = 0, 𝑖 = 1, … , 𝑑  

(6.6) 

has a positive semidefinite stabilising solution (�̃�(1), … , �̃�(𝑑)) with �̃�(𝑖) ≥ 0, 𝑖 = 1,… , 𝑑, then 

the stochastic system with Markov parameters  
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�̇̃�(𝑡) = (�̃�(𝜂(𝑡)) + �̃�2(𝜂(𝑡))�̃�(𝜂(𝑡))) 𝑥(𝑡) + �̃�1(𝜂(𝑡))�̃�1(𝑡) (6.7) 

where  �̃�(𝑖) = −�̃�2
𝑇
(𝑖)�̃�(𝑖), 𝑖 = 1,… , 𝑑, is ESMS and for the initial condition �̃�(0) = 0, 

𝐸[∫ (|�̃�1(𝑡)|
2 − 𝛾2|�̃�1(𝑡)|

2)
∞

0
𝑑𝑡] ≤ 0  

for all �̃�1 ∈ 𝐿𝜂
2 ([0,∞), ℛ𝑁∙𝑚1). 

(ii) The solution of equation (6.6) has the following structure: 

�̃�(𝑖) = [�̃�𝑘ℓ]𝑘,ℓ=1,…,𝑁 where  

�̃�𝑘𝑘(𝑖) = 𝑋1(𝑖) + (𝑁 − 1)𝑋2(𝑖) (6.8) 

�̃�𝑘ℓ(𝑖) = −𝑋2(𝑖), 𝑘, ℓ = 1,… ,𝑁, 𝑘 ≠ ℓ   

and (𝑋1(1),… , 𝑋1(𝑑)), (𝑋2(1), … , 𝑋2(𝑑)) are the solutions of Riccati equations 

𝐴𝑇(𝑖)𝑋1(𝑖) + 𝑋1(𝑖)𝐴(𝑖) + 𝑋1(𝑖)(𝛾
−2𝐵1(𝑖)𝐵1

𝑇(𝑖) − 𝐵2(𝑖)𝐵2
𝑇(𝑖))𝑋1(𝑖) +

∑ 𝜋𝑖𝑗𝑋1(𝑗)
𝑑
𝑗=1 + 𝐶𝑇(𝑖)𝐶(𝑖) = 0, 𝑖 = 1,… , 𝑑  

(6.9) 

and 

[𝐴(𝑖) + (𝛾−2𝐵1(𝑖)𝐵1
𝑇(𝑖) − 𝐵2(𝑖)𝐵2

𝑇(𝑖))𝑋1(𝑖)]
𝑇
𝑋2(𝑖) + 𝑋2(𝑖)[𝐴(𝑖) +

(𝛾−2𝐵1(𝑖)𝐵1
𝑇(𝑖) − 𝐵2(𝑖)𝐵2

𝑇(𝑖))𝑋1(𝑖)] + 𝑁𝑋2(𝑖)(𝛾
−2𝐵1(𝑖)𝐵1

𝑇(𝑖) −

𝐵2(𝑖)𝐵2
𝑇(𝑖))𝑋2(𝑖) + ∑ 𝜋𝑖𝑗𝑋2(𝑗)

𝑑
𝑗=1 + 𝑃𝑇(𝑖)𝑃(𝑖) = 0, 𝑖 = 1,… , 𝑑.  

(6.10) 

(iii) If the Riccati systems (6.9) and (6.10) have the stabilising solutions (𝑋1(1),… , 𝑋1(𝑑)) and 

(𝑋2(1),… , 𝑋2(𝑑)), with 𝑋1(𝑖) ≥ 0 and 𝑋2(𝑖) ≥ 0, 𝑖 = 1,… , 𝑑 then (�̃�(1),… , �̃�(𝑑)) with �̃�(𝑖) 

defined in (6.8) is the stabilising solution of system (6.6) and �̃�(𝑖) ≥ 0, 𝑖 = 1,… , 𝑑.  

7 Case Studies - H∞ Design with Markov Chains 

In this part, two cases of the Markov process (𝒟 = {1,2}) are considered and namely, 𝑖 =

1, the nominal case, where all networked agents are interconnected, and 𝑖 = 2, the case 

coresponding to the loss of connections. The matrix 𝛱 is chosen with the following numerical 

values: 

 𝛱1 = [
−0.5 0.5

0 0
]. (7.1) 

Figure 7.1 illustrates the transition probabilities from the nominal case to the connection 

loss one, corresponding to the transition matrix 𝛱1. 
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Figure 7.1 Transition probabilities 𝛱1 

7.1 𝑵 = 𝟏𝟎𝟎 agents 

Aiming to illustrate the theoretical notions for an extended configuration, as in [15], a 

network with 100 identical agents is chosen, for which the kinematic equations with the following 

expressions are considered: 

�̈�𝑘(𝑡) = 𝑢𝑘(𝑡) 
(7.2) 

 

�̈�𝑘(𝑡) = 𝑣𝑘(𝑡), 𝑘 = 1,… ,𝑁   

where 𝑥𝑘 and 𝑦𝑘 represent the Cartesian coordinates and 𝑢𝑖 and 𝑣𝑖 denote their commanded 

accelerations. Considering that the quality outputs vector has the form 𝑦1𝑘 = [𝑥𝑘 𝑦𝑘 𝑢𝑘 𝑣𝑘]𝑇, 

the corresponding matrices to the equations system (6.1) are identical for both cases of the Markov 

process. Solving the Riccati systems (6.9) and (6.10) for 𝛾 = 100, the necessary gains to obtain 

the agents trajectories for both considered situations are acquired. 

 Figure 7.2 presents snapshots at different time (𝑡 = 0.5 𝑠 and 𝑡 = 2 𝑠) of agents evolutions, 

for which random initial positions are considered and the main objective is their arrangement in a 

certain frame, similar to the square geometric shape. The two figures in the upper half demonstrate 

the importance of the 𝑃 matrix denoting the coupling mode of the agents for achieving the 

predetermined objective in a reduced time. Numerical simulations show that communication 

failure causes an increase of the required time to approximately 6.5 𝑠. 

 

Figure 7.2 Snapshots of agents position simulations 
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7.2 𝑵 = 𝟑 agents 

A flight configuration consisting of 3 identical agents, shown in Figure 7.3, is considered, 

for which both dynamics are analysed.  

 

Figure 7.3 Network configuration with Markov chains 

 Longitudinal Dynamics 

In Figure 7.4, an offset between the case where all members are interconnected (𝑖 = 1) and 

the situation where all connections are lost (𝑖 = 2) is noticed. The time evolutions of the three 

agents are similar in both scenarios. Taking into account the initial imposed values, the imposed 

performances achievement is observed for both the situation where the communication is possible 

and the case of complete loss of connections. For the time evolution of altitude (Figure 7.5), it is 

noticed that the desired values have been reached for the interconnected members. Therefore, 

different behaviours are marked for the cases 𝑖 = 1 and 𝑖 = 2. 

 

 

 Lateral Dynamics 

For the situation in which all agents are interconnected, the time evolution of velocity in 

Figure 7.6 is obtained. Different behaviours are identified depending on the different initial values. 

This observation is also found in the case of interconnection loss (Figure 7.7), but the velocity 

variations in this situation are wider. Analysing the time behaviour in terms of yaw angle (Figure 

7.8 and Figure 7.9), it can be noticed that the evolution variations are more pronounced for the 𝑖 =

2 case.  

Figure 7.4 The time evolution of agents 

velocity for both cases 
Figure 7.5 The time evolution of agents 

altitude for both cases 
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8 Results and Concluding Remarks 

  In the present work, the attention is focused on the problem of multi-agent control systems, 

thus distinct approaches of optimal control are considered. One of the specific challenges faced by 

this type of systems concerns the information transmission between agents, which is possible due 

to the communication channels. On the other hand, this feature implies different imperfections of 

the transmission channels that can have some effects as: reducing the desired performances or 

influencing the network stability. Knowing the importance of studying these factors influence (the 

failure of certain agents, the presence of time-delays, the transmission channels overloading that 

cause data packet drop off) on the interconnected system stability, it is relevant to analyse the 

agents’ responses in these situations.  

 The time-delays introduction is represented by the offset between the case with 

communication channels imperfections and the ideal one. Looking at the necessary time to 

stabilise at the imposed values, the sensitivity of the last configuration to delays is observed, where 

slower evolutions are identified. In the case of certain members failure, obvious changes are 

Figure 7.6 Time evolution of velocity for 

nominal case (i=1) 
Figure 7.7 Time evolution of velocity for 

communication loss case (i=2) 

Figure 7.8 Time evolution of yaw angle for 

nominal case (i=1) 
Figure 7.9 Time evolution of yaw angle for 

communication loss case (i=2) 



25 

 

identified in the case of agents with maximum connections number and whose communication 

becomes impossible to achieve.  

First, in order to highlight the capabilities of H∞ design with Markov processes, an extended 

configuration with 100 agents with identical dynamic is considered, using the kinematic equations. 

The designed controller capacity to stabilise a network with a significant number of agents (𝑁 =

100) and to ensure the desired performances are presented for the kinematic equations system. 

With random values of the initial positions of the members, the network response is shown for 

both the nominal case and the case where the communication is not available. It is observed that 

the complete loss of connections causes an increase in the required time for stabilisation.  

Regarding the configuration with reduced number of agents, the offset between the nominal 

case (𝑖 = 1) and the situation where all links fail (𝑖 = 2) is remarked. The agents stabilisation at 

the desired value, maintained throughout the simulation, is slower for the case where the 

communication between members is lost. The most pronounced variations of both states are 

observed in the case when communication fails (𝑖 = 2). 
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