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Chapter 1. State of Art for theoretical research concerning the dynamic behavior of 

automotive driveshafts  

 

The First Chapter investigates The State of Art for theoretical research concerning the 

automotive driveshaft’s dynamic behavior based on the references [B.G.1- B.G.16], [B.C.1-

B.C.14], dealing with the following aspects: 

1. Defining the concept Constant Velocity Joints(CVJ) for the automotive driveshafts  that are 

homokinetic-shafts, 

2. kinematic of the automotive driveshaft’s polypore  

3. computation of the input automotive driveshafts. 

 
                a.                                         b.                                                        c. 

 
 

Fig. 1.1 An automotive driveshaft [R.C.1.1]. 

 

Fig. 1.2 Details of the bowl–balls (inner race of the midshaft) joint [R.C.1.1]. 
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Fig. 1.3 Details of tulip–tripod (tripod of the midshaft) joint [R.C.1.1]. 

 

 The Ph.D. thesis contains six chapters: 

– Chapter 1. State of Art for theoretical research concerning the dynamic behavior of 

automotive driveshafts; 

– Chapter 2. Isometric Nonuniformity of automotive; 

– Chapter 3. Models of forced torsion vibrations of automotive driveshafts; 

– Chapter 4. Models of forced bending vibrations of automotive driveshafts; 

– Chapter 5. Chaotic manifestation of the automotive driveshaft’s forced bending vibrations; 

– Chapter 6. Final conclusions. Contributions. Future directions of research. 

Chapter 2 investigates the geometric and kinematic isometric nonuniformities of prezintă 

automotive driveshafts.  

The aim of Chapter 3 is to design a physical consistent model for automotive driveshaft’s forced 

torsion vibrations that takes into account the next aspects:  

- the harmonic excitation induced by the combustion through the geared system 

transmission,  

- impulsive excitation induced by the road geometry,  

- quasi-isometry of automotive driveshafts, 

- nonuniformity of axial mass moments of inertia and axial geometric moments of inertia 

regarding the longitudinal axis of the tripod joint and the bowl-inner race joint,  

- rigidity and damping of each joint.  

Chapter 4 illustrates the use of the asymptotic method (AM) [B.C.4.1], to investigate the 

principal parametric resonance for forced bending vibrations of automotive driveshafts.  

Chapter 5 investigates the chaotic manifestation of the automotive driveshaft’s forced bending 

vibrations.  To detect the chaotic manifestation of the automotive driveshaft’s forced bending 

vibrations it was used the time-history analyses of the phase portraits for the automotive 

driveshaft’s forced bending vibrations in the region of the principal parametric resonance. To 

confirm this type of manifestation in the principal parametric resonance region it was used the 

Maximum Lyapunov Exponents (MLEM). To reconfirm the chaotic manifestation of the 
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automotive driveshaft’s forced bending vibrations, was employed the Method Poincaré Maps, that 

is a qualitative method that certifies the deterministic chaos. In this way was created a powerful 

tool to investigate the chaotic vibrations generated by bending,  in the principal parametric 

resonance area (PPRA). 

Chapter 6 illustrates the Final conclusions, the original contributions, and the future directions 

of research.  
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Chapter 2. Isometric Nonuniformity of Automotive Driveshafts  

The constant velocity joints (CVJs) for automotive driveshafts are special mechanisms 

that transmit the load torque by angular rotation from the gearbox to the wheels of a car as can 

be seen in Figure 1.1. For a better understanding, let us look inside the components of such a 

mechanism by looking at Figure 1.1, which consists of (a) the bowl-balls joint fixed assembled 

by the car wheel, (b) the midshaft axis; (c) the tulip–tripod joint that allows for axial plunging 

of the tripod in the tulip and the plunging assembled in the gearbox. 

The first researchers who considered special phenomena for driveshafts were Mazzei and 

Scott, who enhanced the nonlinear parametric dynamic behavior of universal joints in [G.R.12].   

The experimental evidence on the nonuniformity of CVJ driveshaft transmissions is presented 

and highlighted by Browne and Palazzolo in the paper [G.R.13]. But the most important 

experimental research on the nonuniformity of geometric and kinematic isometry of CVJ 

driveshafts was carried out by Steinwede during his PhD thesis [G.R.5] (pp. 68–97); thus, after 

45 years, it was finally proven through experimental data that Dudita and Diaconescu were 

right, that CVJ driveshafts are quasi-homokinetic, and all the designed patents and design flow 

charts used in the automotive industry concerning CVJ driveshafts must be modified and 

corrected as already was mentioned in [G.R.5] (p. 78). This paper highlights this nonuniformity 

from the isometry of geometry and kinematics for CVJ automotive driveshafts. 

The first to introduce the concept of a CVJ was Metzner, in 1967, who is mentioned in the 

literature [4] as the creator of the first indirect method (FIM) for proving constant velocity for 

special Hooke joints [G.R.7], based on the idea that “the generators of a constant velocity joint 

must be mirror images in space” [G.R.7] (p. 61). Figure 2.3 highlights the functioning through 

a flow chart of a CVJ automotive driveshaft. 

 

Fig. 2.3 Flow chart of a CVJ driveshaft [G.R.18].  
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Presented in detail in Figure 2.4 is a tripod that consists of three pods equally fixed 

inclined, with respect to the midshaft of the automotive driveshaft with the fixed angles, i
 : 

( )2 1
ψ ,  1,2,3i

i
i





−
= =                                                                                (2.1) 

 

Fig. 2.4. Tulip–tripode joint [G.R.18] 

Figure 2.5, presents a schematic representation of an automotive drive shaft in three Cartesians 

systems with the coordinates X1,Y1,Z1 attached to the tulip, X2,Y2,Z2 attached to the midshaft, 

and X3,Y3,Z3 attached to the bowl, having the next rigid movements: 

- rotation with the angle φ1 of the tulip with respect to the X1, φ1 = 0 … n1π , 

- rotation with the angle φ2 of the midshaft with respect to the X2, φ2 = 0 … n1π, 

- rotation with the angle φ3 of the bowl with respect to the X3, φ3 = 0 … n1π, 

- relative rotation of the longitudinal axe of the midshaft (given by the direction of the axis 

X2) with respect to the longitudinal direction of the tulip (given by the direction of the 

axis X1), with β1 (spatial angle between axis X1 and X2) with respect to the axis Z1, β1 

being the angle between longitudinal direction of the tulip and the longitudinal direction 

of the midshaft, β1 = 0° … 15°, 

- relative rotation of the longitudinal axis of the bowl (given by the direction of the axis X3) 

with respect to the longitudinal direction of the midshaft (given by the direction of the 

axis X2), with β2 (spatial angle between axis X2 and X3) with respect to the axis Y2, β2 

being the angle between the longitudinal direction of the midshaft and the longitudinal 

direction of the bowl, β1 = 0° … 47°. 

Using all these notations, Orain proved, in 1976, using the second direct method [G.R.11] that 

the polypod joints, the tripod joints, are isometric joints from the kinematic and dynamic points 

of view, the kinematic point of view being expressed by the relations:  

2 1 1tan cot  =                                                                                               (2.2) 

2 1tan tan =                                                                                                (2.3)   

 1 2 =                                                                                                          (2.4)  

It means the tripod joint that is a tulip–tripod joint is a CVJ, but, in 1975, Dudita and Diaconescu 

[G.R.1] proved that the tripod joint is quasi-isometric, a fact that was only recognized by 

researchers in the field [G.R.7] (p. 78) until 2006. At that time, in the nineteen-seventies, it was 

considered that a nonuniformity from a kinematic isometry of the tripod joints of 5–7% was 

acceptable; now, when an improvement of 1% is a huge gain in the automotive industry, and is 
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it is no longer acceptable. Thus, the homokinetic transmission of the driveshafts is, in fact, 

quasi-homokinetic; therefore, for the early stages of design in the automotive industry, it is 

necessary to express and evaluate the kinematic and geometric isometric nonuniformities of the 

driveshafts as well as their implications in the dynamic behavior of the transmission. In 

addition, the bowl-ball joint has not proven to be a CVJ. 

 

Fig. 2.5 - Schematic representation of an automotive driveshaft using 3 cartesian systems of 
coordinates [G.R.1]. 

Let us consider a general cross Hooke joint as presented in Figure 2.6, where the driving 
element is S1, having attached to the cartesian system R1(OX1,Y1,Z1), the driven element is S2, 
having attached the cartesian system R2(OX2,Y2,Z2); the cross joint is A’OA-B’OB, having the 

angle AOB =  , the driving input angle is 
1

 , the driven output angle is 2
 , and the angle 

between the longitudinal direction of the input element S1 and the longitudinal direction of 
output element S2 is θ. 

 

Fig. 2.6  A general cross Hooke joint [G.R.1]   

We can consider three-unit vectors n
e , v

e , w
e  so that we have the relations  

 1n v z
e e e =                                                                                                         (2.5) 

2n w z
e e e =                                                                                                         (2.6)    
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that yield to express the unit vectors of OA  and OB  as: 

: 

                       
1x 1 n 1 v

e cos e sin e ,=  +                                                                      (2.7) 

       ( )
2 1y 2 n 2 w 2 n 2 v z

e sin e cos e sin e cos cos e sin e .= −  +  = −  +   +                                (2.8) 

Based on Equations (2.7) and (2.8) yields: 

      
1 2 1 2 1 2   cosx y cos sin sin cos co ce s ose       − + = =                                             (2.9) 

The most common number of balls for a bowl-balls joint is six, so using Equation (2.10) for the 

bowl-balls joint (see Figures 2.7 and 2.8), putting 2 1
, =  3 2

, = 
2

, =   and i
, =   

max
i 1,2,3,...i=  for i

  given by the relation: 

( )2 1
ψ ,  1,2,3 .   i max

max

i
i i

i

 −
= =                                                                     (2.10)  

where imax is the numbers of balls of the bowl-balls joint that must be multiples of 3 (condition 

of homokinetic driveshaft joint). 

              

Fig. 2.7  Picture of a bowl-balls joint [G.R.18]          Fig. 2.8  Components of the bowl-balls joint [G.R.18] 

 

The relations that express the nonuniformity of the kinematic isometry of driveshafts can be 

obtained from the general formulation found by Dudita and Diaconescu [G.R.1] for an input 

driving shaft with 1
  rigid rotation angle and an output-driven shaft with a rigid rotation 

angle are 

2

2 1 1

r
tan tan cos(3 ),

2l 2


 =  +    (2.1) 

where r is the radius of the joint, l is the length of the driven shaft, and β is the angle between 
the longitudinal directions of the two shafts. With the signification of the terms mentioned 
before yields: 

- for the tulip–tripode joint: 

21 1
2 1 1 1

r
tan tan cos(3 ),

2l 2


 =  +    (2.2) 

- for the bowl-balls joint 
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22 2
3 2 2 2

r
tan tan cos(3 ),

2l 2


 =  +    (2.3) 

where 1
r  is the tulip radius, 2

r  is the bowl radius, and l is the length of the midshaft. After 

injecting the relation (2.20) in (2.21) yields: 

( ) ( )2 2 21 1 2 2 1 1
3 1 1 1 2 1 1 1cos 3 cos 3 1.5 cos 3

2 2 2 2 2

r r r
tan tan tan tan tan tan

l l l

  
       

 
= + +


+ 


       (2.22)   

And the dependance of the angular speed of the bowl with respect to the angular speed of the 

tulip is: 

( ) ( )

( )

2 2 21 1 2 2 1 1
3 1 1 1 1 1 2 1 1 1

21 1
1 1

1,5 sin 3 1,5 sin 3 1,5 cos 3
2 2 2 2

3 4,5 sin 3
2

r r r
tan tan tan tan tan tan

l l l

r
tan tan

l

  
         


 

• • • •  
= − − • 

 

 
− 

 

+

      (2.23)                               

Figure 9 presents a flow chart of a quasi-isometric CVJ automotive driveshaft. 
. 

 
Fig. 2.9 Flow chart of a quasi-isometric CVJ automotive driveshaft [G.R.18] 

Based on relation (2.22), the software in MATLAB was used to compute the geometric 

nonuniformity of the geometric isometry for the driveshaft 3 1 1 1 1 2
( , , ) =  − =      

as a function of β1, β2 and 1
  as can be seen in Figures 2.10 and 2.11. 
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Fig. 2.10  Geometrical nonuniformity of isometry for automotive driveshaft for. r1 / l = 0,11, r2 / l = 0,09, 

 β1 =0... 15° [G.R.18]. 

 

 

Fig. 2.11  Geometrical nonuniformity of isometry for automotive driveshaft for r1 / l = 0,11, r2 / l = 0,09,  

β2 =0... 47° [G.R.18]. 

Analyzing these figures, it can be concluded that the geometric nonuniformity of isometry was 
in the range ±0.009° being maximum when β2 has the maximum value of 47°. Comparing these 
results with the experimental data in the literature [G.R.4] (pp. 70–71), it can be remarked that 
it had close agreement. In addition, Steinwede in [G.R.4] (pp. 88–94) experimentally 
demonstrated that this geometric nonuniformity of isometry for a driveshaft is the principal 
cause of premature pitting on the flanks of the tripod, on the internal flanks of the tulip, on the 
balls of the bowl-inner race joint, and on the internal flanks of the bowl due to the insufficient 
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design for controlling Hertzian contact with respect to phenomena that involves geometric 
nonuniformity of isometry involving the driveshaft. Using relation (2.23), software in 
MATLAB was developed to compute the kinematic nonuniformity of isometry for the 

driveshaft 3 1 1 1 2
/ f( , , )

• •

  =     as a function of β1, β2, as can be seen in Figures 2.12 and 2.13. 

  

 
Fig. 2.12  Kinematic nonuniformity of isometry for automotive driveshaft for r1 / l = 0,11, r2 / l = 0,09, β1 = 

0..150  [G.R.18] 

 

 

Fig. 2.13  Kinematic nonuniformity of isometry for automotive driveshaft for r1 / l = 0,11, r2 / l = 0,09,  

β2 =0.. 470 [G.R.18] 

Analyzing Figure 2.12, it can be remarked that the kinematic nonuniformity of the isometry for 
the driveshaft, when β2 = 47° and β1 is in the range 0–15°, is in the range (−0.027, 0), having 
maximum absolute values for 

1
 = 93°, 213°, and 325°, while the minimum absolute values 

were obtained for 
1

  = 33°, 151°, and 271°. Regarding Figure 2.13 it can be concluded that that 

the kinematic nonuniformity of the isometry for the driveshaft, when β1  = 15° and β2 is in the 
range 0–47°, was in the field (−0.024, 0.001) having maximum value for 

1
  = 76°, 190°, and 

316° while the minimum values were obtained for 
1

  = 31°, 169°, and 258°. 
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In Figure 2.14, the geometric nonuniformity isometry for the driveshaft 

3 1 1 1 2
g ( , ) =  − =    as a function of β1 and β2, being variables, and  =

1
243 . As can be 

remarked from Figure 2.14, the geometric nonuniformity isometry for the driveshaft was 
maximum for β2 = 47° regardless of the variation in β1 in the range 0–15°. From the perspective 
of the last simulation concerning the geometric nonuniformity isometry for the driveshaft, it 
can be concluded a great sensitivity for the maximum angle β2 of the longitudinal direction of 
the bowl with respect to the midshaft longitudinal direction. From the design point of view, this 
aspect involved a sensitivity to shocks received from the wheel of the driveshafts even if the 
value of nonuniformity was very small. 
In addition, analyzing Figures 2.10–2.13, the harmonic fluctuation of the nonuniformity from 

the geometric and kinematic isometry of the automotive driveshaft can be highlighted. This is 

a challenge for the driveshaft’s designers because of the difficulty of predicting the 

supplementary quantities for the fatigue solicitations. Moreover, the harmonic fluctuation of 

the nonuniformity from geometric and kinematic isometry of the automotive driveshaft induces 

the nonlinear parametric dynamic behavior of a CVJ as mentioned in [G.R.12]. All these 

geometric and kinematic nonuniformities from the isometry of automotive driveshafts must be 

considered in the design patents for automotive driveshafts such as in [B.C.2.4 - B.C.2.7]. These 

aspects of considering the automotive driveshafts as quasi-isometric (isometry with 

nonuniformity) CVJ (homokinetic) transmissions allow for the development of future research 

in torsional forced vibrations and the bending–shearing vibrations of automotive driveshafts.  

 

Fig. 2.14  Geometrical nonuniformity of isometry for automotive driveshaft for r1 / l = 0,11, r2 / l = 0,09, φ1 =

const. = 243° [G.R.18] 

The prediction of geometric and kinematic isometry nonuniformity of the driveshaft 

represent a powerful tool for designers because it allows for prediction in the early design stages 

of the automotive driveshaft, the prediction of resonances such as super harmonic resonance, 

subharmonic resonance, principal parametric resonance, combination resonances, simultaneous 

resonances, and internal resonances. Also, this aspect allows the investigation of stability in 

these specific resonances ranges for the nonlinear parametric dynamic behavior of the 

automotive driveshaft as mentioned in [G.R.12].  
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Chapter 3. Models of Forced Torsion Vibrations of Automotive Driveshafts  

The present chapter presents a consistent model to describe the forced torsional vibrations for 

an automotive driveshaft considering the next aspects: the joints of the driveshaft are quasi-

isometric for the angular velocity[G.R.18], even if generally it is considered as CVJ (Constant 

Velocity Joint), the effect of induced torsional loads as the harmonic entry moment from the gear 

box[R.C.1](p. 360) and the impulsive reaction moment from the wheel[G.R. 17], the effect of 

nonuniformity for the axial moment of inertia of the joints that vary with the angle of twist of each 

element of the driveshaft and the effect of the torsional rigidity as well as the torsional damping for 

each joint of the driveshaft that vary with the angle of twist of each element of the driveshaft.  
In literature [G.R.18] the nonuniformity of isometric properties for automotive driveshaft is 

already a recognized fact, being a reality demonstrated by experiments by Steinwede in his PhD 

thesis[G.R,14](pp. 68-97) after half a century. This nonuniformity of isometric properties of the 

driveshaft is the main cause of nonlinear parametric vibrations of the driveshafts in the range (0.1 

kHz…12 kHz) of the driveshafts as mentioned with no doubt by the experimental results in the 

literature [G.R,14] (pp. 98-123). The first researchers who considered special phenomena for 

driveshafts were Mazzei and Scott, who enhanced the nonlinear parametric dynamic behavior of 

universal joints in [G.R.12]. The experimental evidence on the nonuniformity of CVJ driveshaft 

transmissions is presented and highlighted by Browne and Palazzolo in the paper [G.R.13]. 

The goal of the chapter is to establish a complete dynamic model for an automotive CVJ 

quasi-homokinetic driveshaft, that includes the elements that describe the nonlinear forced 

parametric dynamic behavior, a model that can be used in early design stages as well as in 

predicting the durability of the automotive driveshafts.  

Figure 2.5 presents the schematical representation of an automotive drive shaft in three axis of 

Cartesians coordinates X1Y1Z1 attach to the tulip, X2Y2Z2 attach to the midshaft and X3Y3Z3 attach 

to the bowl, having the next rigid movements:  
- rotation with the angle φ1 of the tulip with respect to the axis X1, φ1 =0….n1π , 
- rotation with the angle φ2 of the mid shaft with respect to the axis X2, φ2 =0….n1π, 
- rotation with the angle φ3 of the bowl with respect to the axis X3, φ3 =0….n1π, 
- relative rotation of the longitudinal axe of the midshaft (given by the direction of the axis 

X2) with respect to the longitudinal direction of the tulip (given by the direction of the axis 
X1), with β1 (spatial angle between axis X1 and X2) with respect to the axis Z1, β1 being 
the angle between longitudinal direction of the tulip and the longitudinal direction of the 
midshaft, β1 = 00….150 , 

- relative rotation of the longitudinal axis of the bowl (given by the direction of the axis X3)  
with respect to the longitudinal direction of the midshaft (given by the direction of the axis 
X2), with β2 (spatial angle between axis X2 and X3) with respect to the axe Y2,  β2 being 
the angle between the longitudinal direction of the midshaft and the longitudinal direction 
of the bowl, β2 = 00….470. 

In order to compute the equations of motions for the driveshaft, using the Variational Approach of 

the Hamilton Principle, it is necessary to reduce the axial mass moment of inertia of the cross-

section and the geometric moment of inertia of the cross-section for the global tulip (tulip axis and 

tulip) with respect to the longitudinal axis of the midshaft X2 in the centroid of the cross-section of 

tripod fixed on the midshaft as well as the axial mass moment of inertia of the cross-section and 

the axial geometric moment of inertia of the cross-section for the global bowl (bowl axis and bowl) 

with respect to the longitudinal axis of the midshaft X2 in the centroid of the cross-section of the 

inner race fixed on the midshaft. The computations of these axial mass moments of inertia of the 

cross-section and axial geometric moments of inertia of the cross-section take into account: the 
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angle β1 between X1 and X2 (see figure 3, rotation with respect to Z1 parallel with Z2 ), the distance 

from the mass center of the tulip axis to the centroid of the cross-section of tripod fixed on the 

midshaft, the distance from the mass center of the tulip to the centroid of the cross-section of tripod 

fixed on the midshaft(see figure 2.5), the angle β2 between X2 and X3 (see figure 2.5, rotation with 

respect to Z3 parallel with Z2 ), the distance from the mass center of the bowl axis to the centroid 

of the cross-section of inner race fixed on the midshaft, the distance from the mass center of the 

bowl to the centroid of the cross section of inner race fixed on the midshaft(see figure 2.5). Thus, 

it is obtained the axial geometric moment of inertia of the cross-section for the global tulip 
2X GT

J  

reduced to the longitudinal axis of the midshaft in the centroid of the cross-section of the tripod 

fixed on the midshaft, and the axial mass moment of inertia of the cross-section for the global tulip 

2X GT
I  reduced to the longitudinal axis of the midshaft in the centroid of the cross-section of tripod 

fixed on the midshaft, given by the equations: 

                 

2 2 2x GT x T x ATJ J J= +                                                                                            (3.1)     

          ( ) ( ) ( )
2

22 2

1 2 1 1 10,5 1 2x T T T nT T CTJ J J cos X cos sin S d   = + + + +                               (3.2) 

                    1 2

1 2

T T
nT

T T

J J
X

J J

−
=

+
                                                                                                                 (3.3) 

                 ( ) ( )
2

4 2
22

11 0,5
64 4

x AT T AT

d AT d AT
J cos L L

 
= + + +                                                    (3.4) 

                         
2 2 2x GT x T T x AT ATI I L I L = +                                                                                            (3.5) 

where 
1T 2T

J , J  are the principal geometric moments of inertia with respect to the cross-section of the 

tulip in the center mass of the tulip, 
2 2X T X AT

J , J  are the geometric moment of inertia of the tulip, and 

the geometric moment of inertia of the tulip axis reduced to the longitudinal axis of the midshaft 
in the centroid of the cross-section of tripod fixed on the midshaft,  is the volume mass density of 

the material of the driveshaft, CT
d is the distance between the center mass of the tulip and the 

centroid of the tripod, T
S  is the area cross-section of the tulip, nT

 is the nonuniformity of the 

geometric moments of inertia in the cross-section of the tulip, 
T

L  is the length of the tulip, AT
L  is 

the length of the tulip axis, dAT is the diameter of the tulip axis and 1
  is the angle of rotation of the 

tulip with respect to the axe X1 . The global bowl consists by design in two major parts: bowl and 
bowl axis ( wheel axis), having different geometry and therefore different mass moments of inertia 
and different geometric moments of inertia.  In the same mathematical manner, it is obtained 

2X GB
J  

the axial geometric moment of inertia of the cross-section for the global bowl reduced to the 
longitudinal axis of the midshaft in the centroid of the cross-section of the inner race fixed on the 
midshaft and 

2X GB
I the axial mass moment of inertia of the cross-section for the global bowl reduced 

to the longitudinal axis of the midshaft in the centroid of the cross-section of inner race fixed on 
the midshaft, given by the equations: 

2 2 2x GB x B x ABJ J J= +                                                                                         (3.6)     

         ( ) ( ) ( )
2

22 2

1 2 1 3 10,5 1 2x B B B nB B CBJ J J cos X cos sin S d   = + + + +                        (3.7) 

                      1 2

1 2

B B
nB

B B

J J
X

J J

−
=

+
                                                                                                                (3.8) 
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                ( ) ( )
2

4 2
22

11 0,5
64 4

x AB B AB

d AT d AB
J cos L L

 
= + + +                                                      (3.9) 

2 2 2x GB x B B x AB ABI I L I L = +                                                                         (3.10) 

where 
1B 2B

J , J  are the principal geometric moments of inertia with respect to the cross section of the 

bowl in the center mass of the bowl, 
2 2X B X AB

J , J  are the geometric moment of inertia of the bowl and 

the geometric moment of inertia of the bowl axis reduced to the longitudinal axis of the midshaft 

in the centroid of the cross section of inner race fixed on the midshaft, is the volume mass density 

of the material of the driveshaft,
CB

d is the distance between the center mass of the bowl and the 

centroid of the inner race, 
B

S  is the area cross-section of the bowl,
nB

 is the nonuniformity of the 

geometric moments of inertia in the cross-section of the bowl (see figure 4), 
B

L is the length of the 

bowl, 
AB

L  is the length of the bowl axis, dAB is the diameter of the bowl axis and 
3

  is the angle of 

rotation of the tulip with respect to the axe X3 . As can be seen analyzing relations 1 to 10 the 

geometric axial moment of inertia of the cross section 
2X GT

J  , for the global tulip, and the geometric 

axial moment of inertia of the cross section 
2X GB

J , for the global bowl, both of its reduced to the 

longitudinal midshaft axis X2, are functions that  contains the effects of: twisting angle of tulip 1
  

as well as the twisting angle of bowl
3

 , nonuniformity of the geometric moments of inertia of the 

cross section for both tulip and bowl 
nT

  and 
nB

 , the angle between longitudinal direction of the 

tulip and the longitudinal direction of the midshaft β1, the angle between the longitudinal direction 

of the midshaft and the longitudinal direction of the bowl β2, the length of the tulip and the length 

of the bowl, the position of the mass center of the tulip axis and tulip with respect to the centroid 

of the tripode, the position of the mass center of the bowl axis and bowl with respect to the centroid 

of the inner race, the principal geometric moments of inertia of the cross section for the tulip 1T 2T
J , J

, the principal geometric moments of inertia of the cross section for the bowl 1B 2B
J , J , dAT the 

diameter of the tulip axis and dAB the diameter of the bowl axis. The physical model for the torsional 

vibrations of the driveshaft is presented in Figure 3.6. The present model (see Figure 3.6) considers 

that the tulip and the bowl have rigid body torsion movements through the twist angles 1
 and 3

 , 

that are functions of time ( )1 1
t =   and ( )3 3

t =  , while the midshaft has a twist angle 2
 that 

is a function ( )2 2
x,t =    of position (space) in the longitudinal direction of the midshaft, where 

Ms Ms
x 0,L ,L    being the length of the midshaft of the automotive driveshaft, and the time t.   
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Fig. 3.6 The physical model for the torsional vibrations of the automotive driveshaft [G.R.26] 

 

The effect of nonuniformity for the geometric and kinematic isometry of the driveshaft[G.R.1, 
G.R.18] is given by the equations: 

( ) ( ) ( )2 1
2 1 1 10, cos(3

2 2

TTr

Ms

R
t t tan tan t

L


   = +                                                  (3.11) 

                 ( ) ( ) ( )2 1
3 2 , 2 2 ,cos(3 )

2 2

irB
Ms t Ms t

Ms

R
t L tan tan L

L


   = +                                                (3.12) 

where 
TTr

R is the tulip-tripode joint radius and IrB
R  is the inner race-bowl joint radius. By deriving 

the relations (3.11) and (3.12) with respect to time yields 

( )
( ) ( ) ( )2 2 1

1 1 1 1

φ 0,
1,5 sin(3 )

 t 2 2 2

TTr TTr

Ms Ms

t R R
t t tan tan t

L L


   
• •

− = −


                            (3.13) 

( )
( ) ( )

( )2 2 2 2
3 1 2 2

φ , φ ,
1,5 sin(3 , )

 t  t 2

MS MS IrB
Ms

Ms

L t L t R
t tan tan L t

L


   
•  

− = −
 

             (3.14) 

Equations (3.11) - (3.14) introduce in this model the effect of  nonuniformity for the geometric and 

kinematic isometry of the automotive driveshaft. The model presented consists of three different 

elements, tulip-midshaft-bowl, linked through two links the joint tulip-tripode (mounted on the 

midshaft, see Figure 3.6) and the joint bowl-balls-inner race (mounted at the other edge of the 

midshaft, see Figure 3.6), described in dynamic torsion as: 

1. the tulip in torsional rigid body movement reduced to the torsional longitudinal axe of the 

midshaft, having a global torsional stiffness tGT
k , a global torsional damping coefficient tGT

c , an 

axial geometric moment of inertia of the cross section for the global tulip 
2X GT

J  reduced to the 

longitudinal axis of the midshaft in the centroid of the cross section of tripode fixed on the midshaft 

(see equation 1), an axial mass moment of inertia of the cross section for the global tulip 
2X GT

I  

reduced to the longitudinal axis of the midshaft in the centroid of the cross section of tripode fixed 

on the midshaft (see equation 3.5), where tGT
k and tGT

c  are given by the equations: 

                 2 2, ,
x AT x TtAT tT

tGT tAT tT

tAT tT AT T

GJ GJK K
k K K

K K L L
= = =

+
,

22 2

2

4
x GT

GT
tGT tGTI

GT

c k



=

+ 
           (3.15) 
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where 
tAT

k is the stiffness rigidity of the tulip axis reduced to the longitudinal axis of the midshaft 

in the centroid of the cross section of tripode fixed on the midshaft,
tT

k  is the stiffness rigidity of 

the tulip reduced to the longitudinal axis of the midshaft in the centroid of the cross section of 

tripode fixed on the midshaft,
T

L  is the length of the tulip, 
AT

L  is the length of the tulip axis, G is 

the shear modulus and 
GT

 is the logarithmic decrement of the free torsional vibrations of the 

global tulip (
GT

0.001...0.2 = )[G.R.24, G.R.32], 

2. the joint tulip-tripode in torsion that realizes the link between the tulip and the midshaft 

through the torsional stiffness 
tTT

k and the damping torsional coefficient 
tTT

c , 

3. the uniform midshaft in torsion having at x = 0 a tripode fixed on the midshaft with the axial 

mass moment of inertia of the cross section 
01Ms

I (midshaft axis included on the thickness of the 

tripode) and the geometric axial moment of inertia of the cross section of the tripode
2X Tr

J (midshaft 

axis included on the thickness of the tripode) and at 
Ms

x L=  an inner race fixed on the midshaft 

with the axial mass moment of inertia of the cross section 02Ms
I (midshaft axis included on the 

thickness of the inner race) and the geometric axial moment of inertia of the cross section
2X Ir

J  

(midshaft axis included on the thickness of the inner race), given by the equations: 

                            ( )
 01 2 1 2Tr Trms x L Tr Tr TrI J J J L = = +                                                                 (3.16) 

( )
 02 2 1 2Ir Irms x L Ir Ir IrI J J J L = = +                                                                  (3.17) 

where 
1Tr 2Tr

J , J  are the principal geometric moments of inertia in the cross section of the tripode, 

midshaft axis included on the thickness of the tripode, 1Ir 2Ir
J , J  are the principal geometric 

moments of inertia in the cross section of the inner race, midshaft axis included on the thickness 

of the inner race,
2X Tr

J is the geometric axial moment of inertia of the tripode (midshaft axis 

included on the thickness of the tripode),
2X Ir

J is the geometric axial moment of inertia of the inner 

race (midshaft axis included on the thickness of the inner race), Tr
L is the thickness of the tripode, 

Ir
L is the thickness of the inner race, 

4. the joint bowl-balls-inner race in torsion that realizes the link between the bowl and the midshaft 

through the torsional stiffness ktBIr  and the damping torsional coefficient ctBIr , 

5. the bowl in torsional rigid body movement reduced to the torsional longitudinal axe of the 

midshaft, having a global torsional stiffness tGB
k , a global torsional damping coefficient tGB

c , an 

axial geometric moment of inertia of the cross section reduced to the longitudinal axe of the 

midshaft 
2X GB

J  (see equation ), an axial mass moment of inertia of the cross section reduced to the 

longitudinal axe of the midshaft 
2X GB

I  ( see equation 10), where tGB
k  and tGB

c  are given by the 

equations: 

tAB tB
tGB

tB

K K
k

B K
=

+
; 2x AB

tAT

AB

GJ
K

L
= ; 2x B

tT

B

GJ
K

L
= ; 

22 2

2

4
x GB

GB
tGT tGBI

GB

c k



=

+ 
             (3.18) 

where tAB
k is the stiffness rigidity of the bowl axis reduced to the longitudinal axis of the midshaft 

in the centroid of the cross section of the inner race fixed on the midshaft, tB
k  is the stiffness rigidity 

of the bowl reduced to the longitudinal axis of the midshaft in the centroid of the cross section of 

the inner race fixed on the midshaft, B
L  is the length of the bowl, AB

L is the length of the bowl axis, 
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G is the shear modulus and 
GB

  the logarithmic decrement of the free torsional vibrations of the 

global bowl (
GB

 = 0.001….0.15)[G.R.24, G.R.32]. 

From the gearbox the driveshaft (see Figure 3.6) is receiving a torque from the engine that is 

given by the equation[R.C. 3.1](p. 361): 

                          ( )1 cos ,GB e e eM M X n t n N= +   Ω                                                                                          (3.19) 

                          
30

e
e

n
=Ω                                                                                                                                    (3.20) 

where
e

 is the nonuniformity of the internal engine torque, being in the range 0.980…1.020 [R.C. 

3.1](p. 363), 
e

M is the amplitude of the engine torque in Nm and 
e

n is the speed rotation (velocity 

angle) of the crank shaft of the engine in rot/min. The reactive torque induced by the wheel is a 

moderate impulsive type and can be considered of the mathematical form: 

1 2t

31 e
q q

W HM M q t
− = +                                                                                 (3.21) 

where
H

M is the adhesion torque[G.R.5](p.130), 
i 1 2 3

q ,i 1,3,q q ,q 1.1=  are experimental constants 

depending on the type of shock applied at the wheel by the road excitation[G.R.17].  

For the model of the torsional vibrations of the automotive driveshaft presented in Figure 

3.6, using the variational approach of the generalized Hamilton’s principle [R.C.3.23](pp. 272-

295), leads to the nonlinear system with partial derivatives of second degree: 

   

( ) ( )

˙

2 1 2 1 1 1 1

1

(  ) 3 (3  ) (3  )  

1 cos 1 3 (3  )

GT tGT tTT TTr tGT tTT TTr

e e e TTr

Ix c c A sin K K A cos

M X n t A sin

     



•• •

+ + + − =

+ −  = Ω

         (3.29) 

2 2

2 2
2 22 2S SJx M GJx M

t t

 


 
=

 
                                                                                                               (3.30) 

   

( )1

˙

2 2 3 3 3 3 3

3 2 3

(  ) 3 (3  ) (3  )  

1 e t 1 3 (3  )

GB tGB tTT TTr tGB tTT TTr

q

H BIr

Ix c c A sin K K A cos

M q t q A sin

     



•• •

+ + + − =

 + −=  − 

                     (3.31)   

where the constants TTr
A and BIr

A are given by the equations [G.R.1]:                                                                                                                                                                           

2 1
10,5

2

TTr
TTr

Ms

R
A tan tan

L


=                                                                             (3.32)   

2 1
10,5

2

BIr
BIr

Ms

R
A tan tan

L


=                                                                              (3.33)   

and the boundary conditions are: 

( )

( )

2 ˙
2

01 1 1 1 12

2

2

2 2

0,
3 (3  ) (3  )

0,
0, 0

Ms tTT TTr tTT TTr

S

t
I c A sin K A cos

t

t
GJx M atx

t


   




− + −



=


−


=

                         (3.34) 
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( )

( )

2 ˙
2

02 3 3 3 32

2

2

2 2

,
3 (3  ) (3  )

,
0,

Ms

Ms tBIr BIr tBIr BIr

Ms

S Ms

L t
I c A sin K A cos

t

L t
GJx M atx L

t


   




+ − −




= =−



                      (3.35) 

The system given by the equations (3.29) to (3.31) together with the boundary conditions (3.34) 

and (3.35) represent the nonlinear dynamic behavior of an automotive driveshaft in torsion under 

an input harmonic excitation, due to the modulation of the car engine and the nonuniformities of 

torque load transfer from the engine to the driveshaft through the automotive gearbox, and a 

reactive torque load of impulsive type induced to the wheel by the road excitations. Analyzing the 

equations (3.29) to (3.35) it can be remarked that equations (3.29) and (3.31) are the equations of 

forced parametric vibrations for the tulip and for the bowl in torsion that are generalized nonlinear 

forced Mathieu-Hill equation, equation (30) is an equation with partial derivatives for the torsional 

vibrations of an uniform shaft and the equations (3.34) and (3.35) represent the link between the 

torsional vibrations of the elements of the automotive driveshaft tulip-midshaft-bowl through the 

stiffness and the damping of the joints tulip-tripode-midshaft and bowl-balls-inner race-midshaft. 

Analyzing the joint tulip-tripode-midshaft and bowl-inner race-midshaft it is obvious that the 

midshaft is a fixed-fixed uniform shaft linked to the torsion of the tulip for x = 0 and at the bowl 

for x = LMs. Therefore, the general solution of equation (3.30) is [G.R.2] (p. 720)

( ) ( )2 2 1 2, Φ cos Θ cos Θ , , , 1,2,3n
n n n n n

n Ms

x G nc
x t t c n

c L

 
  



 
= − − = = =  

 
                 (3.36) 

Injecting (3.36) in the boundary conditions (3.34-3.35), and then in (3.29) and (3.31) yields  

 

( )( ) ( )( )
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Ix X
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+
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Ω

                (3.40)                                                                                                                 

, n=1,2,3..., 

where 
GTn

  is the global tulip nonuniformity, 1
 is the damping ratio of the global tulip, 

1
 is the 

natural frequency in torsion of the global tulip, as function of the angle 1
 , given by the equation 

                                 

( )

1
2

2

2
1 2

2 2

1

1 | 1

AT AT

GT

T
AT

GT AT AT

T

Jx L

Ixc

L L
Ix Jx L
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 −
 

=  
  + −    

Ω                                                               (3.41) 

All the terms in the right hand side are excitations terms due to the phenomena: the joint tulip-

tripode-midshaft of the driveshaft that is quasi-isometric for the angular velocity 1
 [ R.G.1, 
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R.G.18], the effect of induced torsional loads as the harmonic entry moment from the gear 

box[R.C.3.1](p. 360), the effect of nonuniformity for the axial moment of inertia of the joint tulip-

tripode-midshaft of the driveshaft that vary with the angle 1
 , the effect of nonuniformity for the 

axial moment of inertia of the global tulip that vary with the angle 1
 , the effect of the angle 1



between the global tulip axis and the midshaft axis, and the effect of the torsional rigidity as well 

as the torsional damping for the joint tulip-tripode-midshaft of the driveshaft that are functions of 

the angle 1
 . In a similar manner it yields for the bowl the equations 

( )( ) ( )( )
23 3 3 3
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It was considered a tulip-tripod joint having the geometry characteristics, the geometric moment 

of inertia and the nonuniformity of the geometric moments of inertia  presented in Table 3.1, for a 

driveshaft of a heavy-duty SUV with tulip, tulip-tripode joint, midshaft, bowl-balls-inner race joint, 

bowl. 
Tabel 3.1. Geometry characteristics of a tulip-tripode joint. 

LT 

[m] 

LAT 

[m] 

LMs 

[m] 

RTTR 

[m] 

dAT 

[m] 

dCT 

[m] 

ST  

[m2] 

0.5(J1T+J2T) 

[m4] 

XnT 

0.095 0.065 0.470 0.035 0.027 0.049 0.019 9.1531 x 10-7 0.15 

In Table 3.2 are presented the physical properties of the material of the tulip-tripode joint and global 
tulip as well as the amplitude of the maximum torque transmitted by the car engine, considering 
that the material is steel-iron cast. Comparing this presented material properties with those 
considered by Steinwede [B.G.14] (p. 112)it can be concluded that are in very close agreement.  

Tabel 3.2. Material properties of a tulip-tripode joint and of the global tulip. Torque load. 

 

 

 

 

  

[kg/m3]  

G 

[GPa] 

Torsional rigidity 

[Nm/rad]] 

Damping ratio 1
  

 

Engine torque e
M   

[Nm] 

7850 77.3 1.11e+04 0.0016-0.0318 580 
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Using the data presented in Tables 3.1 and 3.2 in the equation (3.41) it was computed the variation 
of 

1
 the natural frequency in torsion of the global tulip as function of the angle 

1
  with a MATLAB 

software. The data are presented in Figures 3.7 and 3.8. 

    

Fig. 3.7 Variation of Ω1
̅̅̅̅ = Ω1

̅̅̅̅ (β1). [B.G.26]                 Fig. 3.8 Variation of.
( ) ( )
1 1

1 1

Ω Ω  β1

Ω 0 Ω 0
=  [B.G.26] 

To compute the amplitude of the torsional forced nonlinear parametric vibrations in the 

region of principal parametric resonance it was used the method of harmonic balance [R.C.3.3](p. 

66) for the equation (3.40) yielding the equations 
2

1y 1 2Φ= −                                                                                             (3.50) 

2 6 2 5 2 4 2 2 3 2 2 2 2

1 2 3 4 5 6 7 8

2 2 2 2 2 2

9 10 11 12 13 14

Γ η Γ η Γ η Γ η Γ η Γ η Γ η Γ η

Γ η Γ η Γ η Γ η Γ η Γ η 0

y y y y y

y

   + + + + + + +   

 + + + + + + 

+

+ =
          (3.53) 

where y is a changing variable of the unknown amplitude 
1

 ,η =η/2Ω1 is the nondimensional 

excitation frequency in the region of principal parametric resonance. Using the equation (3.53 it 

was developed a MATLAB software in order to compute the amplitude of the torsional forced 

nonlinear parametric vibrations in the region of principal parametric resonance for the global tulip 

for the steady-state torsional vibrations of the automotive driveshaft. In the same mathematical 

manner it can be computed the amplitude 3
  of the torsional forced nonlinear parametric vibrations 

for the global bowl, as a function of nondimensional excitation frequency 
3

2


 =


, in the region of 

principal parametric resonance 3
2    for the steady-state torsional vibrations of the automotive 

driveshaft.  Analising Figure 3.7 and 3.8 it can be seen that the variation of the natural frequency 

in torsion of the global tulip is closed to the natural frequency in torsion of the midshaft beeing in 

the range 3052Hz….3020 Hz ( see Figure 3.7) and the nondimensional natural frequency in torsion 

of the global tulip is in the range 1.009-1.0198. Unfortunatelly there are no published experiments 
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that investigate the natrural free frequency in torsion only for the global tulip. In figures 3.9-3.14 

is presented the variation of the nondimensional amplitude for torsional forced nonlinear 

parametric vibration in the region of principal parametric resonance for the global tulip, this being 

around 5.985 kHz. The nondimensional amplitude presented in the graphs 9 to 14 represents the 

normalized amplitude with respect to its maximum value for β1=50, ζ1=0.0016,
nT

 =0.15.  

Analysing figures 3.9-3.14 it can be remarked that the for the cases we have a manifestation of 

“soft spring” with two branches for 
1

1.8 (0)  that indicates the presence of interaction between 

principal parametric resonance and the primary resonance while for 
1

1.8 (0)   it exists only one 

“hard spring” branch that indicates the manifestation of pure principal parametric resonance for the 

global tulip [R.C.3.5] (pp. 132-160). The aspects highlighted by figures 3.9-3.11 is that with the 

increase of the angle β1 the maximum value of the nondimensional amplitude decreases from 1 to 

0.35. This aspect agrees with the experimental data in the literature [G.R.14] (pp. 130-144). Figures 

3.11-3.14 indicates that for an angle β1=150=const. the increase of the damping ratio ζ1 in the range 

0.008….0.0318  induces a decrease of the maximum nondimensional amplitude in the range 

0.35…0.22 thus we can conclude that the model is much more sensitive to the geometry variation 

of the driveshaft than to the damping effects. Steinwede demonstrated by experiments that the 

nonlinear parametric dynamic behavior of automotive driveshafts is simillar with the nonlinear 

parametric dynamic behavior of geared systems[G.R.14] (p. 117) and that is way we have similar 

pitting phenomena for inside the tulip and inside the bowl for the CVJ joints tulip-tripode and bowl-

balls-inner race [G.R.14]( pp. 88-94). Also, it can be seen from the Figures 3.11-3.14, that the 

increase of damping ratio ζ1 in the range 0.008….0.0318  induces an increasement between the 

branches of the amplitude for both areas “soft spring” and “hard spring” being a manifestation of 

the multiple “jumps” between the amplitude branches knowing that usually the inferior branch is 

unstable while the superior branch is stable [G.R.16](pp. 426-429), [R.C.3.5](pp. 132-160). This 

aspect will “conduct” the dynamic behavior through a chaotic dynamic that has as practical effect 

an accelerating pitting phenomenon as mentioned by Steinwede[G.R.14](pp. 88-94) or in the worst 

case the manifestation of cracks fallowed by the failure (broken) of the global tulip [G.R.14] (p. 

89).   Unfortunately, there are no published research analyzing in detail the dynamic behavior for 

each element of the automotive CVJ driveshaft: tulip, global tulip, bowl, global bowl, midshaft 

excepting work [5], all the research analyzing the global dynamic behavior of the automotive 

driveshaft. Even so there are huge confusion in the interpretation of experimental data due to the 

lack of understanding of specific global nonlinear phenomena such as in [G.R.22]. 

 

Fig. 3.9 Nondimensional amplitude for β1 = 5◦, ζ1 = 0,0016, χnT = 0,15. [G.R.26] 
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Fig. 3.10 Nondimensional amplitude for β1 = 10◦, ζ1 = 0,0016, χnT = 0,15. [G.R.26] 

 

Fig. 3.11 Nondimensional amplitude for β1 = 15◦, ζ1 = 0,0016, χnT = 0,15. [G.R.26] 

 

 

Fig. 3.12 Nondimensional amplitude for β1 = 15◦, ζ1 = 0,008, χnT = 0,15 [G.R.26] 
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Fig. 3.13 Nondimensional amplitude for β1 = 15◦, ζ1 = 0,0159, χnT = 0,15 [G.R.26] 

 

Fig. 3.14 Nondimensional amplitude for β1 = 15◦, ζ1 = 0,0318, χnT = 0,15 [G.R.26] 

It can be concluded that the present investigation introduces a complex model for torsional 
vibrations of the automotive driveshaft, model that considers most of the phenomena remarked by 
the industrial practice and the exploitation of the cars such as: 

-the nonuniformity of the geometric and kinematic isometry of the driveshaft, 

-the nonuniformity of the geometric and mass moments of inertia of the cross section for the 

tulip, the tripode, the inner race and the bowl, 

- the stiffness and the damping link of the joints of the driveshaft tulip-tripode-midshaft and 

midshaft-inner race-balls-bowl, 

- harmonic excitation of the driveshaft due to the car engine, 

- impulsive excitation of the driveshaft due to the road excitation.  
Also, the model allows the development of future research directions for the investigation of 
primary resonances, superharmonic resonances, subharmonic resonances, principal parametric 
resonances, combination resonances, internal resonances, and simultaneous resonances as well as 
for the investigation of the stability for the steady-state motion as well as for the non-stationary 
motion. Therefore, this model of dynamic torsional behavior for the automotive driveshaft can be 
used in early design stages as well in predicting the durability of the automotive driveshafts. Also, 
the model must be added in the algorithm design of predicting the comfort elements of the 
automotive, because this kind of dynamic behavior induces excitations to the car structure as 
mentioned in literature[G.R.19]. 
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Chapter 4. Models of Forced Bending Vibrations of Automotive Driveshafts 

  The present work presents a perturbation technique, namely the asymptotic method  

(AM)[R.C.4.1], to investigate the principal parametric resonance for the forced bending-shearing 

vibrations of an automotive driveshaft, the asymptotic method being a powerful tool for the 

investigation of vibrations induced by shocks (impulsive excitations) as mentioned by Webber in 

literature[R.C.4.2]. To investigate such a resonance region, it was designed a PCM (physically 

consistent model) of the bending vibrations for an automotive driveshaft, designed for heavy-duty 

SUVs, induced by impulsive excitations of the road, taking into account the next phenomena 

aspects: the joints of the driveshaft are quasi-isometric for the angular velocity[G.R.1], even in 

general it is considered as CVJ (Constant Velocity Joint), the effect of nonuniformity for the axial 

geometric moments of inertia and axial mass moments of inertia of the joints that vary with the 

angle of twist of each element of the driveshaft and the effect of the bending and shearing stiffness 

as well as the bending and shearing damping for each joint of the drive shaft. The excitations of 

the forced bending vibrations of the automotive driveshaft are due to the impulsive-shock 

excitations acting on the automotive wheel, being an excitation induced by the road[R.C.4.4]. In 

the literature [G.R.18], the nonuniformity in the isometric properties of automotive driveshafts has 

already a fact recognized for more than half a century, whose reality was demonstrated in 

experiments performed by Steinwede for his Ph.D. thesis [G.R.14](pp. 68-97). This non-uniformity 

in driveshaft isometric properties is undoubtedly the main cause of nonlinear parametric vibrations 

of driveshafts in the range 0.1–12 kHz, as established by experimental results documented in the 

literature [G.R.14] (pp. 98-123). Mazzei and Scott, the first researchers who considered the unique 

dynamic phenomena of driveshafts, enhanced the nonlinear parametric dynamic behavior of a 

universal joint in their paper [G.R.12]. The experimental evidence for the nonuniformity of CVJ 

driveshaft transmission is presented and highlighted by Browne and Palazzolo [G.R.13].  

The chapter aims to investigate the dynamic stability in the region of principal parametric 

resonance based on the designed PCM of the automotive driveshaft for the forced bending 

vibrations induced by impulsive shock excitation of the road. It is envisaged that this model can be 

used in the early design stages and in predicting the durability of the automotive driveshafts. A 

driveshaft is a mechanism that transmits a torque load from the gearbox to the wheel. The general 

model of such automotive driveshaft, designed for heavy-duty SUVs, is shown in Figure 4.1. It 

consists of a) the bowl-balls joint fixed and assembled with the car wheel, (b) the midshaft axis, 

(c) the tulip-tripod joint that allows axial plunging of the tripod in the tulip and plunging assembled 

in the gearbox. 

  
 

Fig. 4.1 Driveshaft in general detail [R.C.4.4] 

Presented in Figure 4.2 are the schematical representation of an automotive driveshaft in the 
three axes of Cartesian coordinates X1Y1Z1 attached to the tulip, X2Y2Z2 attached to the midshaft, 
and X3Y3Z3 attached to the bowl, which has the following rigid movements: 
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a. rotation with the angle φ1 of the tulip concerning the axis X1, φ1 =0…n1π , 

b. rotation with the angle φ2 of the midshaft concerning the axis X2, φ2 =0…n1π, 

c. rotation with the angle φ3 of the bowl concerning the axis X3, φ3 =0…n1π, 
d.     relative rotation of the longitudinal ax of the midshaft (given by the direction of the axis X2) 
concerning the longitudinal direction of the tulip (provided by the direction of the axis X1), with β1 
(spatial angle between axis X1 and X2) concerning the axis Z1, β1 being the angle between 
longitudinal direction of the tulip and the longitudinal direction of the midshaft, β1 = 0°…15°, 

d. relative rotation of the longitudinal axis of the bowl (given by the direction of the axis X3) 
concerning the longitudinal direction of the midshaft (provided by the direction of the axis X2), 
with β2 (spatial angle between axis X2 and X3) concerning the ax Y2, β2 being the angle between 
the longitudinal direction of the midshaft and the longitudinal direction of the bowl, β2 = 0°…47°. 

 
 

Fig. 4.2 Schematic representation of an automotive driveshaft [R.C.4.4] 

To compute the equations of forced bending vibrations for the driveshaft, using the 

Variational Approach of the Hamilton Principle, it is necessary to reduce the axial mass moments 

of inertia of the cross-section and the axial geometric moments of inertia of the cross-section 

1 1Y GT Z GT
J , J  for the global tulip (tulip axis and tulip) concerning the longitudinal axis of the midshaft 

X2 in the centroid of the cross-section of tripod fixed on the midshaft as well as the axial mass 

moments of inertia of the cross-section 
3 3Y GB Z GB

I , I  and the axial geometric moments of inertia of the 

cross-section 
3 3Y GB Z GB

J , J  for the global bowl (bowl axis and bowl) concerning the longitudinal axis 

of the midshaft X2 in the centroid of the cross-section of the inner race fixed on the mid-shaft. In 

its design, the global tulip consists of two major parts, the tulip and tulip axis, which have different 

geometry and, therefore different mass and geometric moments of inertia. Thus, the computations 

of these axial mass moments of inertia of the cross-section and axial geometric moments of inertia 

of the cross-section are taken into account: the angle β1 between X1 and X2 (see Figure 4.2, rotation 

concerning Z1 parallel with Z2 ), the distance from the mass center of the tulip axis to the centroid 

of the cross-section of tripod fixed on the midshaft, the distance from the mass center of the tulip 

to the centroid of the cross-section of tripod fixed on the midshaft, the angle β2 between X2 and X3 

(see Figure 4.2, rotation concerning Z3 parallel with Z2 ), the distance from the mass center of the 

bowl axis to the centroid of the cross-section of inner race fixed on the midshaft, the distance from 
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the mass center of the bowl to the centroid of the cross-section of inner race fixed on the mid-shaft. 

Thus, it is obtained the axial geometric moments of inertia of the cross-section for the global tulip 

2 2Y GT Z GT
J , J  reduced to the 2 2

Y ,Z  axis of the midshaft in the centroid of the cross-section of the 

tripod fixed on the midshaft, and the axial mass moments of inertia of the cross-section for the 

global tulip 
2 2Y GT Z GT

I , I  reduced to the 2 2
Y ,Z  axis of the midshaft in the centroid of the cross-

section of the tripod fixed on the midshaft, given by the equations: 

                
2 2 2

  Y GT Y T Y ATJ J J= + ;
2 2 2Z GT Z T Z ATJ J J= + ;

2 2 2Y GT Y T T Y AT ATI J L J L = +  

  
2 2 2Z GT Z T T Z AT ATI J L J L = + ; 

1 2

1 2

T T
nT

T T

J J

J J


−
=

+
                                                             (4.1)                                                                                                       

               ( ) ( )
2

2
22 2 2

1 2 1 1 10.5 1 sin cos cos
12

T T
Y T T T nT T CT

S L
J J J S d    = + + + + +   

( ) ( ) ( )
2

2
2

1 2 10.5 1 cos
12

T T
Z T T T nT T CT

S L
J J J S d = + − + +                                           (4.2) 

               ( ) ( )
2

2 2 2 2
22 2

1 11 sin cos 0,5
64 4 12 4

AT AT AT AT
Y AT T AT

d d L d
J L L

  
 = + + + +  

( ) ( ) ( )
2

2
2

1 2 10.5 1 cos
12

T T
Z T T T nT T CT

S L
J J J S d = + − + +                                            (4.3) 

where 1T 2T
J , J  are the principal geometric moments of inertia concerning the cross-section of the 

tulip in the center mass of the tulip, 
2 2 2 2Y T Y AT Z T Z AT

J , J , J , J  are the axial geometric moments of inertia 

of the tulip, and the axial geometric moments of inertia of the tulip axis reduced to the 2 2
Y ,Z  axis 

of the midshaft in the centroid of the cross-section of tripod fixed on the midshaft, is the volume 

mass density of the material of the driveshaft, CT
d is the distance between the center mass of the 

tulip and the centroid of the tripod, 
T

S  is the area cross-section of the tulip, nT
 is the nonuniformity 

of the geometric moments of inertia in the cross-section of the tulip, T
L  is the length of the tulip, 

AT
L  is the length of the tulip axis, AT

d is the diameter of the tulip axis  and 
1

  is the angle of 

rotation of the tulip concerning the axis X1. In its design, the global bowl consists of two major 

parts, the bowl and bowl axis (wheel axis), which have different geometry and therefore different 

mass and geometric moments of inertia. Thus, the computations were performed using the variation 

of the axial geometric moments of inertia concerning the concurrent axis and parallel axis (Steiner 

Theorem).  In the same mathematical manner, it is obtained the axial geometric moments of inertia 

of the cross-section for the global bowl 
2 2Y GB Z GB

J , J  reduced to the 2 2
Y ,Z  axis of the midshaft in the 

centroid of the cross-section of the inner race fixed on the midshaft and the axial mass moments of 

inertia of the cross-section for the global bowl 
2 2Y GB Y GB

I , I  reduced to the 2 2
Y ,Z  axis of the midshaft 

in the centroid of the cross-section of the inner race fixed on the midshaft, given by the equations: 

                    
2 2 2Y GB Y B Y ABJ J J= + ;

2 2 2Z GB Z B Z ABJ J J= + ;
2 2 2Y GB Y B B Y AB ABI J L J L = +  

2 2 2Z GB Z B B Z AB ABI J L J L = + ;
1 2

1 2

B B
nB

B B

J J

J J


−
=

+
                                                           (4.4) 
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                 ( ) ( )
2

2
22 2 2

1 2 1 1 10.5 1 sin cos cos
12

B B
Y B B B nB B CB

S L
J J J S d    = + + + + +   

( ) ( ) ( )
2

2
2

1 2 10.5 1 cos
12

B B
Z B B B nB B CB

S L
J J J S d = + − + +                                     (4.5) 

                  ( ) ( )
2

2 2 2 2
22 2

1 11 sin cos 0,5
64 4 12 4

AB AB AB AB
Y AB B AB

d d L d
J L L

  
 = + + + +  

                  ( ) ( ) ( )
2

2
2

1 2 10.5 1 cos
12

B B
Z B B B nB B CB

S L
J J J S d = + − + +                                                 (4.6) 

where 
2 2 2 2Y B Y AB Z B Z AB

J , J , J , J  are the axial geometric moments of inertia of the bowl and the axial 

geometric moments of inertia of the bowl axis reduced to the 2 2
Y ,Z  axis of the midshaft in the 

centroid of the cross-section of the inner race fixed on the midshaft, CB
d is the distance between the 

center mass of the bowl and the centroid of the inner race, B
S  is the area cross-section of the bowl,

nB
 is the nonuniformity of the geometric moments of inertia in the cross-section of the tulip, B

L  is 

the length of the bowl, AB
L  is the length of the bowl axis, 

AB
d  is the diameter of the bowl axis  

and 3
  is the angle of rotation of the tulip concerning the axis X3.  

As can be seen analyzing relations 4.1-4.6 the axial geometric moments of inertia of the 

cross section 
2 2Y GT Z GT

J , J , for the global tulip, and the axial geometric moments of inertia of the cross 

section
2 2Y GB Z GB

J , J , for the global bowl, both of its reduced to the midshaft axis 2 2
Y ,Z , are functions 

( )1 1 nT 1 T CT T AT AT
, , ,S ,d ,L ,L ,d     respectively ( )2 nB 3 B CB B AB AB

2 , , ,S ,d ,L ,L ,d    that 

contains the effects of: twisting angle of tulip 1
  as well as the twisting angle of bowl 3

 , 

nonuniformity of the geometric moments of inertia of the cross section for both tulip and bowl nT
  

and nB
 , the angle between longitudinal direction of the tulip and the longitudinal direction of the 

midshaft β1, the angle between the longitudinal direction of the midshaft and the longitudinal 
direction of the bowl β2, the length of the tulip and the length of the bowl, the position of the mass 
center of the tulip axis and tulip with respect to the centroid of the tripode, the position of the mass 
center of the bowl axis and bowl with respect to the centroid of the inner race, the principal 

geometric moments of inertia of the cross section for the tulip 1T 2T
J , J , the principal geometric 

moments of inertia of the cross section for the bowl 1B 2B
J , J , dAT the diameter of the tulip axis and 

AB
d  the diameter of the bowl axis.. The PCM is a dynamic model for the forced bending vibration 

(DMFFBV) movements of an AD’s elements presented in Figure 4.3. 
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Fig. 4. 3. a. Tulip-Tripode joint Part of PCM: Global Tulip, the joint Tulip-Tripode, Midshaft  

               b. Bowl-Inner Race joint Part of PCM: Midshaft, the joint Bowl-Inner Race, Global bow [B.C.4.4] 

The DMFFBV movements, presented in Figure 4.3, have three elements: a tulip–midshaft–bowl 
linked through two joints, the tulip–tripod joint (mounted on the midshaft (see Figure 4.2)), and 
the bowl–inner race joint (mounted at the other edge of the midshaft (see Figure 4.2)). These have 
the following dynamic characteristics: 

1. The tulip has a stiffness 1
k , given by the serial springs 11 12

k ,k  (see figure 3.a), and damping 

1
c , provided by the serial dampers 11 12

c ,c , for the bending vibration rigid movement of the tulip 

regarding the axis 2
Z  and a stiffness t1

k , given by the serial springs
11 12t t

k ,k , as well as damping

t1
c , provided by the serial dampers

11 12t t
c ,c , for the angular bending vibration rigid movement of 

the tulip regarding the axis 2
Y , given by the following relations: 

                            2

11 3

3 Z TA

TA

EJ
k

L
= ; 2

12 3

3 z TB

TB

EJ
k

L
= ; 11 12

1

11 12

k k
k

k k
=

+
; 1 12 Tc k m=  

2

1

Y TA

TA

GJ
kt

L
= ; 2

12

Y TB

TA

GJ
kt

L
= ; 11 12

1

11 12

kt kt
kt

kt kt
=

+
;

21 12 t Y Tct k I=                         (4.7)                                                                                                                                                        

where E is Young’s modulus, G is the shearing modulus, mT is the tulip’s mass, and ξ is the damping 

ratio of the free bending vibrations of the tulip (  = 0.0016–0.0318)  [G.R24,G.R.2]; 

2. The uniform midshaft (see Figures 4.3.a, 4.3.b) in continuous FBV movement is assimilated 

with a uniform Timoshenko beam simply supported at both ends by elastic supports (the tulip–

tripod and inner race–bowl joints are elastic supports for the midshaft), having at x = 0  a tripod 

fixed on the midshaft through splines and elastically linked in the tulip–tripod joint with the tulip 
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and on the left-hand side at Ms
x L=  an inner race fixed on the midshaft through splines and 

elastically linked in the bowl–inner race joint with the bowl, with the inertial characteristics given 

by the relations below:  

                                                  ( ) 
2 1 2 20.5 1 cos( )Y Tr Tr Tr nTrJ J J  = + +    

( ) 
2 1 2 20.5 1 cos( )Z Tr Tr Tr nTrJ J J  = + −  

( ) 
2 1 2 20.5 1 cos( )Y Tr Tr Tr nIrJ J J  = + +  

( ) 
2 1 2 20.5 1 cos( )Z Tr Tr Tr nIrJ J J  = + −                                             (4.8)                                                                                        

where 
1Tr 2Tr

J , J  are the principal geometric moments of inertia for the tripod, 
1Ir 2Ir

J , J  are the principal 

geometric moments of inertia for the inner race, nTr
  and 

nIr
  are the geometric nonuniformities of 

the tripod and inner race, and 
2 2 2 2Y Tr Z Tr Y Ir Z Ir

J , J , J , J  are the geometric moments of inertia of the tripod 

and inner race concerning the axes 
2 2

Y ,Z ; 

3. The bowl has a stiffness 
2

k , given by the serial springs 
21 22

k ,k  (see figure 3.b), and damping 
2

c , 

provided by the serial dampers 
21 22

c ,c , for the bending vibration rigid movement of the bowl 

regarding the axis 
2

Z  and a stiffness 
t2

k , given by the serial springs
21 22t t

k ,k , as well as damping 
t2

c

, provided by the serial dampers 
21 22t t

c ,c , for the angular bending vibration rigid movement of the 

bowl regarding the axis 
2

Y , provided by the following relations: 

2
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EJ
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L
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EJ
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;

22 22 t Y Bct k I=                  (4.9)                                                                                                                                                     

where
B 

m is the bowl’s mass; 

4. The tulip–tripod joint in FBV movement (see Figures 4.3.a and 4.3.b) realizes the elastic link 

between the tulip and the midshaft through the stiffness 
TTr

k  and the damping 
TTr

c  for the vibrating 

bending movements concerning the Z2 axis and the angular stiffness 
tTTr

k  and angular damping 

tTTr
c  for the vibrating bending movements concerning Y2 axis; 

5. The bowl–inner race joint in FBV movement (see figures 3.a and 3.b) realizes the link between 

the bowl and the midshaft through the stiffness 
IrB

k  and the damping 
IrB

c  for the vibrating bending 

movements concerning the Z2 axis and the angular stiffness 
tIrB

k  and the angular damping 
tIrB

c  for 

the vibrating bending movements relating to the Y2 axis. The wheel induces excitations as a 

moderate impulsive shock force Fs acting in the Z2 direction, and the excitation load can be 

expressed as 

                           21

31
q tq

S SF F q t e
− = +                                                                                                                               (4.10) 

where 
S

F  is the amplitude of the shock on the bowl’s longitudinal axis 
3

X transmitted from the 

wheel axis and 
i

q ,i 1,3,=  are experimental constants, depending on the type of shock applied at the 

wheel by the road excitation [G.R.14] (pp. 142–172).  
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For the DMFFBV movements of AD elements presented in Figures 4.3.a and 4.3.b, using 

Hamilton’s principle [G.R.2] yields 

 

1 2

1 1( ,...., , ,....., , ) 0n n

P P

L q q q q t dt
• •

=                                                                                        (4.11)  

where Lagrange’s function 
1 n 1 n

L(q ,....,q ,q ,.....,q , t)
• •

 depends on the generalized coordinates 
1 n

q ,....,q  

and the generalized velocities 
1 n

q ,.....,q
• •

, while 
1 2

P ,P  are two points in the spatial configurations 

1 n 1 n
q ,.....,q (q ,....,q )
• • 

=  
 

. The following equation gives the Lagrange’s function: 

                                                      L T= +                                                                 (4.12) 

where the potential energy   for the DMFFBV movements of AD elements (see Figures 4.3.a and 

4.3.b) is given by the following generalized equation [G.R.2](pp. 371–376),[G.R.25](pp.734–739). 
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                                                 (4.13) 

where A is the cross-section area of the midshaft, 
2

w (x, t)  is the bending deflection (including the 

shear deformation) of the midshaft concerning the 
2

Z  axis, 
2
(x, t)  is the rotation of the cross-

section of the midshaft, and concerning the 
2

Y axis, due only to the pure bending deflection, k is 

the shear correction factor, which in the literature [R.C.4.3] is in the range of 0.64–0.846, 
Ms

L  is 

the length of the midshaft, and 
2Y Ms

J  is the geometric moment of inertia of the midshaft concerning 

the 
2

Y  direction given by the following equations: 

                      
2 2

4 4 4( )
,

64 64

Ms eMs iMs
Y Ms Y Ms

d d d
J J

  −
= =

                                                                      (4.14) 

Energia cinetică a mișcărilor de încovoiere forțată sau bazată pe un model dinamic de mișcări ale 

elementelor arborilor planetari este dată de următoarea ecuație generalizată [G.R.2](p. 374), 

[G.R.25](p. 721): 
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      (4.15) 

where 
Tr

m  is the mass of the tripod and 
Ir

m  is the mass of the inner race (see Figures 4.3.a-4.3.b).  
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Several mathematical manipulations that include integration by parts of the nonlinear system of 

equations with partial derivatives of the second degree in the unknowns w1(t), 1(t), w2 (x, t) , 2 

(x, t) , și w3 (t), 3 (t), yielding: 

( )( )2
1 1 1 1 1 1 1 2(0, ) 0, 0T TTr TTr

w
m w c w c w t k w k w w t
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•• • •  
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where the boundary conditions are 
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          (4.24) 

The system given by the equations (4.16–4.20) and the boundary conditions equations (4.21–
4.24) represent the nonlinear dynamic behavior of the AD elements in FBV induced by shock force 
through the wheel by road excitations. Analyzing equation (4.18), it can be remarked that they 
represent a system of equations with partial derivatives for the bending-shearing vibrations of a 
uniform shaft that considers the effects of rotary inertia and shear deformation, with the midshaft 
being a Timoshenko beam. The boundary conditions are given by equations (4.21–4.24) and link 
the bending-shearing vibrations of the midshaft with the tulip and the bowl through the tulip–tripod 
and bowl–inner race joints, inducing the solutions of the system of equations (4.16–4.20) the 
following phenomena: the joints of the driveshaft are quasi-isometric [G.R.1, G.R.18], with the 
effect of geometric nonuniformity of the inertia characteristics of the joints that vary with the rigid 
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angle of rotation for each element of the driveshaft in the directions 
1 2 3

X ,  X ,  X ,  the effects of the 

bending deflection and bending-twisting stiffness for the tulip and the bowl, the effects of the 
bending deflection and bending-twisting damping for each joint of the driveshaft, the rotary inertia 
effect in bending, and the shearing effect for the midshaft. The starting point to solve the system 
differential equations of the FBV movements (SDEOFBVM) (equations (4.16–4.20)) for the AD 
elements (ADEs) was to analyze the vibration mechanism of the midshaft as a Timoshenko beam 
simply supported at the ends (see Figure 4.4). For the midshaft element of the AD, it was considered 
that f(x, t) 0.=  

 
Fig. 4.4 The part of the DMFFBV for the midshaft [R.C.4.4] 

The general solutions of equations (18) that satisfy the boundary conditions of equations (4.22) 

expressed in normalized bending deflection are [G.R.2] (p. 326–328). 
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Injecting equations (4.25)-(4.26) in the boundary conditions (4.22) and the results in the equations 

(4.17) and (4.20), the equations (4.17) and (4.20) become the normalized differential equations in 

the time functions w1( t), w 3(t) 
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where the natural frequency of the tulip in bending 1
  and the natural frequency of the bowl in 

bending 3
  are given by the following equations 

( )

( )
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The other terms in equations (4.27)-(.28) are given by the expressions  

2 2
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The authors used the AMA (asymptotic method approach) in the first-order approximation. This 
would allow the investigation of the nonlinear parametric dynamic stability for the FBV movement 
of the tulip and the bowl in the PPR region for both the stationary and nonstationary cases. The 
principal parametric resonance(PPR), defined by the excitation frequency 2  ( almost twice the 

natural frequency of the system) is the most important resonance region, as mentioned in 
[G.R.16](p. 425). To compute the solutions of equations (4.27)-(4.28), it was assumed that the 
slowing time was t =  , where ε is a small positive parameter [R.C.4.1] (p. 299). To introduce the 
slowing time, equations (4.27)-(4.28) needed to be transformed to be used in the AMA. The 
coefficients of the second and third terms of equations (4.27)-(24.8) on the left side can be 
expressed as 

( )
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cu frecvențele de excitație 1 3,pentru lalea și bol în regiunea rezonanței parametrice principale 

(PPR) date de expresiile: 

 

                   1 1
1 1 12 ,n

d d

dt dt

 
 =  = 3 3

3 3 12 n

d d

dt dt

 
 =  =                                  (4.34) 

and 
1

d

dt


 is the excitation induced in the FBV movement (equation (4.27)) by the rigid twisting 

angle of the tulip concerning the 1
X  axis, and 3

d

dt


  is the excitation induced in the FBV movement 

(equation (4.28)) by the rigid twisting angle of the bowl concerning the 3
X axis. The assumption 

that the damping ratio  , the excitation coefficient  , and the coefficients of cubic and quintic 

nonlinearity 
1 2 3 4
, , ,     are small is incorporated in the analysis by representing these quantities in 

the following form: 
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       1 2 2 3 3 4 4, , , , , ,       = =   =   =   =                                         (4.35) 

where ε is the same small positive parameter used to obtain the slowing time. It is also assumed 
that the excitation frequency  and the excitation parameter   vary slowly with time, such that 

( ) ( )31
1 3

dd
, ,

dt dt


=   =    ( ) . =    Equations (4.26)-(4.27) become the following after neglecting the 

terms in 2 : 

( )2 2 3 5
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( )2 2 3 5
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                                                             (4.36) 

Regarding equations (4.36), the right-hand side represent a perturbation of the mathematical form 

( )1 1 1
H w , , ( )3 3 3

H w ,  being periodic functions in 1 3
,   with period 2π, while the left-hand side 

of the equation is a linear oscillator. By considering all these physical considerations and confining 
our attention to the investigation of the PPR region, a solution for equations (4.36) is sought after 
in the following form to the first-order approximation in  : 

1 1 1 1 3 3 3 3
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cos , cos ,

2 2
w w w w   
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                                                                                (4.37) 

where and 1 3 1 3
W ,W , ,   are functions of time defined by the systems of differential equations 
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Using equations (4.37) and (4.38) in the primary form of equations (36), equating the terms of the 

form 
j j j j

1 1
cos , sin , j 1,3

2 2

   
  +    +  =   

   
 from the left-hand side of equations (36) with the same 

terms from the right-hand side of the same equation and neglecting the overtones yields the 
solutions of the systems (38) 
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                                             (4.39) 

The investigation of the dynamic instability of the FBV movement for the tulip and bowl represents 

the computation of the boundaries of the principal parametric region of instability. The base width 

of the stationary response is the only region in which vibrations may typically initiate. Setting to 
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zero the amplitudes in the systems of equations (4.39) yields the following equations:
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                                                                       (4.40) 

Equations (4.40) give the boundaries of the principal parametric region of stationary dynamic 

instability in the space 1

1

, ,
2

 
  

 

 for the tulip and in the space 3

3

, ,
2

 
  

 

. This is the investigation of 

the stationary FBV movement of the tulip and the bowl. For the nonstationary FBV movement of 

the tulip and the bowl, the analysis of the dynamic instability consisted of analyzing the graphed 

representation in the configuration space of the “speed” nonstationary amplitudes versus the 

nonstationary amplitudes 31
1 3

dWdW
,W , ,W

dt dt

  
  

   

, that is the evidence of the transition of FBV 

movement for the tulip and the bowl through the chaotic movement in the PPR region, and the 

results are presented in the next paragraph. 

Figure 4.5a,b illustrates the stationary dynamic instability region of the tulip in the space ( )1
, ,    

using equations (4.40). When analyzing Figure 4.5a,b, it can be noticed that the two folded surfaces 

obtained were symmetrical concerning the plan given by ( )1
,   for the excitation frequency and 

the damping ratio. In contrast, the excitation coefficient   could be positive or negative. The 

folded surface of the dynamic instability “kept” inside the two branches the region where it 

manifested the stationary instability. It can also be seen that increasing the damping ratio had a 

stabilizing effect on the dynamics of the tulip, as expected. Figure 4.6a,b illustrates the stationary 

dynamic instability region of the bowl in the space ( )3
, ,    using equations (4.40). 

  
Fig. 4.5. Stationary dynamic instability surface frontier for the tulip.a.  > 0, b.  < 0 [R.C.4.4] 
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Fig. 4.6. Stationary dynamic instability surface frontier for the bowl. a.  > 0, b.  < 0  [R.C.4.4] 

By analyzing Figure 4.6a,b, it can be noticed that the two folded surfaces obtained were 

symmetrical concerning the plan given by ( )3
,   for the excitation frequency and the damping 

ratio, while the excitation coefficient   could be positive or negative. The folded surface of the 

dynamic instability “kept” inside the two branches the region where it manifested the stationary 
instability for the bowl. It can also be seen that increasing the damping ratio had a stabilizing effect 
on the dynamic of the bowl, as expected. The only difference between these phenomena for the 
bowl was that the manifestation was in another range frequency than that of the tulip: the range 
frequency given by the natural frequency of the bowl in bending. Figure 4.7 illustrates the graphs 

of the phase space 1
1

dW
W ,

dt

 
 
 

 for the nonstationary FBV movements of the tulip in the PPR region. 

Figure 4.8 shows the charts of the phase space 3
3

dW
W ,

dt

 
 
 

 for the nonstationary FBV movements 

of the bowl in the PPR region. By analyzing the graphs in Figure 4.7, a transition to chaotic 
behavior for the FBVM (FBV movements) of the tulip due to the presence of limit cycles or even 
of strange attractors can be seen, but this last conclusion needs to be certified by detailed analysis 
using the methods of chaotic movements. One evident aspect is that the transition through the PPR 
region for the tulip was an unstable one. When analyzing the graphs in Figure 4.8, the same 
manifestation for the bowl as for the tulip (see Figure 4.7) can be seen, that being a transition to 
chaotic behavior for the FBVM of the bowl due to the presence of limit cycles or even strange 
attractors. However, this last conclusion needs to be certified by detailed analysis using the methods 
of chaotic movements. This manifestation is valid only in the damping ratio range of 0.0016–
0.0096. One aspect that is evident is how the transition through the PPR region for the bowl was 
also an unstable one. Unfortunately, no published studies analyze in detail the dynamic behavior 
of each element of the AD for the FBVM (the tulip, bowl, and midshaft) apart from [G.R.14], as 
all the studies analyzed the global dynamic behavior of the automotive driveshaft. 



40 
 

 

 
Fig. 4.7. Phase space of the tulip for μ = 0,623 × 10−4. (a)  = 0,0016. (b)  = 0,0116. (c)  = 0,0216.  

(d)  = 0,0318. [R.C.4.4] 

 

As can be seen from this chapter, the use of AMA coupled with Hamilton’s principle allowed the 

investigation of the stationary motion for the FBV movements of an AD’s tulip and bowl in the 

PPR region by computing the dynamic instability frontiers (see Figures 4.5-4.6) in the PPR region. 

In the meantime, the use of the AMA coupled with Hamilton’s principle allowed the investigation 

of the nonstationary motion for the FBV movements of an AD’s tulip and bowl in the transition 

through a PPR region by computing the velocity amplitude versus the amplitude in the phase space 

(see Figures 4.7-4.8). Figures 4.7-4.8 allowed the investigation of the dynamic instability in the 

transition through the PPR region. As is noted in Figures 4.7-4.8, the transition to the PPR region 
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had an aspect of chaotic manifestation. To check whether this nonstationary dynamic behavior is 

deterministic chaos or a stochastic process, it would be necessary to use Lyapunov’s exponents 

method coupled with the Poincare map method. 

             
(a)                                                                                        (b) 

 
 

Fig. 4.8. Phase space of the bowl for μ = 0,754 × 10−4. (a)  = 0,0016. (b)  = 0,0036. (c)  = 0,0076.  

(d)  = 0,0096. [R.C.4.4] 

The present chapter introduces a newly designed DMFFBVM for the AD, with the 

following phenomena being included for the first time: nonuniformity of the inertial characteristics 

of the AD’s elements, serial stiffness and damping for the tulip and bowl, shock excitation due to 

the road geometry, and nonuniformity of the kinematic isometry. Based on this newly designed 

DMFFBVM, using Hamilton’s principle coupled with the first-order approximation of the AMA, 

the stationary and nonstationary dynamic instability behavior of the AD elements were investigated 

in detail by computing the following: the dynamic instability frontiers were determined for the first 
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time for the stationary FBV movements of the tulip and bowl in the parametric spaces 

( ) ( )1 3
, , , , ,      , in addition, for the first time, the velocity amplitude versus the amplitude 

was determined for the nonstationary FBV movements of the tulip and bowl in transition through 

the PPR region. Agreements were found with the numerical and experimental data in the literature 

concerning the natural free frequency in bending and the manifestation of beating effects that 

conduct pitting and micro-cracking effects. Therefore, this DMFFBVM of the AD elements 

coupled with Hamilton’s principle and first-order approximation of the AMA can predict an AD’s 

durability in the early design stages. Moreover, the DMFFBVM must be added to the design 

algorithm for predicting the comfort elements of automobiles. 
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Chapter 5. Chaotic manifestation of the automotive driveshaft’s forced 

bending vibrations 

To investigate the chaotic forced bending vibrations of the automotive driveshaft it is 

necessary first to adopt an appropriate dynamic model that describes such dynamic behavior. Such 

a dynamic model was already realized in previous works by the authors, and therefore, based on 

the dynamic equations already obtained it was used a complex method developed by the authors 

based on two elements: chaos manifestation detection, and chaos manifestation confirmation. The 

chaotic manifestation detection consists of using the time-history graphs in a specific resonance 

region namely the principal parametric region. For the same region was applied the Maximum 

Lyapunov Exponents Method (MLEM) was coupled with the contraction criterion for the sum of 

Lyapunov exponents that certifies the chaos. In addition, was applied the Poincaré Map as a 

qualitative method to reconfirm chaos manifestation. Thus, a powerful analytical tool was created 

to investigate the chaotic forced bending vibrations for specific conditions in the principal 

parametric resonance’s area (PPRA). The chapter represents a development of previous research 

carried out by the authors [G.R.18, G.R.26, G.R.28] concerning the dynamic behavior of 

automotive driveshafts. The automotive driveshafts are homokinetic transmission elements for cars 

from gearboxes or differential boxes to the wheels, being important elements of the automotive’s 

driveline. The author has already shown that geometric and kinematic isometry of the automotive 

driveshafts have nonuniformities [G.R.18] and therefore, all the dynamic models must consider 

this aspect [G.R.26], [G.R.28]. The present chapter considers the same dynamic model for the 

forced bending vibrations of the automotive driveshaft, as in Chapter 4 ( see Figure 4.2), involving 

the following physical aspects:  

a. geometric and kinematic nonuniformities from the isometry property of the tulip, bowl, 

and midshaft as elements of the driveshaft, 

b. due to the rigidity imposed by technical demands the tulip and the bowl have rigid body 

deflections and rotations(    w / w , / , /1 3 1 3 1 3 -tulip/bowl deflections and rotations, as 

shown in Figure 4.2, while the midshaft is considered as a continuum media namely as 

a simply supported Timoshenko beam with mass, springs, and dampers at both ends 

having continuous functions  w , ,2 2 2  respectively midshaft deflections and rotations;  

c. the excitations are induced by the impact road shocks transmitted through automotive 

wheels generated by road nonuniformities [G.R.17].  

Based on Hamilton’s principle[G.R.28], it was derived the forced bending vibrations equations 

using the previous assumptions. Starting from this point the present paper’s analysis is devoted to 

detecting and certifying chaotic FBV (forced bending vibrations) for the automotive driveshaft 

elements in the PPRA (principle parametric resonance’s area). Mazzei and Scott analyze in 

[R.C.5.2] the nonlinear dynamic behavior of automotive driveshaft elements in the PPRA. The 

experimental confirmation that one of the most important resonance areas for the FBV of 

automotive driveshafts is the PPRA was done by Steinwede in [G.R.14]. The detection of chaotic 

FBV in the PPRA will be performed using the general equations of FBV for a heavy-duty 

automotive driveshaft designed for an SUV (sports utility vehicle) having a permanent 4-WD (four-

wheeler drive). This will imply the determination of the phase portraits for the tulip and the bowl 

in the PPRA. The certification of chaotic FBV manifestation in the PPRA implies the computation 

of Lyapunov exponents, namely the use of the Maximum Lyapunov Exponents Method (MLEM) 

for a modified system of equations for FBV of the automotive driveshaft elements (tulip and bowl) 
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followed using the contraction criterion: the sum of all Lyapunov exponents is negative for 

tulip/bowl, as stated in [G.R.29].  As a supplementary confirmation of chaotic FBV manifestation 

for the tulip/bowl in the PPRA, it was computed Poincaré Maps for the tulip/bowl in the PPRA so 

that the pictures of  Poincaré Maps have the property of the system’s auto-similarity, also mentioned 

in [G.R.29] as a qualitative method for chaos manifestation.  

To calculate the equations of FBV for the tulip/bowl of the automotive driveshaft it is 

mandatory to reduce the mass inertial moments and the geometric inertial moments of the 

tulip/bowl to the cartesian system of reference (CSR) X Y Z2 2 2  of the midshaft as in [G.R.28].  All 

the inertial characteristics of the tulip and the bowl, respecting the schematic representation shown 

in Figure 4.2, are presented in Chapter 4, as described in the paper [G.R.28]. The dynamic model 

of FBV for the tulip is presented in Chapter 4(see Figure 4.3.a), while the dynamic model of FBV 

for the bowl is also presented in Chapter 4(see Figure 4.3.b), being adopted with those stated in the 

paper [G.R.28]. The equation of the FBV in normalized bending deflection for the tulip 

is[G.R.28](pp. 13, 14) 

2 3 51 1 1 1
1 1 1 1 1 1 1 2 1

2 1 2 1

1 cos(2 ) 1 cos(2 )
2

1 cos(2 ) 1 cos(2 )

C C
w w w w w

C C

 


 

•• •− −
+  + = − − 

− −
                   (5.1) 

while the equation of the FBV in normalized bending deflection for the bowl is [G.R.28](pp. 13, 

14) 
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1 cos(2 ) 1 cos(2 )
2

1 cos(2 ) 1 cos(2 )
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•• •− −
+  + = − − 

− −
.               (5.2) 

The constants Ci,  i and the natural frequencies for the tulip in bending 1 and for the bowl 

in bending 3  are expressed in Chapter 4 as stated in the paper [G.R.28]. The terms that induce 

the forced excitations in the PPRA contain for the tulip  1 , 12cos( )  and for the bowl 3 , 

32cos( ) and must satisfy the equations [G.R.16](pp. 199, 425)  

31
1 1 3 3

22
2 , 2

dd

dt dt


 =  = =  =

                                                                    (5.3) 

where 1 is the tulip’s excitation frequency and 3 is the bowl’s excitation frequency. To use 

equations (5.1) and (5.2) it is mandatory to compute the tulip’s geometry characteristics 1 2,T TJ J , 

and the bowl’s geometry characteristics 1 2,B BJ J based on their general geometry. This was done 

using the AUTOCAD software, and the results presented in Table 1 are like the data in [G.R.28](pp. 

15,19). 

Tabel 5.1. Tulip’s/Bowl’s geometry characteristics and material properties &shock’s amplitude/time 

0.5(J1T+J2T) 

[m4] 

0.5(J1B+J2B) 

[m4] 

nT/nB  

[kg/m3] 

E/G 

[GPa] 

 Fs/Δts 

9.1531 x 10-7 10.560 x 10-7 0.25/0.10 7850 200/77.3 (16-318)10-4 0.5/1...10 

Tabel 5.1 illustrates the material properties of the tulip/bowl as well as the values of the 

shock’s amplitude and the shock’s duration. Comparing the data in Table 1 with those used by 
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Steinwede in his experiments [G.R.14](p. 111)  it can be remarked the agreements. For the tulip, 

the PPRA is defined by a range around the value 1038.38 Hz, the natural bending frequency being 

v1 = 519,19 Hz[G.R.28](p. 19-20). For the bowl, the bowl’s PPRA is defined by a range around the 

value 6306.6 Hz, the natural bending frequency being  v3= 3153,3 Hz [G.R.28](p. 19-20).  

To determine the time phase portraits for the tulip and the bowl in FBV is mandatory to 

modify the equations (5.1) and (5.2), which become the systems 
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Using the MATLAB software, it was computed the time phase portraits of the tulip’s FBV 

and the bowl’s FBV in the PPRA are presented in Figures 5.1-5.4. Analyzing the phase portraits 

of the tulip’s FBV ( see Fig. 5.1.b, Fig. 5.2.b) it can be concluded that a chaotic FBV for the tulip 

is manifested in the range 0 0016 0 0216= − . . of the damping ratio, while the increase with 0.02 

of the damping ratio induces a decrease of the tulip’s bending deflection 1w more than ten times. 

Also, the same increase of the damping ratio induces a decrease of the tulip’s velocity bending 

deflection 1dw

dt
more than six times. Analyzing the time history of the tulip’s phase portraits in the 

PPRA( see Fig. 5.1.a and 5.2.a) it is obvious the manifestations of beating effects specific to 

chaos[G.R.30], [R.C.5.3]. Analyzing the phase portraits of the bowl’s FBV (see Fig. 5.3.b, Fig. 

5.4.b) it can be concluded that a chaotic FBV for the bowl is manifested in the same range 

0 0016 0 0216= − . . of the damping ratio, while the increase with 0.02 of the damping ratio induces 

a decrease of the bowl’s bending deflection 3w more than ten times. Also, the same increase of the 

damping ratio induces a decrease of the bowl’s velocity bending deflection 3dw

dt
more than six 

times. Analyzing the time history of the bowl’s phase portraits in the PPRA (see Fig. 5.3.a and 

5.4.a) it is obvious the manifestations of beating effects specific to chaos[R.G.27]. 
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Fig. 5.1 Time-history (phase portraits) of  the tulip’s FBV nT= 0,25 ; = 0,0016 [G.R.30] 

 

 

 

Fig. 5.2 Time-history (phase portraits) of  the tulip’s FBV nT= 0,25 ; = 0,0216 [G.R.30]. 
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Fig. 5.3 Time-history (phase portraits) of  the bowl’s FBV nT= 0,25 ; = 0,0016 [G.R.30] 

 

Fig. 5.4 Time-history (phase portraits) of  the bowl’s FBV nT= 0,25 ; = 0,0216 [G.R.30] 

 

If we compare the results illustrated in Figures 5.1 and 5.2 for the tulip’s FBV with those 

illustrated in Figures 5.3 and 5.4 for the bowl’s FBV it can be remarked an accentuation of the 

beating effects for the bowl for the damping ratio around the value 0.0016 (see Fig. 5.1.b and Fig, 

5.3.b)  and a similar manifestation of time-history for the tulip’s FBV and the bowl’s FBV for the 

damping ratio around the value 0.0216 (see Fig. 5.2.a and Fig.5.4.a) [G.R.30], [B.C.5.3]. 

The Lyapunov exponents computed based on the system (4), that describes the tulip’s FBV 

in the tulip’s PPRA ( the excitation frequency of the tulip is in the range around 1038.38 

Hz[G.R.28]) are given by the equations [G.R.12](p. 306-307) 
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where the superscript p indicates the perturbed solution on an interval break (Ti, Ti+1), Tf  is the 

final time of integration and N is the number of intervals contained in the time range (0, Tf).  

The Lyapunov exponents computed based on the system (5.5), that describes the bowl’s FBV in 

the bowl’s PPRA ( the excitation frequency of the bowl is in the range around 6306.6 Hz[G.R.28]) 

are given by the similar equations, with the same signification of the superscripts previously 

described,  
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To certify the chaos is necessary to apply two criteria respectively the Maximum Lyapunov 

Exponents Method (MLEM) coupled with the contraction criterion of the sum of all Lyapunov 

exponents that imposes the next mathematical proposition to be true [G.R.12](pp. 306-307)  

  ( )  
3

1

1,2,3 ,max 0, 0, 0, 1,2,3ij ij iji L L L j                                          (5.8) 

Figures 5.5  and 5.6  are illustrated the Lyapunov exponents for two values of the damping 

ratio 0.0016 and 0.011 in the tulip’s PPRA, with excitation frequency in the vicinity of 1038.38 Hz. 

As can be remarked from Figures 5.5 and 5.6 the proposition (5.8) is true only for the damping 

ratio in the range 0.0016-0.011. Analyzing Figure 5.5 it can be concluded that chaos manifestation 

is confirmed in the excitation frequency range (950-1150) Hz for the damping ratio of 0.0016, 

while in Figure 5.6 the chaos manifestation is confirmed in the excitation frequency range (1100-

1150) Hz for the damping ratio of 0.011 even if from chaos detection (see Fig. 5.2) it indicates the 

maximum value of damping ratio 0.0216.  Figures 5.7 and 5.8 illustrate the Lyapunov exponents 

for two values of the damping ratio 0.0016 and 0.0125 in the bowl’s PPRA, with excitation 

frequency in the vicinity of 6306.6 Hz. 
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Fig. 5.5 Tulip’s Lyapunov exponents of FBV in the PPRA (1038,38 Hz), v1=519 19Hz , = 1.6 103 [G.R.30] 
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Fig. 5.6 Tulip’s Lyapunov exponents of FBV in the PPRA (1038,38 Hz), v1=519 19Hz , = 11 103 [G.R.30] 
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Fig. 5.7 Bowl’s Lyapunov exponents of FBV in the PPRA (1038,38 Hz), v3=519 19Hz , = 1.6 103 [G.R.30] 
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Fig. 5.8 Bowl’s Lyapunov exponents of FBV in the PPRA (1038,38 Hz), v3=519 19Hz , = 12,5 10-3 [G.R.30] 

As can be remarked from Figures 5.7 and 5.8 the proposition (5.8) is true only for the 

damping ratio in the range of 0.0016-0.0125. Analyzing Figure 5.7 it can be concluded  that chaos 

manifestation is confirmed in the excitation frequency range (6200-6400) Hz for the damping ratio 

of 0.0016, while in Figure 5.8 the chaos manifestation is confirmed in the excitation frequency 

ranges (6300-6365) Hz and (6368-6400)Hz for the damping ratio of 0.0125 even if from chaos 

detection (see Fig. 5.4) it indicates the maximum value of damping ratio 0.0216. Accordingly,  to 

the latest developments in the theory of chaos if two Lyapunov exponents are positive and all the 

Lyapunov exponents respect the proposition (8) the dynamic system is considered to be a 

hyperchaotic system [R.C.5.1]. Analyzing Figures 5.5-5.8  it can be concluded that the automotive 

driveshaft is a hyperchaotic system for a damping ratio in the range of 0.0016-0.011 and excitation 
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frequency in the range (1100-1150)Hz for the tulip in FBV, while for the bowl in FBV the hyper 

chaos manifestation is valid for a damping ratio in the range of 0.0016-0.0125 and excitation 

frequency in the ranges (6300-6365) Hz and (6368-6400)Hz. To reconfirm the chaotic 

manifestation of tulip’s FBV and bowl’s FBV in the PPRA it was computed, using in MATLAB 

software based on systems (5.4) and (5.5), the Poincaré Maps (PM) that represents the intersection 

of  the orbits in the phase portraits with an orthogonal surface at equal periods (N number of points), 

using the mathematical procedure presented in [G.R.12] (p. 194). If the tulip’s FBV or the bowl’s 

FBV are periodic or quasi-periodic the PM represents saddle points or saddle separatrices pictures. 

For an excitation frequency range in the vicinity of 1038.38 Hz  and for a damping ratio 31.6 10−=   

Figure 5.9 illustrates the  Poincaré Map for the tulip’s FBV in the PPRA using N =100,000 

orthogonal surface sections to the orbits for the phase portraits ( )1 1w ,dw / dt . 

 

Fig. 5.9 Poincaré Map for the tulip’s FBV in the PPRA (1038.38Hz), N=100,000  =1,6 10-3 [G.R.30] 

As can be remarked from Figure 5.9 the picture has the properties of strange attractors respectively 

auto-similarity and a diffuse structure of points having a different density of pixels per image’s unit 

area. For an excitation frequency range in the vicinity of 6306.6 Hz  and for a damping ratio 
31.6 10−=   Figure 5.10 illustrates the  Poincaré Map for the bowl’s FBV in the PPRA using N 

=100,000 orthogonal surface sections to the orbits for the phase portraits  ( )3 3w ,dw / dt . As can 

be remarked from Figure 5.10 the picture has the properties of strange attractors respectively auto-

similarity and a diffuse structure of points having a different density of pixels per image’s unit area.   
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Figura 5.10 Poincaré Map for the bowl’s FBV in the PPRA (1038.38Hz), N=100,000  =1,6 10-3[G.R.30] 

The reconfirmation of chaotic manifestation of the tulip’s and bowl’s FBV through Poincaré Maps 

respectively the strange attractors. Such dynamic behavior is considered by Steinwede 

[G.R.14](pp. 88-94) to be the cause of the internal pitting of the bells of the tulip and the bowl as 

well as the micro-cracks on the tripod axes. Also, Steinwede assimilated the mechanism of the 

chaotic FBV and chaotic forced torsional vibration of the automotive driveshafts with a similar 

mechanism for the nonlinear dynamic behavior of the geared systems transmissions, mechanisms 

already investigated by the first author of the exposed paper in [R.C.5.2].  As can be remarked the 

increase of the damping ratio has a benefic effect avoiding the chaotic behavior of FBV for the 

automotive driveshafts but it induces thermal stress. 

 Finally, the paper highlighted the mechanism of hyperchaotic nonlinear dynamic behavior 

for the homokinetic transmission [R.C.5.2]. This new method may be used as a powerful tool by 

the designers of automotive driveshafts as well as the designers of the FBV’s dynamic absorbers 

for the automotive driveshafts [G.R.30, R.C.5.3].   
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Chapter 6. Final conclusions. Contributions. Future directions of research 

6.1 Final conclusions  

Finally, it can be concluded that the nonuniformity of geometric and kinematic isometry 

must be considered for automotive driveshafts. This challenge as well as the harmonic variation 

of the nonuniformity of geometric and kinematic isometry for the automotive driveshafts 

induce nonlinear parametric behavior of the homokinetic joints, incraesing the stress 

manifested in this kind of transmission.   

The prediction of the automotive driveshaft’s geometric and kinematic isometry 

nonuniformity is a key element in the early stages of the design because it allows the prediction 

of resonances such as: 

- subharmonic resonance, 

- super-harmonic resonance,  

- principal parametric resonance, 

- simultaneous resonance, 

- combination resonance, 

- internal resonance.  

These aspects permit the investigations concerning the stationary and non-stationary 

stability in all the resonance ranges mentioned previously. These phenomena have a huge 

importance in the determination of the dynamic behavior of the transmission from the gearbox 

to the wheel.  

The phenomena considered are: 

- the nonuniformity of geometric and kinematic isometry of the  automotive driveshafts, 

- the nonuniformity of axial mass moments of inertia, and axial geometric moments of 

inertia for tulip, bowl, tripod, inner race, 

- rigidity and damping of the joints tulip-tripod and bowl-inner race, 

- harmonic excitation due to the internal combustion engine,  

- moderate impulsive shocks induced by the road geometry. 

The thesis responds to all the goals established in the Paragraph 1.4 in the First Chapter. 

 

6.2 Contributions  

The investigations allow the publication of eight research articles: two articles WOS 

indexed (Q2), one article Scopus indexed and six articles presented at International 

Conferences.  

The original contributions highlighted by this Ph.D. thesis:  

- the determination of the nonuniformity of geometric and kinematic isometry of the  

automotive driveshafts, 

- the computation of the nonuniformity of axial mass moments of inertia, and axial 

geometric moments of inertia for tulip, bowl, tripod, inner race, 

- the computation of the rigidity and the damping for the joint’s tulip-tripod and bowl-

inner race, 

- the detection of possible chaotic manifestation for the FTV  of the  automotive 

driveshafts in the PPR, 

- the investigation of chaotic manifestation for the FBV  of the  automotive driveshafts 

in the PPR using MLEM and Poincaré Maps, 
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- the determination of the stationary instability frontiers for the FBV of the automotive 

driveshafts in the PPR.  

- the determination of the strange attractors for the FBV of the automotive driveshafts 

in the PPR. 

The obtained theoretical data confirmed for the first time the manifestation of hyper 

chaos for FBV  of the automotive driveshafts in a similar manner to the chaotic manifestation 

of the geared systems transmissions.   

 The theoretical data agree with the experimental ones obtained by Steinwede [G.R.14] 

explaining by this behavior the pitting, the micro-cracks inside the tulip and the bowl [G.R.14] 

(pp. 88–94). 

 

6.3 Future directions of research 

The future directions of research are:  

1. investigations of the hyperchaotic manifestations of the FTV of the automotive 

driveshafts; 

2. investigations of the nonlinear dynamic behavior of the automotive driveshafts in 

the regions of specific resonance such as: 

- subharmonic resonance, 

- super-harmonic resonance,  

- principal parametric resonance, 

- simultaneous resonance, 

- combination resonance, 

- internal resonance,  

3. the design and development of models for the FTV and FBV of the automotive 

driveshafts, 

4. the investigations of hyperchaotic manifestations of the FTV and the FBV of the 

automotive driveshafts in the resonance regions mentioned at point 2, 

5. the design and development of software to predict the dynamic behavior of 

homokinetic transmissions. 
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