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Chapter 1 
 

 

 

Introduction 
 

The term "Earth Observation" (EO) is a critical component of remote sensing 

(RS), enabling us to comprehend and oversee our planet's intricate and ever-changing 

environment. It involves acquiring information about Earth's surface and atmosphere 

from various sensors positioned on satellites, aircraft, drones, and ground-based 

platforms. In addition, it plays a crucial role in monitoring and managing a range of 

applications, such as agriculture, forestry, urban planning, disaster preparedness, 

climate monitoring, and environmental preservation. 

Over the years, EO has evolved significantly, driven by technological 

advancements, satellite systems, and data analysis methods. Recently, the 

incorporation of Deep Learning (DL) techniques has revolutionized EO by extracting 

valuable insights from the vast and expanding collection of Earth imagesWith the 

continuous growth in the number of Earth-observing satellites and the availability of 

high-resolution, multispectral, and hyperspectral imagery, the volume of EO data is 

increasing at an unprecedented rate. This surge in data has presented both new 

challenges and opportunities for researchers, who are increasingly relying on DL as a 

potent tool to unlock the untapped potential within these datasets. 

The integration of DL techniques with EO has expanded the frontiers for 

gleaning valuable insights from the extensive and ever-expanding collection of Earth 

images. This development has resulted in the creation of innovative applications in 

population monitoring, disaster management, and environmental preservation. 

Moreover, the utilization of EO imagery has had a societal and policy impact, driving 

the formulation of innovative and comprehensive regulatory frameworks aimed at 

balancing private and public interests in space-based EO. 

 

1.1 Scope of the Thesis 
 

In this thesis, we introduce new solutions to address this issue. We focus on 

four strategies which will be discussed in more detail in the next chapters. These 

solutions include Active learning (AL), Query-by-Example, Physic-aware deep 

models, and Generative adversarial networks (GANs). AL can address the adversarial 

samples issue in RS image classification by iteratively selecting the most informative 

samples to improve the model's performance. This approach helps the model to better 

understand the underlying structure and properties of the data, making it more 

resilient to adversarial attacks and improving its overall performance. 

Another strategy we study in this thesis is Query-by-Example for RS image 

retrieval. This strategy aims to find the most similar image to the query and optimize 

the network's weights so that adversarial samples are far away from the query image 



 

 

 

in the latent space. In this way, the network will understand the similar samples to 

query and not be vulnerable against adversarial samples. 

Another solution is guiding the DNN by using the statistical properties of data 

or injecting the physical properties of data into the model. In general, physic-aware 

deep models can address the adversarial samples issue in RS image classification and 

make the model more resilient to adversarial attacks by including physical knowledge 

in the learning process. GANs are a type of DL model that consists of two neural 

networks, a generator and a discriminator, which are trained together in a process 

known as adversarial training. The generator creates synthetic samples, while the 

discriminator attempts to distinguish between real and synthetic samples. GANs can 

be used to generate adversarial samples for RS image analysis, which can then be 

used to improve the robustness of the classification model against adversarial attacks. 
 

 

  



 

 

 

Chapter 2 
 

 

 

AL 
 

 

ML plays a crucial role in RS image processing and has demonstrated 

impressive benefits for many applications such as RS image analysis. In particular, 

DNN have shown interesting properties on image datasets, and they are effective in 

extracting high-level intrinsic features and classifying complex problems. One of the 

most challenging issues in ML algorithms is labeling data because training a DNN is 

costly and necessitates a large number of training samples. In RS, obtaining labeled 

data can be expensive, time-consuming, or even impossible. 

An effective way to deal with this issue is through AL, which can be used to 

leverage small amounts of labeled data. AL is an important concept in ML and has 

significance in RS image analysis. AL refers to a selection strategy for acquiring 

labeled data that allows the ML algorithm to actively select which samples to label, in 

order to improve model performance with less labeled data. Selectively labeling 

samples enhances the performance of ML algorithms on tasks such as classification or 

segmentation without requiring large amounts of labeled data. 

This selection is done by a query strategy that offers the user the most 

informative or representative samples of an unlabeled data set. To retrain the model, 

the operator will relabel the selected samples and add them to the training set. 

Therefore, we train the model interactively with fewer training samples than the 

traditional ML passive learning methods. It also is more efficient (reducing the 

annotation cost) because it uses samples that are more useful for learning. 

In this chapter, we use ResNet18 as a classifier to compare both classical and 

cutting-edge AL strategies within the same framework. Five cutting-edge deep AL 

methods are used, the most recent of which has never been tested on RS data before. 

We also propose a new AL performance metric based on the number of labeled 

samples. We use the random sampling strategy as a baseline and compare the 

performance of the strategies to the maximum accuracy achieved by the baseline. This 

novel metric calculates how many fewer labeled samples are needed for a given 

sampling strategy to achieve the same maximum accuracy as a random sampling 

strategy. In the end, ablation studies have been conducted on four different classifiers 

and AL batch query sizes. This study discusses a review of AL in RS for various 

applications. The challenges of combining DL and AL are then discussed, and deep 

AL solutions are provided. In the third section, a comparison of both classical and 

deep AL strategies is presented. Finally, the future scope and perspective of AL in RS 

are discussed. 

 

 

2.1   Deep AL Challenges and Solutions 
 



 

 

 

In the past decade, DL models have demonstrated remarkable prowess in 

signal processing. Leveraging their ability to capture hierarchical features from 

diverse data types—such as numerical, image, text, and audio—DL models have 

emerged as powerful solutions for tasks spanning recognition, regression, semi-

supervised, and unsupervised problems. Distinctive traits set Deep AL (DAL) apart 

from traditional AL. First, DAL employs batch-based sample querying, a departure 

from the one-by-one query method commonly utilized in traditional AL algorithms. 

This shift not only reduces frequent model retraining but also addresses the limited 

variation in training data, a concern that can exacerbate overfitting. Second, while 

classical AL often employs traditional ML algorithms like SVM, DAL engages DL 

learners such as CNNs. This adaptation has been examined across various DL 

architectures, including Bayesian CNNs and stacked restricted Boltzmann machines, 

for image and text classification. It is noteworthy that a majority of proposed DAL 

methodologies consistently outperform random sampling by a substantial margin, 

irrespectively of the uncertainty-based strategy and classifier employed. 

DAL is an innovative and intricate approach that seeks to harness the strengths 

of both DL and AL methodologies. Integrating AL with deep architectures, such as 

CNNs, presents challenges. AL techniques predominantly rely on probabilistic 

functions that analyze the probability distribution of a sample of belonging to existing 

classes. This clashes with most DL architectures, which typically yield predicted class 

labels instead of class probabilities, as they lack an inherent uncertainty mapping. To 

tackle this quandary, certain studies capitalize on the properties of Bayesian networks 

and conceive Bayesian Neural Networks (BNNs) to achieve probability distributions 

over network weights. For instance, in [51], a BNN is introduced to extract an output 

probability matrix from input data. This matrix facilitates the application of AL's 

probabilistic function, providing uncertainty estimates and a probabilistic 

interpretation of DL models through inferences of weight distributions. Moreover, in 

the domain of seismo-volcanic monitoring introduces a Bayesian temporal CNN (B-

TCN) for continuous event detection and classification. This framework efficiently 

extracts the most uncertain events from continuous data streams. In essence, DAL 

represents a dynamic convergence of DL and AL methodologies, leveraging their 

complementary strengths. The incorporation of Bayesian Neural Networks and 

innovative architectures exemplifies the strides taken to surmount the challenges of 

combining these two paradigms, ultimately opening pathways for more informed and 

robust decision-making in complex domains like seismo-volcanic monitoring. 

Furthermore, the realm of AL witnesses endeavors aimed at refining the AL 

process through the fusion of diverse criteria. A notable instance introducing an 

innovative AL algorithm that maximizes two selection criteria—representative and 

uncertainty sampling. This algorithm unfolds in two stages: firstly, an unsupervised 

feature learning process creates a weighted incremental dictionary based on training 

data, facilitating the estimation of data representativeness; subsequently, the 

supervised learning phase leverages this framework to estimate data uncertainty. 

Addressing the challenge of limited high-quality labeled training data, recent studies 

pivot towards semi-supervised techniques. Such techniques generate pseudo-labels 

from a small set of labeled examples, which in turn enriches the labeled training set. 

Notably, ML models can exhibit confident yet incorrect predictions, particularly when 

the training dataset fails to describe the latent space. 



 

 

 

An alternative approach to tackle the scarcity of labeled data in DAL is 

through GANs, frequently employed to synthesize training samples. Adversarial AL 

gains traction within this framework. For instance [59] pioneers a feature-oriented 

adversarial AL strategy, utilizing high-level features from an intermediate layer of a 

DL classifier to establish a GAN-based acquisition heuristic. Moreover [32] 

introduces a novel active deep feature extraction scheme, incorporating both 

representative and informative criteria. An adapted adversarial autoencoder serves as 

the initial step to facilitate classification-specific deep feature extraction. The 

incorporation of dictionary learning and a multi-variance and distributional distance 

measure guides the selection of valuable candidate training samples. 

In pursuit of enhancing DAL performance, alterations to the loss function or 

the deployment of deep ensemble methods come to the forefront. A supplementary 

module is often incorporated to enhance the target model's performance and guide 

DAL selections. One such approach involves predicting instances where the target 

model might err by introducing a loss prediction model alongside the target backbone 

model. Furthermore, an study constructs an auxiliary deep network for the basic 

learner, dedicated to learning the uncertainty of unlabeled samples in the candidate 

dataset. Converging the features of the original training data and those of the 

intermediate hidden layer of the basic learner, a fully connected network is devised, 

bolstered by a novel loss function tailored to the task. 

In summary, researchers are innovating across various fronts to amplify the 

efficacy of DAL. These strategies encompass intricate combinations of selection 

criteria, integration of semi-supervised techniques, exploitation of GANs and 

adversarial AL, and the augmentation of target models through diverse supplemental 

modules. These multi-pronged approaches collectively contribute to the evolution of 

DAL, presenting a nuanced landscape of techniques to confront challenges and 

advance its capabilities. 

 

2.2   Classification Performance Comparison 
 

In this section, we present nine query strategies in detail. These strategies are 

mostly based on uncertainty and aim to select new data samples that maximally 

reduce the uncertainty in the basic learners. 

{Entropy} 

The Maximum Entropy selects instances based on the entropy of the model's 

prediction distribution. It is based on the idea that instances for which the model has 

high entropy, i.e. instances for which the model is uncertain about the correct label are 

likely to provide the most information for improving the model. 

{Least Confident} 

Least Confidence is an uncertainty-based AL query strategy that selects the 

instances for which the model is least confident. In other words, the model selects 

instances for which it has the highest uncertainty in its predictions. The model ranks 

instances by their prediction confidence scores and the instances with the lowest 

scores are selected for labeling. 



 

 

 

{Margin} 

Margin Sampling selects instances for labeling based on the difference 

between the model's maximum predicted probability and the second highest predicted 

probability. The idea is that instances with a high margin between the maximum and 

second highest predicted probability are likely to provide the most information for 

improving the model. 

{Mean Std.} 

Mean Std. is based on the standard deviation of the model's predicted 

probabilities for each class. It is based on the idea that instances for which the model's 

predicted probabilities have a high standard deviation are likely to provide the most 

information for improving the model. It maximizes the average of  the standard 

deviation of the predicted probabilities over all classes. 

{BALD} 

Batch Bayesian AL by Disagreements (BALD) is a practical approximation 

for the mutual information between a batch of points and model parameters. This 

approximation serves as an acquisition function, enabling the joint selection of 

multiple informative points in the context of deep Bayesian Active Learning. BALD 

focuses on choosing data points expected to maximize the information gained from 

the model parameters, specifically the mutual information between predictions and 

the model posterior. 

{BADGE} 

Batch AL by Diverse Gradient Embeddings (BADGE) employs diverse 

gradient embeddings to capture the variability in a model's predictions. It selects a 

diverse subset of samples that spans the embedding space, measuring uncertainty as 

the gradient magnitude concerning parameters in the output layer. This computation is 

based on the most likely label according to the model. The objective of BADGE is to 

reduce redundancy and enhance the diversity of selected samples, contributing to the 

efficiency and effectiveness of the Active Learning process. 

{VAAL} 

Variational Adversarial AL (VAAL) is an AL algorithm that combines 

variational autoencoders (VAEs) and adversarial training to select informative 

samples for annotation. It uses the VAE to model the data distribution and generate 

new samples that are close to the real data, and the adversarial training to discriminate 

between the real and generated samples. VAAL then selects the most informative 

samples based on a measure of uncertainty and diversity and uses them to update the 

model. By combining the VAE and adversarial training, VAAL can generate diverse 

and informative samples, and the AL process can be more efficient and effective. 

VAAL has been shown to outperform several other state-of-the-art AL algorithms on 

various benchmark datasets. 

{WAAL} 

Wasserstein Adversarial AL (WAAL) offers theoretical insights by framing 

the interactive process in Active Learning (AL) as distribution matching, employing 

the Wasserstein distance. In this method, informative samples challenging for the 

current model to classify are chosen and incorporated into the training set to enhance 

model performance. The selection of the most informative samples involves a 

combination of uncertainty and diversity measures. The Wasserstein distance is then 

utilized to identify examples that maximize the dissimilarity between predicted and 



 

 

 

true distributions, making them more likely to be informative. Leveraging the 

Wasserstein distance allows WAAL to generate more informative and diverse 

samples, thereby improving the efficiency and effectiveness of the AL process. 

WAAL has demonstrated superior performance compared to several other state-of-

the-art AL algorithms across various benchmark datasets. 

{LPL} 

Loss Prediction Loss (LPL) is a 2019 strategy that incorporates a small 

parametric module into a target model. This module is trained to predict the loss of 

unlabeled inputs concerning the target model. Subsequently, the module can 

recommend data for which the target model is prone to make incorrect predictions. 

The objective of this approach is to enhance the performance of the target model by 

leveraging the predictions of the loss prediction module. 

 

2.3   Results 
 

In the assessment of Active Learning (AL) strategies, ResNet is employed as 

the classifier, and AUBC, final accuracy, and LDN metrics are presented for both 

EuroSAT (RGB) and EuroSAT (MS). The dataset is evenly divided into 50% training 

and 50% test sets. The results are outlined in Table 1 when M=500 and Q=10000. 

Conventional AL strategies consistently show 1% to 3% higher performance 

compared to Random selection in terms of AUBC. Among them, Entropy exhibits the 

highest AUBC (76.01%) and final accuracy (88.57%). Mean Std. also performs 

notably well. DAL (Diversity in Active Learning) strategies, such as VAAL and LPL, 

achieve even higher AUBC values, around 80%. WAAL and BALD also outperform 

conventional strategies with AUBC values of 77.8% and 76.18%, respectively. In 

terms of final accuracy, all DAL strategies outperform conventional strategies. LPL, 

VAAL, and WAAL achieve final accuracies of 94.12%, 92.98%, and 92.66%, 

respectively—representing over 7% higher accuracy than Random after Q is 

exhausted. Other strategies, like BALD and BADGE, also achieve higher final 

accuracy, around 90% and 89%, respectively. Among conventional strategies, 

Entropy and Mean Std. outperform Margin and Least Confident on the EuroSAT 

(RGB) dataset. In summary, advanced AL strategies, especially DAL techniques, 

markedly enhance accuracy and efficiency across various datasets. 

Table 2.2: Comparison of nine AL strategies on EuroSAT (RGB) and EuroSAT (MS). 

 



 

 

 

As discussed earlier, the LDN metric elucidates the percentage of labeled data 

required to achieve the optimal performance obtained by Random sampling. Lower 

LDN values denote superior performance. Table 2.2 showcases the compelling 

efficiency of certain strategies. VAAL and LPL, for instance, necessitate just 50% of 

Q compared to Random, enabling them to achieve Random's peak accuracy with 

merely half the labeling budget. Similarly, WAAL and BALD exhibit reduced LDN 

values when contrasted with conventional AL strategies. When comparing the 

average LDN across conventional strategies (75.25%) with that of DAL strategies 

(63.85%), a revelation emerges: DAL strategies require around 12% fewer data to 

attain Random's maximum accuracy. Notably, while BADGE boasts commendable 

final accuracy, its high LDN and comparatively low AUBC dampen its overall 

performance across the entirety of the AL process. 

Extending our evaluation to the EuroSAT (MS) dataset, we find that the 

increased information gleaned from the 13 MS bands translates to enhanced 

performance. Broadly speaking, AUBC and final accuracy values soar across all AL 

strategies when applied to the MS dataset compared to RGB. Relevant disparities 

arise; notably, Entropy and Least Confident achieve approximately 5% and 6% higher 

accuracy, respectively, on EuroSAT (MS) compared to EuroSAT (RGB). Among 

DAL strategies, BALD demonstrates a commendable 4% improvement, while the 

other strategies exhibit more than a 6% enhancement. LPL and WAAL stand out, 

achieving 85.68% and 84.43%, respectively—highlighting their prowess as the best 

and second-best strategies. 

An intriguing observation arises: both Entropy and Least Confident exhibit 

approximately 1% higher AUBC than BALD, showcasing nuanced dynamics for 

EuroSAT (MS). Additionally, the final accuracy of all strategies on the MS dataset 

surpasses that of EuroSAT (RGB). LPL and VAAL lead the pack, securing the 

highest and second-highest final accuracy, respectively. The majority of conventional 

AL strategies, except Margin, achieve final accuracy rates exceeding 91%. This 

margin is not far from the average final accuracy of DAL strategies, which hovers 

around 94%. This robust outcome accentuates the MS dataset's capacity to empower 

models with more comprehensive information, culminating in superior performance. 

One of the most intriguing analyses revolves around the concept of LDN, 

shedding light on the efficiency of WAAL and LPL. Impressively, these strategies 

require only a mere 20% of labeled data to achieve the same pinnacle of accuracy as 

Random sampling. This revelation underscores their strategic significance, 

particularly when confronted with budgetary constraints that limit labeling 

expenditures. Equally compelling are the LDN values for VAAL and BADGE, 

standing at 34.8% and 39.31%, respectively. 

A notable highlight emerges from BADGE's performance on the EuroSAT 

(MS) dataset. Here, it displays an exceptional 6% improvement in AUBC and a 

remarkable reduction of almost 40% in LDN when compared to the RGB dataset. 

This underscores BADGE's remarkable potential, particularly in scenarios where 

labeled samples are more abundant. The comparative study of Active Learning (AL) 

strategy performance between EuroSAT (RGB) and EuroSAT (MS) unveils the 

transformative power of incorporating Multi-Spectral (MS) images. This integration 

effectively addresses the challenges posed by limited labeled data, resulting in an 

overall boost in model performance. 



 

 

 

 

2.4  Conclusion 
 

In this chapter, we conducted a comprehensive comparison of nine distinct AL 

strategies within a unified framework, focusing on their performance on two RS 

image datasets. Notably, some of these strategies were employed on RS datasets for 

the first time, showcasing the novelty and breadth of our exploration. Our analysis 

spanned two classifiers, RF and ResNet18, elucidating their performance across 

varying amounts of labeled samples. The findings underscore the general trend where 

DNNs, in particular, exhibit improved performance with a larger pool of labeled data 

samples, reinforcing the value of data abundance. 

By comparing conventional AL strategies using ResNet and RF classifiers, we 

observed that while RF demonstrates stable performance-budget curves, it falls short 

of achieving the accuracy levels of ResNet during the AL process. An ablation study 

delved into the impact of the number of query samples per AL round ($M$) on 

ResNet's performance, revealing that a higher $M$ yields more stable performance-

budget curves. Moreover, our study introduced a novel metric, LDN, for evaluating 

AL strategies. LDN revealed that certain DAL strategies, such as LPL and WAAL, 

achieved the lowest requirement for labeled data to perform at the baseline level. This 

characteristic positions these strategies as particularly beneficial when facing limited 

labeling budgets. 

Additionally, our study delivered a comprehensive overview of the evolution 

of AL in the RS domain, starting with the initial naïve AL strategies and tracing their 

continuous refinement over time. We highlighted the recent surge in attention towards 

leveraging DL in AL and elucidated the critical necessity of employing AL in the 

context of DL networks. We tackled challenges unique to DL, pointing to innovative 

solutions, such as Bayesian networks to address the non-probabilistic nature of DNNs, 

the amalgamation of diverse criteria to ensure informativeness and representativeness, 

the application of semi-supervised techniques for pseudo-labeling, and the utilization 

of GANs to mitigate the scarcity of labeled data. Furthermore, we advocated for the 

design of specialized networks for AL by modifying loss functions, showcasing their 

potential to enhance the overall AL process. In essence, this study constitutes a 

multifaceted exploration, offering insights into the effectiveness of various AL 

strategies on RS datasets, novel performance metrics, and innovative solutions to 

address challenges in integrating AL with DL networks. Our findings contribute to a 

deeper understanding of the synergy between AL and RS, providing valuable 

guidance for efficient and effective data acquisition and annotation in this dynamic 

domain. 



 

 

Chapter 3 
 

 

 

Query-by-Example for RS Image 

Retrieval 
 

 

Thanks to the capability of mimicking a non-linear function of DNN, these 

models are able to capture the essential characteristics of images. The embedding in 

latent-space layers of DNN models can be taken as high-level features to 

comprehensively represent the visual content of RS images. As a result, DL provides 

the most common and useful feature extraction methods with many applications in RS 

image processing. The main issue with using DL is that it is greedy for data to 

optimize a massive number of parameters. If a DNN model is to be trained in a 

supervised manner, a large amount of labeled data is required. 

In the RS big data era, we can easily collect a large amount of raw data, but 

accurately labeling oversized data becomes challenging because there exist many 

kinds of RS images compared with the fixed RGB format of natural images in the 

computer vision domain. For this reason, experts study unsupervised DL methods to 

tackle the data labeling problem. However, these methods can have wildly inaccurate 

results and need enhancement and improvement to achieve more accurate and reliable 

results. In recent studies, many enhancement techniques have been proposed to help 

or guide DL models. Physics-aware DL, combining feature extraction approaches 

with DNN, modifying the network architecture, and designing cost functions are some 

examples of these techniques, which are further described below. 

In RS, experts pay attention to extracting physical information in different 

wavelength bands of multispectral images. In addition to the spectral features, spatial 

features provide important information on data. For example, authors in [139] provide 

a method to capture spatial detail. Therefore, a graph convolutional network with 

pairwise similarity constraint is proposed to address RS image retrieval. Generally, 

different shape features help to make up for each other’s defects. As a consequence, 

the combination of multiple hand-crafted features often presents stronger 

representation ability and benefits in improving RS image retrieval. 

Our work also contemplates the design of a new loss function that can cluster 

similar features (or embeddings) in the latent space. The main idea is used for 

anomaly detection, which is an unsupervised problem by nature. Image retrieval like 

anomaly detection can be considered a one-class classification that can be conducted 

by any kind of classification method. Therefore, this can be a clever solution to solve 

the scarcity of labeled training data. For instance, authors proposed a data enclosing-

ball minimizing autoencoder for change detection. As well as, another study 

suggested a bidirectional GAN-based one-class classifier for network intrusion 

detection in which only normal data samples are used for training and both normal 



 

 

 

and anomalous data samples are used during testing to identify anomalous samples in 

the test set. In line with this research, we selected and utilized a one-class 

classification methodology. However, we enhanced the strategy by creating a new 

cost function to model the multispectral data for the RS image retrieval task. 

In this chapter, we exploit and modify the idea of deep SVDD [2] for RS 

image retrieval. Deep SVDD is inspired by kernel-based one-class classification and 

uses a neural network to map most of the data network representations into a 

hypersphere. Therefore, a DNN is jointly trained to map the data into a hypersphere of 

minimum volume in the latent space. It is expected that relevant (similar) samples to 

the query are concentrated inside of the hypersphere and irrelevant samples (outliers 

or ambiguous) are moved away from the hypersphere. The closest embedding to the 

hypersphere center corresponds to the most relevant sample to the query. We modify 

the network's objective function to take advantage of the statistical information of 

data. We employ the covariance regularization in [156] to prevent an informational 

collapse in which the encoder produces constant or non-informative vectors. It 

penalizes unnecessary redundancy of the embedding in the latent space. In addition, 

we propose a novel cost function to minimize the volume of the hypersphere by 

unlocking the hypersphere's predefined center while preventing network divergence 

during training. It allows the hypersphere center to be free to compress the relevant 

samples as much as possible while driving irrelevant ones away. 

Our main contributions are the following: 

 To the best of our knowledge, this paper is the first to study deep 

SVDD (or any one-class classification method) for CBIR. Due to not 

being a fully supervised approach, less labeled data (only samples of 

one class) is needed for training and the samples of other classes can 

be unknown. 

 Enhancing the cost function with an additional covariance term to 

minimize the correlation between dimensions in the latent space 

becomes especially relevant when dealing with high-dimensional data. 

 Providing a novel cost function by unlocking the hypersphere's 

predefined center and considering the average of embeddings over a 

batch in each iteration as a moving center while preventing network 

divergence during training. 

 Furthermore, we investigate the relationship between the entropy of 

images and the image retrieval performance of the enhanced methods. 

3.1   Results 
 

The 60 most relevant samples corresponding to different queries are shown in 

Figure 3.2. The top-left sample is the most relevant and the score is increasing from 

left to right. The first two rows show the results of deep SVDD for $d=128$. We can 

see that the image retrieval works well for only the See/Lake class, which has uniform 

distribution and the lowest average of entropy. By looking at the most relevant 

samples for other classes, we recognize all samples are uniform and texture-less. That 

means the network is able to learn only uniform samples and demonstrates the need 

for a more elaborated cost function to learn more complex features. 



 

 

 

 

Figure 3.2: The top 60 most relevant samples are retrieved from the test set. 

In contrast, most of the retrieved samples using an additional covariance term 

are more complex samples much closer to the human expectation for each class. The 

results for $\nu = 1024d$ are shown in the two middle rows of Figure 3.2. The 

performance of the model for Industrial and Residential queries improved more than 

for other classes. Also, the most relevant samples of these two classes are totally 

correct. In addition, retrieved samples of Forest and Pasture are much more accurate 

than using deep SVDD. However, some samples of Forest are retrieved for a query of 

Pasture, which might be because of the similar spatial structure. The last two rows 

indicate the results of DC-SVDD when $a=0.001$ and $b=1$. They show that the 

additional drifting center term improves the image retrieval of almost all classes. The 

samples of the Annual Crops, Permanent Crops, and River are retrieved more reliably 

than with previous methods. Also, the most relevant samples of Industrial and 

Residential classes are still totally correct. In addition, image retrieval for Highway 

queries has improved, despite there being some samples of Rivers in the top 60 most 

relevant samples. The similar spatial texture of these two classes leads the network to 

consider them the same class. It is worth mentioning that there are some incorrectly 

retrieved samples. More specifically, one can observe some retrieved Forest samples 

for the Sea query and Annual Crops for the Permanent Crops query. Unfortunately, no 

method can correctly retrieve samples of Herbaceous Vegetation query. 

 

3.2   Conclusion 
 

In this chapter, we have introduced two novel methods to guide DNN by 

considering statistical information of data. The first proposed method penalizes 

unnecessary redundancy and minimizes the correlation between different dimensions 

of embedding. The second method tries to minimize hypersphere volume considering 



 

 

 

the unblocking of the center of the hypersphere. This relaxation makes the clustering 

of data easier for DNN. Both proposed methods overcome the limitations of Deep 

SVDD in particular when the query belongs to a complex class. We have emphasized 

that these are very important advantages because the main objective of CBIR is to 

optimize the search with a minimum number of annotated images to find the most 

similar samples in the archive. 

Moreover, we have introduced the use of deep SVDD for CBIR problems 

(particularly in the context of the query by example) in RS. The experimental 

performances of the proposed system were evaluated on an archive of 5400 images 

describing 10 different categories for the EuroSAT dataset and also another well-

known dataset, UCM with 21 classes is employed to assess the effectiveness and 

robustness of the proposed methods. The results show that the proposed methods 

provide efficient image retrieval performance, largely surpassing the considered 

baseline method (SVDD). In addition, we evaluated the performance on multispectral 

data, attaining superior results as compared to RGB data. It is also worth noting that 

the proposed methods are independent of the considered DNN, and therefore, they can 

be used for any cost function to guide the DNN to achieve a superior representation of 

the data. 

 



 

 

 

Chapter 4 
 

 

 

Physic-Aware DNNs 
 

 

In this section, we propose wavelet-guided DNNs by taking advantage of the 

properties of WST to extract invariant features for robust clustering. In the proposed 

method, the network is trained on samples from only one class in the training set and 

is evaluated on the test set including all classes. This strategy has the benefit of not 

requiring labeling for every class in the dataset which addresses the scarcity of 

training labeled data. We focus on the one-class classification task and discuss the 

challenges and benefits of some methods used in recent studies. One-class 

classification methods aim to directly learn a decision boundary with a low error 

when applied to unseen data. 

Authors proposed a novel method, called one-class transfer learning. They 

took into account that in the field of computer vision, one can access labeled data 

from different domains that are not related to one-class classification datasets and 

benefit from using data from a different domain. Similarly, authors utilize the 

objective function inspired by information theory, which maximizes the distance 

between normal and anomalous data in terms of the joint distribution of images and 

their representation. 

We exploit a WST network to guide the DNNs for one-class classification. 

WST provides the invariant representation which is informative because of keeping a 

high frequency of data. Using these properties, can cluster the normal samples and 

distinguish outliers. At first, WST extracts scattering coefficients from given images, 

and then the network is applied to them. This leads to obtaining more robust and 

accurate results. Furthermore, to address the problem of the insufficient amount of 

training set for DNNs, an adequate initial feature extraction to ease the training task is 

essential. A thorough evaluation confirmed superior performance and robustness both 

to outliers (not normal samples) in the training set and to translation and rotation of 

the test set. Furthermore, we investigate the relationship between the entropy of 

images and the guidance of WST for highly textured images. 

 

4.1   Physics-Aware GAN for Cloud Removal 

 

RS imagery data offers a valuable means for EO to analyze and extract 

information, providing insights into Earth's resources and various physical phenomena 

parameters. With the advancements in sensor technology for satellite imagery, access 

to high-quality images featuring high spatial resolution has become feasible. This 

capability enables the capture of detailed information in images, leading to the growth 

of applications like land cover classification, thematic mapping, environmental 



 

 

 

monitoring, and natural resource management. Despite these advancements, it's worth 

noting that statistics indicate cloud cover obscures more than half of the Earth. This is 

a common issue with optical RS images causing information to be obscured by clouds 

and their associated shadows. As a result, we cannot capture reliable information from 

corrupted images unless we use clear sky images at the same time that they are not 

available. Therefore, one reasonable solution is improving the networks by leveraging 

trustworthy and transparent physical properties. Our proposed method exploits 

spectral angular distance (SAD) to train cycle-consistent adversarial networks with 

illumination invariant features. 

Since, we need cloud-free images, many methods are proposed to detect and 

remove clouds from RS images. By reviewing studies in cloud removal, we have 

grouped the methods into three categories. One category is multitemporal-based in 

which there are used multitemporal images of the same area. The drawback of this 

category is that on the one hand, the time interval of multitemporal images is long on 

the other hand the area is changing rapidly. For this reason, usually, the accuracy of 

the reconstructed area is low. One comprehensive study in this category proposes 

spatiotemporal fusion using a Poisson-adjustment method for cloud removal in multi-

sensor and multi-temporal images. The approach employs a Poisson-based residual 

correction strategy to enhance spectral coherence between recovered and cloud-

affected regions. 

In the past decade, DL has played an even more significant role in RS, with a 

focus on DL-based approaches. GANs, a notable neural network model, utilizes two 

networks in an adversarial manner to generate clearer and sharper images. Nowadays 

various kinds of GANs have been created for different applications. Therefore, It was 

not overlooked by the RS experts and many studies have been published for cloud 

removal using GANs. 

The third category is based on multisensory data fusion which is used in 

auxiliary penetrable modalities. A helpful auxiliary data in this field consists of SAR 

images. Thanks to long-wavelength SAR can penetrate through clouds in different 

weather with different kinds of clouds. It has caused it to be used a lot by various 

methods in the RS area such as data fusion and image translation to obtain and 

reconstruct the information in contaminated optical images. SAR-optical data fusion 

was proposed in to remove clouds using cycle GAN. Also, they computed cloud 

probability masks to model cloud coverage explicitly while reconstructing cloud-

covered information. 

Unlike most computer vision algorithms for dehazing which are based on 

image enhancement, we inject physical properties into DNNs to reconstruct the 

contaminated regions. Therefore, we use 12 Sentinel-2 bands in order to benefit the 

spectral reflectance of multispectral images. In this chapter, we extend the proposed 

model in [3] based on cycle-consistent GAN to remove clouds from corrupted 

multispectral images. The most significant advantages of this method are the 

elimination of the need for paired images (cloudy/cloudless) and the use of an 

auxiliary modality that penetrates clouds. In contrast to [3] we exploit transparent 

information in the dataset by translating pixel values into polar coordinates, and then 

we train the network with illumination invariant features to reduce the impact of 

clouds and shadows. The proposed method, Hybrid GAN-SAD not only achieves 



 

 

 

notable results but also increases the trustworthiness of the network by utilizing 

reliable physical properties. 

 

4.2   Results 

For a comprehensive comparison of results, we employed three distinct 

training strategies for our network. In the initial experimental setup, the network was 

trained exclusively using the RGB visible bands (B2, B3, B4) from the training 

dataset. In the second configuration, the network was trained using Near-Infrared (B8) 

in addition to RGB (4 bands), and in the last setup, the full complement of bands (12 

bands) was utilized. The outcomes of each method are depicted in Figure 4.8. For 

visualization purposes, only B4, B3, and B2 images were used, and the brightness of 

the figure was adjusted for clarity. 

The figure's first row displays samples of test images, while the second row 

exhibits the network output using only visible bands as implemented by Singh et al. 

[3]. Subsequently, the third row presents results incorporating Near-Infrared bands, 

and the fourth row showcases outcomes using the full spectrum of dataset bands. 

Furthermore, the fifth row illustrates results from the network trained on images 

converted to polar coordinates, representing our proposed method. Lastly, the sixth 

row displays cloud-free patches with a 16-day interval, serving as the ground truth. 

Notably, haziness was effectively removed in all methods (columns 5-7). Near-

Infrared, benefiting from its ability to penetrate thin clouds, outperforms other 

methods in dehazing (columns 2-4). Our proposed model not only exhibits a notable 

impact on cloud removal but also demonstrates considerable efficacy in shadow 

elimination and information recovery beneath shadows, a capability not observed in 

other methods (columns 2-4). A closer inspection reveals that handling corrupted 

patches caused by dense clouds poses a challenge, and complete information recovery 

from the background without leveraging auxiliary data such as SAR proves to be 

impossible. 

 

4.3   Conclusion 
 

In the first section of this chapter, we demonstrate that WST considers the 

statistical properties of data and extracts invariant features that can help DNNs for 

more accurate classification, especially for more complex images. It is worth noting 

that complex RS images usually have big intraclass diversity and complex features 

which makes classification more difficult and leads to misclassification. The proposed 

method alleviates the need for a large training set for the DNNs because it leverages 

WST to achieve more stable features. The robustness to pollution in a normal training 

set and also robustness to transformation were discussed. In addition, it was observed 

that WST compensates for the limited performance of the DNNs for classes with high 

entropy. By improving DNN classification performance, the model is more robust 

against adversarial or any kind of artifacts. 

 



 

 

 

 

Figure 4.8: Qualitative results, Row I: cloudy test samples, Row II: results of RGB,  Row III: results of RGB+IR, 

Row IV: results of full bands, Row V: results of Hybrid GAN-SAD, Row VI: ground truth. 

 
The second section addresses directly the physical adversarial attacks in RS 

images. Natural adversarial in EO such as clouds and shadows are common artifacts 

in RS image analysis. By injecting physical properties into the cycle-consistent GAN, 

we were able to convert a cloudy multispectral image to a cloudless image. To 

recover information beneath clouds and shadows, we create a synthetic multispectral 

space to obtain illumination-invariant features and train the GAN in this space. The 

proposed method modifies DNNs by injecting physical properties to achieve 

trustworthy results. As we recover real information about the background using the 

physical properties of data, we can trust the outputs of the model. 

 

 

 

  



 

 

 

Chapter 5 
 

 

 

Synthetic Image Generation by 

GANs 
 

 

GANs, a neural network type for image generation and data synthesis, tackle 

adversarial challenges in RS by establishing an objective function through training 

data. The discriminator distinguishes real and fake images, guiding the generator to 

enhance its output based on current network weights. GANs are widely used for 

various data synthesis and manipulation tasks, particularly in the visual domain. 

The ocean, crucial for Earth's climate regulation, is studied using SAR images, 

providing insights into oceanic processes and their climate change impact. This 

chapter introduces a GAN-based method for creating realistic and diverse ocean-

pattern SAR images. Utilizing a style-based generator network and an adversarial 

discriminator network, the approach recognizes and generates intricate patterns in 

SAR imagery. To counter discriminator overfitting common in limited training data 

scenarios, the ADA mechanism is employed. Training the GAN with ADA helps the 

generator capture spatial and statistical characteristics of oceanic phenomena under 

restricted data conditions. However, utilizing GAN-generated images for RS 

applications requires a thorough assessment of their quality and authenticity, as well 

as validating the model's performance on real-world data. We examine the reliability 

of GAN-based generated images and propose two approaches approximating 

precision and recall for GANs performance. DL has become a pivotal tool in the 

processing of RS images, playing a vital role in EO technology. Its effectiveness in 

extracting semantic information and classifying high-resolution satellite images has 

yielded promising outcomes, demonstrating high accuracy, recall, precision, and other 

evaluation metrics. The increasing enthusiasm within the RS community for DL 

methods has spurred the creation of numerous architectures specifically designed to 

tackle RS problems, frequently delivering outstanding performance. These 

advancements have notably enhanced RS image analysis, establishing DL as an 

indispensable component in the field. 

 

5.1   Why Synthetic data? 

Implementing DL models for RS image processing poses a challenge due to 

the demand for substantial amounts of training data. Adequate training data is 

essential for achieving optimal performance in machine learning models, enabling 

them to discern underlying patterns and relationships within the data. However, 

acquiring a significant volume of training data can be both costly and time-intensive, 



 

 

 

and in some instances, obtaining a representative sample for a specific problem may 

prove challenging. 

 

Various solutions have been proposed to tackle the data requirements issue in training 

DL models for RS image processing. Data augmentation techniques, such as flipping, 

rotation, and scaling, serve to amplify the training data by generating new samples 

from the existing dataset. Another strategy is transfer learning, which involves 

utilizing pre-trained models on extensive datasets to extract features and fine-tune the 

model for the specific RS problem. Active learning, conversely, entails the iterative 

selection of the most informative samples from the dataset to train the model, 

minimizing the need for a large amount of labeled data. 

A particularly promising solution for data augmentation involves synthetic 

data generation through GANs. GANs, comprising a generator and a discriminator, 

engage in a competitive process to produce realistic synthetic data. The generator 

crafts synthetic samples, and the discriminator assesses their quality, providing 

feedback to enhance the generated data. Utilizing GANs for synthetic data generation 

offers more diverse and realistic samples compared to conventional data augmentation 

techniques, which rely on linear transformations. Synthetic data generated by GANs 

proves valuable in augmenting the training dataset, mitigating data scarcity 

limitations, and enhancing the overall performance of DL models in RS image 

processing. 

Evaluating GAN-based generated images for RS applications necessitates a 

comprehensive assessment of their quality, authenticity, and the model's real-world 

performance validation. The selection of appropriate evaluation metrics plays a 

pivotal role in accurately gauging GAN performance. However, identifying suitable 

metrics for GAN-generated images proves challenging, given that traditional metrics 

may not entirely capture the images' quality and diversity. Typically, researchers rely 

on metrics such as Inception Score (IS), Frechet Inception Distance (FID), and Kernel 

Inception Distance (KID) to evaluate GAN performance. While these metrics offer 

insights into training progress, they do not necessarily correlate with real-world tasks. 

 

5.2   Why Ocean image analysis? 
 

The ocean assumes a vital role in Earth's climate regulation, influencing the 

intricate dynamics among the ocean, atmosphere, and other climate elements. 

Observing the ocean provides valuable insights into diverse processes, particularly 

with the aid of SAR imagery. SAR contributes detailed information on oceanic and 

coastal activities, fostering an improved comprehension of climate dynamics. This 

enhanced understanding, in turn, aids in refining climate models and supporting 

research, monitoring, and mitigation endeavors related to climate change. 

Additionally, precise measurements and observations of the ocean surface are integral 

for comprehending air–sea interactions and developing high-resolution climate 

models. 



 

 

 

SAR plays a pivotal role in advancing our understanding of the world's 

oceans. One of its most significant advantages in oceanography is its all-weather 

capability. Unlike optical sensors, which are hindered by cloud cover and darkness, 

SAR can operate effectively regardless of weather conditions, providing a continuous 

stream of data crucial for studying dynamic ocean processes. This is particularly 

important for monitoring and analyzing phenomena such as ocean currents, wave 

patterns, and wind behavior, which are vital components of ocean circulation and 

climate systems. Additionally, SAR's ability to operate day and night allows 

researchers to capture critical nighttime events and track changes in oceanic 

conditions around the clock, contributing to a more comprehensive understanding of 

the marine environment. 

In this chapter, our focus is on the analysis of Ocean SAR images. We present 

a novel evaluation metric specifically crafted to measure the diversity of images 

generated by GANs. Our methodology involves training a classification network 

using images generated by a GAN and subsequently evaluating its performance on a 

test set comprising real-world images. This evaluation metric quantifies the difference 

between the acquired (generated images) and the desired (real images) data 

distributions. By assessing the classification network's accuracy in categorizing real 

images, we can deduce the similarity between the generated and real images, offering 

a robust measure of their likeness. 

To evaluate the reliability of the generated images, we utilize ResNet18 as a 

classifier and conduct training and testing in two distinct experimental setups. In each 

setup, we create two balanced datasets, one comprising real images and the other 

generated images. The first setup involves training the classifier on real images and 

testing on generated images, while the second setup operates vice versa. By 

comparing the classification accuracy in each setup, we approximate the precision and 

recall for the performance of GANs. 

 

5.3   StyleGAN2 with ADA 
 

In this section, we present the methodology of StyleGAN with ADA [211], 

which extends the original StyleGAN [212] framework with a dynamic augmentation 

strategy for the discriminator during training. The StyleGAN2-ADA architecture 

consists of a generator and a discriminator network, both of which are composed of 

convolutional layers. The architecture is similar to StyleGAN2, with the primary 

difference being the introduction of the adaptive discriminator augmentation 

mechanism to stabilize training when using limited data. The methodology 

encompasses the following steps and components: 

{Mapping Network} 

The mapping network is a fully connected network that maps points in the 

latent space to an intermediate latent space. This network is responsible for 

controlling the style of the generated images. 

{Intermediate Latent Space} 

The intermediate latent space, also referred to as the style space, serves as a 

mechanism to influence the style of generated images across various levels of detail. 



 

 

 

This style space is incorporated into the generator model at multiple stages, enabling 

precise control over the characteristics of the generated images. 

{Weight Demodulation} 

Weight Demodulation, a technique introduced in StyleGAN2, reconstructs the 

augmentation operation from the original StyleGAN. This method is employed to 

regulate the style of generated images at different levels of detail. 

{Noise Injection} 

Noise is deliberately introduced at each point within the generator model, 

functioning as a source of variation. This noise contributes to the creation of 

stochastic variations in the generated images, introducing texture and fine details. 

{Adaptive Discriminator Augmentation (ADA)} 

The adaptive discriminator augmentation mechanism in StyleGAN2-ADA 

applies random augmentations to the input images during training, which helps 

prevent overfitting and stabilizes training when using limited data. The generator and 

discriminator networks are trained using an optimization process that minimizes their 

respective loss functions, such as the Wasserstein loss with gradient penalty. 

  



 

 

 

Chapter 6 
 

 

 

Conclusions 
 

 

We can draw the conclusion that the problem of adversarial samples in RS 

image classification is a serious issue that needs to be addressed based on the 

proposed methods and the experimental results of the thesis. Adversarial samples can 

cause deep learning models to produce incorrect predictions, leading to 

misclassification. This issue is particularly challenging for RS applications, as it can 

be caused by natural phenomena such as clouds, shadows, or artifacts in the satellite 

images. 

 

To address this issue, we proposed four solutions in this thesis, including AL, 

query-by-example, physic-aware deep models, and GANs. AL can improve the 

model's performance by iteratively selecting the most informative samples to better 

understand the underlying structure and properties of the data, making it more 

resilient to adversarial attacks. Query-by-Example aims to find the most similar image 

to the query and optimize the network's weights so that adversarial samples are far 

away from the query image in the latent space. Physic-aware deep models can address 

the adversarial samples issue in RS image classification by incorporating domain-

specific knowledge and physical properties of the data into the learning process. 

GANs can be used to generate adversarial samples for RS image analysis, which can 

then be used to improve the robustness of the classification model against adversarial 

attacks. 

 

Overall, this thesis contributes to the development of more accurate, robust, 

and efficient algorithms for analyzing satellite images and understanding various 

environmental and geographical phenomena. By investigating these topics, we have 

proposed novel solutions to address the issue of adversarial samples in RS image 

classification, which can help to improve the reliability and security of deep learning 

models in RS applications. 

 

6.1   Original contributions 
 

 

In the face of adversarial challenges inherent in RS image classification, this 

thesis delves into innovative strategies to enhance the robustness and reliability of DL 

models for EO multispectral images. Adversarial samples, stemming from intentional 

modifications or natural perturbations, pose a significant threat to accurate image 

classification in RS applications. 

 

In the first chapter, a meticulous comparison of nine AL strategies on two RS 



 

 

 

image datasets was conducted. We bring under the same framework and benchmark 

all strategies, among which, the most recent ones have not yet been tested on RS data. 

We assess the performance of AL techniques with regard to a new metric called LDN, 

shedding light on the efficiency of different strategies under limited labeling budgets. 

This investigation not only showcased the novel application of certain strategies to 

AL but also emphasized the growing importance of data abundance, particularly for 

DNNs. The historical evolution of AL in RS was also traced, emphasizing recent 

advancements, challenges unique to DL, and the potential of specialized network 

design for AL. 

 

Moving to the second chapter, the focus shifted to guiding DNNs through the 

incorporation of statistical information. Two novel methods were introduced, 

addressing the limitations of Deep SVDD and demonstrating their efficacy in CBIR 

problems. The versatility of these methods across different DNN architectures was 

underscored, showcasing their potential to enhance data representation in various 

contexts. This chapter demonstrated that pushing anomaly samples away from the 

normal samples in a latent space model makes the model robust against outliers and 

any kind of adversarial samples. 

 

The third chapter expanded on the significance of considering statistical 

properties and exploiting the WST to extract invariant features for improved 

classification of complex RS images. The study revealed the method's effectiveness in 

mitigating challenges such as intraclass diversity, pollution in training sets, and 

robustness to transformations. Additionally, the incorporation of physical properties 

into a cycle-consistent GAN addressed natural adversarial elements, providing a 

trustable solution for image analysis in the presence of clouds and shadows. 

 

In the fourth chapter, the utilization of StyleGAN2-ADA for synthetic image 

generation was explored, focusing on ocean patterns in Sentinel-1A WV SAR images. 

The objective is to robust a classifier and improve the classification accuracy by 

training the model on GAN-based generated images. The study highlighted the 

dependence of FID on training size, the trade-off between image quality and diversity, 

and the importance of a diverse dataset for effective GAN training. The evaluation 

metrics used provided nuanced insights into the precision, recall, and limitations of 

GAN-generated images. 

 

In summary, this thesis navigates the complex landscape of EO multispectral 

image analysis, addressing the persistent challenge of adversarial samples. The 

strategies explored, spanning AL, physics-aware models, Query-by-Example for 

image retrieval, and synthetic image generation by GANs, collectively contribute to 

the development of more accurate, robust, and efficient algorithms for the intricate 

task of satellite image analysis in diverse environmental and geographical contexts. 

As we move forward, these findings pave the way for advancements in RS 

applications, fostering a deeper understanding of Earth's dynamics through the lens of 

advanced DL techniques. 
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6.3   Perspectives for further developments 
 

 

Several key perspectives for further development include advanced AL 

strategies that integrate domain-specific knowledge. Employ adaptive query strategies 

that specifically consider spectral diversity and characteristics inherent to EO images. 

Another avenue involves combining diverse solutions to tackle adversarial samples in 

RS image classification. For instance, merging AL with GANs for synthetic data 

generation. GANs, in this context, serve not only to estimate model prediction 



 

 

 

uncertainty but also to prioritize uncertain samples for labeling, enhancing the model's 

robustness and confidence. 

 

Our primary focus for future development centers on refining synthetic image 

generation using GANs while accounting for the physical properties of EO data. As 

detailed in Chapter 5, the generated images demonstrate realism, high quality, and 

similarity to real data. However, in the frequency domain, distinguishing GAN-

generated images from real ones is possible, indicating GANs' challenges in learning 

spectral distributions. Addressing this, we aim to mitigate the spectrum discrepancy 

by training GANs in the frequency domain and incorporating physical properties into 

the model. This approach aims to enhance GANs' performance by better preserving 

the physical characteristics of the data. 
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