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The aim of the present study was to obtain and characterize (structural and functional) of 

nanostructured membranes with fibrillar consistency obtained using electrospinning technique with 

applications in tissue engineering (TE).  

The first section of this thesis provides a literature background, describing concepts referring 

to nanomaterials and nanofibrous materials for TE (bone tissue engineering and wound dressing 

aplications), as well as electrospinning method, from basic concepts to challenges in electrospinning 

and nanofibrous scaffolds for tissue regeneration. 

First, the thesis introduces the synthesis and evaluation of silica (SiO2) nanofibrous mats 

produced through electrospinning and subsequent calcination with tetraethyl orthosilicate (TEOS) 

and polyvinyl alcohol (PVA). This is the first report on the development of fibrous silica 

architectures, using tetraethyl orthosilicate (TEOS) and polyvinyl alcohol (PVA) during the self-

assembly electrospinning (ES) processing (a layer of flat fibers must first be created in self-

assembly electrospinning before fiber stacks can develop on the fiber mat). The elemental and 

microstructural details of the produced scaffolds were assessed through a combination of infrared 

and thermal analyses, as well as advanced microscopic techniques. The study of the development 

of pure silica networks was made following a calcination process at a temperature of 500°C for a 

duration of 2 hours. These networks were found to be composed of nanofibers that were uniformly 

distributed and randomly orientated, exhibiting smooth surfaces. Subsequently, the samples 

underwent evaluation to determine their suitability for application in bone tissue engineering, 

employing a murine animal model. Calcined silica fibrous scaffolds (SiO2_0h aging and 

SiO2_1.5h aging) shown enhanced outcomes in mineralization and the generation of new bone. 

Additionally, the incorporation of vitronectin into calcined networks resulted in enhanced 

mineralization and facilitated the production of new bone through the promotion of cell adhesion 

to the fibers. The findings confirmed the suitability of electrospun silica nanofibers as effective 

options for scaffolding in bone tissue engineering applications. 

Injuries and diseases of the skin require accurate treatment using nontoxic and noninvasive 

biomaterials, which aim to mimic the natural structures of the body. There is a strong need to 

develop biodevices capable of accommodating nutrients and bioactive molecules and generating 

the process of vascularization. Electrospinning is a robust technique, as it can form fibrous 

structures for tissue engineering and wound dressings. The best way of forming such meshes for 

wound healing is to choose two polymers that complement each other regarding their properties. 
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Second, the present doctoral thesis focuses on the manufacture and characterisation of an 

electrospun nanofiber mesh composed of polyvinyl alcohol, chitosan, and usnic acid. On the one 

hand, PVA is a water-soluble synthetic polymer widely used for the preparation of hydrogels in 

the field of biomedicine owing to its biocompatibility, water solubility, nontoxicity, and 

considerable mechanical properties. PVA is easy to subject to electrospinning and can offer strong 

mechanical stability of the mesh, but it is necessary to improve its biological properties. On the 

other hand, CS has good biological properties, including biodegradability, nontoxicity, 

biocompatibility, and antimicrobial properties. Still, it is harder to electrospin and does not possess 

as good mechanical properties as PVA. As these structures also allow the incorporation of 

bioactive agents due to their high surface area-to-volume ratio, the interesting point was to 

incorporate usnic acid into the structure as it is a natural and suitable alternative agent for burn 

wounds treatment which avoids an improper or overuse of antibiotics and other invasive 

biomolecules. The primary objective of this study is to investigate the potential applications of this 

nanofiber mesh in the field of wound healing. The physicochemical analysis demonstrated the 

presence of a fibrous morphology, with the fibers exhibiting diameters ranging from 14.86 nm to 

75.06 nm. Notably, the majority of the fibers fell between the size range of 30 to 40 nm. The 

scanning electron microscopy (SEM) pictures revealed that the nonwoven assembly exhibited a 

linear morphology characterized by a random orientation. The SEM images revealed fibers with 

ramifications that exhibited a significantly porous structure, making them appropriate for 

utilization in wound healing due to their ability to mimic the natural extracellular matrix (ECM). 

The XTT assay demonstrated significant findings at both the 48-hour and 72-hour time points for 

the 5%PVA_2%CS_UA sample. Specifically, it exhibited a notable increase in cell viability, 

approximately 30% higher than that of the control group. The confirmation of this fact establishes 

the biocompatibility of the electrospun mesh with usnic acid, indicating its potential as a viable 

biodevice capable of supporting cellular proliferation and growth. The cell viability seen using 

fluorescence microscopy was found to be similar to that of the control group, indicating that the 

nanofiber meshes did not demonstrate any cytotoxic properties. The 5%PVA_2%CS_UA 

formulation exhibited enhanced anti-biofilm efficacy against the S. aureus strain, as observed from 

the perspective of biofilm growth. In brief, the results mentioned above significantly support the 

potential of applying electrospun nanofiber meshes composed of polyvinyl alcohol (PVA), 

chitosan, and usnic acid as a viable material for the purpose of wound healing. 
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The third objective of this study was to develop and characterize nanostructured 

membranes with fibrillar consistency based on recycled PET and magnetite nanoparticles 

functionalized with usnic acid by electrospinning technique. The obtained PET nanostructured 

membranes exhibited enhanced antibacterial and antibiofilm properties against both Gram-

positive (S. aureus) and Gram-negative (P. aeruginosa) bacterial strains, as well as opportunistic 

yeast C. albicans. The samples obtained at higher feed rates exhibited superior antibacterial 

potential, which can be attributed to the development of denser meshes and a higher concentration 

of magnetite nanoparticles on their surface (as observed qualitatively). Furthermore, it was shown 

that the fibrillar mats nanoparticle-containing exhibited minimal toxicity when tested in both in 

vitro and in vivo conditions. The findings present novel possibilities for PET recycling, including 

its integration with diverse antimicrobial inorganic nanostructures to produce enhanced fibrillar 

materials with antimicrobial and antibiofilm characteristics. These developments have the 

potential for expanded utilization within the food industry, particularly in the context of food 

packaging applications. Additionally, their application in the biomedical field could be promising 

for the development of antimicrobial medical textiles. 

A variety of materials has been developed by the utilization of the electrospinning process. The 

electrospinning techinque is characterized by a high level of complexity, with the final result being 

influenced by a wide range of parameters. This represents a challenge in determining the optimal 

parameters configuration for a certain application. Nevertheless, this technique also enables the control 

of fiber integrity and morphology by precisely adjusting these parameters. Frequently, it is 

advantageous to conduct spinning processes at ambient temperature due to the cost-effectiveness 

compared to operating at very high or low temperatures. All the materials obtained (in the form of 

nanofibrous mats) and studied for their properties demonstrated potential for tissue engineering 

applications and wound healing by bringing novelty in this biomedical field. Also, the optimization 

of parameters done in this work holds great value for the electrospinning deposition process of 

different types of materials. 
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