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Capitolul 1

Introduction

1.1 Presentation of the field of the doctoral thesis

In recent years, the field of artificial intelligence and computer vision have expe-
rienced a very fast evolution. Easier access to a large volume of data together with
algorithms of automatic learning have contributed to the development of systems that
imitate human capabilities. Several industries benefit from the progress of the previously
mentioned fields, such as: medicine, finance or the entertainment industry.

The work addresses the problems of recognizing facial expressions and finding
images with similar content. The detection of facial expressions focuses on automatic
recognition of people’s emotions. This implies the development of some systems that
can interpret and understand emotional states and reactions based on facial movements.
Retrieving images with similar content involves the use of some techniques of searching
and extracting images from a large volume of data according to visual content.

1.2 Scope of the doctoral thesis

The primary objective of the thesis is to discover more effective solutions for facial
expression recognition and discovering similar images. The proposed techniques relied
on convolutional network methods and the introduction of novel cost functions and
augmentation techniques.

Convolutional networks need large amounts of data, which are difficult or impossible
to acquire. To overcome this obstacle, they can employ semi-supervised learning or
domain adaptation techniques. From this reason, the proposed solutions exceed the
category of "supervised" algorithms and were included in the "non-supervised" category.

The first problem addressed is that of facial expressions. In this case, it were used
both discrete facial expressions and facial movements known as "action units". Even
though facial movements are more intuitive, action units are more objective and difficult
to confuse. A new cost function for a better clusterization of the embedding space
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was proposed to enhance the results. In addition, new augmentation and regularization
methods were also tested.

The retrieval of images with similar content was the second topic studied. In that
situation the visual content of the images can be very complex, which is why the
descriptors obtained with a convolutional network can be quite easily confused with each
other. Same cost function was evaluated to determine whether a better organization of
the descriptors space increases the number of similar images returned for a reference
image.

1.3 Content of the doctoral thesis

The work contained seven chapters. In chapters 2, 3, and 4, the theoretical concepts
that served as the basis for the experimental results are presented. hese are highlighted
in chapters 5 and 6, while the final chapter is reserved for the conclusions.

Chapter 2 provides information about convolutional networks. Here, the most
common forms of layers, cost functions, optimization techniques, and architectures are
described. In chapter 3, the various forms of automatic learning are discussed. The focus
is on semi-supervised learning/transfer learning as well as the augmentation techniques
employed. The fourth chapter concentrates on loss functions utilized for a better grouping
of descriptors. Mathematical concepts, functionality and a short comparison of them
are presented. Chapters 5 and 6 contain the results obtained within the thesis for the 2
problems addressed, while chapter 7 contains the conclusions.

2
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Convolutional Networks

Convolutional neural networks are a type of deep learning models that have proven
to be especially effective in computer vision tasks such as image classification, object
detection, and image segmentation. These are designed to extract relevant features from
input data, making them appropriate for image-related tasks.

2.1 Layers of Convolutional Neural Networks

The fundamental concept underlying convolutional networks is to use multiple types
of layers and mathematical procedures to capture the most important features of input
data. The first relevant layer is the convolutional layer, where the convolution operation
is effectively carried out using filters with different weights. In addition, the concept of
local connectivity appears, which indicates that not all the neurons in successive layers
are connected.

Subsampling layers are the next important layer. They have the role of reducing the
size of feature maps produced by convolutional operations. Thus, the computation effort
is significantly reduced, and the system’s capacity for generalization is enhanced. The
most common variant of sub-sampling is max-pooling, which takes into consideration
the maximal value in the neighborhood.

The phenomenon of overfitting can appear quite often in convolutional networks if
regularization layers are not used. Such a layer is the dropout layer [1] which implies
the random elimination of a certain percentage from neural connections between layers.
The connections are only removed in the process of training, not in the testing one. The
activations of each layer may also be normalized via the normalization of data collections
(batch normalization) [2]. Therefore, training time is reduced, and instances in which
the activations of successive layers are completely distinct are eliminated. The last layers
are the fully connected ones that are often used as descriptors or decision layers.
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2.2 Learning process

A machine learning system uses a series of mathematical functions entitled loss
functions to measure how far its predictions are from the reference labels. Depending
on the nature of the labels, there are two categories of problems: classification (discrete
labels) and regression (continuous labels). For classification problems, the most common
loss function is cross entropy, whereas the most common loss function for regression
problems is mean squared error.

During training, a mathematical optimization algorithm (optimizer) helps the system
to reduce errors. It modifies the weights after each iteration based on the impact of each
weight on the total loss function. The process of adjusting weights based on the total
error, is known as backpropagation.

2.3 Convolutional Architectures

As the use of convolutional networks became more widespread, a number of standard
architectures that can be applied in diverse tasks were sought. AlexNet [3] was the
first architecture to produce remarkable results. A new activation function that cancel
negative weights was also introduced.

VGG [4] is a well-known architecture that succeeded to increase the depth of ne-
tworks by adding new layers. Contrary to ALexNet, the convolution filters have a
smaller size and sub-sampling windows do not overlap. However, the increasing number
of layers favored the appearance of another concerning phenomenon called vanishing
gradients

The ResNet architecture [5] was proposed as a countermeasure to the previously
mentioned phenomenon. The residual block was the primary innovative component. In
contrast to other remembered architectures, in residual architectures the input of a layer
is transferred to the input of upper layers. In this manner, the depth of a network could
be increases without a negative effect on performance. After it was established that the
excessive increase in depth no longer brings significant benefits other variants of ResNet
were also proposed. Wideresnet [6] proposes an increase in feature maps by enlarging
the convolutional layer width.

4
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Machine Learning Concepts

3.1 Types of learning

According to the type of the input data labels, automatic learning algorithms can
be classified into three large categories. If data contains labels, the algorithms are
supervised; if not, they are unsupervised. The third category consists of semi-supervised
algorithms, which typically utilize a lesser quantity of annotated data and a substantial
portion of annotated data. The latter were predominantly used in the experimental part.

3.2 Transfer Learning/ Domain Adaptation

As a result of insufficient data and incorrect labeling, transfer learning techniques
and domain adaptation gained more popularity. Learning by transfer involves using
a pre-trained system. The system can be used further for tasks that are different with
the one it was originally trained. In other words, this technique is trying to improve
performance for a new task using previously learned features.

Domain adaptation, on the other hand, involves establishing a connection between
two domains with distinct data distributions. ypically, a system is trained for an initial
domain before being adapted to a target domain using techniques such as loss function
weighting or feature alignment. By reducing the structural differences between the two
domains, the ultimate result is an increase in the power of generalization.

3.3 Semi-supervised algorithms

3.3.1 Pseudo-Labels

When a system trained on labeled data is applied to a series of unlabeled samples,
pseudo-labeling [7] results. Basically, the labels for the unannotated dataset are obtained
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using a system that has already been trained. Then, the data with the newly generated
labels are added to the original ones and the entire ensemble is retrained.

3.3.2 Mean-Teacher

Mean-Teacher is a semi-supervised algorithm that uses two similar networks. The
first network is considered a "student" and has a classification role. The second one is the
"teacher" network and must replicate as accurately as possiblethe output of the "student"
network. During the training process, one of the primary objectives is to minimize the
distribution differences between the "student" and "teacher" networks.

3.3.3 MixMatch

MixMatch [8] is an algorithm that maximizes performance by combining several
semi-supervised paradigms. It employs the MixUp method [9] to generate new samples
and labels. The total loss is computed fot both original and generated data.

3.4 Augmentations methods

Considering that convolutional networks require significant quantities of data, many
solution to resolve this problem were sought. Methods of augmentation are used to
artificially increase the number of training samples.

The most common augmentation methods are related to the spatial distribution of the
elements that form an image. Consequently, new samples can be generated via rotation,
mirroring, or resizing. It is also possible to do this at the pixel level using filtering or
contrast techniques .

The MixUp augmentation technique [9] helps generate new data by linearly combi-
ning a random pair of existing samples from the training database. Labels are created for
this data using the same method. Due to the difficulty of interpreting as a singular value
the linear combination of 2 discrete labels, a probabilistic distribution was used.

6
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Methods of structuring the descriptive
space

For complex problems, it is possible that the descriptive space provided by convolu-
tional networks to contain examples with substantial overlap. For this reason, research
was carried out in the direction of new loss functions to organize more efficiently the
characteristics obtained.

4.1 Center Loss

Among the most well-known clustering losses is Center Loss [10]. The subsequent
guiding principle is the minimization of the distances between objects that belong to the
same category.The center losst function is mathematically represented by Equation 4.1,
where ei is the descriptor obtained from the fully connected layer preceding the decision
one and ci is the associated centroid for current sample.

LC =
1
2

N

∑
i=1

∥ei − cli∥2 (4.1)

According to 4.2, the position of the centroids is recalculated after each iteration in
order to create a more open space. ∆ci

k s the mean of the data belonging to class i în lotul
de date curent, and α is a subunit parameter that tempers a potential negative impact on
the new position of the centroids of some incorrectly labeled samples. Unlike other cost
functions,center loss cannot be used independently because does not have a decision
role.

ci+1
k = ci

k −α∆ci
k (4.2)
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4.2 Island Loss

In contrast to the cost function discussed in the preceding section, the Island Loss
[11] provides an additional benefit. Besides minimizing the variance in the same class,
it tries to maximize the distance between the centroids associated with each label.
Equation 4.3 describes the mathematic formula, where LC is the center loss. The second
term accumulates the angular distances between the centroid of current sample and the
centroid of all other classes.

LIL = LC +λ1 ∑
ci∈C

∑
c j∈C,ci ̸=c j

(
ci · c j

∥ci∥2∥c j∥2
+1
)

(4.3)

4.3 Ring Loss

The Ring Loss [12] necessitates the efficient normalization of the descriptors so
they can be interpreted geometrically as a circle. In equation 4.4, Fxi is the embedding
corresponding to the penultimate fully connected layer, and R is the targeted normed
value. From a geometric point of view, it is associated with the radius of a circle.

LR =
λ

2m

m

∑
i=1

(∥Fxi∥2 −R)2 (4.4)

4.4 Large Margin Loss

Center loss is based only on the distances between embeddings of the same class.
The island loss combats this shortcoming, but it has a number of limitations due to the
angular distance. If the angle between two groups of samples is extremely narrow, they
cannot be adequately separated. The circular function imposes a circular geometric
representation of the descriptors, thereby optimizing angular distances. iHowever, if two
classes overlap in the initial representation, there is a high probability that they will also
overlap in the circular representation.

Taking into account the limitations mentioned in the preceding paragraph, a new loss
function was proposed to satisfy current requirements. It was entitled Large Margin Loss
[13] and requires the use of a Euclidean distance between each sample and the centroids
associated with the other classes. Thus, limitations imposed by the previous losses are
avoided.

This function is mathematically defined by ecuation 4.5. ei is the embedding repre-
sented by the penultimate fully connected layer, c j is the associated centroid for ei, and
ck represents all the other centroids except the centroid of ei.

LLM =
N

∑
i=1

(∥∥∥∥ ei

∥ei∥2
−

c j

∥c j∥2

∥∥∥∥
2
− 1

C−1

C

∑
k=1,k ̸= j

∥∥∥∥ ei

∥ei∥2
− ck

∥ck∥2

∥∥∥∥
2

)
(4.5)

8



Large margin learning for image analysis

Figure 4.1 shows the functionality of the large margin function. With 3 samples
available (XA;XB;XC) with labels A, B and C, the feature–space will be updated such
that the distance to the appropriate class is reduced (shown by continuous arrows) while
distances to other centroids is increased (illustrated by dashed lines).

Figura 4.1 Large Margin Loss functionality. Left: Before Large Margin. Right: After
Large Margin

9
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Facial Expression Analysis

This chapter is the most comprehensive of the entire thesis and represents the outcome
of years of research. Among the tasks addressed are the recognition of discrete facial
expressions and facial movement detection. To improve the performance were used new
cost functions and innovative augmentation and regularization methods.

5.1 Facial Expresssions Quantization

Recognizing facial expressions is not an easy task even for humans. This problem is
even more challenging for a machine learning system. Over time, several models that
would define this issue more conveniently were sought .

The first extensively used model in this discipline is Ekman’s definition of discrete
expressions [14]. It is based on 6 fundamental expressions: fear, disgust, happiness,
anger, surprise, sadness. Usually, the neutral expression is also added. Even though this
variant is straightforward to use, other models have been developed to more objectively
define emotions. Thus, the Action Unit Coding System was developed, which implies
that each facial expression is composed of a series of activations of specified facial
muscles (Action Units).

The system comprises 43 action elements that have been subdivided based on their
position on the face. There are facial movements associated with the most essential facial
features, including the eyes, mouth, and eyebrows. Even though it is a model that leaves
little room for interpretation, a sufficiently qualified staff is required to identify even
the most subtle facial movements. There are also more complex models that consider
the intensity of expression and whether it is positive or negative. This paradigm was
proposed by Russel [15] and takes compound emotions into account.
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5.2 Challenges in Facial Expression Analysis task

As demonstrated in section 5.1, the problem of facial expressions is one very difficult
to solve. Moreover, there are also a multitude of challenges that can affect recognition
performance. An initial factor is inconsistent data volume. Even though it may be
simple to obtain many images with facial expressions, the annotation process can be
time-consuming and costly. Finding qualified human annotators is not a simple task.
Consequently, there are still numerous images with incorrect labels.

Another reason is the short appearance time of facial expressions. The majority,
if not all, of the facial movements that form the emotions are extremely subtle, even
for computers. Also, there are several expressions that are easily confused with wach
other such as fear and surprise.The reasos in that oth emotions entail mouth opening and
eyebrow elevation.

5.3 Related Work

Being a difficult problem to solve, the recognition of facial expressions has attracted
a large number of researchers in the recent past; consequently, the number of articles
on this subject has increased significantly. Fundamental expression recognition with
convolutional networks has been discussed in works like [16, 17] (section 5.1).

Du [18] and Zhang [19] observed the inconsistency of the training data and migrated
to semi-supervised learning solutions. In addition, the recognition of the action units
was addressed. Corneanu [20], Zhao [21], and Benitez [22] are among the one who
detected facial movements and their intensity. Domain adaptation and transfer learning
were discussed in [23–25].

5.4 Facial Detection Solutions

The majority of datasets contain images with faces or facial expressions and their
backgorund. Background information found in most images is redundant and not useful
for convolutional networks. In addition, cropping reduces the dimensionality of the faces
in the initial pictures , which contributes to a faster training.

Among the numerous available solutions, the Viola-Jones [26] and MTCNN [27]
algorithms stand out. The Viola-Jones method captures faces in images, regardless of
their size, using a series of features at different scales. In addition, the integral image is
utilized to obtain the facial recognition procedure in real time.

In contrast, MTCNN [27] is a convolutional network-based technique organized in 3
stages. Faces are identified first, followed by the matching of detection boxes. Last stage
is the recognition of the facial elements necessary for the maximum alignment of the
face.

11
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5.5 Databases

o satisfy the requirements imposed by the semi-supervised methods evaluated in this
section, multiple experimental data sets were employed. The recognition of fundamental
facial expressions and detection of facial movements (action units) has been addressed.
More details about each dataset can be found in the following sections.

5.5.1 Facial Expression Recognition Databases

FER/FER+. FER2013 [28] and FER+ [29] represent 2 data sets that provide images
with basic facial expressions. FER+ is an extension of FER2013 in which several
incorrectly assigned expressions have been corrected. It consists of 35,000 faces in the
wild images.

Megaface. Megaface [30] is a much more comprehensive database that contains
approximately 1 million faces in the wild images. It has no labels, which is why it was
used the unlabeled portion of the data for the semi-supervised experiments.

RAF-DB. RAF-DB [31] is similar to FER because it contains discrete expressions.
However, it contains fewer images acquired under laboratory conditions. Forty individu-
als were responsible for annotating the images.

Facial expression in children. Within this work, facial expressions in children
recognition was also studied. CAFE [32] is one of the most well-known data sets on
this subject. LRIS [33]is an additional set that compensates for CAFE’s limitations by
increasing the numbner of images and emotional diversity .

5.5.2 Action Unit Recognition Datasets

CK+. CK+ [34] is a data set containing both discrete emotions and action units. It is
included in this section because it was only used to identify action units. The images are
organized by every subject, with each sequence containing frames varying from neutral
expression to maximal expression intensity. The final images in each sequence are also
annotated at the action unit level.

Emotionet. Emotionet [22] is a data set that contains approximately 1 million images.
Unlike Megaface [30], it has 50000 images with action units labels. The images contains
faces in the wild and the labels for facial movement are binary.

DISFA. Compared to Emotionet [22], DISFA [35] also provides annotations for the
intensity of action units. Thus, the labels are between 0 (action unit is not active) and 5
(action unit has maximum intensity). It contains 130 000 images divided into 27 subjects,
obtained in a laboratory setting.

12
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5.6 Facial Expression Recognition

This chapter focused on enhancing the outcomes for facial expression detection
using several novel or previously published techniques. Among these concepts are
semi-supervised learning/transfer learning, loss functions for a better structure of the
descriptor space (Center Loss - Section 4.1 , Ring Loss - Section 4.3 , and Large Margin
- Section 4.4) and augmentation methods such as MixUp (Section 3.4) .

5.6.1 Large Margin Loss for Learning Facial Movements from
Pseudo-Emotions

Having as motivation the success of the center and island loss functions, in this
section, the potential of large margin loss discussed in section 4.4 was explored. For
this scenario, an Alexnet architecture (section 2.3) was used to detect discrete facial
expressions and action units simultaneously. The architecture contained 2 output layers
connected in parallel: one for facial expression recognition and one for action unit
detection.

Attempts to train multiple data sets with different label types were made. Because
of this, it was necessary to modify the domain from action units to discrete facial
expressions. A set of equations describing the fundamental expressions as a sum of
concurrently active action units was used to establish the link between the two categories.
The result consisted in obtaining some pseudo-expressions.

Because the large margin loss requires the concept of centroids (discrete classes),
these pseudo-expressions were necessary. Multiple facial movements can occur simulta-
neously, making the detection of action units a multi-class problem. Even though action
units woud have a unique label, it could result in an excessive number of underrepresented
classes.

The results for the recognition of facial expressions can be seen in table 5.1, while
the performance for the action units is shown in table 5.2. Someone may notice that the
large margin loss function performs better than center and island loss.

Method Framework Avg. Acc. Acc.
AlexNet - [31] Superv 55.60 68.90

AlexNet + Feat.Sel.Net [16] Superv 72.46 81.10
AlexNet + Island loss [11] Superv 57.1 75.08
AlexNet + Center loss [10] SSL 63.15 78.81
AlexNet + Island loss [11] SSL 64.53 78.81

AlexNet + LM loss SSL 67.26 79.85
Tabela 5.1 Acc obtained on the classification problem on the RAF-DB database. Prior

work: Feat.Sel.Net - feature selection network, Our proposal uses Large Margin
(LM)[13]
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Method FW AU1 AU2 AU4 AU5 AU6 AU9 AU12 AU17 AU20 AU25 AU26 AU43
Avg.

small

Avg.

full
AlexNet [21] Sv 24.2 n/a 34.7 39.5 73.1 n/a 86.8 n/a n/a 88.5 45.6 n/a 56.1 n/a

AlexNet

cen. loss [10]
Sv 34.4 30.3 55.3 33.3 69.10 46.1 79.3 27.8 32.3 84.4 43.2 48.8 57.9 48.8

AlexNet

+WSC [21]
SSL 25.3 n/a 34.5 39.3 75.6 n/a 87.4 n/a n/a 88.8 47.4 n/a 57.0 n/a

AlexNet

+ Isl. loss [11]
T. 30.4 29.5 56.7 30.6 66.7 44.1 77.3 26.7 23.8 83.9 47.3 43.9 56.14 46.7

AlexNet

+ LM loss [13]
T. 34.1 31.1 56.6 33.9 71.0 45.1 78.1 30.9 25.3 83.8 50.9 47.2 58.33 49.0

Tabela 5.2 F1 score (%) while detecting action units on the EmotioNet database. The
framework (FW) is either supervised (Sv), semi-supervised (SSL) or transfer (T). “Avg
small” is the average over the reduced set of AU:1,4,5,6,12,25,26, Avg full is over the

entire set Table from [13]

5.6.2 Margin-Mix

The Margin-Mix algorithm [36] combines the large margin loss function with a few
augmentation techniques, including MixUp [9]. As stated in section 3.4, the MixUp
method is used for purely supervised learning. Although the linear combination between
2 images from the dataset is possible, the result will not be able to be assigned to a class
in the absence of initial labels.

This is where the large margin concept comes into play; it is used to label the new
formed examples with MixUp using the descriptors formed by a convolutional network.
To minimize the effect of overlapping data in the descriptive space the label assignment
was achieved using a Fuzzy technique [37]. In this way, a sample was assigned a
probability distribution for each class, not just a unique label. In addition, these new
samples along with their predicted labels were used during training.

A WIde-ResNet architecture [6] was used throughout the experiments. Table 5.3
displays the data obtained for the standard data sets STL-10 and SVHN. The RAF-DB
[31] results were organized in Table 5.4. The results in the first table are comparable to
those in the specialized literature. The second table’s results may be more suggestive. In
comparison to other purely supervised methods, Margin-Mix has a significantly higher
performance. Importantly, as the amount of labeled data decreases, the proposed method
produces better results. However, when the entire data set is utilized (the last column in
table 5.4), the values are comparable, proving that Margin-Mix is an option to consider
when the data set lacks sufficient annotations.
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SVHN STL
Methods/Labels 1000 4000 1000 5000
Supervised [6] – 12.84 – –
Π-Model [38] 8.06 5.57 17.41 39.19

VAT [39] 5.63 18.68 11.05 –
MeanTeacher [40] 5.65 3.39 10.36 –

ICT [41, 6] 3.53 – 7.66 –
MixMatch [8] 3.27 2.89 10.18 5.59

MarginMix [36] 3.35 8.33 9.85 5.80
Tabela 5.3 Comparative error (smaller is better) on SVHN and STL datasets obtained

with WideResNet-28-2.[36]

Methods/Labels 320 400 1000 4000
Supervised nc 26.75 35.25 55.66 85.58

Supervised [31] – – – – 84.13
MeanTeacher [40] nc 28.83 36.53 60.36 –

MixMatch [8] 35.60 42.25 60.37 65.24 –
MarginMix [36] 40.55 45.75 66.47 70.68 85.36

Tabela 5.4 Comparative accuracy (larger is better) on RAFDB dataset obtained with
WideResNet-28-2 . Top row lists the number of examples with labels (over all classes)

considered. nc - not converged [36]

5.6.3 Randomization Injection for Efficient Transfer in Face Expres-
sion Recognition

The technique proposed in [42, 43] is composed of semi-supervised learning and the
technique described in section 3.3.1(Pseudo-Labels). It is easy to use pseudo-labeling,
which consists of applying a pre-trained system to a supervised problem to label a
succession of unlabeled samples.

However, Pseudo-Label starts from the premise that the labeled data has a similar
distribution to the labeled one. This claim is false on multiple occasions and can
negatively impact performance. In Figure 5.1 is exposed schematically the functionality
of the proposed method. or the supervised case (a), the decision line is based on the
existing data, so everything is evident. When unlabeled data are also present (blue
circles), pseudo-labeling causes the system to become overconfident on the provided
labels, even if they are incorrect. In this case, the border can look like a system prone to
overfitting (b). The random injection in the gradient (AIR) induces a random degree of
uncertainty in the prediction, which reduces the likelihood of the border to be focused
too much on uncertain points.

The mathematical function that altered the gradients is defined as::
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Figura 5.1 Separation boundary for a) Ideal separation -supervised b) Pseudolabel- semi-
supervised c) AIR - Transfer learning

f (n,λ ) =

{
λn
50 , n < 50
0, n ≥ 50

(5.1)

where g : {1,Nepochs}× [−1,1]→ [−1,1], λ is a uniformly distributed radom variable
in [-1,1] and n is the number of epochs. This quantity is added to the current cost, and the
weights only change if the performance improvement is substantial. Thus, the negative
potential generated by the dissimilar distributions between data sets was minimized.

The results for the RAF-DB database are shown in Table 5.5. It can be noted that the
numbers obtained with the random injection in the gradient are predominantly greater
than the methods chosen for comparison. Notably, the performance is approximately 2%
to 3% better than pseudo-labeling, indicating a more efficient tranfer of information.

A series of experiments were also conducted on the LRIS database [33] containing
images of children’s facial expressions. The results are shown in table 5.6. The outcomes
were still significantly better in comparison with the supervised baseline.
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Method / Metric Avg. Acc. Acc.

SU
PE

RV

AlexNet [31] 55.60 68.90
VGG-16 [31] 58.22 70.53

DLP-CNN [31] 74.20 84.13
ResNet-18 [44] – 80.00

FSN [16] 72.46 81.10
gCNN [45] - VGG16 – 85.07

ensCNN [46] 75.14 86.31

T
R

A
N

SFE
R

AlexNet + PL 69.5 78.5
AlexNet + ALT [42] 72.3 81.50
AlexNet + AIR [43] 72.5 82.1

VGG–16 + PL 74.6 83.25
VGG–16 + ALT [42] 76.50 84.5
VGG–16 + AIR - [43] 76.82 85.15

ResNet-50 + PL 77.12 84.8
ResNet-50 + AIR - [43] 78.22 86.67

Tabela 5.5 Performance within 7-class problem on the RAF-DB database. FSN - feature
selection network, FSM - frame-to-sequence method, PL - standard Pseudo-Label, ALT
(Annealing Label Transfer). The current proposal is marked by AIR. With bold are
marked the best results. Table from [42]

Method Accuracy
VGG-16 [33] - supervised 67.2
VGG-16 - +AIR [43] 68.5
ResNet-50 - supervised 72.3
ResNet-50 + AIR [43] 76.6

Tabela 5.6 Performance (recognition rate) within 5-class problem on the LIRIS database
containing expression of children. Table from [43]

5.6.4 Action Units Detection with Large Margin Loss

The information in the current section uses the principles of wide margin, pseudo-
expressions and domain adaptation exactly as in 5.6.1, but experiments and tested
scenarios were extended. In [47] all efforts were concentrated on detecting action
units(AUs).

The architectures used in this case were mainly those from the ResNet family [5].
As in section 5.6.1, action units were identified using the information provided by the
pseudoexpression-related decision layer. Consequently, three distinct associated loss
functions were utilized for each problem: binary cross entropy for predicting facial
movements, cross entropy for predicting pseudo-expressions, and large margin for
clustering the descriptors space. The total cost function is depicted in Equation 5.2. The
constants λ1, λ2, and λ3 are used to numerically balance the three terms of the final cost.
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LT = λ1LBCE +λ2LSE +λ3LLM (5.2)

The fact that some action units occur much less frequently than others was one of
the issues that emerged in the databases used in the experiments. As shown in Figure
5.2, this factor contributes to a reduced detection, as the action units that appear less
frequently will overlap with the other ones in the embeddings space. On the left side
of the figure are the pseudo-expressions represented by the action units that appear less
frequently, while on the right are the pseudo-expressions representing all action units.
The pseudo-expressions described by less frequent AUs (coloured) are almost completely
covered by the other ones (gray color).

Figura 5.2 Embeddings space representation for pseudo-expressions. Left – Features
for the pseudo-expressions represented by sparse AUs. Right - Features for the pseudo-
expressions represented by all AUs . Figure from [47]

Tables 5.7 and 5.8 show the results obtained on the DISFA [35] and Emotionet [22]
data set in comparison with other similar techniques from the literature. For DISFA, it
can be observed that the average results obtained with the large margin loss are better for
action units with a lower frequency of occurrence. The overall average is not necessarily
superior. On the Emotionet data set, the differences are preserved.

The large margin concept is able to better distinguish on a descriptive level the pseudo-
expressions that are represented by the less frequents action units, which may explain
why the performance is higher. This is evident in Figure 5.3, where the expressions
formed from facial movements that occur less frequently(the coloured dots) are much
more compact and slightly overlapped with the others (gray dots - action units that occur
more frequently) when large margin is used.
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Figura 5.3 Embeddings space evolution at epoch 40 for all synthetic emotions. BCE
(Binary Cross Entropy) , CL (Center Loss), IL (Island Loss) and LM (Large Margin).
Figure from [47]
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Tabela 5.7 Comparison with state of the art for DISFA. DA stands for domain adaptation
in the current proposal. LM stands for Large Margin. F1-all is the average of all AUs.
F1-sparse is the average of sparse AUs. The best results are represented in bold. The
resullts obtained with LM are highlighted with gray color. Table from [47]

Method F1-all F1-sparse
DA (DISFA unlabeled) PreActRes18 -

- pretrained LM Loss 55.4 51.2

DA (DISFA unlabeled) PreActRes18 -
- not pretrained LMS Loss 50.4 44.7

DA (DISFA unlabeled) PreActRes18
Center Loss [10] 46.6 38.9

DA (DISFA unlabeled) PreActRes18
Island loss [11] 47.3 40.0

DA (DISFA unlabeled) PreActRes18
Ring Loss [12] 46.0 39.4

DRML [48] 26.7 14.2
ROI [49] 48.4 23

DSIN [20] 53.6 42.6
JAA [50] 56.0 48.2

SRERL [51] 55.9 45.6
MLT-RM [52] 60.1 46.6
UGN-B [53] 60.0 49.65

Tabela 5.8 Results for EmotioNet dataset. Comparison with other clustering losses and
state-of-the-art. F1-all is the average of all AUs. F1-sparse is the average of sparse AUs .
DA = Domain Adaptation; BCE = Binary Cross Entropy; LM = Large Margin; CL =
Center Loss; IL = Island Loss; RL = Ring Loss. The best results are represented in bold.
The best resullts obtained with LM are highlighted with gray color. Table from [47]

Method F1-all F1-sparse
SV-BCE +PrActRes18 47.08 35.19
SV-BCE +PrActRes18 - CE(SynExpr) 48.48 36.75
SV-LM 50.16 38.90
DA - LM -Alexnet 49.04 35.96
DA - LM +PrActRes18 52.12 40.74
DA - LM +PrActRes18 Imagenet pretrain 54.31 43.25
DA - NM+PrActRes18 DISFA pretrain 55.89 45.58
DA - CL[10] +PrActRes18 48.92 36.83
DA - RL[12] +PrActRes18 49.14 36.34
DA - IL[11] +PrActRes18 50.38 38.20
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Image Retrieval

Retrieving similar images is an increasingly common task in various fields such as:
image search engines or medical applications. Over time, a variety of descriptors have
been used to efficiently describe the visual information from images. In this chapter,
the possibility of using a large margin loss to acquire a set of improved descriptors via
convolutional networks was investigated.

6.1 Database

The database used in the experiments is known as Places365 [54] and contains
approximately 1.8 million images organized into 365 categories. Images contains
various scenes all over the world. The training set has a number between 3000 and 5000
images. The test set has 900 pictures for each class.

6.2 Related Work

Before convolutional networks became popular, different variants of descriptors for
image retrieval were sought. Among those who appeared before therise of deep learning
are local binary pattern [55], histogram od oriented gradients [56] or color histograms.
Then, descriptors that identify similar points such as SIFT [57] and SURF [58] were
used for retrieval tasks.

In recent years, improved information-highlighting descriptors have emerged, such
as the histogram of visual words [59]. Obviously with the development convolutio-
nal networks, more and more individuals desired to use densely connected layers as
embeddings [60, 61] .
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Scenario/Metric
[%]

mAP-5-
query

mAP-8-
query

Top-1-
err-rate

Top-5-
err-rate Accuracy AUC – PR

curve
CE-pre-trained-

baseline 29.93 28.35 66.74 37.53 53.10 9.17

LM-fine-tuned 29.89 28.56 66.99 37.95 54.69 9.23
LM-from-scratch 31.35 29.98 66.18 37.79 53.51 11.18
Resnet-152 [19] - - - - 54.74 -
Tabela 6.1 Experimental results on Places365 (mAP-mean average precision; AUC –

area under curve; CE- cross entropy, LM- large margin).

Table from [62]

6.3 Proposed method

A ResNet convolutional network was used for the problem of finding similar images
and it was trained in Places365 database [54]. After this phase, the penultimate fully
connected layer was extracted ans it was used as a descriptor for the retrieval part.

Using the large margin concept (section 4.4), the network was trained to increase the
spatial density of the descriptive space. The outcomes are shown in table 6.1. Among
the performance metric used are: mean averaged precision(mAP), Top error rate and are
under precision-reacall curve. It can be seen that the results are only slightly in favor of
the presented method.

To determine the utility of the large margin function, three new scenarios were
developed containing separable data, non-separable data, and data from both categories
at the embeddings level. Below is an illustrative figure of the data space before training
(Figure 6.1).

Figura 6.1 t-SNE representation of the 3 different situations. a – Non separable data
scenario; b- Separable data scenario; c- Both separable and non separable data scenario

Figure from [62]

Table 6.2 shows the results for the 3 analyzed scenarios. It should be noted that
the large margin function produces superior results when the data space is densely
populated. For the worst scenario with barely separable data, the performance metrics
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Scenario/Metric
[%]

mAP-5-
query

mAP-10-
query

Top-1-
err-rate

Top-5-
err-rate Acc AUC –

PR curve
CE-separable data 92.82 92.93 6.85 2.46 94.82 82.81
LM-separable data 92.82 92.93 6.85 2.46 94.82 85.16

CE-non-separable data 55.83 56.00 43.61 12.69 67.20 37.25
LM-non-separable data 59.75 58.97 40.60 13.45 70.08 44.75
CE-both separable and

non-separable data 72.78 71.50 25.82 7.13 78.30 52.12

LM-both separable and
non-separable data 72.11 72.43 22.15 9.32 79.85 58.96

Tabela 6.2 Experimental results on Places365 for the new scenarios(mAP-mean average
precision; AUC – area under curve; CE- cross entropy, LM- large margin).

Table from [62]

are clearly better than in the case of using descriptors from a network trained with
classical cross-entropy.

To illustrate the importance of the large margin concept, refer to figure 6.2. Here, it
is presented the evolution of the descriptive space for cross entropy and large margin
during the training process. As can be seen, the space is significantly more compact with
the large margin, indicating that the network will provide more useful descriptors for the
image retrieval problem.

Figura 6.2 The modification of the descriptive space during the training process for the
case with non-separable data (LM –up, CE- bottom)

Figure from [62]
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The previously mentioned idea can be verified in figure ??. It can be seen the first
five images retrieved for a given query image. Using the trained network’s embeddings
in conjunction with the large margin loss increases the number of returned images that
belong to the real class. However, there are instances when cross entropy provides
superior results. This aspect proves that for tangled data even the concept of large margin
is not enough.

Figura 6.3 Examples of first 5 images retrieved with CE and LM for inseparable data
scenario. Red bullets mark retrieved images with a different class compared to query

image. Green bullets describe correctly retrieved images
Figure from [62]

Even though the large margin has its limitations, it achieves a better compaction of
the embeddings space. The reference set used for the retrieval problem is depicted at a
descriptive level in figure 6.4. When the network is trained with large margin loss, the
data is more compact and less overlapping, facilitating the system’s retrieval decisions
for images with similar content. Figure 6.5 shows an increase in the area under the
precision-recall curve, which confirms the utility of this technique for problems with
tangled data.
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Figura 6.4 The descriptors representation associated with the reference set with CE (left)
and LM (right) for non-separable data scenario

Figure from [62]

Figura 6.5 PR- curves for LM and CE. a- non separable data scenario; b- both separable
and non-separable data scenario)

Figure from [62]
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Conclusions

7.1 Obtained results

In this thesis two essential research topics were addressed: facial expression recogni-
tion and image retrieval. The first also focused on the detection of facial movements,
known as action units. Methods based on semi-supervised learning/domain adaptation,
loss functions for a better discrimination in the embeddings space, and novel augmenta-
tion/regularization techniques were developed. The successful outcomes validated the
potential of the proposed methods.

The image retrieval was the second area of interest. In this instance, it was determined
whether a new loss function (large margin) can more effectively organize the descriptors
used to discover similar images. It has been demonstrated that this concept is particularly
beneficial when descriptive-level data are highly overlapping.

7.2 Contributions

• A new technique for recognizing facial expressions and action units was approa-
ched, which has several original components. A domain adaptation solution to
connect facial movements and discrete expressions was used to benefit from the po-
tential of semi-supervised learning. In addition, a clustering loss of the descriptive
space was used for increased performance. [13]

• A solution for the recognition of facial expressions was proposed , focusing on
the use of a new regularization method based on randomization injection in the
gradient. [42]

• A new way that combines annotated data and unannotated data with a technique to
increase the number of samples was proposed. The algorithm was tested not only
in the case of facial expressions, but also on standard benchmarks [36]
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• The effectiveness of a clusterization loss of the embedddings’ space was tested
for image retrieval task. In this case, a more effective grouping of descriptors
significantly increased the retrieval performance for the scenarios with tangled
data. [62]

• The method from [13] was extended to several data sets containing action units.
Here, the proposed loss function was studied in relation to other similar functions
from the specialized literature and it proved to be more efficient. It was also
demonstrated that the proposed loss contributes to a better recognition of the
action units that appear less often in the data sets, confirming its ability to decipher
the data. [47] [63]

• For all the proposed algorithms, an extensive comparison with the literature was
carried out. Methods similar to the contextual approach were discussed in order to
gain a more objective idea about the effectiveness of the proposed algorithms.

7.3 Publications

• Andrei Racoviteanu, Corneliu Florea, Mihai Badea, and Constantin Vertan. Spon-
taneous emotion detection by combined learned and fixed descriptors. In 2019
International Symposium on Signals, Circuits and Systems (ISSCS), pages 1–4.
IEEE, 2019

• Andrei Racoviteanu, Iulian Felea, Laura Florea, Mihai Badea, and Corneliu Florea.
Clustering based reference normal pose for improved expression recognition. In
International Conference on Advanced Concepts for Intelligent Vision Systems,
pages 51–61. Springer, 2018

• Mihai Badea, Constantin Vertan, Corneliu Florea, Laura Florea, and Andrei
Racoviteanu. Improving small convolutional neural networks with semi-supervised
learning. UPB Scientific Bulletin, Series C: Electrical Engineering, pg Series C,
Vol. 84, Iss. 3, 2022, pp 107-119

• Andrei Racoviteanu, Mihai Badea, Corneliu Florea, Laura Florea, and Constantin
Vertan. Dual task training for face expression recognition. In 2020 12th Interna-
tional Conference on Electronics, Computers and Artificial Intelligence (ECAI),
pages 1–4. IEEE, 2020

• M. Boeru, A. Racoviţeanu and C. Florea, "Facial Expressions Recognition by
Structuring the Embeddings Space," 2021 International Conference on e-Health
and Bioengineering (EHB), Iasi, Romania, 2021, pp. 1-4
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• B. Stoica, L. Florea, A. Bădeanu, A. Racoviţeanu, I. Felea and C. Florea, "Visual
saliency analysis in paintings," 2017 International Symposium on Signals, Circuits
and Systems (ISSCS), Iasi, Romania, 2017, pp. 1-4

• Badea, M., Florea, C., Racoviţeanu, A., Florea, L., Vertan, C. (2023). Timid
semi–supervised learning for face expression analysis. Pattern Recognition, 138,
109417.

• Florea, Corneliu, et al. "Automatic Real-Estate Image Analysis for Retrieval and
Classification." Bulletin of the Polytechnic Institute of Ias, i. Electrical Engineering,
Power Engineering, Electronics Section 68.2 (2022): 35-45.

• Corneliu Florea, Mihai Badea, Laura Florea, Andrei Racoviteanu, and Constantin
Vertan. Margin-mix: Semi-supervised learning for face expression recognition. In
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XXIII 16, pages 1–17. Springer, 2020

• Corneliu Florea, Laura Florea, Mihai-Sorin Badea, Constantin Vertan, and Andrei
Racoviteanu. Annealed label transfer for face expression recognition. In BMVC,
page 104, 2019

• Andrei Racoviteanu, Mihai-Sorin Badea, Corneliu Florea, Laura Florea, and
Constantin Vertan. Large margin loss for learning facial movements from pseudo-
emotions. In BMVC, page 108, 2019

• Andrei Racoviteanu, Corneliu Florea, Mihai-Sorin Badea. Large margin loss
for Image Retrieval. Accepted to UPB Scientific Bulletin, Series C: Electrical
Engineering

• Andrei Racoviteanu, Corneliu Florea, Laura Florea, and Constantin Vertan. Nor-
malized Margin Loss for Action Unit Detection. Submitted to MVAP

• Project "Technologies and innovative video/audio systems for the recognition/identification
of people and simulated behavior" - SPIA-VA, PN-III-P2-2.1- SOL-2016-02-0002

• Project "TRANSLATE" , TE 66/2020, PN-III-P1-1.1-TE-2019-0543.

• Project “Innovative Artificial Intelligence systems in the field of real estate portals”
- online number 137-221-A2, MySMIS number: 129132

• Project "OPTIM research" through Human Capital Sectoral Operational Program
2014-2020 - nr. 62461/03.06.2022, SMIS code 153735.
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7.4 Future work

In the field of semi-supervised learning, the development possibilities are numerous,
regardless of the chosen topic (easy expressions or image retrieval). Although the
potential is huge, this approach also has a number of limitations. The most important
one is that it fails to outclass the supervised algorithms for datasets with sufficient labels.
However, for the datasets with few annotations, the situation changes radically for the
better.

The domain adaptation technique used for facial expressions can also be used
in other contexts. Face landmark localization and head pose classification are practical
instances, as the three angles of the head can be conveyed relative to face landmarks;
another example is image captioning and object detection, where the captions are derived
from a particular set of objects.

In the case of image retrieval, the clustering loss of the embeddings’ space proved
to be very effective. In this context, it could also be extended to databases with facial
expressions. Given that many expressions are similar at the descriptive level, this solution
has some potential.
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