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RefereeTechnical University "Gh. Asachi" Ias, i

Dr. Ing. Jean-Philippe OVARLEZ
ExaminerResearch Director at ONERA, Université Paris-Saclay, France

Dr. Ing. Frank MAMALET
ExaminerSenior Expert in Artificial Intelligence at IRT Saint Exupéry,

Toulouse, France

BUCHAREST 2023



Table of contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Impact and applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Co-tutelle thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Overview of adversarial attacks and defenses 7
2.1 Robustness of neural networks . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Definitions and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Threat models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Attack mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Defense strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 EMG-based automatic gesture recognition using robust neural networks 9
3.1 EMG and automatic gesture recognition . . . . . . . . . . . . . . . . . . 9

3.1.1 Challenges and limitations . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Robustness solutions in the context of non-negative neural networks . . 10

3.2.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Lipschitz robustness certificate . . . . . . . . . . . . . . . . . . . 10

3.3 Optimization methods for training robust feed-forward neural networks 11
3.3.1 Constraints sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 AGR experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.1 sEMG datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.2 Proposed Architecture . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.3 Performance analysis in terms of accuracy and robustness . . . . 13

3.5 Robustness validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.1 Sensitivity to adversarial attacks . . . . . . . . . . . . . . . . . . 13
3.5.2 Noisy input behaviour . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.3 Real-life scenario validation . . . . . . . . . . . . . . . . . . . . . 14
3.5.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14



Table of contents | iii

4 Signal denoising using new classes of robust neural networks 16
4.1 Adaptive convolutional networks . . . . . . . . . . . . . . . . . . . . . . 16

4.1.1 Making the bridge between CNNs and FCNs . . . . . . . . . . . . 16
4.1.2 Learning algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Design of robust complex-valued feed-forward neural networks . . . . . 19
4.2.1 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.2 Nonexpansive complex-valued activation functions . . . . . . . . 20
4.2.3 Robustness results . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.4 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 ABBA neural networks: coping with positivity, expressivity, and robustness 24
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 ABBA neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3.2 ABBA Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3.3 Extension to feedforward networks . . . . . . . . . . . . . . . . . 25
5.3.4 Link with standard neural networks . . . . . . . . . . . . . . . . 26
5.3.5 Expressivity of non-negative ABBA networks . . . . . . . . . . . . 26
5.3.6 Lipschitz bounds for ABBA fully-connected networks . . . . . . . 26

5.4 Convolutional networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4.1 ABBA convolutional layers . . . . . . . . . . . . . . . . . . . . . . 27
5.4.2 Lipschitz bounds for convolutional networks . . . . . . . . . . . . 27
5.4.3 Bounds for ABBA convolutional networks . . . . . . . . . . . . . 27

5.5 Lipschitz-constrained training . . . . . . . . . . . . . . . . . . . . . . . . 28
5.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Conclusions 30
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2.1 Training 1-Lipschitz denoisers . . . . . . . . . . . . . . . . . . . . 31
6.2.2 Expanding the applications of complex-valued neural networks . 31
6.2.3 Controlling the Lipschitz constant of more complex layer structures 31
6.2.4 Combining Lipschitz control with other certifiable defenses . . . . 31
6.2.5 Studying the effect of other regularization techniques . . . . . . . 31
6.2.6 Extending to other distances . . . . . . . . . . . . . . . . . . . . . 31

References 32



Chapter 1

Introduction

1.1 Context

Recently, machine learning methods have become ubiquitous tools in a wide range of
tasks, because of their ability to solve a great variety of problems, ranging from simple
regressions to complex multi-modal classification. These methods stand at the very core
of Artificial Intelligence (AI). AI represents the marvel of nowadays technology and is used
successfully in an ever-increasing number of areas impacting our lives, e.g. medicine
[21], autonomous driving [28], natural language processing [45], human-computer
interaction (HCI) [36], etc. However, deep neural networks, which are probably the
most powerful methods, raise challenges in terms of implementation heaviness during
the learning phase. Moreover, they appear as black boxes whose robustness is not always
well-controlled [15, 34].

Developing trustworthy AI is essential to ensure that intelligent systems can be relied
upon for critical decision-making without compromising ethical standards.

To reach this goal, a critical issue to be addressed when developing real-life appli-
cations using neural networks is the correct evaluation and control of their robustness
against possible adversarial attacks.

Adversarial inputs represent malicious input data that can fool machine learning
models. The concept was highlighted in [41], where the authors showed that slightly
altering data inputs that were correctly classified by the network can lead to a wrong
classification [24, 3, 43, 19].

It must be emphasized that adversarial inputs are not necessarily artificially created
with the intention to sabotage the system. They can also occur innately under different
forms and can seriously flaw the performance of real-life applications based on pre-
trained models [32]. A better analysis of the stability properties of neural networks can
be viewed as the first step towards a better understanding of the mathematical principles
governing their functionalities.

The main goal of this thesis is to design new methods for training safe yet high-
performance neural networks. Recent mathematical results show that it becomes easier
to control the stability of neural networks by introducing suitable constraints on their
weights. Nevertheless, this requires the management of constraints that are not necessar-
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ily convex in the training phase of the neural network. To this end, we designed carefully
crafted constraints that we later used in the training process, to ensure the robustness
of the neural network. As highlighted in [17], the Lipschitz behaviour of the network is
tightly correlated with its robustness against adversarial attacks. This constant allows us
to upper bound the output perturbation knowing the magnitude of the input one, for a
given metric [39]. Controlling this constant leads to a feasible solution to assess the effect
of adversarial attacks if accurately computed. However, computing the exact Lipschitz
constant even for a shallow neural network is a non-polynomial NP-hard problem. So
the main difficulty is to find ways of approximating it as tightly as possible. Lately, several
methods have been proposed to train Lipschitzian networks, which fall into two main
categories. Regularization approaches include double backpropagation [13] or apply
penalization on the network Jacobian [18], which imposes local Lipschitz constraints,
but do not enforce the constraint globally on the network. Another approach consists
of imposing some constraints on the architecture of the network, so as to constrain
the spectral norm of each layer [43] [10]. At the expense of computation complexity,
these methods ensure a Lipschitzian network. In [11], novel results leading to accurate
approximations to the Lipschitz constant of positive feed-forward neural networks were
proposed. These preliminary results served as a starting point for proposing efficient
methods for designing safe neural networks.

After establishing all the mathematical backbone, we next focus on building new
neural network architectures based on the aforementioned philosophy. An important part
of the work presented in this thesis consists in developing efficient optimization methods
for supervised learning of neural networks. We look at the possible choices for the structure
of the network, given the different classes of existing iterative optimization algorithms.
To handle stability constraints, particular attention is paid to proximal methods which
offer powerful tools for optimization in a large-scale context. We study how ensuring
robustness affects the overall performance of the learning systems, and try to reach a good
robustness-accuracy trade-off.

A very important aspect in all exploratory research is the validation of the theoretical
results in a real application context. Some of the models trained with stability guarantees
are tested in real-life contexts to show the versatility of the designed solutions. We then
measure the influence on the system performance and compare the obtained results with
those generated with classical architectures, as well as other defense strategies.

1.2 Impact and applicability

This thesis contributes to the field of machine learning by trying to give an answer to the
fundamental question:

How safe neural networks are?

The objective is to provide mathematically proven robustness guarantees, develop
the associated software, and make it publicly available. Another important aspect of
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this thesis is the focus on applications based on audio and physiological signals which
have direct use in the development of innovative technologies and can directly benefit a
variety of consumer products.

More generally, by approaching the concept of Safe Neural Networks, this thesis
contributes to the state of knowledge in artificial intelligence, leveraging on the latest
research results in the field of optimization. Developing new methods that can be used to
make learning systems more robust and explainable will open new perspectives in terms
of safe and controlled technological progress.

1.3 Main contributions

The first contributions of the thesis appear in Chapter 3:

(i) We propose a robust real-time Automatic Gesture Recognition system based on
sEMG signals. The robustness is ensured by using a novel learning algorithm for
training feedforward neural networks.

(ii) We show that a good accuracy-robustness balance can be reached. To do so, we
train the system under carefully crafted spectral norm constraints, allowing us
to finely control its Lipschitz constant. A tight Lipschitz constant is efficiently
estimated by focusing on neural networks with nonnegative weights, as in [8].

(iii) We demonstrate the performance of the final architecture in real-life experiments,
where we show that the proposed robust model outperforms those trained conven-
tionally.

(iv) We analyze how our system behaves when the input is affected by different noise
levels, simulating perturbations that may occur in real scenarios.

(v) We show the validity of our solution by experimenting on several publicly available
sEMG gesture datasets.

Chapter 4 includes the following main contributions.

(i) Inspired by MIMO filters, we introduce a new class of neural networks, which can
be seen as an intermediate solution between CNNs and FCNs.

(ii) We propose a constrained training strategy, which allows us to control the Lipschitz
constant of the network in order to secure its robustness to adversarial noise.

(iii) We present a new architecture (RCFF-Net), which operates in the complex-valued
domain, for which we derive tight Lipschitz constant bounds.

(iv) We develop a constrained learning strategy to train the proposed structure while
controlling its global Lipschitz constant.

(v) Both architectures ACNN and RCFF are evaluated in audio signal denoising tasks,
proving that our solution is not limited to classification problems.
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The contributions from Chapter 5 are mentioned below.

(i) We introduce ABBA networks, a novel class of (almost) non-negative neural net-
works, which are shown to possess a series of appealing properties.

(ii) We show that we can put any arbitrary signed network in an ABBA form. We show
that this property holds for fully connected as well as for convolutional neural
networks.

(iii) Universal approximation theorems are derived for networks featuring non-negatively
weighted layers.

(iv) We present a method for effectively controlling the Lipschitz constant of ABBA
networks. This control strategy applies to both fully connected and convolutional
cases.

(v) Numerical experiments conducted on standard image datasets showcase the ex-
cellent performance of ABBA networks for small models. Notably, they exhibit
substantial improvements in both performance and robustness compared to net-
works with exclusively non-negative weights. Moreover, we demonstrate that ABBA
networks are competitive with robust networks featuring arbitrarily signed weights,
trained using state-of-the-art techniques.

1.4 Publications

Submitted journal articles

• A. Neacs, u, J.-C. Pesquet, V. Vasilescu and C.Burileanu, "ABBA Neural Networks:
Coping with Positivity, Expressivity, and Robustness", submitted to SIAM Journal on
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Accepted or published journal articles

• A. Neacs, u, J.-C. Pesquet and C.Burileanu, "EMG-Based Automatic Gesture Recognition
Using Lipschitz-Regularized Neural Networks", accepted for publication in ACM
Transactions on Intelligent Systems and Technology (TIST), 2023.

• N Lassau, S. Ammari, E. Chouzenoux, A. Neacs, u et al. “Integrating deep learn-
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patients”,in Nature Communication 12, 634 (2021), https://doi.org/10.1038/
s41467-020-20657-4

Conference Proceedings

• C. Andronache, M. Negru, I. Bădi̧toiu, G. Cioroiu, A. Neacsu and C. Burileanu,
"Automatic Gesture Recognition Framework Based on Forearm EMG Activity", in Proc.
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Prague, Czech Republic, 2022, pp. 284-288, doi: 10.1109/TSP55681.2022.9851314.
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Conference (EUSIPCO), Belgrade, Serbia, 2022, pp. 1596-1600, doi: 10.23919/EU-
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10.23919/Eusipco47968.2020.9287630.

• V. Vasilescu, A. Neacşu, E. Chouzenoux, J. -C. Pesquet and C. Burileanu, "A Deep
Learning Approach For Improved Segmentation Of Lesions Related To Covid-19 Chest
CT Scans", in Proc. IEEE 18th Int. Sym. on Biomedical Imaging (ISBI), Nice, France,
2021, pp. 635-639, doi: 10.1109/ISBI48211.2021.9434139.

• A. Neacs, u, J.-C. Pesquet, and C. Burileanu, "Accuracy-robustness trade-off for posi-
tively weighted neural networks", in Proc. IEEE International Conference on Acous-
tics and Speech Signal Process. (pp. 8389–8393). Barcelona, Spain, 2020, doi:
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• C. Andronache, M. Negru, A. Neacsu, G. Cioroiu, A. Radoi and C. Burileanu,
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International Conference on Telecommunications and Signal Processing (TSP),
Milan, Italy, 2020, pp. 301-304,
doi: 10.1109/TSP49548.2020.9163481.

1.5 Co-tutelle thesis

Collaboration lies at the heart of scientific progress and innovation. In today’s intercon-
nected world, the significance of collaborative efforts cannot be overstated, particularly
in the field of academic research. This thesis is the result of a co-tutelle collaboration,
between University Politehnica of Bucharest and CentraleSupélec, Graduate School of
Engineering Sciences of University Paris Saclay. This thesis has provided a remarkable op-
portunity to foster cooperation and exchange knowledge between these two distinguished
institutions.

1.6 Outline

The rest of the thesis is organized as follows. In Chapter 2, we present an overview of
existing attacks and defenses. In Section 2.1 we establish the concept of robustness in the
context of neural networks, while in Section 2.2 we introduce the mathematical notation
used throughout the chapter. We present the most used scenarios of threat models
(Section 2.3) and then we describe both white-box and black-box attack mechanisms in
Section 2.4. We end the chapter by emphasising different defense strategies in Section
2.5.
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In Chapter 3 we present a robust mechanism for training non-negative neural net-
works in the context of automatic gesture recognition based on sEMG signals. In Section
3.1 we lay the foundational understanding of electromyography and emphasize its rele-
vance in the context of gesture recognition. Following this, in Section 3.2 we introduce
innovative approaches to enhance the robustness of fully connected neural networks.
Section 3.3 then details the optimization techniques crucial to our proposed methods,
variants of which will be used in the rest of this work. Transitioning to practical imple-
mentation, Section 3.4 provides insights into the experimental framework considered
for our task. The chapter culminates with Section 3.5 where we extensively validate the
robustness of our proposed models. Finally, we conclude this chapter by summarizing
our key findings and their implications in Section 3.6.

In Chapter 4 we embark on a journey to enhance signal denoising through innovative
robust neural network architectures. Starting with Section 4.1 we introduce the first
novel architecture we propose in this thesis. We then explore, in Section 4.1.1, a critical
step in bridging the gap between these powerful neural network paradigms: the use
of fully connected and convolutional layers. Section 4.1.2 delves into the optimization
strategies employed for training our proposed models, shedding light on the core of our
methodology. Our practical applications developed in Section 4.1.3 provide an in-depth
examination of our model performance in signal denoising scenarios. The second part of
the chapter, starting with Section 4.2 introduce a new class of networks (RCFF) operating
in the complex domain. Theoretical foundations and insights are presented in Sections
4.2.1-4.2.3 where we elucidate the mathematical underpinnings of our robust training
mechanisms, and then we detail its implementation in Section 4.2.4. Then, we showcase
the empirical outcomes of applying our RCFF-Net to audio denoising problems in Section
4.2.5. Ultimately, we conclude this chapter by summarizing our key findings and their
implications in Section 4.3.

In Chapter 5, we introduce a groundbreaking class of neural networks known as
ABBA Neural Networks, engineered to grapple with issues of positivity, expressivity, and
robustness. We start with Section 5.1 offering an overview of the challenges that our
novel ABBA networks aim to address. We provide context in Section 5.2, examining the
existing landscape of neural network solutions and underscoring the unique contributions
of ABBA networks. The core of our chapter unfolds with Section 5.3 where we describe
the architectural foundations and key attributes of this innovative neural network class.
Subsequently, in Section 5.4, we extend the applicability of ABBA networks to the
convolutional case, highlighting the adaptability of this approach across diverse network
architectures. An in-depth look into the training methods and techniques ensuring
Lipschitz stability is presented in Section 5.5. Section 5.6 serves as the empirical heart of
this chapter, where we conduct comprehensive evaluations to validate the performance
and effectiveness of ABBA networks across various classification scenarios. In Section
5.7, we sum up our key findings, insights, and implications of our research.

Finally, in Chapter 6, we draw the final remarks of this thesis, followed by a brief
description of some envisioned perspectives.



Chapter 2

Overview of adversarial attacks and
defenses

This chapter presents an overview of the current advancements in the domain of the
robustness of neural networks against adversarial perturbations. We will define the
concept of adversarial attacks and explain the insights of the most efficient attack
strategies. Studying deliberately crafted attacks in machine learning is crucial because it
allows to identify the vulnerabilities of models and enhances their robustness.

2.1 Robustness of neural networks

The section emphasizes the need for understanding and enhancing neural network
resilience to adversarial inputs, delving into the concept of robustness, perturbation
creation, and strategies to mitigate their impact.

2.2 Definitions and notation

In this section, the main notations used throughout the chapter are introduced.

2.3 Threat models

This section discusses the possible options for threat models, depending on their objective
and level of access to the original model can fall in several categories, as follows. Based
on the adversary’s objective the attacks can be targeted or untargeted. Additionally, based
on the level of access the attacker has on the victim model, three distinct categories of
attacks arise: black-box attacks, white-box attacks and gray-box attacks.

2.4 Attack mechanisms

In this section, we detail the main algorithms for generating adversarial samples in all
three contexts. We consider mainly evasion methods since they are more common.



2.5 Defense strategies | 8

2.5 Defense strategies

Since there are many ways an adversary can exploit the model’s weaknesses, defensive
strategies have been developed to alleviate this robustness issue. This section presents
the main directions in this domain.

2.6 Conclusion

This chapter has presented an overview of the state-of-the-art in the field of adversarial
attacks and defenses of neural networks. The robustness of deep learning models is a
hot topic that has attracted increasing attention from the research community, since it
represents an important aspect to consider in the development and integration of future
trust-worthy AI solutions in real-life applications. The next chapters will present new
contributions in this domain.



Chapter 3

EMG-based automatic gesture
recognition using robust neural
networks

This chapter introduces a novel approach for building a robust Automatic Gesture
Recognition system based on Surface Electromyographic (sEMG) signals, acquired at the
forearm level. Our main contribution is to propose new constrained learning strategies
that ensure robustness against adversarial perturbations by controlling the Lipschitz
constant of the classifier. We focus on nonnegative neural networks for which accurate
Lipschitz bounds can be derived, and we propose different spectral norm constraints
offering robustness guarantees from a theoretical viewpoint. Experimental results on
four publicly available datasets highlight that a good trade-off in terms of accuracy and
performance is achieved. We then demonstrate the robustness of our models, compared to
standard trained classifiers in three scenarios, considering both white-box and black-box
attacks.

3.1 EMG and automatic gesture recognition

sEMG stands for surface electromyography and represents the electrical manifestation
of the neuromuscular activation related to the contraction of the muscles [1]. This
technology may be used by physically impaired persons to control rehabilitation and
assisting devices. EMG is also used in many types of research domains, including those
involved in biomechanics, motor control, neuromuscular physiology, movement disorders,
postural control, and physical therapy [35].

3.1.1 Challenges and limitations

Gestures constitute a universal and intuitive way of communication, with the potential of
bringing the Internet of Things (IoT) experience to a different, more organic level [36].
Automatic gesture recognition (AGR) algorithms can be successfully used in various
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applications, from sign language recognition (SLR) [7] to Virtual Reality (VR) games
[44].

Two critical issues need to be addressed when developing AGR algorithms: fast
enough inference to ensure real-time feeling for the end-user, and accurate and robust
classification to guarantee that the gesture is correctly identified no matter the envi-
ronmental conditions. Machine learning methods have become the main tools for AGR
systems, on account of their ability to solve a great variety of problems, from simple
regressions to complex multi-modal classification.

The Lipschitz behaviour of the network is intimately connected with its resilience
against adversarial attacks.

3.2 Robustness solutions in the context of non-negative neural

networks

3.2.1 Problem formulation

Model 3.2.1 Any feedforward neural network is obtained by cascading m layers associ-
ated with operators (Ti)1⩽i⩽m. The neural network can thus be expressed as the following
composition of operators:

T = Tm ◦ · · · ◦T1. (3.1)

Each layer i ∈ {1, . . . ,m} has a real-valued vector input xi of dimension Ni−1 which is
mapped to

Ti(xi) = Ri(Wixi +bi), (3.2)

where Wi ∈ RNi×Ni−1 , bi ∈ RNi are the weight matrix and bias parameter, respectively.
Ri : RNi → RNi constitutes a non-linear activation operator which is applied component-
wise (e.g., ReLU or Sigmoid).

3.2.2 Lipschitz robustness certificate

Consider a neural network T as described above. let x ∈ RN0 be the input of the network
and let T (x) ∈ RNm be its associated output. By adding some small perturbation z ∈ R0 to
the input, the perturbed input is

x̃ = x+ z.

The effect of the perturbation on the output of the system can be quantified by the
following inequality:

∥T (x̃)−T (x)∥⩽ θm∥z∥, (3.3)

where θm ⩾ 0 denotes a Lipschitz constant of the network. θm represents thus an important
parameter that allows us to assess and control the sensitivity of a neural network to
various perturbations. It needs however to be accurately estimated to provide valuable
information. A standard approximation to the Lipschitz constant [17] is given by
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θm =
m

∏
i=1

∥Wi∥S, (3.4)

where ∥ · ∥S denotes the spectral norm of a matrix. Although simple to compute, this
approximate bound is over-pessimistic. Different methods for obtaining tighter estimates
of the Lipschitz constant have been presented in the recent literature; see for example
[39, 11, 14, 25, 5]. Local estimates of the Lipschitz constant can also be performed, which
may appear more relevant. But they are more complex to compute and, as we will see,
controlling the global Lipschitz constant is usually sufficient to get a good performance.
Estimating the global Lipschitz constant of the network is an NP (non-deterministic
polynomial-time)-hard problem [39].

3.3 Optimization methods for training robust feed-forward

neural networks

To ensure robustness, we shall impose spectral norm constraints on the weight matrices.
In other words, the vector of parameters η is constrained to belong to a closed set
S that will be described in the next section. We propose to use an extension of a
standard optimization techniques for training neural networks [12]. More specifically,
we will implement a projected stochastic gradient algorithm. A momentum parameter is
introduced in this algorithm to accelerate the convergence process.

Algorithm 1: Projected SGD Algorithm
Partition {1, . . . ,K} into mini-batches (Lq,n)1⩽q⩽Q

foreach q ∈ {1, . . . ,Q} do
foreach i ∈ {1, . . . ,m} do

∆i,n = (1+ζn)ηi,n −ζnηi,n−1 η̃i,n = [(η⊤
j,n+1) j<i ∆⊤

i,n (η⊤
j,n) j>i]

⊤

ηi,n+1 = PSi,n

(
∆i,n − γn ∑

k∈Lq,n

∇iℓ(zk, η̃i,n)
)

where Si,n =
{

ηi | [(η⊤
j,n+1) j<i η⊤

i (η⊤
j,n) j>i]

⊤ ∈ S
}
.

3.3.1 Constraints sets

As mentioned before, this thesis revolves around feed-forward networks with positive
weights. Thus, the first condition that we impose is nonnegativity for each layer i ∈
{1, . . . ,m}, which is modelled by the constraint set

Di = {Wi ∈ RNi×Ni−1 |Wi ⩾ 0} (3.5)

Moreover, we must impose a spectral norm constraint on the weight matrices to control
the robustness of the system. This translates mathematically as the following upper
bound constraint:

∥Wm · · ·W1∥S ⩽ ϑ , (3.6)
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where ϑ represents the target maximum Lipschitz constant of the network. This bound
constitutes a direct measure of the system’s level of robustness against adversarial inputs.
We need to handle these two constraints simultaneously during the training process. For
the second one we introduce the following constraints set.

Ci,n = {Wi ∈ RNi×Ni−1 | ∥Ai,nWiBi,n∥S ⩽ ϑ} (3.7)

Thus, our objective will be to perform the projection onto the set Si,n =Di∩Ci,n, for each
layer i ∈ {1, . . . ,m} and at each iteration n. Several algorithms can be envisaged to solve
this convex optimization problem.

3.4 AGR experimental setup

3.4.1 sEMG datasets

Fig. 3.1 Proposed neural network architecture for AGR.

We test our proposed training scheme on four online datasets containing EMG
information on different hand gestures. The first three were acquired using Myo arm-
band, a device developed by Thalmic Labs, equipped with eight sEMG sensors dis-
played circularly, while the last one was acquired using 10 active double-differential
OttoBockMy-oBock13E200 sEMG electrodes.

We also validate our models in a real-context scenario. For the real-life predictions,
we recorded the EMG activity associated with each gesture at the forearm level using the
Myo armband.

3.4.2 Proposed Architecture

The proposed architecture is described in Figure 3.1. The raw 8 /10 channels EMG
signal is split using a 250 ms sliding window, with 50% overlap. A 250 ms window is
long enough to cover the most common gesture durations, ensuring that the essential
temporal aspects of each gesture are captured within this window. Overlap ensures that
important signal characteristics, such as abrupt changes or transient patterns, are not
missed due to window boundaries. From each window of each channel, a series of 8 time
descriptors are extracted. The information from all the channels is then concatenated,
forming a 64 (80 for the fourth dataset)-dimensional vector.
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3.4.3 Performance analysis in terms of accuracy and robustness

Table 3.1 Lipschitz constant obtained with various constrained optimization strategies
for different accuracies

Accuracy 75% 80% 85% 90% 95%

Lipschitz
constant
7-gestures
Myo-sEMG

C̃i ∩Di
P̃

C̃i∩Di
19.5 37.5 68.3 3.5×104 3.5×108

P
C̃i∩Di

0.66 13.47 74.16 1.04×103 1.39×105

Či,n ∩Di
P̃Či,n∩Di

0.71 1.84 3.42 6.87 11.60
PČi∩Di

0.70 1.35 3.41 6.79 11.20

Ci,n ∩Di
P̃Ci,n∩Di 0.44 1.79 2.93 4.85 5.68
PCi,n∩Di 0.35 0.46 0.65 0.82 0.95

Lipschitz
constant
13-gestures
13Myo-
sEMG

C̃i ∩Di
P̃

C̃i∩Di
20.2 41.8 145.2 2.2×105 1.21×1011

P
C̃i∩Di

0.85 20.47 112.3 1.62×104 2.31×108

Či,n ∩Di
P̃Či,n∩Di

0.84 2.08 4.23 7.54 12.02
PČi∩Di

0.81 2.01 4.12 7.50 11.92

Ci,n ∩Di
P̃Ci,n∩Di 0.54 1.87 3.38 4.20 5.78
PCi,n∩Di 0.49 0.53 0.75 0.92 1.25

Accuracy 65% 70% 75% 80% 85%

Lipschitz
constant
24-gestures
NinaPro DB5
Ex C.

C̃i ∩Di
P̃

C̃i∩Di
25.13 57.16 188.26 2.5×106 2.14×1011

P
C̃i∩Di

1.85 31.12 112.3 1.82×104 4.63×108

Či,n ∩Di
P̃Či,n∩Di

1.74 2.41 6.02 10.17 20.14
PČi∩Di

1.57 2.18 5.94 10.58 19.69

Ci,n ∩Di
P̃Ci,n∩Di 0.88 2.05 4.28 5.74 6.84
PCi,n∩Di 0.77 0.96 1.27 1.44 1.96

Lipschitz
constant
53-gestures
NinaPro DB 1

C̃i ∩Di
P̃

C̃i∩Di
26.26 86.17 200.45 4.10×106 4.45×1011

P
C̃i∩Di

2.60 50.12 163.14 2.8×104 2.9×109

Či,n ∩Di
P̃Či,n∩Di

2.94 4.43 6.88 14.25 22.16
PČi∩Di

2.83 2.18 5.56 16.48 20.16

Ci,n ∩Di
P̃Ci,n∩Di 1.22 1.80 6.83 7.40 8.23
PCi,n∩Di 1.56 2.08 2.53 2.74 3.88

The obtained results are summarized in Table 3.1.

3.5 Robustness validation

In this section, we investigate to what extent the theoretical concepts described in the
previous sections help in improving the robustness of the classifier in different settings.
To this goal, we consider the following three scenarios. In the first one, we examine the
impact of adversarial attacks on the performance of the classifier. The second scenario
takes into account the effect of noise in the acquisition process. In the case of sEMG
signals, this noise may come from imperfect skin-sensor contact caused by hairs or drops
of sweat. In the last scenario, we perform a real-life experiment using 10 able-bodied
volunteers.

3.5.1 Sensitivity to adversarial attacks

We evaluate our robust model on purposely designed perturbations, by studying their
influence on the overall performance of the system. We lead attacks on our best robust
model in terms of accuracy and robustness, achieving 92.95% accuracy and a Lipschitz



3.6 Conclusion | 14

constant ϑ = 0.87 for the 7-gesture dataset. We compare the results with two conven-
tionally trained models: the best one in terms of performance, which achieves 99.78%
prediction accuracy on non-adversarial data, and another one trained to have similar
performance as our robust model, reaching 92.99% accuracy on the original test set.

To create the adversarial samples we used some of the most popular white-box
attackers, namely: Fast gradient sign method (FGSM) [17], Jacobian Saliency Map
Attacker (JSMA)[33], Projected gradient descent (PGD)[30], Carlini and Wagner (C&W)
[4] and Gradient Matching (GM) [16].

3.5.2 Noisy input behaviour

To simulate the effect of underlying noise generated during the acquisition process, we
added synthetic noise directly to the raw sEMG data, prior to the feature extraction step.
The noise is chosen independent and identically distributed according to a Gaussian
mixture law (1− p)N (0,σ2

0 )+ pN (0,σ2
1 ). This experiment emphasizes that controlling

the Lipschitz constant of a network improves its robustness not only against targeted
adversarial attacks, as shown previously, but also in the case of black-box attacks, where
no prior information about the model is used.

3.5.3 Real-life scenario validation

To illustrate the practical applicability of our findings, we proceed to validate our model
in a real-life context. For this purpose, we designed an experiment to compare a
conventionally trained model with the constrained one. We observed that training a
positive neural network subject to Lipschitz constraints improves the overall robustness
of the classifier against adversarial perturbations, not only from a theoretical viewpoint
but also practically by leading to more reliable systems with greater generalization power.

3.5.4 Limitations

Increased training time is one of the main limitations of our proposed approach. Indeed,
to compute the true projection, the proposed method uses an iterative algorithm that
performs singular value decomposition at each iteration, which is a resource-consuming
operation, especially when performed on large matrices. We propose several lower
complexity solutions, which have proved to offer a good trade-off between training time,
robustness, and performance.

3.6 Conclusion

This chapter has shown the usefulness of designing robust feed-forward neural networks
for automatic gesture recognition based on sEMG physiological signals. More precisely,
we proposed to finely control the Lipschitz constant of these nonlinear systems by consid-
ering positively weighted neural architectures. To offer robustness certificates, we also
developed new optimization techniques for training classifiers subject to spectral norm



3.6 Conclusion | 15

constraints on the weights. We studied various constrained formulations and showed that
robustness can be secured without sacrificing accuracy when using a combination of tight
constraints and exact projections. We also provide several lower-complexity solutions,
which reduce the training time significantly.



Chapter 4

Signal denoising using new classes
of robust neural networks

In this chapter, we focus on robust solutions for a regression problem, namely audio signal
denoising. We address the task at hand from two perspectives. First, we only concentrate
on denoising the magnitude elements resulting from a Fourier analysis of the audio signal.
To this end, we design a fully connected network, called Adaptive Convolutional Neural
Network (ACNN), whose layers have a special structure that exhibits some similarity with
a 1D convolutional one. In the second part of the chapter, we extend our approach to
denoising the whole complex spectrum of the audio signals, using complex-valued neural
networks (CVNN). For both solutions, we derive tight Lipschitz bounds and propose
robust training mechanisms which are later validated on denoising piano music clips
corrupted by various levels of additive white noise.

4.1 Adaptive convolutional networks

This section introduces a new class of neural networks, called Adaptive Convolutional
Neural Networks (ACNN), which can be seen as an intermediate between Convolutional
Neural Networks (CNNs) and Fully Connected Networks (FCNs). Learning capabilities
of CNNs being well-investigated and proven, we take advantage of this potential by
structuring the weights of our network in a similar manner. A significant difference is
that the network makes use of filters that are no longer time/space invariant, similar to
what is done in adaptive filtering.

4.1.1 Making the bridge between CNNs and FCNs

In this section we aim at filling the gap between FCNs and CNNs. In terms of signal
processing concepts, a convolutive layer is a Multiple-Input Multiple-Output (MIMO)
filter. For one-dimensional signals, each of these filters can be viewed as a Tœplitz matrix
generated by the impulse response of the filter, which is applied to the vector of signal
samples. If the filter length is short, large upper and lower triangular parts of this matrix
are null. In our proposed approach, we will keep this band structure for the weight
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(a) 

(b) (c) 

Fig. 4.1 Proposed architecture of Adaptive Convolutional Neural Network (ACNN). a) An
encoder-decoder architecture composed of a 6-layer FCN followed by ReLU activation
function. b) Relation between proposed FCNs and CNNs; the weights are split into sub-
matrices simulating convolutive filters in CNNs c) Each of the sub-matrices is constrained
to have a band structure as shown in this example. The dark grey area marks the
zero-entries, while the light-grey colour corresponds to the ones that are allowed to be
non-zero.

matrix, which is equivalent to performing local processing at each time within a sliding
window. However, in order to add more flexibility to this architecture, we will allow all
the nonzero coefficients of this matrix to be fully optimized. The proposed architecture is
depicted in Figure 4.1a.

4.1.2 Learning algorithm

For training the proposed ACNN, we use a stochastic gradient-like optimization based
on the popular ADAM method [22]. Consider the vector of parameters of the network,
η = (ηi)1⩽i⩽m, such that, for each layer i ∈ {1, . . . ,m}, ηi represents a vector of dimension
Ni(Ni−1 +1), composed of the elements of the weight matrix Wi and the components of
the bias vector bi.

To secure the conditions of robustness while imposing the desired structure for our
network, the parameter vector η is projected onto a closed set S that expresses all
these constraints. The parameter update at epoch n > 0 is performed for mini-batches
(Mq,n)1⩽q⩽Q. If the training data are denoted by (zk)1⩽k⩽K , where zk is the k-th pair of
inputs and their associated outputs, the operations performed during the n-th epoch
are summarized in Algorithm 2, where the square, the square root, and the division are
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Algorithm 2: Projected ADAM Algorithm
Partition {1, . . . ,K} into mini-batches (Mq,n)1⩽q⩽Q

foreach q ∈ {1, . . . ,Q} do
t = (n−1)Q+q
foreach i ∈ {1, . . . ,m} do

gi,t = ∑k∈Mq,n ∇iℓ
(
zk,(ηi,t

)
1⩽i⩽m)

µi,t = β1µi,t−1 +(1−β1)gi,t

νi,t = β2νi,t−1 +(1−β2)g2
i,t

γt = γ
√

1−β t
2/(1−β t

1)

ηi,t+1 = PSi,t

(
ηi,t − γt µi,t/(

√
νi,t + ε)

)
,

PSNR MSE CC

Noisy Signal 18.25 1.18×10−2 0.76

Denoised Signal

Baseline - Wavelet-based denoiser 20.66 1.00×10−3 0.80

ACNN denoiser

Scenario (i)
ϑ = 1 24.27 3.73×10−3 0.96
ϑ = 5 29.03 1.25×10−3 0.97

ϑ = 10 33.76 6.53×10−4 0.98

Scenario (ii)
ϑ = 1 25.87 3.12×10−3 0.96
ϑ = 5 30.63 8.63×10−4 0.98

ϑ = 10 36.02 2.23×10−4 0.99
Standard FCN denoiser ϑ = 1 23.38 4.59×10−3 0.90

Table 4.1 Comparison of different variants of the proposed method with baselines.

performed component-wise, and

Si,t =
{

ηi | [(η⊤
j,t+1) j<i η

⊤
i (η⊤

j,t) j>i]
⊤ ∈ S

}
. (4.1)

4.1.3 Experimental Evaluation

The proposed network has been evaluated for denoising music signals.

Dataset Description

We train our proposed ACNN on a dataset consisting of musical exercises and songs
performed on a Ronald organ. The organ covers 5 octaves (range C2–C7), each octave
having 12 semitones, generating a total of 61 different possible notes. In total, the dataset
contains 100 MIDI recordings, with a sampling frequency Fs = 44100 Hz, constituting 1 h
and 17 min of audio. The data set is available online1.

Experimental setup

The noisy data for training, validating, and testing is generated by adding white Gaussian
noise to the original samples. The noise has zero mean and its standard deviation
is randomly chosen so that the resulting signal-to-noise ratio (SNR) varies between

1https://speed.pub.ro/downloads/

https://speed.pub.ro/downloads/


4.2 Design of robust complex-valued feed-forward neural networks | 19

5 and 30 dB. The dataset samples are normalized between 0 and 1. We extract the
frequency features from the audio signal using a Short-Time Fourier Transform (STFT).
The network estimates the STFT coefficients of the samples, and an Inverse Short-Time
Fourier Transform (ISTFT) is performed as the post-processing step. We consider a
Hanning sliding analysis window of length T = 23 ms, with an overlap between two
consecutive windows of 50%. The STFT is performed on 1024 points. In total, from each
audio segment, a vector of length L = 513 frequency coefficients is obtained, constituting
the input of our ACNN.

The denoising is performed using a 6-layer ACNN architecture, as presented in
Figure 4.1.

Simulations and results

In order to measure the performance of our proposed ACNN architecture, we perform two
sets of experiments. In the first set, we control the Lipschitz constant of the architecture
for three values ϑ equal to 1, 5, and 10. In the second experiment, we test our architecture
by varying the number of channels, i.e. the way we split each weight matrix.

We evaluate the performance on 3 standard metrics: Peak to Signal Noise Ratio (PSNR),
Mean squared error (MSE), and Cross-correlation (CC), as shown in the Table 4.1.

4.2 Design of robust complex-valued feed-forward neural net-

works

In this section, we introduce a new class of neural networks operating in the complex
domain, called Robust Complex Feed-Forward Network (RCFF-Net). The structure of the
network is inspired by CapsNets [6, 38].

4.2.1 Theoretical background

A complex-valued feedforward neural network is defined as follows.

Model 4.2.1 Let m∈N\{0}. T is an m-layer complex-valued feedforward neural network
if there exists (Ni)0⩽i⩽m ∈ (N\{0})m+1 such that

T = Tm ◦ · · · ◦T1 (4.2)

where, for every i ∈ {1, . . . ,m}, Ti = Ri(Wi ·+bi), Wi ∈CNi×Ni−1 , bi ∈CNi , and Ri : CNi →CNi .

In the following, we will make the assumption that the activation operators (Ri)1⩽i⩽m

satisfy some nonexpansiveness properties and that all of them, except possibly for the
last layer, are separable.
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4.2.2 Nonexpansive complex-valued activation functions

There exist two main recipes for building activation functions, satisfying the imposed
conditions. The first one is to use split-complex activation functions of the form

(∀z ∈ C) ρi,k(ζ ) = ρ
R
i,k(Reζ )+ ıρ I

i,k(Imζ ) (4.3)

where ρR
i,k : R → R and ρ I

i,k : R → R are αi-averaged activation functions. The second
recipe we propose is based on the following property.

Proposition 4.2.2 Let ω : [0,+∞[→R be α-averaged with α ∈]0,1] and such that ω(0)= 0.
Let ρ be defined as

(∀ζ ∈ C) ρ(ζ ) =


ω(|ζ |)
|ζ |

ζ if ζ ̸= 0

0 otherwise.
(4.4)

4.2.3 Robustness results

Proposition 4.2.3 Consider Model 4.2.1. For every i ∈ {1, . . . ,m}, let W+
i ∈ [0,+∞[Ni×Ni−1 .

Let (β1,k)1⩽k⩽N0 ∈ [0,2π[N0 , let (βm,k)1⩽k⩽Nm ∈ [0,2π[N1 , and for every i ∈ {2, . . . ,m−1}, let
βi ∈ [0,2π[. Suppose that the weight operators of the network are such that

W1 =W+
1 Diag

(
eıβ1,1 , . . . ,eıβ1,N0

)
(∀i ∈ {2, . . . ,m−1}) Wi = eıβiW+

i

Wm = Diag
(
eıβm,1 , . . . ,eıβm,Nm

)
W+

m . (4.5)

Then
θm = ∥W+

m · · ·W+
1 ∥. (4.6)

4.2.4 Proposed approach

We implement our architecture to meet the requirements of Proposition 4.2.3 and design a
Robust Complex Feed-Forward Neural Network (RCFF-Net). The architecture is illustrated
in Figure 4.2. The network processes complex-valued data by stacking their real and
imaginary parts.

Training strategy

Concerning the training strategy, we propose to use a similar approach to the case of
ACNNs. We employ a projected version of the AdaMax optimizer [22].
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(a) The proposed architecture: 5 CDLs (1024, 512, 512, 1024, and 513 neurons, respectively)
followed by a Rotation layer (ROT) or a Diagonal layer (DIAG).

(b) The structure of the dense complex layer:
each group of neurons (capsule) will process
jointly the real part and the imaginary part of
the coefficients.

(c) The structure of a diagonal layer: the white
band corresponds to the main diagonal which
features non-zero coefficients.

Fig. 4.2 Overview of the RCFF-Network. The red part denotes the real part, while the
green accounts for the imaginary part.

Algorithm 3: Projected AdaMax Algorithm
Partition {1, . . . ,K} into mini-batches (Mq,n)1⩽q⩽Q

foreach q ∈ {1, . . . ,Q} do
t = (n−1)Q+q
foreach i ∈ {1, . . . ,m} do

gi,t = ∑k∈Mq,n ∇iℓ
(
zk,(ηi,t

)
1⩽i⩽m)

µi,t = χ1µi,t−1 +(1−χ1)gi,t

νi,t = max(χ2νi,t−1, |gi,t |)
γi,t = γµi,t/(1−χ t

1)

ηi,t+1 = PSi,t

(
ηi,t − γt µi,t/(

√
νi,t + ε)

)
, ηi,t+1 = PSi,t (ηi,t − γi,t/νi,t)

In this algorithm, the modulus and the division are performed component-wise.
Hereabove, ℓ denotes the loss function, ∇i represents the gradients with respect to ηi.
The vectors µi,t and νi,t represent the first and second momentum estimates at iteration t,
using parameters χ1 = 0.9 and χ2 = 0.999. These variables are initialized with µi,0 = νi,0

= 0. Each gradient step is followed by a projection PSi,t onto the constraint set Si,t . This
set expresses the two constraints on which our approach is grounded.
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Table 4.2 Experimental results for audio denoising

MSE PSNR [db] CC

Noisy signal 7.21×10−3 21.02 0.83

Baseline – Wiener Filter 3.45×10−3 24.24 0.94
Baseline – NLMS Adaptive Filter 2.52×10−3 25.61 0.95
Baseline – Standard FCN 2.78×10−3 26.05 0.95

RCFF

ρ(ζ ) = CReLU(ζ )
U θupp = 335 0.96×10−3 30.00 0.99
C θm = 0.99 2.02×10−3 27.64 0.96

ρ(ζ ) = GK(ζ )
U θupp = 73.25 1.04×10−3 29.45 0.97
C θm = 0.99 2.11×10−3 27.14 0.96

ρ(ζ ) = 8
3
√

3
|ζ |

1+|ζ |2 ζ
U θupp = 120 0.96×10−3 30.19 0.98
C θm = 0.93 1.22×10−3 29.02 0.97

ρ(ζ ) = Ctanh(ζ )
U θupp = 421 1.28×10−3 28.98 0.97
C θm = 0.99 2.09×10−3 27.41 0.96

ρ(ζ ) = ζ√
1+|ζ |2

U θupp = 143 1.90×10−3 27.80 0.96
C θm = 0.97 2.12×10−3 26.98 0.96

ρ(ζ ) = tanh(|ζ |)
|ζ |

U θupp = 98 1.43×10−3 28.60 0.97
C θm = 0.98 1.93×10−3 27.63 0.97

ρ(ζ ) = ζ ↑ U θupp = 187 1.43×10−3 30.21 0.98
C θm = 0.99 1.09×10−3 29.13 0.97

ACNN C θm = 1.00 1.98×10−3 26.24 0.96

Table 4.3 Experimental results for audio denoising with attacked inputs

MSE PSNR [db] CC Deg.[%]

Noisy signal 7.30×10−3 21.00 0.83 0.09

Baseline – Standard FCN 5.46×10−3 22.87 0.90 12.24

RCFF

ρ(ζ ) = CReLU(ζ )
U θupp = 335 4.84×10−3 23.62 0.91 21.26
C θm = 0.99 1.96×10−3 25.43 0.95 7.99

ρ(ζ ) = GK(ζ )
U θupp = 73.25 5.42×10−3 23.31 0.90 20.84
C θm = 0.99 1.84×10−3 25.72 0.95 5.23

ρ(ζ ) = 8
3
√

3
|ζ |

1+|ζ |2 ζ
U θupp = 120 5.26×10−3 22.05 0.90 26.96
C θm = 0.93 1.34×10−3 28.68 0.97 1.17

ρ(ζ ) = Ctanh(ζ )
U θupp = 421 5.15×10−3 23.14 0.90 22.14
C θm = 0.99 2.82×10−3 25.41 0.95 6.20

ρ(ζ ) = ζ√
1+|ζ |2

U θupp = 143 6.02×10−3 22.24 0.89 26.45
C θm = 0.97 2.98×10−3 25.12 0.94 8.14

ρ(ζ ) = tanh(|ζ |)
|ζ |

U θupp = 98 5.78×10−3 21.36 0.89 23.32
C θm = 0.98 5.46×10−3 25.56 0.95 5.61

ρ(ζ ) = ζ ↑ U θupp = 187 4.67×10−3 23.09 0.90 22.34
C θm = 0.99 1.45×10−3 28.20 0.95 2.60

ACNN C θm = 1.00 2.46×10−3 25.43 0.95 3.08

4.2.5 Experimental results

The proposed methodology is applied to the same problem as in the previous section.
We use a 5-layer RFCC-Net (m = 5), with diverse activation functions, and use the same
pre-processing pipeline as in Section 4.1.3.

The main difference is that the network now estimates the complex STFT coefficients
and, in the post-processing phase, an inverse operation (ISTFT) is performed for signal
reconstruction.

We evaluate the performance of our RCFF-Net on the same 3 standard metrics: Peak
Signal-to-Noise Ratio (PSNR), Cross-correlation (CC), and Mean Squared Error (MSE),
which was also employed as the training loss. The results on the test set are summarized
in Table 4.2. We compare our solution with other standard denoising techniques, namely
optimal Wiener filter and adaptive filter based on Normalised Least Mean Squares (NLMS)
algorithm. As another baseline, we also trained a classical m = 5 layers Fully Connected
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Network (FCN) with ReLU activation. Furthermore, we trained RCFF-Net both using
constrained and unconstrained weights, referred to in Table 4.2 as C and U, respectively.

4.3 Conclusion

This chapter proposes two new classes of neural networks. The first one, ACNN, estab-
lishes a novel link between fully connected layers and convolutional structures, whereas
the second one RCFF-Net operates in the complex space. By judiciously structuring the
weight matrices, we derived a tight Lipschitz bound for both proposed architectures. In
the complex case, our analysis led to new theoretical results concerning nonexpansive
activation functions. We also extended an existing tight Lipschitz bound for feedforward
neural networks to the complex domain. Computing this bound is no longer a combina-
torial problem for complex-valued neural networks, which emphasizes the challenges
raised with respect to the real case. We also showed how to control Lipschitz bounds
numerically in the training process.



Chapter 5

ABBA neural networks: coping with
positivity, expressivity, and
robustness

In this chapter, we introduce ABBA networks, a novel class of (almost) non-negative
neural networks, which are shown to possess a series of appealing properties. In particular,
we demonstrate that these networks are universal approximators while enjoying the
advantages of non-negative weighted networks. We derive tight Lipschitz bounds both
in the fully connected and convolutional cases. We propose a strategy for designing
ABBA nets that are robust against adversarial attacks, by finely controlling the Lipschitz
constant of the network during the training phase. We show that our method outperforms
other state-of-the-art defenses against adversarial white-box attackers. Experiments are
performed on image classification tasks on four benchmark datasets.

5.1 Introduction

It is widely accepted that humans possess the innate ability to decompose complex
interactions into discrete, intuitive hierarchical categories before analyzing them [26].
Conceptually, this evolution towards part-based representation in human cognition can
be linked to non-negativity restrictions on the network weights [9]. This idea, along with
other factors, has sparked interest in neural networks with non-negative weights.

Approach. We are interested in neural networks having non-negative weights, except
for the first and last linear layers. We focus on a particular subclass of these networks for
which the weight matrices have a structure of the form[

A B
B A

]
,

thus enjoying a number of algebraic properties. The corresponding networks are sub-
sequently called ABBA networks. Note that weight matrices A and B are duplicated in
ABBA networks, thus allowing us to limit the number of parameters.
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5.2 Related work

Non-negative neural networks. Inspired by non-negative matrix factorization (NMF)
techniques, the work of [9] introduces non-negative restrictions on the weights to create
neural networks in which the hidden units correspond to identifiable concepts.

Link with other networks. From another perspective, the idea of using redundant
weights is reminiscent of siamese networks [2]. These architectures are successfully used
to handle similarity learning tasks, such as face verification [42], character recognition
[23], and object tracking [20].

5.3 ABBA neural networks

5.3.1 Problem formulation

We will say that the activation operator Ri is symmetric, if there exists (ci,di) ∈ (RNi)2

such that
(∀x ∈ RNi) Ri(x)−di =−Ri(−x+ ci). (5.1)

In other words, (ci,di)/2 is a symmetry center of the graph of Ri.

5.3.2 ABBA Matrices

We first define ABBA matrices, which will be the main algebraic tool throughout this
chapter.

Definition 5.3.1 Let (N1,N2) ∈ (N \ {0})2. AN1,N2 is the set of ABBA matrices of size
(2N2)× (2N1), that is M ∈ AN1,N2 if there exist matrices A ∈ RN2×N1 and B ∈ RN2×N1 such
that

M =

[
A B
B A

]
. (5.2)

The sum matrix associated with M is then defined as S(M) = A+B.

5.3.3 Extension to feedforward networks

In this section we present the ABBA neural network for fully-connected layers

Definition 5.3.2 Let m ∈ N\{0}. T̃ is an m-layer ABBA network if

T̃ = (W̃m+1 ·+b̃m+1)T̃m · · · T̃1W̃0 (5.3)
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Fig. 5.1 Equivalence between a standard fully-connected layer and its ABBA correspon-
dent.

with W̃0 ∈ R(2N0)×N0 , W̃m+1 ∈ RNm×(2Nm), b̃m+1 ∈ RNm , and

(∀i ∈ {1, . . . ,m}) T̃i = R̃i(W̃i ·+b̃i) (5.4)

R̃i : R2Ni → R2Ni , (5.5)

b̃i ∈ R2Ni , (5.6)

W̃i ∈ ANi,Ni−1 , (5.7)

for given positive integers (Ni)0⩽i⩽m. T̃ is an m-layer non-negative ABBA network if it is
an m-layer ABBA network as defined above and, for every i ∈ {1, . . . ,m}, the elements of
W̃i are non-negative.

5.3.4 Link with standard neural networks

An illustration of the link between fully-connected layers and ABBA matrices is shown in
Figure 5.1.

5.3.5 Expressivity of non-negative ABBA networks

One of the main advantages of non-negative ABBA networks with respect to standard
networks with non-negative weights is that they are universal approximators.

5.3.6 Lipschitz bounds for ABBA fully-connected networks

In this section, we show that we can derive a simple expression for the Lipschitz constant,
using a separable bound, for non-negative ABBA networks.

Proposition 5.3.3 Let m ∈ N\{0} and let T̃ ∈ N +
m,A be given by (5.3)-(5.7). Assume that,

for every i ∈ {1, . . . ,m−1}, R̃i is a separable nonexpansive operator. A Lipschitz constant of
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T̃ is
θm = ∥W̃m+1∥ ∥S(W̃m) · · ·S(W̃1)∥∥W̃0∥. (5.8)

The Lipschitz constant of T̃ in (5.8) reduces to

θm = ∥|Wm| . . . |W1|∥. (5.9)

5.4 Convolutional networks

Here we extend the results presented in Section 5.3 to convolutional layers.

5.4.1 ABBA convolutional layers

The ABBA convolutional layer W̃i has twice the number of input channels and twice the
number of output ones. In this section we show the mathematical modelling of an ABBA
convolutional layer.

5.4.2 Lipschitz bounds for convolutional networks

In this section, we establish bounds on the Lipschitz constant of an m-layer convolutional
neural network T .

Theorem 5.4.1 Let (σi)1⩽i⩽m be the aggregated stride factors of network T , and let

W = (W m)↑σm−1 ∗ · · · ∗ (W 2)↑σ1 ∗W 1 (5.10)

where (W i)1⩽i⩽m are the MIMO impulse responses of each layer of network T and, for
every i ∈ {2, . . . ,m}, (W i)↑σi−1 is the interpolated sequence by a factor σi−1 of W i. For every
j ∈ S(σm) = {0, . . . ,σm −1}d , we define the following matrix:

W (j)
= ∑

n∈Zd

W (σmn+ j) ∈ [0,+∞[ζm×ζ0 . (5.11)

Then
θm =

∥∥∥ ∑
j∈S(σm)

W (j)(W (j))⊤∥∥∥1/2
(5.12)

is a lower bound on the Lipschitz constant estimate of network T . In addition, if for every
i ∈ {1, . . . ,m}, p ∈ {1, . . . ,ζi−1}, and q ∈ {1, . . . ,ζi}, wi,q,p = (wi,q,p(n))n∈Zd is a non-negative
kernel, then θm is a Lipschitz constant of T .

5.4.3 Bounds for ABBA convolutional networks

Here we extend the previous results to the ABBA context.

Theorem 5.4.2 Under the above assumptions on the convolutional ABBA network T̃ , let
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(∀i ∈ {1, . . . ,m})(∀j ∈ S(si)) Ω
(j)
i = ∑

n∈Zd

S(W̃ i(sin+ j)) ∈ [0,+∞[ζi×ζi−1 , (5.13)

where (W̃ i(n))n∈Z is the MIMO impulse response of the ABBA layer of index i. Then a
Lipschitz constant of T̃ is

θ m = ∥W̃m+1∥
( m

∏
i=1

∥∥∥ ∑
j∈S(si)

Ω
(j)
i

(
Ω

(j)
i

)⊤∥∥∥)1/2
∥W̃0∥, (5.14)

where ∥W̃m+1∥ (resp. ∥W̃0∥) is the spectral norm of the linear operator employed in the last
(resp. first layer).

5.5 Lipschitz-constrained training

Algorithm 4: Projected ADAM Algorithm
Partition {1, . . . ,K} into minibatches (Lq,n)1⩽q⩽Q

t = (n−1)Q+q # iteration index
# sweep minibatches
foreach q ∈ {1, . . . ,Q} do

foreach layer i do
gi,t = ∑k∈Mq,n ∇iℓ

(
zk,(Ψi,t

)
1⩽i⩽m) # grad. computation

µi,t = β1µi,t−1 +(1−β1)gi,t # classical ADAM updates
νi,t = β2νi,t−1 +(1−β2)g2

i,t

γt = γ
√

1−β t
2/(1−β t

1)

Ψ̃i,t = Ψi,t − γt µi,t/(
√

νi,t + ε)

foreach layer i do
Ψi,t+1 = projSi,t

(Ψ̃i,t) # projection step

5.6 Experiments

In this section, we show the versatility of ABBA neural networks in solving classification
tasks. The objective of our experiments is three-fold.

(i) First, we compare positive ABBA structures with their classic non-negative counter-
parts and check that our method yields significantly better results in all considered
cases.

(ii) We then train ABBA models constrained to different Lipschitz bound values and
evaluate their robustness against several adversarial attacks.

(iii) Finally, we compare our proposed approach with three other well-established
defense strategies, namely Adversarial Training (AT), Trade-off-inspired adversarial
defense (TRADES) [46], and Deel-Lip proposed by [40].
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Dataset Network Architecture Accuracy [%]

MNIST

ABBA
Dense 98.33
Conv 98.70

Non-Negative
Dense 94.95
Conv 93.27

Baseline
Dense 98.35
Conv 98.68

FMNIST

ABBA
Dense 90.02
Conv 90.17

Non-Negative
Dense 84.56
Conv 83.09

Baseline
Dense 90.00
Conv 90.20

RPS

ABBA Conv 99.08

Non-Negative Conv 67.30

Baseline Conv 98.86

CelebA

ABBA Conv 90.21

Non-Negative Conv 61.04

Baseline Conv 90.17

Table 5.1 Comparison between ABBA, full non-negative and arbitrary-signed (baseline) networks.

We validate our ABBA networks on four benchmark image classification datasets:
MNIST, its more complex variant Fashion MNIST, a variant of the Rock-Paper-Scissors
(RPS) dataset [31], and a binary classification on CelebA [29].

5.7 Conclusions

In this chapter, we introduce ABBA networks, a novel class of neural networks where the
majority of weights are non-negative. We demonstrate that these networks are universal
approximators, possessing all the expressive properties of conventional signed neural
architectures. Additionally, we unveil their remarkable algebraic characteristics, enabling
us to derive precise Lipschitz bounds for both fully connected and convolutive operators.

Leveraging these bounds, we construct robust neural networks suitable for various
classification tasks. For future research, it would be intriguing to explore the application
of ABBA networks in regression problems, where controlling the Lipschitz constant
may present more challenges. Moreover, extending our theoretical bounds to different
structures, such as recurrent or attention-based networks, holds promise for further
advancements.

Finally, we recognize the necessity of investigating the scalability of the proposed
training method to deep architectures. One of the main hurdles in this endeavour is the
increased number of parameters that deep ABBA architectures entail.



Chapter 6

Conclusions

6.1 Summary

Despite the fact that they may appear at the forefront of developments in Data Science,
neural networks raise challenges in the areas of safety, privacy, and security due to their
susceptibility to a wide variety of threats and perturbations that may arise while they are
in operation. It is therefore vital to understand the reasons for neural network instability,
identify the areas of concern, and develop solutions that aim to improve their stability in
order to guarantee the existence of AI-based systems that are agnostic to small variations
of their inputs.

During this thesis, our main focus was the design and training of neural networks
that are intrinsically robust against adversarial perturbations of their inputs. Thus, we
proposed several robust training techniques, and we proved their effectiveness in solving
both classification and regression problems. We showed that our research is applicable to
a wide range of applications and that its results may be useful in real-life scenarios as well.

First, we focused on simple feed-forward networks, that contain only linear layers.
Our research started from the results established in [11], which state that in the case
of non-negative weighted neural networks, tight Lipschitz bounds can be derived. We
design several robust training algorithms, trying to achieve a good trade-off between
robustness and performance.

6.2 Perspectives

In this section, we propose some possible extensions of the aforementioned methods that
could be worth investigating in future works.
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6.2.1 Training 1-Lipschitz denoisers

A possible way to extend the work presented in this thesis would be leveraging our
established methods for controlling the Lipschitz constant of neural networks to generate
1-Lipschitz denoisers, as presented in [37].

6.2.2 Expanding the applications of complex-valued neural networks

In future works, it would be interesting to apply RCFF-Net to a larger panel of signal
processing applications involving complex-valued data, like audio unmixing where robust
CVNNs could play a pivotal role.

6.2.3 Controlling the Lipschitz constant of more complex layer structures

Given the progress made in this thesis, particularly in the effective management of the
Lipschitz constant to enhance the stability of linear and convolutional layers within neural
networks, a compelling prospect emerges for future research endeavours to extend to
more complex structures such as recurrent ones.

6.2.4 Combining Lipschitz control with other certifiable defenses

In the context of improving neural networks’ stability against adversarial threats, a
promising avenue for future research lies in the integration of our current Lipschitz
constant control mechanisms with complementary defense strategies. Of particular
interest is the potential synergy between our approach and certified defenses, such as
GloRoNets [27].

6.2.5 Studying the effect of other regularization techniques

Another interesting direction to follow would be the comprehensive study of the effects
of various regularization techniques on the stability of the model.

6.2.6 Extending to other distances

Extending our current methods for controlling the robustness of neural networks to
encompass other metrics is another research perspective. Presently, our techniques
primarily address ℓ2 perturbations, but the practicality of real-world systems demands a
more comprehensive approach [4].
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