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INTRODUCTION

For the performance of various satellite missions, an essential problem is the attitude control of

satellites, which has been addressed in many specialized works, among which we mention the

following: [2], [5], [10], [24], [26] , [28], [29], [35], [36], [38], [49], [59], [62], [64], [68], [69], [71],

[ 74], [77], [79], [80], [81], [90], [92], [98], [100], [101], [102], [103], [104] , [105], [106], [107].

As indispensable subsystems of satellite attitude control systems, CMGs have an essential role

as actuators. They can be classified into two categories: classic mechanical bearing gyroscopes and

magnetic suspension gyroscopes (MSCMG). MSCMGs, compared to CMGs with mechanical

bearings, have the advantage that the friction moments are zero, thus eliminating lubrication, noises

and vibrations [40], [89], [70].

In terms of the number of degrees of freedom, CMGs are single-gimbal (SGCMG) or double-

gimbal (DGCMG). Compared to SGCMGs, DGCMGs generate two gyroscopic torques thus

reducing the occupied volume on the satellite.

Actuators with SGCMGs have different structures, among which we mention pyramidal clusters

[26], [36], [39], [40], [49], [59], [64], [67], [73], [100], [102], [103].

DGMSCMG incorporates the advantages of magnetic bearings with those of having two frames.

Among the works that address topics related to DGMSCMGs and their use as gyroscopic actuators

we mention: [1], [3], [7], [10], [14], [15], [17], [23] , [28], [34], [42], [44], [45], [47], [48], [53], [57],

[58], [61], [62], [ 69], [70], [74], [75], [76], [78], [79], [80], [81], [84], [86], [88], [89] , [90], [91],

[94], [99], [105], [106], [107].

The construction of the AMB-Rotor (rotor with magnetic bearings, active magneting bearing)

allows decoupling the translational dynamics of the rotor from the dynamics of rotor rotations and

gyroscopic frames [14], [34], [99], for which non-linear observations are required [10], [72], [86],

[89].

An important problem in the specialized literature is that of vibration control [1], [3], [34], [84].

Another problem addressed in the literature is that of designing servo systems for actuating

gyroscopic frames [22], [23].

In order to avoid singularities using the concept of "zero movement", without the control of the

stored energy, actuator structures with N=2 DGMSCMGs in parallel configuration [78], [94] or with

N=3 DGMSCMGs have been proposed and studied in orthogonal configuration [107]. Also, to avoid

singularities using "zero motion", with the control of the stored energy, according to the model of

pyramidal clusters with SGCMGs [49], [59], structures for automatic attitude control of satellites by
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changing the angular velocities were proposed and studied of the gyroscopic frames of the

DGMSCMG, as well as of the self-rotation velocities of the gyroscopes [75], [81].

The laws used to control the dynamic components of DGMSCMG are of the P.I., P.D., P.I.D.

type, optimal (based on the criteria H2, H∞, H2/H∞) or adaptive [70], [84], [89], [99].

In [106], using a P.D.-type attitude controller, the gyroscopic rotor dynamics control of the

DGMSCMG-type actuator and sensor is P.-type; dynamic models of magnetically suspended gyro

rotors do not take into account the interactions with the gyro frames, and therefore the attitude

control of the satellite is not sufficiently accurate.

The first chapter presents the derivation of the nonlinear models of the translational and

rotational dynamics of the AMB-Rotor, without taking into account the interactions with the

gyroscopic frames, then the derivation of the nonlinear models of the AMB-Rotor rotations and the

gyroscopic frames taking into account the rotor-frame interactions gyroscopic. Finally, dynamic

models expressed in the form of state equations are obtained, in which the input vectors have as

components the currents applied to the correction coils of the magnetic bearings and the currents

applied to the motors of the servo systems for driving the gyroscopic frames. The relative degrees of

the components of the output vector of the non-linear model of the DGMSCMG are determined,

finally resulting in the second-order matrix-vector differential equation of the output vector, having

as components the rotation angles of the AMB-Rotor and the gyroscopic frames. Differential

geometry theory was used to calculate the matrices of the nonlinear model. Then, by dynamic

inversion, the command vector of the DGMSCMG model is obtained as a function of the state vector

and the pseudo-command vector.

The model of the rotor translation dynamics is decoupled from its rotation dynamics and from

the rotation dynamics of the gyroscopic frames.

The design of a DGMSCMG control system consisting of two subsystems is presented: one for

controlling the linear displacements of the AMB-Rotor and one for controlling its angular deviations

and the rotation angles of the gyroscopic frames. Using the Simulink model built in the work, the

evolution over time of the respective linear and angular variables is graphically represented.

The adaptive control structures are designed, based on the concept of dynamic inversion and

neural networks, for: the dynamics of the translation of the AMB-Rotor, the dynamics of the

rotations (angular deviations) of the AMB-Rotor and the dynamics of the rotations of the gyroscopic

frames. For all three adaptive control structures, Simulink models are designed and the evolution of

the satellite attitude control system (SCAS) variables is graphically represented. These dynamic

characteristics are fast, have small overshoots and stationary errors, which highlights the fact that
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adaptive control structures based on the concept of dynamic inversion and neural networks provide

superior quality indicators to control structures with conventional driving laws.

Chapter 2 presents the structure and equations of an automatic control system of the AMB-

Rotor, as well as dynamic models of the rotor, the inner frame and the outer frame of the

DGMSCMG type actuator located on a mobile base (satellite). The design of linear servo systems for

controlling the angular velocities of gyroscopic frames is also presented. In the following, calculation

elements regarding the attitude of the satellites using the quaternion theory are presented.

The attitude of the satellite is controlled with a P.D. controller. designed based on Lyapunov

functions, DGMSCMG1 actuator and DGMSCMG2 sensor. First, a P-type law is used to control the

AMB-Rotor dynamics and linear servos to control the angular velocities of the gyro frames, then

nonlinear models for servos and AMB-Rotor dynamics are used for both actuator and sensor. For

both variants, Simulink models are developed and the dynamic characteristics of the SCAS are

plotted. In the second variant (with non-linear models), the dynamic characteristics have smaller

overshoots, are more slowly variable and with smaller stationary errors.

In chapter 3, dynamic models are elaborated for the actuator-satellite interaction and for the

actuator consisting of N=2 DGMSCMGs arranged in parallel and orthogonal configuration,

respectively, as well as for the related sensors. Also, dynamic models are developed for the actuator-

satellite interaction and for the actuator consisting of N=3 DGMSCMGs arranged in an orthogonal

configuration, as well as for the related sensor. Matlab/Simulink models are built for these.

A SCAS is designed with actuators consisting of N=2 and N=3 DGMSCMGs and one

DGMSCMG type sensor each, and with the built Simulink models, the dynamic characteristics are

drawn.

Chapter 4 elaborates problems related to the dynamics and attitude control of satellites using

actuators consisting of N DGVSCMGs. The dynamic model of the attitude S is deduced with an

actuator consisting of N=1 DGVSCMG located so that the plane of its outer frame is located in the

plane of the undisturbed satellite's elliptical orbit. The dynamics equation of the actuator-satellite

interaction is derived. Then, the same problem is addressed for actuators consisting of N=2

DGVSCMGs in parallel and rectangular arrangement, respectively. Attitude control S with actuator

consisting of N=3 DGVSCMGs is also addressed.

A satellite attitude control system is designed, with reference model and P.D type controller.

using the theory of Lyapunov functions without control of the stored energy of the gyroscopic rotor,

with control of the stored energy, as well as equalization of the angular velocities of the gyroscopic

rotors, using actuators with N=1, N=2 and N=3 DGVSCMG. And in this case, with the constructed

Simulink models the time characteristics are plotted.
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CHAPTER 1

DYNAMICS AND AUTOMATIC CONTROL OF DGMSCMG

1.1 EQUATIONS OF MOTION OF THE FREE GYROSCOPIC ROTORWITH

BEARINGS MAGNETIC (AMB-ROTOR)

Compared to conventional bearings, magnetic bearings for high-speed rotors have the

advantage of low friction, requiring no lubrication.

The mechanical model of a CMG with a gyroscope frame in magnetic suspension (with

magnetic bearings), Active Magnetic Bearing (AMB-rotor) is presented in fig.1.1[70]. On each semi-

axis of the gyroscopic stator (not shown in the figure) there are four coils, two in series.

rotor

cadrulagãr
magnetic axial

yr

xrzr K


00
,

O

Fig. 1.1. Single frame CMG with magnetic bearing gyro

Fig. 1.2 shows the forces and moments applied to the gyroscopic rotor, and a and b denote the

left and right semi-axis of the gyroscopic rotor, respectively;

The balance equations of the forces along the axes ��� and ��� are

��� � = ���� , ��� � = ���� , (1.2)

with ���� și ����of the forms (1.1) and � − the mass of the gyroscopic rotor.
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Fig. 1.2. The forces and moments applied to the gyro rotor

Total linear displacementsℎ�
��(the total linear displacements of the sensors) have the expressions

ℎ��
�� = �� − ��β,

ℎ��
�� = �� + ��β,

ℎ��
�� = �� + ��α,

ℎ��
�� = �� − ��α,

(1.4)

The dynamic model of the linear displacements of the gyroscopic rotor in magnetic suspension

along the axes ��� and ���, in the absence of external disturbing forces, it has the following form

��� � = 2������
�� + 2�ℎ����,

��� � = 2�������� + 2�ℎ����.
(1.9)

The dynamic model of the angular displacements of the gyroscopic rotor in magnetic

suspension is obtained, in the absence of external disturbing moments

��α� + �0β� = 2�������� + 2��2 �ℎ��α,

��β� − �0α� = 2�������� + 2��2 �ℎ��β.
(1.16)

The angles α and β are obtained from relations (1.4);

α = ℎ��
��−ℎ��

��

2��
= ℎ��

��−ℎ��
��

2��
, β = ℎ��

��−ℎ��
��

2��
= ℎ��

��−ℎ��
��

2��
; (1.17)

so, α and β are functions of the angular displacements of the gyroscopic rotor along the two axes,

measured by the linear displacement sensors arranged on the two axes (��� and ���).
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1.2. NONLINEAR DYNAMIC MODEL OF CMGWITH TWO FRAME AND ROTOR

GYROSCOPIC IN MAGNETIC SUSPENSION (DGMSCMG)

1.2.1. DYNAMIC MODEL OF THE SUSPENSION GYROSCOPIC ROTOR
MAGNETIC (AMB-ROTOR)

In fig.1.3[89] the triads related to the component dynamic elements of a DGMSCMG are

highlighted

Fig. 1.3. The trihedra related to the dynamic components of DGMSCMG

1.3. THE NONLINEAR DYNAMIC MODEL OF DGMSCMG EXPRESSED IN THE

FORM EQUATIONS OF STATE

The nonlinear dynamic model of DGMSCMG is constituted by equations (1.2), (1.37), (1.49)

and (1.60); The dynamics of the DGMSCMG will be studied considering the fixed base (velocities and

angular accelerations of the base are assumed to be zero). The dynamic model of DGMSCMG

becomes

�� � =
1
�

���� ,

�� � =
1
�

���� ,

α� =
���

���
σ� �β� sin σ� −

��� − ��� − ���

���
σ� �2 sin σ� cos σ� −

�0

���
β� + σ� � cos σ� −

2
���

���� −
1

���
���,

β� =− 2�1 ��� − ��� σ� �σ� � sin σ� cos2σ� + σ� �σ� � sin σ� +
���

���
α� + σ� � σ� � sin σ� +

�0

���
α� + σ� � +

(1.64)
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+
1 + �1���cos2σ�

���
���� − �1 cos σ� ��� ,

σ� � =
��� − ���

���
σ� �2 sin σ� cos σ� +

1
���

��� +
1
���

���� + ���� ,

σ� � = 2�1 ��� − ��� σ� �σ� � sin σ� cos σ� + �1��� − �1 cos σ� ���� + ���� ,

1.5. DGMSCMG DYNAMICS CONTROL USING THE CONCEPT OF DYNAMIC

INVERSION

1.5.2. CONTROL OF NONLINEAR DECOUPLED MODELS OF TRANSLATIONAL
AND ROTARY MOVEMENTS OF DGMSCMG

To simplify rotor control, one can separate (decouple) the dynamic model of translational

motion from that of rotational motion. Thus, the first two equations (1.64), with (1.66), (1.4) and (1.5)

(in which α = β = 0, �α = �β = 0 and thus ℎ��
� = ℎ��

� = ��, ℎ��
� = ℎ��

� = ��, ���
� = ���

� = ��, ���
� =

= ���
� = �� ) also taking into account the perturbations generated by the gravitational force, they

become

�� � =
2�ℎ�

� �� +
2���

�
�� + ���,

�� � =
2�ℎ�

�
�� +

2���

�
�� + ���,

(1.96)

From (1.96) the equations are obtained

�1 =
�11
�12

=
��
�� = ��1

−� �1, �1 =

�
2���

0

0
�

2���� � ���� ���
�1

−1(�1)

�� −

2�ℎ�

�
0

0
2�ℎ�

�� � ���� ���
�1 �1

�1 −
���
���

, (1.99)

from the equation

�� 2 = �2 �2 + �2 �2 �2; (1.109)

by dynamic inversion results

�2 =

�21
�22
�23
�24

=

�α
�β
���
���

= ��2
−� �2, �2 = �2

−1 �2 �2 − �2 �2 , (1.110)

with �2 = �21 �22 �23 �24 T = �� 2 − the pseudo-command vector of the angular motion of the

gyro rotor.

In fig. 1.7. the structure of an automatic control system of DGMSCMG is presented.
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The Matlab/Simulink model (from fig. 1.8.a) is built for the system with the structure from

fig.1.7., with its subsystems from fig.1.8.b and 1.8.c. To obtain the dynamic characteristics from

fig.1.9, the Matlab program from Annexe A1.1 was designed and used.
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from fig. 1.7
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1.5.4. ADAPTIVE CONTROL OF GYROSCOPIC ROTOR DYNAMICS AND ANGULAR

VELOCITIES OF GYROSCOPIC FRAMES

For attitude control of satellites by means of DGMSCMGs, control of angular velocities is

required σ� � and σ� � of the gyroscopic frames, which can be achieved with the structure in fig.1.11.b,

where the output is the vector �3 = �� = σ� � σ� � T. The system consists of two servo systems (one for

each gyroscopic frame).
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Fig.1.13 shows the time characteristics of the system from fig.1.11, built with the

Matlab/Simulink models and the program from Annexe A1.2
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CHAPTER 2

ATTITUDE CONTROL OF SATELLITES USING ACTUATORS WITH

DGMSCMGs

2.1. MODELING OF DGMSCMG DYNAMICS AND SATELLITE DYNAMICS

2.1.5. DYNAMIC MODEL OF THE BASE (SATELLITE)

The dynamics of the base (satellite) is described by the equation
���� � + ��

×���� =− �� + �� , (2.58)

in which: �� is the matrix of the moments of inertia of the base (without DGCMG) with respect to the

axes of its trihedral, �� − the total algebraic control torque vector applied to the base by means of the

DGCMG-type CMG, and �� − the perturbing external algebraic couple vector; − �� = �� − the

algebraic vector gyroscopic torque. The vector �� is expressed as the sum of the torques applied to

the base, produced by gyroscopic torque by the angular velocities �� , �� şi �� applied DGCMG. The

projections of the command couples, components of the vector, act on the base ��.

Also taking into account the absolute kinetic moment ��� produced by DGCMG, the satellite
equation becomes

���� � +
d���

d�
+ ��

×���� = ��; (2.67)

��� is the resultant of the projections of the absolute kinetic moments of the outer frame, the inner
frame and the gyroscopic rotor on the trihedral bound to the base (S),

��� = ��� + ��� + ���, (2.68)

The matrix of total moments of inertia is

�� = �� + ��
� T����

� + ��
� T����

� . (2.83)

Considering the fact that in the composition of the systems in fig. 2.16, fig. 2.17 and fig.2.22

include DGCMG2 (having the role of sensor for angular velocity �� �), the relation (2.83) becomes

�� = �� +
�=1

2

��
�� T

�����
�� + ��

�� T
�����

��� ; (2.84)

Finally, the satellite equation becomes
���� � + ��

×���� =− �� + ��, (2.86)

with
�� =− �� = ��

×��
��0 + ��

���
×�0 + ��

���
×��

��0, (2.87)

which is the very relation (2.65) or
�� =− �� = ��

×��
��0 − ��

��0
×�� − ��

�(��
��0)×��. (2.88)

The servo system model for angular velocity control is obtained σ� � presented in fig. 2.7.



19



20

2.2. ATTITUDE CONTROL OF SATELLITES

2.2.1. DETERMINATION OF THE ATTITUDE OF SATELLITES

The orbit of the satellite is elliptical; The Earth is located in one of the foci of the ellipse. The

inertial trihedron �������� has the axis ���� oriented in the direction of the Vernal equinox, the axis

���� to the geographic north pole of the Earth and the axis ���� perpendicular to the other two with

which it forms a right orthogonal trihedron ��������. The local orbital trihedron ������� has the axes

oriented as follows: ��� in the direction that connects the satellite S (with the origin in o) to the center

of the Earth ��, ��� is oriented in the sense of the antinormal and ��� is oriented so as to complete the

right orthogonal trihedron ������� . Fig. 2.8 shows the inertial triads �������� , local orbital �������

and "Satellite" ( �������).

Z i

P

z0

OS

yb y0













ω0

xb
x0

zb

Yi
Xi

Oi

Fig. 2.8. Inertial trihedral, local orbital and "Satellite"

Fig. 2.10 shows: inertial coordinate systems (trieds). ℐ (�������� ), S (base, satellite, ������� )

and the reference one ℛ (�������� ) (in particular the local orbital trihedral ������� ); absolute

angular velocities ���� � and relative ���� � of the satellite, as well as its angular velocity of transport ���� 0;

The relationship between absolute angular velocities ��, relative �� and transport �0 is

�� = �� + � �, �4 �0. (2.127)
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Fig. 2.10. Coordinate systems, rotation matrices and quaternions

Fig. 2.12 shows the block diagram of the satellite attitude calculation system.

 ωb



(2.133)

(2.119)

s
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Fig. 2.12. Block diagram of the attitude calculation system S
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2.2.2. ATTITUDE CONTROL OF SATELLITES USING ACTUATORWITH

N=1 DGMSCMG

In fig. 2.13, the triads linked to the gyroscopic rotor, the inner frame, the outer frame and the

one linked to the base are highlighted (satellite ������� ); this figure is consistent with fig.2.2 and

fig.2.4. Exterior frame plan �(�����) lies in the local orbital plane (�����) , if σ� = σ� = 0 and the

satellite (S), mean the trihedral S(�������) is superimposed on the trihedral ������� (v.fig.2.8).

Fig. 2.13. The trihedra connected to the rotor, to the two gyroscopic and base frames (S)

The absolute angular velocities of the rotor and the inner gyroscopic frame relative to the local

orbital trihedron ������� are the resultants of the relative angular velocities σ� � and σ� � (against the base

of the trihedral �������) and of the transport ones (of the base, S, against the local orbital trihedron; the

components of the vector ��); according fig.2.13.b şi 2.13.c,

ϕ� �� ≃ ϕ� �� = σ� � + ω�� cos σ� − ω�� sin σ� ,

ϕ� �� ≃ ϕ� �� = σ� � + ω�� cos σ� + ω�� sin σ� + ω�� cos σ� sin σ� ,
(2.135)

According to fig.2.13.b, the angular velocities calculated by the attitude controller of S are ω� =

ϕ� �� ≃ ϕ� �� and ω� = ϕ� ��
cos σ�

≃
ϕ� ��

cos σ�
. Substituting in them (2.135), the relative angular velocities applied

to the gyroscopic frame actuation servo systems are obtained
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σ� �1� = ω� − (ω�� cos σ�1 − ω�� sin σ�1),

σ� �1� = ω� − ω�� − (ω�� sin σ�1 + ω�� cos σ�1) tan σ�1 .
(2.144)

Fig. 2.14 shows the subsystems for modeling the dynamics of the actuator-satellite interaction, the

automatic control of the dynamics of the gyroscopic rotor and the servo systems for actuating the

gyroscopic frames of the MSDGCMG1. Fig. 2.15 shows the subsystems for modeling the dynamics of

the DGMSCMG2-satellite sensor interaction and the dynamics of the sensor, and in Fig. 2.16 – the

structure of the automatic attitude control system of the satellite, with DGMSCMG1 actuator and

DGMSCMG2 sensor for measuring the satellite's absolute angular velocity.

Because �� = ω�� ω�� ω�� T, �� = ω� 0 0 T and �� = 0 ω� 0 T, the matrices result

��
× =

0 − ω�� ω��
ω�� 0 − ω��

−ω�� ω�� 0
, ��

× =
0 0 0
0 0 − ω�
0 ω� 0

, ��
× =

0 0 ω�
0 0 0

−ω� 0 0
. (2.145)

Disturbed satellite, rotating with relative angular velocity �� , respectively with the absolute

angular velocity �� (v. fig.2.10), must be returned to the initial position with the angular velocity −�� ;

for this, the actuator (DGMSCMG 1) must apply a torque to the satellite �� =− ��, which depends only

on the angular velocity ��, to bring the satellite through an aperiodic evolution to the angular velocity �0

(according to equation (2.86) and relation (2.127)). But, according to (2.88), with �0 = 0 0 �0
T,

�� = �� ��, ��, �� and, as a result, the satellite will rotate with an angular velocity �� � ≠ �� .

Therefore, a second DGMSCMG (DGMSCMG2) is used as an angular velocity sensor �� �.

DGMSCMG 2 being located on the base (satellite), it reacts to the angular velocity ��� by the

gyroscopic torque ��� (acts as a sensor for angular velocity �� �). Indeed, if no angular velocities are

applied to its gyroscopic frames, mean ω� = ω� = 0, then, according to (2.88),

��� =− ��� = �� �
×���

� �0� =− ���
� �0�

×
���, (2.146)

Relations of the form (2.144), for the sensor, become
σ� �2� =− (ω�� cos σ�2 − ω�� sin σ�2),

σ� �2� =− ω�� − (ω�� sin σ�2 + ω�� cos σ�2) tan σ�2.
(2.149)

The control low by the relative attitude of the satellite (expressed by the quaternion vector �) it is

chosen, for example, of type P.D. after � ; taking into account the equations of the kinematics of the

quaternions (2.119), the control can be performed according to � and ��; if the desired attitude is chosen,

then the system in fig. 2.16 must perform in a stabilized regime � = ��, �� = ��� = 03×1 and, implicitly,

from (2.127), according to fig.2.10, �� = �� + � ��, �4� �0, σ� �1� = σ� �1� = σ� �1 = σ� �1 = ω� = ω� = 0 şi,

implicitly, �� it is reduced only to the component (2.146); according to the satellite dynamics equation

(2.86), �� � → �� and �� → ���.
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2.2.3. DESIGN OF THE ATTITUDE CONTROLLER

With Lyapunov function 101

� =
1
2

���
T ����� + 2�� ln 1 + ��

T�� , �� > 0; (2.150)

the control law ensures the achievement of convergences ��� = ��� − �� → 0 0 0 T

and �� ��4 T = � ��, �4� � �4 T → 0 0 0 1 T when � → ∞, with ��� − the desired angular

velocity of the satellite relative to the local orbital trihedral, �� − the desired quaternion, and �� −

attitude deviation quaternion, �� = ��1 ��2 ��3 T,solution of the equation

�� � = � �� ���, (2.151)

with � �� formal [92]

� �� =
1
2

1
2

(1 + ��
T��)�3×3 + ��

× , (2.152)

��
× =

0 − ��3 ��2
��3 0 −��1

− ��2 ��1 0
; � ��, �4� =

�4� �3� −�2� − �1�
− �3� �4� �1� − �2�
�2� − �1� �4� − �3�
�1� �2� �3� �4�

(2.153)

�� < 0 expresses the condition that the closed circuit system is asymptotically stable.

���� �� + ����� + ���� + ��
× ���� + ��1

� �0 + ω0����
× col 3 � − �� =− ���. (2.166)

Using ���, calculated with (2.166), from (2.164) results

��
T ��

T T =− �+���, (2.167)

with �� = 1 0 0 Tω�, �� = 0 1 0 Tω� and �+ − the pseudoinverse of the matrix �;

�+ = �T� −1�T. (2.168)

Noting with ���
' − totally disruptive moment,

���
' = � = ��

× ���� + ��1
� �0 + ω0����

× col 3 � − ��, (2.169)

The structure of the satellite's automatic attitude control system, with a P.D. type controller. is

given in fig. 2.17. In the absence of angular velocities �� and �� (for ω� = ω� = 0), the angular velocity

of S is �� , mean that obtained for the automatic attitude control system S open on its direct path (for S

perturbed and uncontrolled); �� � is the angular velocity of the system in closed loop (S controlled). The

equal �� = ��� is achieved when ω� and ω� become null, relation equivalent to �� = ���.
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Fig. 2.19 shows the dynamic characteristics of this system using the calculation program from

Annex A2.1.
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Fig.2.21. The evolution of the SCAS variables, with the dynamic models

of the actuator from fig.2.14 and the sensor from fig.2.15
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CHAPTER 3

ATTITUDE CONTROL OF SATELLITES USING ACTUATORS
WITH N-DGMSCMGS

3.1. ACTUATOR DYNAMICS WITH N=2 DGMSCMGs IN PARALLEL

CONFIGURATION
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Fig.3.1 shows the subsystems for modeling the dynamics of the actuator-satellite interaction (a)

and the dynamics of the actuator consisting of N=2 DGMSCMGs, in parallel configuration (b), and in

fig.3.2 the subsystems for modeling the satellite-sensor interaction ( a) and sensor dynamics (b).
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3.3. ACTUATOR DYNAMICS WITH N=3 DGMSCMGS IN CONFIGURATION

ORTHOGONAL

The command moment applied to the base (S) is

��1 =− ��1 = ��
×��1

� �01 + ��1
� ��1

× ��1
�1 �01 + ��1

� ��1
× ��1

�1�01; (3.20)

according to fig.3.6.b,

�01 = �0 0 0 T, ��1 = 0 0 ω�1
T, ��1 = 0 ω�1 0 T; (3.21)

the calculated angular velocities of the gyroscopic frames relative to the base (S) can be deduced
σ� �1� = ω�1 − ω��sin σ�1 + ω��cos σ�1 ,

σ� �1� = ω�1 − ω�� + ω��cos σ�1 − ω��sin σ�1 tg σ�1.
(3.25)

A structure with N=3 DGMSCMGs in orthogonal configuration is shown in fig.3.6.a; in

fig.3.6.b, 3.6.c and 3.6.d are represented the rotations of the frames and gyroscopic rotors for each of

the three CMGs.

Fig.3.6. Orthogonal configuration with N=3 DGMSCMGs, rotations of their dynamic

components and angular sizes
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Similarly, for CMG 2, according to fig. 3.6.c,

��2 =− ��2 = ��
×��2

� �02 + ��2
� ��2

× ��2
�2 �02 + ��2

� ��2
× ��2

�2�02; (3.28)

according to fig.3.6.c,

�02 = 0 �0 0 T, ��2 = ω�2 0 0 T, ��2 = 0 0 ω�2
T; (3.29)

the calculated angular velocities of the gyroscopic frames relative to the base (S) can be deduced
σ� �2� = ω�2 − ω��cos σ�2 + ω��sin σ�2 ,

σ� �2� = ω�2 − ω�� + − ω��sin σ�2 + ω��cos σ�2 tg σ�2.
(3.33)

For CMG 3, according to fig.3.6.d,
��3 =− ��3 = ��

×��3
� �03 + ��3

� ��3
× ��3

�3 �03 + ��3
� ��3

× ��3
�3�03; (3.36)

�03 = 0 0 �0
T, ��3 = 0 ω�3 0 T, ��3 = ω�3 0 0 T; (3.37)

the calculated angular velocities of the gyroscopic frames relative to the base (S) can be deduced
σ� �3� = ω�3 − ω��cos σ�3 + ω��sin σ�3 ,

σ� �3� = ω�3 − ω�� + − ω��sin σ�3 + ω��cos σ�3 tg σ�3.
(3.41)

Fig.3.7 shows the subsystems for modeling the actuator-satellite interaction (a) and the

dynamics of the actuator consisting of N=3 DGMSCMGs, in orthogonal configuration (b).

For the angular velocity sensor �� , with layout for example as DGMSCMG 1, modeling

scheme is given in fig.3.8; this scheme consists of two subsystems: one for modeling the satellite-

sensor interaction (a) and another for modeling the sensor dynamics (b). This sensor models the

equation

��� =− ��� = �� �
×��4

� �04. (3.42)

�� is the resultant of the moments generated by the N=3 DGMSCMGs arranged in an orthogonal
configuration, and �� is the resultant gyroscopic torque;

�� =− �� = ��
×

�=1

3

���
� �0� −�

�=1

3

���
� ���

× ��� −�
�=1

3

���
� ���

���0�
×
���� , (3.44)

Calculation relations of angular velocities σ� �4� and σ� �4� are qualitatively of the forms (3.33),

where σ�2 becomes σ�4, σ�2 become σ�4 and ω�4 = ω�4 = ω�� = ω�� = 0;

σ� �4� =− ω��cos σ�4 + ω��sin σ�4 ,

σ� �4� =− ω�� + − ω��sin σ�4 + ω��cos σ�4 tg σ�4.
(3.47)

The matrix of total moments of inertia of the satellite equipped with 3 DGMSCMGs is

calculated with the formula

�� = �� +
�=1

4

��
�� T

�����
��� +

�=1

4

��
�� T

�����
��� , (3.48)
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3.4. SATELLITE ATTITUDE CONTROL USING A P.D. TYPE CONTROLLER

AND ACTUATORWITH N DGMSCMGs

As in the case of using an actuator with a single CMG (for example of DGMSCMG type), for

designing the controller (control laws) a Lyapunov function of the form is chosen [101]

� =
1
2 ���

T ����� + 2�� ln 1 + ��
T�� , �� > 0, (3.50)

The condition of stability of the closed circuit system is imposed for the attitude control of the

satellite,

�� = ���
T ���� �� + �����

T �� =− �����
T ��� < 0, (3.55)

Fig. 3.10 shows the block diagram of the actuator-sensor-satellite subsystem.

Fig. 3.10. Actuator-sensor-satellite subsystem

The structure of the satellite's automatic attitude control system, with a P.D. type controller. and

reference model, with an actuator consisting of DGMSCMGs and a sensor (DGMSCMG ()) is given in

fig.3.11.
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In fig.3.18, the dynamic characteristics of the system from fig.3.11 are represented, with an

actuator consisting of N=3 DGMSCMGs arranged in an orthogonal configuration. The numerical

calculation program is given in annex A.3.3.
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Fig. 3.18. The dynamic characteristics of the system in fig. 3.11, with an actuator consisting

of N=3 DGMSCMGs in an orthogonal configuration
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CHAPTER 4

ATTITUDE CONTROL OF SATELLITES USING ACTUATORS
WITH DGVSCMG-URI

4.1. SATELLITE DYNAMICS USING A DGVSCMG

The rotor of the two-frame CMG, with mechanical bearings related to the gyroscopic rotor, has

a variable angular velocity of its own rotation (variable spin), controlled by means of a servo system.

That is why it is called DGVSCMG.

The relative angular velocities e with respect to b, i with respect to e and that of the self-

rotation of the gyroscopic rotor are respectively �� �, �� � and � , and the absolute angular velocities

(relative to the reference trihedral, local orbital ������� ) of the outer frame (e), inner frame (i) and

rotor are respectively ��, ��, �� (fig.4.1.b).

Fig.4.1. DGVSCMG and its dynamic component interdependencies graph

With (4.8) and (4.10) relations (4.3)(4.5) become [81]

�� = �� + σ� ����, (4.11)

�� = �� + σ� ���� + σ� ����, (4.12)

�� = �� + σ� ���� + σ� ���� + Ω���, (4.13)

where the vectors of the vertices of the trihedra related respectively to the outer frame, the inner frame

and the gyroscopic rotor have the expressions

��� = 0 1 0 T, ��� = cosσ� 0 −sinσ�
T, ��� = cosσ�sinσ� −sinσ� cosσ�cosσ�

T. (4.14)
As a result, the equation of dynamics of the satellite-actuator system becomes

���� � =− ��
×���� − �� + ��, (4.22)
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in which

�� = �� + ��
� T����

� + ��
� T

����
� ; (4.23)

− �� = �� = ��Ω���
×�� + ��Ω ���

×��� σ� � + ��Ω ���
×��� σ� � − �����Ω� . (4.24)

The last term is generated by the moment of inertia of the gyro rotor.

Equation (4.22) is equivalent to the following

���� � =− ���, ��� = �� �� + ���
' ; − ���

' = � =− ��
×�� − ��Ω���

× �� + ��; (4.25)

− �� �� = �� �� = ��Ω ���
×��� σ���� + ��Ω ���

×��� σ���� − �����Ω��
�. (4.26)

With the notations

�� = ��Ω ���
×��� , �� = ��Ω ���

×��� , �� =− �����, (4.27)

So the SERVO applied command vector is calculated with the formula

�� = σ� �� σ� �� Ω� � T =− �+��� = ���
−1 ���, � . (4.31)

The satellite equation is of the form (4.22), with �� of the form (4.24) or of the form

− �� = �� = ��Ω���
×�� + ���, �� = σ� � σ� � Ω� T, (4.32)

the matrices result

�� = ��

Ωsinσ�sinσ�
Ωcosσ�

Ωsinσ�cosσ�

, �� = ��

−Ωcosσ�cosσ�
0

Ωcosσ�sinσ�

, �� = ��

−cosσ�sinσ�
sinσ�

−cosσ�cosσ�

. (4.35)

4.2. SATELLITE DYNAMICS USING ACTUATORS FORMED OF N=2 DGVSCMGs

4.2.2. ACTUATOR CONSISTING OF N=2 DGVSCMGs IN CONFIGURATION

ORTHOGONAL

The two DGVSCMGs in the actuator are arranged on the satellite with the axes of the outer

frames perpendicular;

For this case, the matrices ��, �� and �� are

�� = ��

Ω1sinσ�1sinσ�1
Ω1cosσ�1

Ω1sinσ�1cosσ�1

Ω2sinσ�2cosσ�2
Ω2sinσ�1sinσ�1

Ω2cosσ�2

,

�� = ��

− Ω1cosσ�1cosσ�1
0

Ω1sinσ�1sinσ�1

Ω2cosσ�2sinσ�2
− Ω2cosσ�2cosσ�2

0
,

�� = ��

−cosσ�1sinσ�1
sinσ�1

−cosσ�1cosσ�1

−cosσ�2cosσ�2
−cosσ�2sinσ�2

sinσ�2

.

(4.60)
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4.3. SATELLITE DYNAMICS USING N=3 DGVSCMG ACTUATORS IN

ORTHOGONAL CONFIGURATION

DGVSCMG 1 and DGVSCMG 2 are located on the satellite as in the case studied in ∮4.2.2,

and DGVSCMG 3 is located as in fig.4.4.a (the plane of the undisturbed outer frame is parallel to the

plane ����� , axis of rotation of this frame ���3 being parallel to the axis ��� ). So, for the first two

DGVSCMGs, all the results from ∮ 4.2.2, which will be supplemented with similar ones for

DGVSCMG 3.

The matrices ��, �� and �� have the first two columns identical to those in (4.60), and the third

column is respectively given by the products Ω3���3
× ���3, Ω3���3

× ���3 and ���3; the matrices result

�� = ��

Ω1sinσ�1sinσ�1
Ω1cosσ�1

Ω1sinσ�1cosσ�1

Ω2sinσ�2cosσ�2
Ω2sinσ�2sinσ�2

Ω2cosσ�2

Ω3cosσ�3
Ω3sinσ�3cosσ�3
Ω3sinσ�3sinσ�3

,

�� = ��

− Ω1cosσ�1cosσ�1
0

Ω1sinσ�1sinσ�1

Ω2cosσ�2sinσ�2
− Ω2cosσ�2cosσ�2

0

0
Ω3cosσ�3sinσ�3

− Ω3cosσ�3cosσ�3

,

�� = ��

−cosσ�1sinσ�1
sinσ�1

−cosσ�1cosσ�1

−cosσ�2cosσ�2
−cosσ�2sinσ�2

sinσ�2

sinσ�3
−cosσ�3cosσ�3
−cosσ�3sinσ�3

.

(4.78)

4.4. AUTOMATIC ATTITUDE CONTROL USING DGVSCMGs, WITH REFERENCE

MODEL AND P.D.-TYPE CONTROLLER

For the design of the control law (controller) type P.D. the Lyapunov function is chosen 92

� =
1
2 ���

T ����� + 2�� ln 1 + ��
T�� , �� > 0; (4.79)

Automatic attitude control S without stored energy control

The calculation relation of the matrix pseudoinverse � is
�+ = �T� −1�T. (4.87)

In order to avoid the appearance of singularities, other relations are used to calculate �+ . One

of these is 96

�+ = �T ��T + �Ε −1; (4.88)

In 79 the local gradient method was used, based on "zero movement"; the control law is of

the form

�� =− �+��� + ��, (4.92)
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Fig.4.6. Servo systems for controlling angular velocities of gyroscopic frames (a) and

of the angular accelerations of the gyroscopic rotors (b)

In fig. 4.11, the time characteristics of the actuator system consisting of N=3 DGVSCMGs in

orthogonal arrangement are plotted.
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Fig.4.11. Dynamic characteristics for the actuator structure consisting of N=3 DGVSCMGs in

orthogonal arrangement, without stored energy control

Satellite Attitude Control and Stored Energy (SCASES)

In this case the matrix � will be modified. The kinetic energy stored and the power consumed

by the N DGVSCMGs have the expressions respectively

�� =
1
2

�T��
' �, (4.108)

� =
d��

d�
= �T��

' �� = 0(1×2�) �T��
' ��, (4.109)

with �� = �� �T �� �T �� T T
(3�×1) and ��

' = diag ��1 … ��� , ���, � = 1, �� ��� , moments of inertia of

gyroscopic rotors relative to their own rotation axes.

Reuniting the relationship ��� =− ��� with (4.109), results the equation

��� = ���
T � (4×1)

T =− � 4×3� �� =−
��(3×�) ��(3×�) ��(3×�)

0(1×�) 0(1×�) − �T��
'

(1×�)
��. (4.110)
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Fig.4.15. Dynamic characteristics of the satellite attitude and stored energy control structure

with an actuator consisting of N=3 DGVSCMGs in an orthogonal arrangement
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Automatic control of satellite attitude and stored energy with equalization of angular

velocities of gyroscopic rotors (SCASESEVS)

In order to avoid the decrease of the angular velocity of a gyroscopic rotor, with implications on

the quality of the satellite's attitude stabilization and on the energy storage, it is necessary to equalize the

angular velocities of the gyroscopic rotors.

With Ω�, � = 1, �� ��� , the angular velocities of self-rotation of the gyroscopic rotors, with Ω� − their

average value and with �� − the vector of deviations of the angular velocities from Ω�, mean

Ω� =
1
�

�=1

�

Ω�� , �� = � − Ω���×1, (4.114)

� = Ω1 Ω2 … Ω�
T and ��×1 − the unit vector � × 1 , the indicator is expressed 101

�2 � = �2 Ω1, Ω2, …, Ω� =
1
2

�=1

�

Ω� − Ω� 2
� =

1
2

�=1

�

Ω��
2� =

1
2

��
T��, (4.115)

having the derivative

d�2 �
d�

=
∂�2

∂�
�� =

�=1

�
∂�2

∂Ω�
Ω� �� = grad�2 �� = ��

T�� . (4.116)

Within SCASESEVS, the matrix � from (4.110) becomes

� 5×3� =

��(3×�) ��(3×�) ��(3×�)

0(1×�) 0(1×�) − �T��
'

(1×�)

0(1×�) 0(1×�) − ��
T

, (4.120)

The control law is described by equation

�� =− �+���, ��� = ���
T d��

d�
d�2

d�

T
= ���

T �
d�2

d�

T
. (4.121)
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Fig.4.19. The dynamic characteristics of SCASESEVS, with actuator consisting of

N=3 DGVSCMGs in orthogonal arrangement
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CHAPTER 5

CONCLUSIONS AND CONTRIBUTIONS

CONCLUSIONS

In chapter 1, the equations of motion (of translation and rotation) of the gyro rotor with

magnetic bearings were derived, expressing the balance of forces (inertia and correction) and moments

(of inertia, gyro and correction) acting on the gyro rotor , without considering the interactions of the

rotor with the gyroscopic frames. Then, nonlinear models of the rotational movements of the

gyroscopic rotor (located in magnetic suspension on the inner frame), the inner frame and the

outer frame of the gimbal suspension of the DGMSCMG were built, taking into account rotor-

gyroscopic frame interactions; the equations of kinetic moments (Euler's equations) were used for the

three dynamic elements (rotor, inner frame and outer frame), in which the absolute angular velocities

and the absolute kinetic moments are functions of the angular velocities of the base, the outer frame,

the inner frame, the rotation matrices of the trihedrals related to the respective dynamic components,

as well as the moments of the forces acting on the gyro rotor, inner frame and outer frame. Finally,

the non-linear dynamic model (1.64) of the DGMSCMG placed on a fixed base resulted and,

after explaining the correction forces and moments as functions of the currents applied to the

correction coils of the magnetic bearings and the servomotor currents for driving the inner and

outer frames, respectively, the dynamic model expressed in the form of state equations (1.70)

was obtained, respectively (1.72), with (1.71), (1.73)÷(1.76). Then the relative degrees for each of

the output vector components of the nonlinear model of the DGMSCMG were determined,

finally resulting in the second-order matrix-vector differential equation of the output vector

(1.83), with the matrices � � and � � of the forms (1.84) and (1.85), using the theory of

differential geometry; matrices were calculated � � (1.88) and � � (1.90). With these, by

dynamic inversion, the function (1.95) was obtained, which describes the inverse nonlinear

dynamics, that is, the control vector of the DGMSCMG model as a function of the state vector

and the pseudo-control vector �.

Considering the fact that the nonlinear dynamic model of the rotor translational motion

can be decoupled from the nonlinear dynamic model of the rotational motions of the rotor, inner

frame, and outer frame, the relative degrees of the output vector components of the gyroscopic

rotor translational motion model have been determined �� and , respectively, are the relative

degrees of the output vector components of the rotational motion pattern �� of DGMSCMG,

finally resulting in the second-order matrix-vector differential equations of the output vectors ��
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and �� respectively the inverse dynamics equations (1.99) and (1.110); the decoupling of the

dynamic models of the translational and rotational motions is based on the fact that the only coupling

terms of the models are those containing the control variables represented as sums of the currents for

creating the electromagnetic forces for the correction of the linear displacements of the gyroscopic

rotor with, the currents for creating the torques of electromagnetic forces for the correction of angular

displacements of the gyroscopic rotor; the summation of the currents is done by applying them to the

same coils of the magnetic suspension bearings.

The structure of the automatic control system of the dynamics of the DGMSCMG

subsystems from fig.1.7 was proposed and designed, for which the Matlab/Simulink model from

fig.1.8 was built, with the numerical calculation annex A1.1 and, with it, the characteristics of

time from fig.1.9.

Then, the problem of adaptive control of the translational and rotational dynamics of the

gyroscopic rotor decoupled from the two frames was addressed, considering the rotational angular

velocities of the frames to be calculated. The adaptive control structures (based on the concept of

dynamic inversion and neural networks) were proposed and designed for: the translational

movement of the gyroscopic rotor (fig.1.11.a), the rotational movement of the gyroscopic rotor

(fig.1.11.b) and the rotational movement of the gyroscopic frames (the block of servo systems for

actuating the gyroscopic frames in fig.1.11.c). To reduce the number of sensors (to the number of

four linear displacement sensors for AMB-ROTOR and to the number of two rotation sensors for

gyroscope frames) the control laws modeled by the linear dynamic compensators in the

composition of the two control subsystems of the linear displacements and the angular

displacements of the AMB-ROTOR, respectively the control law modeled by the linear dynamic

compensator in the composition of the control system of the angular velocities of the gyroscopic

frames, are calculated as functions of the estimated error vectors of the three subsystems,

provided by linear state observations.

For the three adaptive control structures in fig.1.11, the Matlab/Simulink model in

fig.1.12 was built, with the numerical calculation program in Appendix A2.1, and with it, the

time characteristics in fig.1.13 were obtained. These characteristics are fast, have small

overshoots and very small stationary errors, which highlights the fact that adaptive control

structures based on the concept of dynamic inversion and neural networks provide superior

quality indicators to control structures with conventional driving laws.

Chapter 2 presents the structure and equations of an automatic gyroscopic rotor control system

with magnetic bearings, as well as dynamic models of the rotor, inner frame and outer frame of the

DGMSCMG actuator located on a mobile base (satellite).
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A servo system for actuating a gyroscopic frame was presented and designed. Then

computational elements of satellite attitude using quaternions were presented.

The automatic attitude control system S from fig. 2.17 was designed, consisting of: P.D.

type controller, DGMSCMG1 actuator and DGMSCMG2 sensor. Using a P-type control law of

the gyroscopic rotor dynamics and linear servo systems for actuating the gyroscopic frames, for

the structure in fig.2.17, the Matlab/Simulink models in fig.2.18 were built, with the numerical

calculation program in Annex A2.1 and, with these, the dynamic characteristics of fig. 2.19 were

drawn. Then, using the nonlinear models from fig.2.14 and fig.2.15 for the actuator and sensor,

the Matlab/Simulink models from fig.2.20 were built, with the numerical calculation program

from Appendix A2.2, and the dynamic characteristics were drawn from fig. 2.21. Compared to

the dynamic characteristics in fig.2.19 (with large overshoots and very rapidly varying), those in

fig.2.21 have small overshoots, are slowly variable and have small stationary errors.

In chapter 3, dynamic models were developed for the actuator-satellite interaction and

for the actuator consisting of N=2 DGMSCMGs arranged in parallel, respectively orthogonal

configuration, as well as for the related sensors. Also, dynamic models were developed for the

actuator-satellite interaction and for the actuator consisting of N=3 DGMSCMGs arranged in

an orthogonal configuration, as well as for the related sensor. The resulting systems are shown

in fig.3.1, fig.3.2, fig.3.7 and fig.3.8. For these, the Matlab/Simulink models from fig.3.3, fig.3.5

and fig.3.9 were built.

An automatic attitude control system S (fig. 3.11) with P.D type controller was designed.

and actuator consisting of N=2 and N=3 DGMSCMGs. For this system, the Matlab/Simulink

models from fig.3.12, fig.3.13, fig.3.16, fig.3.17 were built, and with them, the dynamic

characteristics from fig.3.14 were drawn (for actuator with N=2 DGMSCMGs in parallel

configuration), from fig.3.15 (for actuator with N=2 DGMSCMGs in orthogonal configuration)

and from fig.3.18 (for actuator with N=3 DGMSCMGs in orthogonal configuration).

In chapter 4, problems related to the dynamics and attitude control of satellites using actuators

consisting of N DGVSCMGs were addressed. First, the dynamic model of the satellite was deduced

with an actuator consisting of N=1 DGVSCMG located so that the plane of the outer frame is located

in the plane of the undisturbed satellite's elliptical orbit. The equation of the actuator-satellite

system of the form (4.22) and (4.32), respectively, was obtained, in which the control gyroscopic

moment has the form (4.26). The applied command vector DGVSCMG is of the form (4.31),

with the matrix having components of the form (4.35). Then the same problem was addressed for

actuators consisting of N=2 DGVSCMGs. For the actuator consisting of N=2 DGVSCMGs in

parallel arrangement, the control moment has the form (4.43), respectively (4.45), the control
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law being of the form (4.41) and the matrix � having the components (4.46.). Proceeding

similarly, for an actuator consisting of N=2 DGVSCMGs having the axes of the outer frames

perpendicular to each other (one of them having the outer frame located in the plane of the

elliptical orbit of the undisturbed satellite) similar results were obtained, with the matrix �

having the components (4.60).

For a satellite equipped with an actuator consisting of N=3 DGVSCMGs in an orthogonal

arrangement, a model was obtained in which the command moment has the form (4.73), the

command law is of the form (4.41) and the matrix � having the components (4.75) and (4.78),

respectively.

Designed automatic attitude control system S using N DGVSCMGs with reference model

and P.D type controller. from fig.4.5., using the Lyapunov function (4.79). If the energy stored in

the N DGVSCMGs is not controlled, the pseudo-inverse of the matrix is Q calculated with the formula

(4.88) or (4.90), so that the possibility of the appearance of singularities is eliminated; in the case of

attitude control S and stored energy, as well as equalization of angular velocities of gyroscopic rotors,

relations (4.112) and (4.113) were used. The Matlab/Simulink model from fig.4.7 of the system

from fig.4.5 was built, with the numerical calculation program from Appendix A4.1 and, with it,

the time characteristics from fig.4.8 ÷ 4.11 were plotted for actuators with N= 1 DGVSCMG,

with N=2 DGVSCMGs in parallel arrangement, with N=2 DGVSCMGs in orthogonal

arrangement and with N=3 DGVSCMGs in orthogonal arrangement. Similarly, in the case of

attitude control and stored energy, with and without the equalization of the angular velocities of

the gyroscopic rotors, the time characteristics were obtained in fig.4.12 ÷ 4.15 and those of

fig.4.16÷4.19, for the four actuator variants.

CONTRIBUTIONS

The main contributions made in the paper are the following:

1. Deduction of nonlinear dynamic models of DGMSCMG from the forms (1.64) și (1.70),

with (1,73) ÷ (1.76).

2. Using the theory of differential geometry, the model was constructed (1.83), with

matrices�(x) and �(x) of the forms (1.84) and (1.85), resulting matrices (1.88) and (1.90). Also,

using the same method, decoupled dynamics models of gyro rotor translations (1.97), rotor rotations,

and gyro frames were deduced (1.109), with (1.102) ÷ (1.104) și (1.108).

3. The structure of the automatic control system of the dynamics of the DGMSCMG

subsystems from fig.1.7 was proposed and designed, for which the Matlab/Simulink model from
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fig.1.8 was built, with the numerical calculation program from Annex A1.1, and with these, the the

dynamic characteristics from fig.1.9.

4. The adaptive control structures based on the concept of dynamic inversion and neural

networks from fig.1.11.a, fig.1.11.b and fig.1.11.c were proposed and designed for the three

decoupled dynamics: dynamics of gyroscopic rotor translations; dynamics of gyroscopic rotor

rotations; dynamics of rotations of gyroscopic frames. For the three adaptive control structures in

fig.1.11, the Matlab/Simulink model in fig.1.12 was built, with the numerical calculation model in

Appendix A2.1, and with them, the dynamic characteristics in fig.1.13 were drawn.

5. To increase the accuracy of the automatic attitude control system of the satellite (S)

equipped with DGMSCMG type actuator, a second DGMSCMG (DGMSCMG2) was introduced,

identical in structure to the actuator, DGMSCMG2 having the role of sensor for measuring the

absolute angular velocity of the base (of the satellite ) �� , thus resulting in an actuator-sensor-

satellite subsystem, which provides, in a stabilized regime, a control torque applied to the satellite

depending only on the absolute angular velocity of the satellite.

6. The design of the automatic attitude control system S from fig. 2.17 with P.D type

controller. by the error quaternion vector �� , respectively of type P.I. by relative angular velocity ��

of S (relative to the local orbital trihedral) using the Lyapunov function (2.150), with (2.151) and

(2.152), as well as a P-type control law of the gyro rotor dynamics and linear servo systems for

actuation of the actuator and sensor gyro frames. The Matlab/Simulink model from fig.2.18 was built,

with the numerical calculation program from appendix A2.1, and the dynamic characteristics from

fig.2.19 were plotted.

7. 7.Using the same attitude controller in the system from fig.2.17, but with the nonlinear

models from fig.2.14 (for the actuator) and from fig.2.15 (for the sensor), the Matlab/Simulink

models from fig.2.20 were built, with the numerical calculation program from annex A2.2 and, with

them, the dynamic characteristics from fig.2.21 were drawn; these dynamic characteristics are

superior to those in fig.2.19 from the point of view of quality indicators (they have smaller overshoots,

are slowly variable and with smaller stationary errors).

8. 8. Elaboration of the dynamic models of the actuator-satellite, satellite-sensor subsystems

and of the actuator subsystems consisting of N=2 DGMSCMGs arranged in a parallel configuration

and, respectively, in a rectangular configuration (shown in fig. 3.1 and fig. 3.2), as well as and

Maltab/Simulink models (together with their subsystems) from fig.3.3 and fig.3.5.

9. Development of the dynamic models of the actuator-satellite, satellite-sensor subsystems

and of the actuator subsystems consisting of N=3 DGMSCMGs arranged in an orthogonal
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configuration (shown in fig.3.7 and fig.3.8), as well as the Maltab/Simulink model (together with its

subsystems) from fig.3.9.

10. The design of the automatic attitude control system S from fig. 3.11, with a P.D. type

controller. (based on the use of the Lyapunov function (3.50), with (3.51)(3.53) and (3.62)) and with

the actuator-sensor-satellite subsystem from fig.3.10 (the actuator being constituted by N=2,

respectively N=3 DGMSCMGs arranged in parallel and orthogonal configuration), for which the

Matlab/Simulink models from fig.3.12, fig.3.13, fig.3.16 and fig.3.17 and the numerical calculation

programs from annexes A3.1, A3.2 and A3.3 were developed and, with them, the dynamic

characteristics of fig.3.14, fig.3.15 and fig.3.18 were drawn.

11. Calculation of the control moments of S produced by actuators consisting of N

DGVSCMGs (N=1,2,3), in parallel or orthogonal arrangement, of the forms (4.32), (4.45), (4.73),

respectively of the control vectors apply to servo systems for controlling the angular velocities of

gyro frames and the vector of angular accelerations of gyro rotors as functions of the matrices �, with

their components��, ��, �� of the forms (4.35), (4.46), (4.60) și (4.78).

12. Design of the servo system in fig.4.6 for controlling angular velocities of gyro frames and

angular accelerations of gyro rotors using the concept of dynamic inversion, reference models, linear

dynamic compensators and state observations.

13. 13. The design of the automatic attitude control system S from fig. 4.5, with actuators

consisting of N DGVSCMGs (N=1,2,3), in parallel or orthogonal arrangement, without the control of

the stored energy (with the matrix components of the forms ( 4.35), (4.46), (4.60) and (4.78)), with

the control of the energy stored in the N DGVSCMGs (with the matrices of the form (4.110)),

respectively with the control of the energy stored in the N DGVSCMGs and the equalization of the

speeds angular values of gyroscopic rotors (with matrices � of the form (4.120)).

14. The Maltab/Simulink models from fig.4.7 of the attitude control system S from fig.4.5

were elaborated, with the numerical calculation program from Appendix A4.1, and with them the

dynamic characteristics from fig.4.8 ÷ fig.4.11 for actuators with N=1 DGVSCMG, with N=2

DGVSCMGs in parallel arrangement, with N=2 DGVSCMGs in orthogonal arrangement and with

N=3 DGVSCMGs in orthogonal arrangement. Also, for the S attitude control and the energy stored in

the N DGVSCMGs, without and with the equalization of the angular velocities of the gyroscopic

rotors, the dynamic characteristics of fig.4.12÷fig.4.15and those of fig.4.16÷ fig.4.19, for the four

actuator variants.
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