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1. Introduction 

The PhD thesis proposes the development of a motion cueing algorithm for a flight 

simulator based on a serial robot motion platform using genetic algorithms for the optimization 

of the optimal washout filter based on linear quadric regulator (LQR). The design, 

implementation, testing and validation of the algorithm were performed using the dynamic 

simulation system for pilot-in-the-loop applications, RoFSim, developed at the National 

Institute for Aerospace Research and Development "Elie Carafoli" - INCAS. The proposed 

motion cueing algorithm converts aircraft dynamics into robot movements, generating high-

fidelity motion within the physical limits of the flight simulator. This reproduction includes 

specific forces and accelerations, allowing the simulation to replicate sensations similar to 

those experienced in a real aircraft. 

The proposed research topic is essential because creating a realistic flight simulation 

environment for existing and developing aircraft is necessary. This environment validates flight 

scenarios, incorporates new technologies, and provides training for pilots to handle situations 

that may arise during aircraft operation. 

The obtained results demonstrate the stability and good performance of the implemented 

optimal washout filter, highlighting the potential use of the proposed algorithm in R&D 

projects and its further development. 

 

Keywords: flight simulator, motion cueing algorithm, serial robot, optimal washout filter, 

LQR, genetic algorithm, vestibular system 

1.1. Context 

Flight simulation has long been a vital tool in the aerospace industry. In order to minimize 

the risks and costs of aircraft development ( [1], [2], [3], [4]) flight simulation environments 

have been developed with the aim of improving flight quality [5], while maintaining a constant 

level of operational safety. Researchers make extensive use of flight simulators to gain 

knowledge in areas such as training procedures, understanding pilot/aircraft interface 

limitations, and ergonomics. Fixed-platform and motion-based simulators, parallel robots and 

serial robots have been developed in this context. 

Over the past decades, the payload of commercial six-axis independent robotic systems has 

systematically increased. The first flight simulators based on serial robotic systems, developed 

for research purposes, were the Diamond DA42 at the German Aerospace Centre (DLR) ( [6], 

[7]) and the Cyber-Motion Simulator at the Max Planck Institute (MPI) [8]. 

One effort in this direction is the dynamic simulation system for pilot-in-the-loop 

applications called RoFSim ( [9], [10], [11]), a flight simulator using a serial robot as a motion 

platform. This simulator has been developed at the National Institute for Aerospace Research 

and Development "Elie Carafoli" - INCAS. The simulator provides motion pointing 

capabilities in addition to the basic functions of any flight simulator. While the hardware 

performance of the flight simulator motion system has advanced significantly, the development 

of the motion indication algorithm that translates simulated aircraft dynamics into actionable 

motion commands is slightly lagging. This PhD thesis formulates, designs, develops, and 

implements an optimal motion indication algorithm that converts aircraft dynamics into robot 
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motions. The algorithm generates high-fidelity motions within the physical limits of the flight 

simulator, reproducing specific forces and accelerations. This simulation aims to provide 

similar sensations to those experienced in a real aircraft cockpit. 

1.2. Motivation 

As the dynamic simulation system for pilot-in-the-loop applications is a simulator used for 

research purposes ( [11]), this thesis aims to design an optimal motion cueing algorithm. The 

algorithm should be able to transform the real motion of a flight simulator maneuver into a 

logical and understandable motion for the serial robot workspace.  

1.3. Thesis objectives 

The PhD thesis aims to enhance the dynamic simulation system for pilot-in-the-loop 

applications by increasing its realism and ease of use. To achieve this, an optimal motion cueing 

algorithm has been developed to improve the flight simulation environment. This algorithm is 

useful in stability analyses of new aircraft conFiguretions [12], based on electric-hybrid 

architectures. 

1.4. Thesis structure 

The PhD thesis comprises seven chapters. 

Chapter one introduces flight simulators and motion indication algorithms for various 

motion platforms, including parallel and serial robotic platforms. The chapter also outlines the 

objectives and motivation of this study. 

The second chapter presents the current state of research on mathematical modelling of 

motion cueing algorithms specific to flight simulators. The aim is to convey to the pilot the 

acceleration sensations they would experience in a real aircraft. 

Chapter three covers the mathematical modelling of the dynamic simulation system for 

pilot-in-the-loop applications. The chapter begins with an introduction of the simulator 

platform, followed by a presentation of the simulator modules and functional structure. The 

subsequent section presents the reference systems and coordinate transformations used in this 

work. The chapter covers the mathematical modelling of the serial robotic system. It analyses 

and simulates the direct kinematics and inverse kinematics of the robotic system. 

Chapter four presents the procedure for scaling the workspace of the flight simulator, 

starting from the singularities handling method and local optimization. The conclusions of the 

chapter provide the minimum and maximum joint limits of the motion platform for the test 

conFiguretion of the motion indication algorithm. 

Chapter five covers the mathematical modelling of the motion cueing algorithm. The 

chapter begins with an introduction to the optimal washout filter based on LQR, followed by a 

presentation of the algorithm's general structure. The following section presents the scaling and 

liminting module of the algorithm, which ensures the safe operation of the ABB IRB 7600-500 

serial robotic system during flight simulator testing. The subsequent sub-chapter briefly 

introduces the mathematical model of the vestibular system, a crucial component of the motion 

cueing algorithm. The chapter presents the implementation procedure of the motion cueing 
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algorithm based on the optimal washout filter. The chapter concludes with the optimized 

algorithm model being used with evolutionary genetic algorithms. 

Chapter six presents the flight scenarios that were used to test the motion cueing algorithm 

and the corresponding results.  

The thesis concludes with a chapter of general conclusions, original contributions, and 

future research perspectives in the field of flight simulator-specific motion indication 

algorithms. Additionally, the bibliography used in carrying out the research work in the thesis 

is also presented. 

2. State-of-the-art on mathematical modelling of flight simulator motion 

cueing algorithms  

Chapter 2 provides an overview of the current state of the art in the development of motion 

cueing algorithms. This thesis addresses the problem of transmitting motion cues in the flight 

simulator using motion cueing algorithms, also known as washout filter algorithms. 

2.1. Introduction to motion cueing algorithms for flight simulators  

The washout filter algorithm aims to simulate the acceleration sensations a pilot would 

experience in a real aircraft on a motion platform with limited space ( [13], [14], [15]). It uses 

the linear accelerations and angular velocities of the simulated aircraft as input and outputs the 

trajectory to be followed by the end-effector of the motion platform in a Cartesian coordinate 

system. This algorithm is composed of three channels (rotational, translational, and tilt 

coordination), each of which consists of low-pass or high-pass filters, depending on the 

behaviour that the flight simulator is intended to represent.  

The most important theories in this area are the optimal ( [16], [17], [18], [19], [20]), 

adaptive ( [15], [19], [21], [22], [23], [24]) and robust ( [16], [18], [19], [25], [26], [27]) 

washout filter.  

2.2. Classical washout filter algorithm  

The classical washout filter algorithm is a widely used basic solution in various types of 

simulators due to its simplicity and ease of tuning ( [28], [29], [30], [31]). It has several 

advantages, including short processing time and stable performance. Research has 

demonstrated that the classical washout filter algorithm has limitations ( [32], [33], [34]), ( 

[35], [36], [13]). It is inflexible as it necessitates a tuning process that concentrates on the worst-

case scenario, resulting in conservative motion and poor workspace utilization. Therefore, the 

algorithm may not be suitable for certain circumstances. The washout filter algorithm has a 

main disadvantage in that it does not consider human perception, as it ignores the vestibular 

system in its structure. 

2.3. Optimal washout filter algorithm 

The optimal washout filter algorithm is based on human motion sensation and considers 

the vestibular system ( [37], [38]). The method integrates a mathematical model of the human 

vestibular system to minimize the sensation error between the pilot in the simulator and the 
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pilot in a real aircraft cockpit. The method utilises optimal control techniques based on 

quadratic linear regulators to develop higher-order filters for real-time application. A cost 

function is designed that depends on the sensation error between real and simulated aircraft 

pilots, as well as the platform motion.  

When developing an optimal washout filter based on LQR, the main challenge is to identify 

an appropriate constraint matrix of linear transfer functions, 𝑊(𝑠). This matrix connects the 

simulator and vehicle motion inputs to minimize the cost function by restricting both the error 

in perception between the simulator and the aircraft pilot and the movement of the platform 

should be considered. Figure 2.1 shows the diagram of the optimal washout filter based on 

LQR.  

 
Figure 2.1 Structure of the optimal washout filter based on LQR, adaptation [39] 

2.4. Centralisation of motion cueing algorithms characteristics 

Four types of motion cueing algorithms were identified for the design, development, 

implementation, and testing of a motion indication algorithm for flight simulators based on the 

state-of-the-art research in the literature. 

• Classical washout filter; 

• Adaptive washout filter; 

• Optimal washout filter; 

• Robust optimal washout filter.  

The main advantages of the classical washout filter are [40]: 

o The model is both mathematically and computationally simple, making it cost-

effective; 

o It is also relatively easy to design, although experience is required to modify it based 

on feedback from pilots during experimental testing of the algorithm in the simulator. 

Among the disadvantages of the classical washout filter algorithm, the following can be 

mentioned: 

o the use of mainly linear elements, thus not fully exploiting the capabilities of the 

simulator nor considering the non-linear characteristics of human motion perception 

(the human body is sensitive to both linear specific force and angular velocity [16], an 

experience that can be simulated by implementing a vestibular system model); 
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o the design must prioritize the most critical states due to fixed parameters that may result 

in minimal motion during lighter manoeuvres, a limitation that can be addressed by 

more sophisticated implementations of the washout filter.  

o The adaptive washout filter (AWF) was proposed by Parrish and co-workers [15] along 

with Reid and co-workers [41]. It has adaptive washout filter amplitudes that vary to 

minimize a cost function that penalizes the motion error, the magnitude of the motion 

and the change in adaptive parameters from their initial values [42]. It is important to 

note that only the high-pass filter amplitude is adaptive, while the low-pass filter 

amplitude remains fixed. The adjustment of a constraint filter involves selecting cost 

weights and adaptive filter amplitudes. 

The method has several advantages: [43]: 

o the filter generates reduced false motion indices compared to the classical washout 

filter; 

o choosing cut-off frequencies, damping values, and initial amplitude for this filter 

presents the same difficulties as the classical washout filter. However, the choice of 

cost weights is more intuitive for less experienced users because they are directly 

related to acceleration and angular velocity errors, instead of being related to cut-off 

frequencies that do not explicitly refer to any motion error; 

o the motion platform's adaptive features provide more realistic motion cues when the 

simulator is close to neutral and reduce motion fidelity only when the simulator 

approaches its physical limits. This allows for better utilization of the platform's 

capabilities; 

o the cost function to be minimized can be varied using non-quadratic functions, such as 

those introduced in [40], which may or may not include vestibular models. 

The adaptive washout filter algorithm has several drawbacks, including: 

o computationally compared to the classic washout filter is heavier; 

o the cut-off frequencies, damping and initial values of the filter amplitude are adjusted 

based on the accelerations in the most critical case; 

o minimises the motion errors (Cartesian accelerations and angular velocities) between 

the aircraft and the robotic platform. 

To consider the error of perception as a variable to be minimized, Sivan and co-workers [14] 

proposed an optimal washout filter (OWF). The resulting washout filter was obtained from a 

linear quadratic regulator (LQR) that minimizes a cost function that takes into account the error 

of perception, and, linear displacement from the initial position and angular displacements and 

speed, as well as movement controls of the platform. The advantages of this filter are as 

follows: 

o minimizes the pilot's sensation error instead of the actual motion error by incorporating 

a vestibular model; 

o takes into account the correlation coefficient, considered in the optimal constraint filter 

scheme [16],  and, as a form tracking criterion, helps to generate signals that can track 

reference signals more accurately; 

o ease of adjustment by a user with little experience, as it adapts by adjusting the cost 

function weights related to more intuitive variables. 
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The disadvantages of this filter are presented below: 

o the optimal control scheme produces fixed parameter filters, similar to the classical 

washout filter scheme, which do not fully exploit the motion capabilities of the motion 

platform and need to be adjusted for the most critical maneuvers; 

o the tilt speed limit is not included in this algorithm because it had a negative effect on 

the algorithm behaviour [41]; 

o system constraints are not explicitly considered [16]. 

 

Table 2.1 provides a summary of the characteristics of existing constraint filter schemes 

based on the research conducted in this chapter, considering the advantages and disadvantages 

of each filter in terms of computational time, difficulty of algorithm tuning, inclusion of the 

human vestibular system model, and increased motion platform workspace utilisation. At the 

same time, the table shows the type of robotic system for which the motion detection algorithm 

has been designed, implemented and tested so far, i.e. parallel robotic systems (denoted by 

𝑆𝑅𝑃) and serial robotic systems (denoted by 𝑆𝑅𝑆). The green colour represents an advantage 

and the grey colour represents a disadvantage.  

 

Table 2.1 Characteristics of motion cueing algorithms 

 CWF AWF OWF RWF CWF/Q 

Reduced computational time      

Easy algorithm tuning      

Human perception error      

Workspace – uniform quality      

Implementation of robotic systems  
SRP / 

 SRS 
SRP SRP SRP 

SRP / 

SRS 
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3. Mathematical modelling of a dynamic simulation system for pilot-in-the-

loop applications 

3.1. Introduction – overview of the dynamic simulation system 

The dynamic simulation system for pilot-in-the-loop applications platform (Figure 3.1) 

aims to achieve a complex interconnection of systems that model flight simulation by 

integrating the flight simulator model based on a serial robotic platform. The aim is to create a 

closed-loop flight simulator with 6 degrees of freedom by using the robotic arm as a motion 

platform. 

The entire proposed system consists of an ABB IRB 7600-500/2.55 industrial robot 

manipulator arm with six independent axes, at the end of which an aircraft cabin cell is 

mounted. The assembly moves along a GUDEL TMF-4 V2 track with a travel of one metre. 

The cell mounted at the end of the robotic arm provides the kinematic redundancy required to 

cope with the constraints of robotic actuation. The purpose of the airframe is to create a cockpit 

environment, equipped with specific avionics equipment, a virtual reality-based visual system 

and an integrated audio system to provide the pilot with as many cues as possible to mimic 

what happens in a real cockpit. At the same time, a cell-robot connection interface is used to 

enable data to be transferred from the cockpit to the ground (monitoring and control room) and 

vice versa, creating two-way communication between the two environments. 

The main objective of the proposed conFiguretion is to utilise the flight simulator platform 

as a versatile simulation environment for a wide range of flight scenarios and to increase the 

fidelity of the simulation environment for dynamic stability analysis of new aircraft 

conFiguretions such as hybrid electric architecture. 
 

 
Figure 3.1 Dynamic simulation system for pilot-in-the-loop applications, Credits: INCAS 
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The implementation of this motion simulator platform aims to conduct studies to test 

motion perception, human-machine interaction, human psycho-physiology and also to evaluate 

pilot control behaviour in basic experimental missions. 

The aircraft simulation structure for the robotic platform-based motion system is shown in 

Figure 3.2. The inputs given by the operator (pilot) are passed to the aircraft dynamic model, 

generating the aircraft state vector. Passing the aircraft state vector through the motion 

indication algorithm produces the desired motion cues and the states of the robotic platform 

providing the motion to the simulator. The desired robot platform states are then transformed 

into the axis workspace, generating commands to the six robot axes. 

 
Figure 3.2 Aircraft simulation structure diagram 

Inputs provided by the operator (pilot) are passed to the aircraft dynamics model, 

generating the aircraft state vector. Passing the aircraft state vector through the motion 

algorithm produces the desired motion cues and the robot platform states that provide the 

motion to the simulator. The desired robot platform states are then transformed from the 

degrees of freedom space to the axis workspace, generating commands to the six robot axes. 

The axis motion commands act as inputs to the robot platform, resulting in the actual motion 

of the simulator. The operator (pilot) inputs are transferred to the dynamic simulation model 

running on a real-time platform. The operator (pilot) signals can come from various specific 

control devices such as flap position, rudder actuation, throttle actuation, etc. The outputs from 

the dynamic aircraft model are measured in terms of translational accelerations, rotational 

angles and angular velocities; outputs that are required to reproduce the motion feedback to the 

simulator. The aim is to induce realistic motion in the simulation cabin. Obviously, due to the 

limitations of the simulator workspace, the motion cannot be identical to that of the aircraft and 

must be compressed. After determining the position and orientation of the cabin, the individual 

command input from the six-degree-of-freedom robot is calculated from the inverse kinematics 

transformation. The resulting command inputs are passed through the collision prevention filter 

and are sent to the robot. This step closes the motion feedback loop for the test pilot. 

The flight simulator, based on the six-axes serial robotic system, involves the development 

of the simulator components as an open system composed of modifiable and scalable modules. 

The six degrees of freedom allow the simulation of aircraft rotations (roll, pitch and yaw) as 

well as Cartesian coordinate displacements (X, Y, Z).  

The main components of the aircraft model dedicated to the flight simulator system are shown 

in Figure 3.3. 
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Figure 3.3. Flight simulator model components 

 

The dynamic simulation system for pilot-in-the-loop applications based on the motion platform 

covers simulation in three areas: 

• Aircraft dynamics simulation (aerodynamic flight model and engine, aircraft systems, 

ground handling, flight controls, cabin conFiguretion). 

• Environment simulation (ATC environment, environment, terrain and airfield, 

navigation). 

• Motion simulation (motion cues, visual cues, audio cues). 

 

3.2. Coordinate systems  

Several reference systems are used in the definition and implementation of the motion 

cueing algorithm. These reference systems are defined in this chapter and shown in Figure 3.4. 

3.2.1. Aircraft reference system 

Aircraft reference system 𝑆𝑅𝐴/𝐶 is derived from the aircraft centre of gravity, denoted by 

𝐶𝐺. The reference system 𝑆𝑅𝐴/𝐶 has an orientation for 𝑋𝐶𝐺, 𝑌𝐶𝐺 and 𝑍𝐶𝐺 , which is parallel to 

the simulator reference system 𝑆𝑅𝑠𝑖𝑚 and the pilot aircraft reference system 𝑆𝑅𝐴𝑃. 

3.2.2. Simulator reference system 

The simulator reference system 𝑆𝑅𝑠𝑖𝑚 originates at the centre of the robot joint 6 to which 

the simulator is attached, i.e. at the centre of the counterpart of the robot simulator airframe 

attachment. 𝑋𝑠𝑖𝑚, faces forwards and și 𝑍𝑠𝑖𝑚  upwards relative to the simulator cockpit, and 
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𝑌𝑠𝑖𝑚 is directed to the right side of the pilot. The 𝑋 − 𝑌 plane is parallel to the floor of the 

simulator cockpit.  

3.2.3. Pilot-aircraft reference system 

The pilot-aircraft reference system 𝑆𝑅𝐴𝑃 originates from the same relative cockpit position 

as the simulator reference system 𝑆𝑅𝑠𝑖𝑚. 𝑆𝑅𝐴𝑃 has the same orientation for 𝑋𝐴𝑃, 𝑌𝐴𝑃 and 𝑍𝐴𝑃 

in relation to the cockpit as the simulator reference system 𝑆𝑅𝑠𝑖𝑚. 

3.2.4. Pilot-simulator reference system 

The pilot-simulator reference system 𝑆𝑅𝑆𝑃 originates from the same relative position of the 

cockpit as the simulator reference system 𝑆𝑅𝑠𝑖𝑚. 𝑆𝑅𝑆𝑃 has the orientation for 𝑋𝑆𝑃 identical to 

the orientation 𝑋𝑠𝑖𝑚, 𝑌𝑆𝑃 is directed to the right side of the pilot, and 𝑍𝑆𝑃 is oriented downwards 

in relation to the cockpit. 

3.2.5. Inertial reference system 

The inertial reference system 𝑆𝑅𝐼 is fixed by the Earth, with 𝑍𝐼 ligned with the gravity 

vector 𝑔. Its origin is located in the centre of the base of the motion platform. 𝑋𝐼  is pointing 

forward, and 𝑌𝐼  to the right side in relation to the simulator pilot. 

Figure 3.4 shows the vectors that define the relative position of the reference system. 𝑅𝑠𝑖𝑚 

defines the location of 𝑆𝑅𝑆𝑃 relative to 𝑆𝑅𝑠𝑖𝑚. Similarly, 𝑅𝐴/𝐶  defines the location of the 

reference system 𝑆𝑅𝐴𝑃 relative to 𝑆𝑅𝐴/𝐶 .  

 
Figure 3.4 Reference systems positioning  

3.3. Coordinate transformations 

The orientation between the aircraft reference system 𝑆𝑅𝐴/𝐶 and the simulator reference 

system 𝑆𝑅𝑠𝑖𝑚 is achieved by using a direction cosine matrix through 𝑍𝑌𝑋 rotation. 
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𝑺𝑹𝑨/𝑪 = 𝑫𝑪𝑴𝒁𝒀𝑿 ∙ 𝑺𝑹𝒔𝒊𝒎     3.1 

 

where 

𝑫𝑪𝑴 =  

[

𝑐(𝜃) ∙ 𝑐(𝜓) 𝑐 (𝜃) ∙ 𝑠 (𝜓) −𝑠(𝜃)

𝑠(𝜙) ∙ 𝑠(𝜃) ∙ 𝑐(𝜓) − 𝑐(𝜙) ∙ 𝑠(𝜓) 𝑠(𝜙) ∙ 𝑠(𝜃) ∙ 𝑠(𝜓) + 𝑐(𝜙) ∙ 𝑐(𝜓) 𝑠(𝜙) ∙ 𝑐(𝜃)

𝑐(𝜙) ∙ 𝑠(𝜃) ∙ 𝑐(𝜓) + 𝑠(𝜙) ∙ 𝑠(𝜓) 𝑐(𝜙) ∙ 𝑠(𝜃) ∙ 𝑠(𝜓) − 𝑠(𝜙) ∙ 𝑐(𝜓) 𝑐(𝜙) ∙ 𝑐(𝜃)
] 

     

3.2 

3.4. Mathematical modelling of serial robotic system 

In this subchapter, we present the inverse kinematics module for the serial robotic system, 

which appears in the general flight simulator operating scheme as a link module between the 

specific motion display algorithm module and the specific robot platform dynamics module. 

 Figure 3.5 shows the kinematic structure of the ABB IRB 7600-500 robot. Figure 3.5a 

shows the robot actuators placed at joints between the serial drive chain elements, and Figure 

3.5b shows the reference systems specific to each other joint of the robot. 

a.  b. 

Figure 3.5 IRB 7600-500 serial robot struture (a. Robot axes, b. Robot axis reference 

systems) 

Robot kinematics is divided into direct and inverse kinematics.  

The correlation between direct kinematics and inverse kinematics is shown in Figure 3.6 [44]. 

 
Figure 3.6 Schematic description of the direct and inverse kinematics of the serial robot 

3.4.1. Direct kinematics of the serial robot 

The Denavit-Hartenberg (D-H) mathematical representation [45] is used to study the 

direct kinematics of the serial robot, which shows that a global transformation between two 

joints requires four parameters describing the kinematics of the robot. Denavit-Hartenberg (D-

H) gives the joint transformation between two joints, considering element lengths and joint 

angles. 
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The following two tools were used to model the ABB IRB 7600-500/2.55 robot 

MATLAB R2022b Robotics System Toolbox [46] and Robotics Vision Control Toolbox [47], 

both following the Denavit and Hartenberg (D-H) terminology. 

 
Figure 3.7 Robot diagram IRB 7600-500  

According to the defined coordinate system, the corresponding element parameters are 

defined as follows: 

𝑎𝑖−1 [𝑚𝑚]: distance measured from 𝑧𝑖−1 to 𝑧𝑖 along 𝑥𝑖−1; 

𝛼𝑖−1 [°]: angle of rotation from  𝑧𝑖−1 to 𝑧𝑖 around the axis 𝑥𝑖−1; 

𝑑𝑖 [𝑚𝑚]:   distance measured from 𝑥𝑖−1 to 𝑥𝑖  along 𝑧𝑖; 

𝜃𝑖 [°]: angle of rotation from 𝑥𝑖−1 to 𝑥𝑖 around the axis 𝑧𝑖. 

These four parameters describe the kinematic chains of the robot. The Denavit -Hartenberg 

(D-H) parameters for the IRB 7600-500/2.55 robot are presented in Tablee 3.1. The D-H 

parameters were calculated using robotic system-specific input data such as element size 

(Figure 3.8), joint rotation/displacement direction (Figure 3.5a) and the basic robot reference 

system (Figure 3.5b). 

 
Figure 3.8 ABB IRB 7600-500/2.55 robot size specification [48]  

Table 3.1 ABB IRB 7600-500/2.55 robotic system D-H parameters and joint limits 

Link 

element 

𝒊 

𝒂𝒊−𝟏  

[𝑚𝑚] 

𝜶𝒊−𝟏  

[°/rad] 

𝒅𝒊  

[𝑚𝑚] 

𝜽𝒊  

[°/rad] 

Min/max limit 

joint 

 [°/rad] 

Robot 

joints 

1 0.41 
-90  

0.78 0 
- 180 / +180  𝑞1 

−𝜋/2 −𝜋 / 𝜋 

2 1.075 0 0 
-90  - 60 / +85 𝑞2 

 −𝜋/2  −𝜋/3/  𝜋/3 
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3 0.165 
-90 

0 0 
- 180 / +60  𝑞3 

 −𝜋/2 −𝜋 / 𝜋/3 

4 0 
90   

1.056 0 
- 300 / +300  𝑞4 

𝜋/2 −5𝜋/3  /  5𝜋/3 

5 0 
-90  

0 0 
- 100 / +100  𝑞5 

 𝜋/2 −5𝜋/9  /  5𝜋/9 

6 0 0 0.25 
180   - 360 / +360  𝑞6 

𝜋 −2𝜋 / 2𝜋 

 

The direct kinematics of the robot calculates the position and attitude of the last actuator, 

the end-effector (𝐸𝐸), taking into account the values of the six joints. The general formula for 

the transformation of the element 𝑇𝑖
𝑖−1  in the kinematics of the robot arm is: 

𝑇𝑖
𝑖−1 = 𝑇𝑥 (𝛼𝑖−1 )𝑇𝑥 (𝑎𝑖−1 )𝑇𝑧 (𝜃𝑖 )𝑇𝑧 (𝑑𝑖 ) 

    3.3 

where 𝑇𝑖
𝑖−1  is a homogeneous transformation matrix, 𝛼𝑖−1  și 𝑎𝑖−1  are translation and rotation 

around the axis 𝑥𝑖−1 , respectively 𝑑𝑖  și 𝜃𝑖  re translation and rotation around the axis 𝑧𝑖−1 .  

The direct kinematics of the manipulator is expressed by: 

𝐓(𝐪𝟏)𝟏
𝟎 𝐓(𝐪𝟐)𝟐

𝟏 𝐓(𝐪𝟑)𝟑
𝟐 𝐓(𝐪𝟒)𝟒

𝟑 𝐓(𝐪𝟓)𝟓
𝟒 𝐓(𝐪𝟔)𝟔

𝟓 = 𝐓𝐟     3.4 

3.4.2. Inverse kinematics of the serial robot 

Solution of inverse robot kinematics - means that the value of the robot joint variables 

is determined according to the given position of the end effector and the attitude of the 

manipulator [49]. The method of solving the inverse transformation consists of multiplying 

inversely a given transformation on both sides of the robot kinematics equation at the same 

time. The specific formula is expressed as follows: 

𝑇−1
𝑖
0 (𝑞𝑖 ) 𝑇6

0 = 𝑇𝑖+1
𝑖 (𝑞𝑖+1 ) 𝑇𝑖+2

𝑖+1 (𝑞𝑖+2 ) 𝑇𝑖+3
𝑖+2 (𝑞𝑖+3 )… 𝑇6

5 (𝑞6 ) 
3.5 

Since the position of the end element 𝑇6
0  is known, one can obtain the product of the inverse of 

each transformation on the left-hand side of the equation and the transformation on the right-

hand side of the equation. 

𝑇6
0 = 𝑇1

0 (𝑞1 ) 𝑇2
1 (𝑞2 ) 𝑇3

2 (𝑞3 ) 𝑇4
3 (𝑞4 ) 𝑇5

4 (𝑞5 ) 𝑇6
5 (𝑞6 ) 

3.6 

To first find 𝑞1 in terms of the known elements, calculate the inversion of the link 

transformation which are pre-multiplied as follows 𝑇1
0 (𝑞1 ): 

𝑇−1
1
0 (𝑞1 ) 𝑇6

0 = 𝑇−1
1
0 (𝑞1 ) 𝑇1

0 (𝑞1 ) 𝑇2
1 (𝑞2 ) 𝑇3

2 (𝑞3 ) 𝑇4
3 (𝑞4 ) 𝑇5

4 (𝑞5 ) 𝑇6
5 (𝑞6 ) 

3.7 

where 𝑇−1
1
0 (𝑞1 ) 𝑇1

0 (𝑞1 ) = 𝐼, and 𝐼 is the identity matrix.  

In the end there will be 12 simultaneous sets of nonlinear equations to solve. The 12 elements 

of the nonlinear matrix on the right-hand side are either zero, constant or functions from 𝑞2  to 

𝑞6 .  
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The inverse kinematics problem of the 6 DoF serial robot [44] was solved using the 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimisation algorithm and the inverse kinematics 

solution was simulated using two different simulation environments: MATLAB R2022b and 

Robot Studio [50]. The first simulation process uses the Matlab Robotics System Toolbox [46]  

to check the end-effector position and determine the joint angles for each set of points in the 

proposed trajectory. The second simulation process uses the RAPID program [51] from Robot 

Studio [50], to validate the results recorded in the first simulation using the same algorithm. 

The trajectory and motion of the robot, as well as joint angle tracking, are described in the 

RAPID programming language, which writes the data for analysis. The determination of the 

position and attitude of the end effector was performed using special functions in the Robot 

Studio program (CalcRobT and CalcJointT). The Robot Studio functions find the trajectory 

defined by five different points, and the position of the end-effector for these five points is 

shown in Table 3.3. The last three columns in Table 3.3 show the deviations expressed in 

[𝑚𝑚]. 

Table 3.2 ABB IRB 7600-500 - End position for a specified path 

Point Trajectory points [mm] End effector position [mm] Deviation [mm] 

x y z x y z Δx Δy Δz 

1 1900.0 100.0 1133.3 1899.85 100.227 1133.52 0.1500 -0.2270 -0.2200 

2 1838.4 332.4 1128.3 1838.60 331.704 1128.32 -0.2000 0.6960 -0.0200 

3 1677.8 502.8 1113.2 1678.12 502.442 1113.18 -0.3200 0.3580 -0.0200 

4 1469.9 585.0 1088.7 1470.18 584.900 1088.67 -0.2800 0.1000 0.0300 

5 1258.9 587.8 1055.3 1258.90 587.800 1055.30 0 0 0 

  

For each of the points 1, 3 and 5 in the trajectory, the values of the joint angles (joint angle 

C) were calculated by inverse kinematics and compared with those obtained by simulating the 

motion of the ABB IRB 7600-500 series robot using Robot Studio with the RAPID program 

(joint angle R). The results in the table below show that there are small differences between 

the values of the joint angles. 

Table 3.3 Values of manipulator joint angles 

Point 1 Point 3 Point 5 

Joint 

Angle C 

Joint 

Angle R 

Δ_Joint 

Angle 

Joint Angle 

C 

Joint 

Angle R 

Δ_Joint 

Angle 

Joint 

Angle C 

Joint 

Angle R 

Δ_Joint 

Angle 

3.4759   

21.4093 

24.7475    

4.8087 

-46.2650   

-3.3290 

3.4682 

21.4218 

24.7419 

4.8028 

-46.2643 

-3.3244 

0.0077 

-0.0125 

0.0056 

0.0060 

-0.0007 

-0.0046 

19.3838 

6.0040   

33.8021   

24.7384 

-52.4983 

-15.6684 

19.3997 

15.9947 

33.8135 

24.7495 

-52.5038 

-15.6748 

-0.0159 

0.0093 

-0.0114 

-0.0111 

0.0055 

0.0064 

30.2200 

2.5363 

54.6952 

34.7130 

-62.1140 

-17.9533 

30.2257 

2.5247 

54.7075 

34.7169 

-62.1179 

-17.9535 

-0.0057 

0.0116 

-0.0123 

-0.0039 

0.0039 

0.0002 

 

Graphical results of the predefined trajectory in MATLAB and Robot Studio environments 

for inverse kinematic simulations presented in the paper [44] are highlighted in Figure 3.9. 
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 a  b 

Figure 3.9 Simulated robot trajectory IRB7600-500 (a. RobotStudio, b. MATLAB) 

In this sub-section, an analytical solution of the direct and inverse kinematics of the ABB 

IRB 7600-500 series robot has been proposed. The accuracy of the models in the simulation 

environment has been tested for efficient use. To obtain the solution, a geometric approach was 

considered by using geometric relationships between different manipulator elements. The 

inverse kinematics model was simulated in two different environments and it was observed 

that the end effector moved along a predefined trajectory, confirming the effectiveness of the 

model. The purpose of this analysis is to validate the inverse kinematics model developed in 

the MATLAB simulation environment, which is part of the program developed in the same 

simulation environment that serves as an offline test platform for the motion display algorithm. 

A graphical representation of the joint position as a function of time was also developed. This 

study was carried out to provide a basis for improving aerospace robotics problems when used 

as motion platforms for flight simulators. 

4. Scaling the workspace for the dynamic simulation system 

To ensure a secure and stable workspace for the six degrees of freedom simulator, based 

on the IRB 7600-500 serial robotic platform, it was necessary to perform the workspace scaling 

procedure. This involved defining hardware and software limitations. 

To ensure safety, the pilot was only able to operate the simulator within limited intervals 

of robot movement. This prevented collisions with other objects in the working area. However, 

these modifications resulted in additional constraints and a reduction in the robot's working 

area. When comparing the working area of the IRB 7600-500/2.55 robot with the working area 

of the robot coupled with the simulator cabin, it is evident that the simulator's working area is 

smaller due to the size of the simulator cell. 

 
Figure 4.1 Robot workspace IRB 7600 -500 [48]  
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Different workspace constraints are defined for the flight simulator depending on its 

application. It is important to note that there is a dependency between the angles of the robot 

joints, meaning that limiting one joint will affect the others. Therefore, independent 

maximization of each joint angle range is impossible. As a result, the following optimization 

problem was formulated: 

𝑚𝑎𝑥 Ω⃗⃗ ∙  𝑓 𝑐(𝑞 ) , 𝑞  ∈  𝑅6 4.1 

with  

𝑓 𝑐(𝑞 ) =  {∆𝑋, ∆𝑌, ∆𝑍, ∆𝜙, ∆𝜃, ∆𝜓}𝑇 
4.2 

where 𝑋, 𝑌, 𝑍 are the Cartesian positions,  ϕ, θ, ψ the rotation angles (roll, pitch, yaw), and Ω⃗⃗⃗ ∈

R6 the weighting factor vector representing the joint constraint to control the robot motion 

within the allowed joint angles. 

4.1. Hardware joint angle limitations 

The manufacturer specifies the robot joint angle intervals in the data sheet. These hardware 

limitations are accompanied by software limitations imposed by the manufacturer. These 

limitations are triggered before reaching the hardware limit as a safety measure. 

The range of the robot joint conFiguretion is highlighted. 

𝑞 ∈ [𝑞 𝑚𝑖𝑛, 𝑞 𝑚𝑎𝑥] 4.3 

Table 4.1 Defining the limits of the IRB 7600-500 robot 

IRB 7600-

500/2.55 robot 

Axis Min joint 

limit 

q⃗ min 

Max joint 

limit 

q⃗ max 

Speed 

limit 

Acceleration 

limits 

A 𝑞1 - 180 [°] + 180 [°] 75 [°/s] - 

B 𝑞2 -60 [°] +85 [°] 50 [°/s] - 

C 𝑞3 -180 [°] +60 [°] 55 [°/s] - 

D 𝑞4 - 300 [°] + 300 [°] 100 [°/s] - 

E 𝑞5 - 100 [°] +100 [°] 100 [°/s] - 

F 𝑞6 - 360 [°] + 360 [°] 160 [°/s] - 

Track 𝑞7 -10 [mm] 20010 [mm] 90 

[m/min] 

86 [m/s2] 

4.2. Collision avoidance 

The design of the simulator cell significantly affects the definition of joint ranges of motion. 

To define the collision avoidance condition, we considered cockpit size, flange position, flange 

angle, and subject (pilot) size. It is crucial to guarantee the system's safety throughout the 

robot's entire range of motion. Therefore, we must ensure that there are no collisions in the 

context of different motion combinations. The objects considered were the floor, the Gudel 
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TMF-4 track, the IRB 4600 robot, the IRC5 controller of the IRB 4600 robot, the IRC5 

controller of the IRB 7600 robot, and the wall near the track. 

𝑉(𝑜𝑏𝑗𝑒𝑐𝑡𝑖, 𝑞 )   ∩   𝑉(𝑜𝑏𝑗𝑒𝑐𝑡𝑘, 𝑞 )   =   ∅ 
4.4 

where 𝑜𝑏𝑗𝑒𝑐𝑡𝑖 = {𝑐𝑒𝑙𝑙 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟, 𝑟𝑜𝑏𝑜𝑡 𝐼𝑅𝐵 7600, 𝑝𝑖𝑙𝑜𝑡, … }, 

and 𝑜𝑏𝑗𝑒𝑐𝑡k = {𝑟𝑜𝑏𝑜𝑡 𝐼𝑅𝐵 4600, 𝑡𝑟𝑎𝑐𝑘 𝐺𝑢𝑑𝑒𝑙 𝑇𝑀𝐹 − 4, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑒𝑟 𝐼𝑅𝐶5,𝑤𝑎𝑙𝑙, … }. 

4.3. Software limitation of joint angles 

Different types of constraints and workspace limitations need to be applied depending on 

the simulation type. After conducting offline simulations, several software limitations were 

established. These include the installation of SafeMove mode, software implementations in the 

IRC5 controller, and limitations of the q_5 axis to avoid singularity errors. 

The optimization-based trajectory generation problem is formulated using the singularity 

handling method and modified to meet the requirements of the trajectory planning algorithm. 

Either 

𝑥𝑒 = 𝑓(𝑞)  
4.5 

direct kinematics of the robot arm, where the effector position is denoted by 𝑥𝑒, joint positions 

are denoted by 𝑞. 

Inverse kinematics is represented as follows: 

𝑞 = 𝑓−1(𝑥𝑒)   
4.6 

It is implied that there are multiple common trajectories 𝑞(𝑡) that lead to the same effector 

trajectory 𝑥𝑒(𝑡). One method for computing the desired inverse kinematics for serial robots is 

to minimize the error between the reference and effector positions while considering 

constraints, with the robot joint positions as optimization variables [52]. 

𝑚𝑖𝑛‖𝑥𝑒𝑟𝑒𝑓 − 𝑥𝑒𝑞‖   
4.7 

where 𝑥𝑒𝑟𝑒𝑓 is the calculated reference position. As illustrated in Figure 4.2, the trajectory 𝑞𝑖 =

𝑞(𝑡𝑖) s computed as a result of an optimization at each sampling step.  

Near singularities, the dynamical limits of the system and the stability of the solution 

are guaranteed by constraints, but for cases of mechanical impossibility a positioning error is 

introduced. This approach computes the locally optimal motion of the robotic system to 

perform the tasks given by the optimization criteria. 

 
Figure 4.2 Local optimisation 

Figure 4.2 shows the use of local optimization to determine the next joint angle at each time 

step. The optimization problem min‖𝑥𝑒𝑟𝑒𝑓 − 𝑥𝑒𝑞‖ is solved by considering the robot's 

dynamic con straints, which define a space of possible solutions. 
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To consider the dynamic behaviour of a system in the optimisation problem, the differential 

equations are reformulated as optimisation constraints. 

The use of a serial robotic conFiguretion as a motion platform for flight simulators presents 

challenges in terms of trajectory planning. Maintaining the desired trajectory requires very high 

angular velocities of the joints in near-singular conFiguretions. If the planned trajectory 

approaches a singularity, the actuation speeds' limits may cause trajectory errors, leading to a 

failure stop by the robot control. 

Considering the specific constraints on joint angles and space requirements, we specify the 

joint angle ranges 𝑞3, 𝑞4 și 𝑞5 as side conditions for the optimization problem. These ranges 

have a significant impact on the workspace. 

To reduce the six-dimensional optimization problem to a two-dimensional one, we generate 

and utilize conFiguretion spaces: 

max𝐴 (𝑞 ) , 𝑞  ∈  𝑅2 
4.8 

with rectangular surface 

𝐷(𝑞 ) = (𝑞4𝑚𝑎𝑥 − 𝑞4𝑚𝑖𝑛) ∗ (𝑞5𝑚𝑎𝑥 − 𝑞5𝑚𝑖𝑛) 
4.9 

and 𝐷(𝑞 ) ∈ 𝑆, 𝑆 ≅ numerous combinations of joint angles 𝑞4 and 𝑞5 that can be achieved 

without any collisions.  

The optimization problem is not affected by the joint angle 𝑞1 due to the robot's design, 

which assumes the absence of any additional obstacles within its rotationally symmetric 

workspace. 

All possible combinations of joint angles 𝑞2, 𝑞3, 𝑞4 și 𝑞5 are checked for collisions with a 

resolution of 10 degrees. Once the desired ranges of joint angles are defined 𝑞4 and 𝑞5, the 

conFiguretion space of 𝑞2 and 𝑞3 can be generated quickly. 

The optimisation process yielded the following ranges for joint angles: 

 

Table 4.2 Limitations of the joint angle range for optimised conFiguretion of the IRB 7600-

500 robot 

IRB 7600-

500/2.55 

Robot 

 

Joint 

Min joint 

limit 

q⃗ min 

Max joint 

limit 

q⃗ max 

Min joint 

limit op 

q⃗ min,o 

Max joint 

limit op 

q⃗ max,o 

A 𝑞1 - 180 [°] + 180 [°] - 180 [°] + 180 [°] 

  B 𝑞2 -60 [°] +85 [°] -60 [°] +85 [°] 

C 𝑞3 -180 [°] +60 [°] -180 [°] +40 [°] 

D 𝑞4 - 300 [°] + 300 [°] - 175 [°] + 175 [°] 

E 𝑞5 - 100 [°] +100 [°] - 90 [°] +90 [°] 

F 𝑞6 - 360 [°] + 360 [°] - 360 [°] + 360 [°] 

Optimising joint angle margins can be challenging because limiting one joint angle can 

significantly impact the limits of other joint angles. 

The secondary conditions for joint angles 𝑞3, 𝑞4 and 𝑞5 were derived based on the 

application-specific constraints that the simulator must meet. Joint angle 𝑞1 was not relevant 
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to this investigation. These secondary conditions reduced the six-dimensional optimization 

problem to a two-dimensional one. The collision-free Cartesian workspace was investigated by 

varying the joint angle ranges of 𝑞4 and 𝑞5 within their conFiguretion spaces. 

 

5. Mathematical modelling of the motion cueiong algorithm  

The purpose of motion cueing algorithms (MCA) is to produce motion cues that lead to 

human perception. A motion cueing algorithm uses tilt coordination to reproduce the effect of 

translational acceleration motion supported by the gravity vector to mimic human perception 

detected by the vestibular system. 

5.1. Getting started 

The washout filter is a motion algorithm that transforms the acceleration and angular 

velocity of a simulated vehicle into the motion of the simulator platform. The motion produced 

must be within the limits, constraints and restrictions of the motion platform used for the flight 

simulator, as presented in the previous chapter.  

The optimal washout filter used is based on four assumptions:  

• the vestibular system dominates the perception of motion cues in a flight simulator; 

• the discrepancy between the motion cues between the real aircraft and the motion 

simulator can be measured by the root mean square of the vestibular error; 

• real aircraft motion can be modelled as a random process independent of motion 

platform constraints;  

• dynamic systems, including vestibular systems, can be represented by linearised 

equations. 

The algorithm structure shown in Figure 2.1 contains two separate channels that generate 

the perception of motion between a real aircraft and a flight simulator. In both channels, the 

vestibular system represents the pilot's vestibular system. Ideally, the simulator output is 

identical to the input. 

The purpose of this algorithm is to determine a transfer function 𝑊(𝑠) consisting of low-

pass and high-pass filters. 𝑊(𝑠) filters the aircraft input 𝑢𝐴/𝐶 to obtain the simulator input  𝑢𝑠𝑖𝑚 

to minimise the cost function, which includes the pilot's error of perception. 

 
Figure 5.1 General structure of the optimal washout algorithm, adaptation [39]  
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Figure 5.1 shows the optimal control technique. The objective function of this algorithm 

includes the perception error and the constraints related to the motion in the workspace of the 

flight simulator motion platform, where 𝑎𝐴/𝐶  and 𝑎𝑠𝑖𝑚 represent the detected acceleration at 

the actual position and at the workspace position. Also, 𝜔𝐴/𝐶 and 𝜔𝑠𝑖𝑚 are the rotational 

velocities detected at these positions. Due to the use of a model with two inputs and two 

outputs, four transfer functions (𝑊11, 𝑊21, 𝑊12 și 𝑊22,), are used, each representing the effect 

of each input on each output. In order to take into account the structure and parameters of the 

motion algorithm, it is necessary to convert the actual input (𝑢𝐴/𝐶) and the flight simulator 

input (𝑢𝑠𝑖𝑚). According to Figure 5.1, there are two different ways of comparing the perception 

of the real motion with that in the flight simulator. 

 
Figure 5.2 Optimal washout filter algorithm, adapted from [17] 

5.2. Scaling and limiting 

The simulator's motion platform has physical limits, so its dynamics must be constrained 

within these limits and constraints. Therefore, within the working scheme of the motion 

algorithm, a constraint has been applied to the translational and rotational channels, and at the 

same time, a scaling has been applied to the model input signals.  

Limiting and scaling apply to both the aircraft translational input signals 𝒂𝑨/𝑪and the 

rotational input signals 𝝎𝑨/𝑪. Limiting and scaling change the amplitude of the input signal 

uniformly across all frequencies. Limiting is a non-linear process that reduces the signal so that 

it is limited to a value less than a certain amplitude. Limiting and scaling can be used to reduce 

the motion response of a flight simulator.  

A third-order polynomial was used for scaling and was implemented in the general scheme 

of the motion algorithm. When the magnitude of the input to the simulator motion system is 

small, it is desired that the amplitude be relatively high, otherwise the output will be below the 

pilot's perception threshold. And when the input magnitude is high, it is desired that the 

amplitude is relatively small to avoid the case where the simulator attempting to exceed the 

hardware limits.  

For the implementation of the procedure, the input was denoted by 𝒙𝒂, and the output by 

𝒙𝒛. Then 𝒙𝒂𝒎𝒂𝒙 was defined as the desired maximum input and 𝒙𝒛𝒎𝒂𝒙 as the maximum output, 

and 𝒔𝟎 and 𝒔𝟏 the slopes at 𝒙𝒂 = 𝟎 and 𝒙𝒂 = 𝒙𝒂𝒎𝒂𝒙 respectively.  

Four desired non-linear scaling characteristics are defined as follows: 

𝑥𝑎 = 0 ⟹ 𝑥𝑧 = 0 

𝑥𝑎 = 𝑥𝑎𝑚𝑎𝑥 ⟹ 𝑥𝑧 = 𝑥𝑧𝑚𝑎𝑥 

𝑥𝑧
′ |𝑥𝑎=0 = 𝑠0 

𝑥𝑧
′ |𝑥𝑎=𝑥𝑎𝑚𝑎𝑥

= 𝑠1 

5.1 
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The third-order polynomial scaling used to provide functions with desired characteristics is of 

the form: 

𝑥𝑧 = 𝑝3𝑥𝑎
3 + 𝑝2𝑥𝑎

2 + 𝑝1𝑥𝑎
1 + 𝑝0 

5.2 

where 

𝑝0 = 0 

𝑝1 = 𝑠0 

𝑝2 = 𝑥𝑎𝑚𝑎𝑥
−2(3 ⋅ 𝑥𝑧𝑚𝑎𝑥 − 2 ⋅ 𝑠0 ⋅ 𝑥𝑎𝑚𝑎𝑥 − 𝑠1 ⋅ 𝑥𝑎𝑚𝑎𝑥) 

𝑝3 = 𝑥𝑎𝑚𝑎𝑥
−3(𝑠0 ⋅ 𝑥𝑎𝑚𝑎𝑥 − 2 ⋅ 𝑥𝑧𝑚𝑎𝑥 + 𝑠1 ⋅ 𝑥𝑎𝑚𝑎𝑥) 

5.3 

Scalarea parametrilor pentru canalul translațional: 

𝑚𝑎𝑥|𝑥𝑎𝑚𝑎𝑥 | = 6 𝑚/𝑠2 
5.4 

𝑚𝑎𝑥|𝑥𝑧𝑚𝑎𝑥 | = 6
𝑚

𝑠2, pentru 𝑋 
5.5 

𝑚𝑎𝑥|𝑥𝑧𝑚𝑎𝑥 | = 0.8
𝑚

𝑠2, pentru 𝑌 și 𝑍 
5.6 

and the coefficients are: 

𝑠0 = 1, pentru 𝑋 

𝑠0 = 0.2, pentru 𝑌 și 𝑍 

𝑠1 = 0.1, pentru 𝑋, 𝑌 și 𝑍 
5.7 

Parameter scaling for the rotational motion: 

𝑚𝑎𝑥|𝑥𝑎𝑚𝑎𝑥 | = 3.14 
𝑟𝑎𝑑

𝑠
 

5.8 

𝑚𝑎𝑥|𝑥𝑧𝑚𝑎𝑥 | = 1.57 
𝑟𝑎𝑑

𝑠
 

5.9 

and the coefficients are: 

𝑠0 = 0.785, pentru 𝑋, 𝑌 și 𝑍 

𝑠1 = 0.1, pentru 𝑋, 𝑌 și 𝑍 

 
5.10 

The linear accelerations on all axes are limited to 6
𝑚

𝑠2
 for the translational channel, and the 

limit for the rotational channel is 3.14
𝑟𝑎𝑑

𝑠
. To compute the polynomial scaling coefficients for 

each aircraft degree of freedom for input to the optimal motion algorithm, the flowchart shown 

in Figure 5.3 is implemented.  

 
Figure 5.3 Flow chart for limiting and scaling 
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5.3. Mathematical model of the vestibular system 

As shown in Figure 5.1 , the mathematical model that implements the motion cueing 

algorithm includes a module that contains the mathematical model of the vestibular system. 

This module is essential for the implementation of the optimal washout filter algorithm. For a 

good implementation of the mathematical models for the two elements of the vestibular system, 

the semicircular canal and the otolith organ, research on motion thresholds is carried out to 

define specific values to be used in the development of the motion cueing algorithm. 

The vestibular system (Figure 5.4) is located in the inner ear and consists of semicircular 

canals that detect angular motion and otolith organs that detect linear motion [53]. 

  
Figure 5.4 Relationship between the vestibular system and human perception [54] 

The vestibular system comprises two degrees of freedom: overload and pitch, as illustrated 

in Figure 5.5, where 𝑎𝐴𝑥 denotes linear acceleration, and 𝜃 ̇ represents rotational velocity. The 

outputs from the vestibular model are 𝑎𝐴𝑥_𝑠, which represent felt acceleration and 𝜃̇𝑠, which 

represents felt rotational velocity. The vector 𝑔 represents gravitational acceleration. The 

integral of rotational velocity with respect to displacement is defined by the sign of the integral.  

 
Figure 5.5 Model of the vestibular system for human perception 

The vestibular system's semicircular canal and otolith organ were mathematically modelled 

using MATLAB/Simulink, as depicted in Figure 5.6. The models from Figure 5.1, Figure 5.2 

and Figure 5.5 were integrated into the model. 
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Figure 5.6 Model of vestibular system wint integrated washout filter  

 

The goal of the optimal washout filter based on LQR (Figure 3) is to determine the transfer 

function 𝑊(𝑠) that relates the flight simulator motion input (𝑢𝑠𝑖𝑚) to the aircraft motion input 

(𝑢𝐴/𝐶). 

𝑢𝑠𝑖𝑚(𝑠) =  𝑊(𝑠) ∙ 𝑢𝐴/𝐶(𝑠) 
5.11 

Control inputs, including accelerations and Euler angles, are used to generate the basic 

commands for the desired motion. Thus, the optimal washout filter algorithm determines the 

simulator acceleration by minimising the human feel error between the simulator and the 

aircraft, as well as the linear and angular motion of the platform. The objective of the algorithm 

is therefore to limit the human perception error and platform motion within the physical 

workspace of the robotic platform. Input u is represented as follows: 

𝑢 = [
𝑢1

𝑢2
] = [

𝜃̇
𝑎𝐴𝑥

] 
5.12 

An important step in the implementation of the algorithm is how the definition of the tilt 

coordination effect is. The tilt coordination aims to calculate the low frequency components on 

the horizontal axis, 𝑋 direction, and on the lateral axis, 𝑌 direction, while the low frequency 

components on the vertical axis, 𝑍 direction, are not calculated. Figure 5.7 shows how the tilt 

coordination is formulated to generate acceleration on the horizontal and lateral axes. 

 
Figure 5.7 Formulation of the tilt coordination 

The specific surge force in the centre motion of the simulator can be obtained as follows, 

but considering the approximation for small angles, sin (𝜃𝑡) and cos (𝜃𝑡) can be replaced by 

𝜃𝑡 and 1 respectively: 
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𝑓𝑠 = 𝑎𝐴𝑥 ∙ cos (𝜃𝑡) + 𝑔 ∙ sin (𝜃𝑡) ≅ 𝑎𝐴𝑥 + 𝑔 ∙ 𝜃𝑡 
5.13 

The otolith organ detects linear movement in the inner ear. Meiry and co-workers [55] 

proposed a modified model for indicating linear acceleration and tilt based on the research in 

[37].  

The specific detected value 𝑎𝐴𝑥_𝑠 is related to the specific stimulus strength detected by the 

otolith model and is entered into the equation below as follows: 

𝑎𝐴𝑥_𝑠 = 𝑘𝑂

𝑠 + 𝐴0

(𝑠 + 𝐵0)(𝑠 + 𝐵1)
∙ 𝑓𝑠 

5.14 

By applying the Laplace transform, a new form of the equation can be obtained. The term 
1

𝑠
 is 

the integration of the angular velocity. 

𝑓𝑠(𝑠) = 𝑎𝐴𝑥(𝑠) + 𝑔 ∙
1

𝑠
∙ 𝜃̇(𝑠) 5.15 

Substituting equati 5.13 into equation 5.14 gives the following equation: 

𝑎𝐴𝑥_𝑠 = 𝑘𝑂

𝑠 + 𝐴0

(𝑠 + 𝐵0)(𝑠 + 𝐵1)
(𝑎𝑥(𝑠) + 𝑔 ∙

1

𝑠
∙ 𝜃̇(𝑠)) 

5.16 

where 𝐴0, 𝐵0 și 𝐵1 are the specific parameters of the otolith model. 

Equation 5.16 can be rewritten as follows: 

𝑎𝐴𝑥_𝑠̈ + 𝑎 ∙ 𝑎𝐴𝑥𝑠
̇ + 𝑏 ∙ 𝑎𝐴𝑥𝑠

= 𝑐 ∙ 𝑢1̇ + 𝑑 ∙ 𝑢1 + 𝑒 ∙ ∫𝑢1𝑑𝑡 + 𝑓 ∙ 𝑢2̇ + ℎ ∙ 𝑢2 
5.17 

The representation in state space is given by the following form thus: 

𝑥̇𝑜𝑡 = 𝐴𝑜𝑡 ∙ 𝑥𝑜𝑡 + 𝐵𝑜𝑡 ∙ 𝑢 

𝑎𝐴𝑥_𝑠 = 𝐶𝑜𝑡 ∙ 𝑥𝑜𝑡 + 𝐷𝑜𝑡 ∙ 𝑢 5.18 

where 𝑥𝑜𝑡 represent the states for the otolithic model and u represents the input to the vestibular 

system, and 𝐴𝑜𝑡, 𝐵𝑜𝑡, 𝐶𝑜𝑡 și 𝐷𝑜𝑡 are defined as follows: 

𝐴𝑜𝑡 = 

[
 
 
 
 

0 1 0 0 0
−𝑏 −𝑎 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 −𝑏 −𝑎]

 
 
 
 

 
5.19 

𝐵𝑜𝑡 = 

[
 
 
 
 

𝑐 0
𝑑 − 𝑎 ∙ 𝑐 0

𝑒 0
0 𝑓
0 ℎ − 𝑎 ∙ 𝑓]

 
 
 
 

 

5.20 

𝐶𝑜𝑡 = [1 0 0 1 0] 
5.21 

𝐷𝑜𝑡 = [0 0] 
5.22 

The angular velocity 𝜃̇𝑠 detected by the semicircular system is related to the actual angular 

velocity. Semicircular channels detect the sensation of rotational motion. Telban and Cardullo 

[56] proposed a transfer function of the semicircular canals model to detect angular velocity 

sensation when applied as a stimulus. This transfer function includes the torsional pendulum 

model, the adaptation operator, and a lead term. This function offers the most accurate 
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approximation of the vestibular sensation system's true dynamics for rotational motion. The 

semicircular canal model is defined as follows: 

𝜃̇𝑠  =
𝑘𝑠𝑐 ∙ 𝜏1 ∙ 𝜏𝑎 ∙ 𝑠2(1 + 𝜏𝐿 ∙ 𝑠)

(𝜏1 ∙ 𝑠 + 1) + (𝜏2 ∙ 𝑠 + 1) + (𝜏𝑎 ∙ 𝑠 + 1)
𝜃̇ 5.23 

where 𝜏1, 𝜏2, 𝜏𝐿 și 𝜏𝑎 are the long time constant, short time constant, lead term and adaptation 

operator constant, respectively.  

Equation 5.23 can be rewritten as follows: 

𝜃̇𝑠 =
𝑇5 ∙ 𝑠3 + 𝑇4 ∙ 𝑠2

𝑠3 + 𝑇3 ∙ 𝑠2 + 𝑇2 ∙ 𝑠 + 𝑇1
𝜃̇ 5.24 

where 𝑇0, 𝑇1, 𝑇2, 𝑇3 ș𝑖 𝑇4 are constants and can be defined as follows: 

𝑇1 = 
1

(𝜏1 ∙ 𝜏2 ∙ 𝜏𝑎)
 

5.25 

𝑇2 = 
(𝜏1 + 𝜏2 + 𝜏𝑎)

(𝜏1 ∙ 𝜏2 ∙ 𝜏𝑎)
 5.26 

𝑇3 = 
(𝜏1 ∙ 𝜏𝑎 + 𝜏1 ∙ 𝜏2 + 𝜏𝑎 ∙ 𝜏2)

(𝜏1 ∙ 𝜏2 ∙ 𝜏𝑎)
 5.27 

𝑇4 = 
𝑘𝑠𝑐

𝜏2
 5.28 

𝑇5 = 
𝑘𝑠𝑐 ∙ 𝜏𝐿

𝜏2
 5.29 

Equation 5.24 can be expressed in state space as follows for the transfer function: 

𝑥̇𝑠𝑐 = 𝐴𝑠𝑐 ∙ 𝑥𝑠𝑐 + 𝐵𝑠𝑐 ∙ 𝑢 

𝜃̇𝑠 = 𝐶𝑠𝑐 ∙ 𝑥𝑠𝑐 + 𝐷𝑠𝑐 ∙ 𝑢 5.30 

where the matrices 𝐴𝑠𝑐, 𝐵𝑠𝑐, 𝐶𝑠𝑐 și 𝐷𝑠𝑐 are defined as follow: 

𝐴𝑠𝑐 = [
−𝑇3 1 0
−𝑇2 0 1
−𝑇1 0 0

] 
5.31 

𝐵𝑠𝑐 = [

𝑇4 − 𝑇3 ∙ 𝑇5 0
−𝑇2 ∙ 𝑇5 0
−𝑇1 ∙ 𝑇5 0

] 
5.32 

𝐶𝑠𝑐 = [1 0 0] 
5.33 

𝐷𝑠𝑐 = [𝑇5 0] 
5.34 

The state space representation of the human vestibular system, comprising the semicircular 

canal and the otolith organ, is defined as follows: 

𝑥̇𝑆𝑉 = 𝐴𝑆𝑉 ∙ 𝑥𝑆𝑉 + 𝐵𝑆𝑉 ∙ 𝑢 

𝑦𝑆 = 𝐶𝑆𝑉 ∙ 𝑥𝑆𝑉 + 𝐷𝑆𝑉 ∙ 𝑢 5.35 

where 𝑥𝑆𝑉 contains the states of the human vestibular model, and 𝑦𝑆 is the detected response. 

The matrices 𝐴𝑆𝑉, 𝐵𝑆𝑉, 𝐶𝑆𝑉 și 𝐷𝑆𝑉 are represented as follows: 

𝐴𝑆𝑉 = [
𝐴𝑠𝑐 0
0 𝐴𝑜𝑡

] 5.36 

𝐵𝑆𝑉 = [
𝐵𝑠𝑐

𝐵𝑜𝑡
] 

5.37 
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𝐶𝑆𝑉 = [
𝐶𝑠𝑐 0
0 𝐶𝑜𝑡

] 5.38 

𝐷𝑆𝑉 = [
𝐷𝑠𝑐

𝐷𝑜𝑡
] 

5.39 

The definitions of vestibular system state error and pilot sensation error are as follows: 

𝑥̇𝑒𝑟𝑟 = 𝐴𝑆𝑉 ∙ 𝑥𝑒𝑟𝑟 + 𝐵𝑆𝑉 ∙ 𝑢𝑠𝑖𝑚 − 𝐵𝑆𝑉 ∙ 𝑢𝐴/𝐶 

𝑒𝑟𝑟 = 𝐶𝑆𝑉 ∙ 𝑥𝑒𝑟𝑟 + 𝐷𝑆𝑉 ∙ 𝑢𝑠𝑖𝑚 − 𝐷𝑆𝑉 ∙ 𝑢𝐴/𝐶 
5.40 

where the simulator and aircraft inputs are 𝑢𝑠𝑖𝑚 respectively 𝑢𝐴/𝐶. 

5.4. Procedure for implementing the motion cueing algorithm 

The input signal vector is taken to be: 

𝑢𝐴/𝐶(𝑠) =  [𝑎𝐴𝑥(𝑠)   𝜃̇(𝑠)] 
5.41 

By completing the equations and deriving the new terms, a general transfer function is 

generated. This function links the real motion with the motion of the flight simulator. 

𝑢𝑠𝑖𝑚(𝑠) =  𝑊(𝑠) ∙ 𝑢𝐴/𝐶(𝑠) 
5.42 

where 𝑊 is the optimized transfer function matrix that transfers the simulator inputs 𝑢𝑠𝑖𝑚(𝑠) 

to the real motion 𝑢𝐴/𝐶(𝑠). The transfer function 𝑊(𝑠) is defined in matrix form as follows: 

𝑊(𝑠) =  [
𝑊11 𝑊12

𝑊21 𝑊22
] 

5.43 

The form of each transfer function 𝑊𝑖𝑗 is shown in equation (18), in total twelve parameters 

are used to complete the denominator and numerator respectively. The denominator parameters 

are unique for each 𝑊𝑖𝑗. 

𝑊𝑖𝑗 = 
𝑎5 ∙  𝑠5 + 𝑎4 ∙  𝑠4 + 𝑎3 ∙  𝑠3 + 𝑎2 ∙  𝑠2 + 𝑎1 ∙  𝑠 + 𝑎0

𝑏5 ∙  𝑠5 + 𝑏4 ∙  𝑠4 + 𝑏3 ∙  𝑠3 + 𝑏2 ∙  𝑠2 + 𝑏1 ∙  𝑠 + 𝑏0
 5.44 

Finding the appropriate matrix for the numerical solution is not straightforward and can 

lead to failure, so the genetic algorithm was used to identify the optimal parameters.  

The objective function for this problem is shown in the equation below as follows: 

𝐹𝑐 =  ∫ [|𝑧𝑠𝑖𝑚 − 𝑧0| + |𝑝𝐴/𝐶 − 𝑝𝑠𝑖𝑚|]
𝑡𝑓

0

𝑑𝑡 
5.45 

The lift position of the flight simulator is denoted by 𝑧𝑠𝑖𝑚 and the base value, the physical 

constraint of the flight simulator, is denoted by 𝑧0. And 𝑝𝐴/𝐶  is a function of the sensed 

perception (human perception) before and after applying the wash filter. The notation 𝐴/𝐶 and 

sim denote the actual motion and the motion of the simulator, respectively. The last time in the 

equation is defined by 𝑡𝑓. 

Figure 5.8 shows an overview of the implemented model. The diagram shows the procedure 

and the general steps of implementing the optimal constraint filter. Using the basic elements of 

the classical constraint filter and the transfer functions (equation 5.44), the basis of this filter is 

prepared, then the cost function (equation 5.45) is considered to reduce the perceptual error 

and free the flight simulator from its physical constraints, and then the optimisation algorithm 

is used to obtain the coefficients of the filter functions. 



Contributions to motion cueing algorithms for flight simulators 

 

30 

 
Figure 5.8 Method of implementing the OWF  

As mentioned above, the purpose of the OWF based on LQR is to determine a transfer 

function, 𝑊(𝑠), that relates the input given by the simulator motion, 𝑢𝑠𝑖𝑚, to the input given 

by the aircraft motion, 𝑢𝐴/𝐶 according to equation 5.42. The control inputs, linear accelerations 

and angular velocities, are applied to generate the desired basic motion commands. The optimal 

washout filter based on LQR method determines the simulator acceleration by minimising the 

human perception error between the simulator and the real aircraft as well as the linear and 

angular motion of the platform. The aim of the method is to limit the human perception error 

and platform motion within the workspace constraints of the motion platform - a serial robotic 

system. 

5.5. Genetic algorithm 

Evolutionary algorithms (EA) are robust methods for finding near-optimal solutions, with 

the ability to handle ill-defined evaluations that have certain properties such as: coupling, time 

variation, discontinuity, noise and probability [57]. Genetic algorithm (GA) is one of the 

efficient evolutionary algorithms, which is a heuristic, robust and reliable search method that 

generates a solution through a process that mimics natural selection and evolution. GA is a 

stochastic population-based algorithm, and the algorithm's potential to solve complicated 

problems is an important advantage over classical optimisation techniques. 

Each chromosome in the GA population randomly searches the solution space 

independently and simultaneously in different directions. This makes it ideal for parallel 

implementation [58]. GA uses genetic operations (selection, crossover and mutation) to evolve 

solutions. In GA, a population is a set of individual chromosomes [59]. The process of 

evolution by creating a new population is repeated until a predefined stopping criterion is met. 

Thus, the algorithm is used to improve the solution provided by the optimal washout filter 

algorithm based on LQR. The aim is to improve human perception and signal shape tracking 

while reducing false motion cues. The method takes into account several factors such as 

simulator limitations, shape tracking criterion, signal accuracy and human threshold in tilt 

coordination. Figure 5.9 illustrates the scheme of the GA operators used to optimise the motion 

algorithm, which will be explained next. 
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Figure 5.9 Structure of the genetic algorithm 

Each solution in its generation is represented by a chromosome made up of genes: 

𝐴𝑐
𝑖 = [𝐴𝑐,1

𝑖 , 𝐴𝑐,2
𝑖 , … , 𝐴𝑐,𝑛

𝑖 ] 
5.46 

where 𝑐 is the number of chromosomes in the population and n is the number of genes in each 

chromosome. To evaluate each individual, it is necessary to establish a defined performance 

index. The objective function is formulated to rank the performance of each individual. For the 

proposed method, the overall objective function consists of five sub-problems as follows: 

I. Minimisation of translational and rotational errors of human perception between 

what pilots feel in the real aircraft and in the simulator. 

II. Minimise the angular and linear displacements of the motion platform to operate 

within its physical limits. 

III. Minimise the variation of perception errors. 

IV. Maximising the correlation coefficient, defined as the Pearson moment 

correlation coefficient, to increase the traceability of the reference signal shape in the 

produced signal.  

V. Minimise the acceleration and velocity of the moving platform due to physical 

constraints. 

Therefore, the objective function at each 𝑖 iteration for the 𝑐 individual is defined as the sum 

of the sub-objective functions: 

𝑂(𝐴𝑐
𝑖 ) = 𝑂𝑐_𝑠𝑒𝑛𝑒𝑟

𝑖 + 𝑂𝑐_𝑐𝑜𝑟
𝑖 + 𝑂𝑐_𝑙𝑖𝑚

𝑖  
5.47 

The chromosomes in the GA are initialised with the individuals obtained from the results of 

the LQR-based optimal constraint filter algorithm.  

The linear and rotational human perception errors between the real pilot and the simulator pilot 

are defined as follows: 

𝑒𝑟𝑎(𝑡) = 𝑎𝐴/𝐶(𝑡) − 𝑎𝑠𝑖𝑚(𝑡) 
5.48 

𝑒𝑟𝜃̇(𝑡) = 𝜃̇𝐴/𝐶(𝑡) − 𝜃̇𝑠𝑖𝑚(𝑡) 
5.49 

To define the human sensation error between real and simulated sensations, a performance 

index of the integral of the squared error is used in the objective function. The associated 

objective functions are defined as follows 
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𝑂𝑐_𝑙𝑖𝑛𝑒𝑟
𝑖 = 𝑘𝑎_𝑒𝑟 ∫ 𝑒𝑟𝑎

2(𝑡)𝑑𝑡
𝑡𝑓

𝑡𝑖

 
5.50 

𝑂𝑐_𝑟𝑜𝑡𝑒𝑟
𝑖 = 𝑘𝜃̇_𝑒𝑟 ∫ 𝑒𝑟

𝜃̇
2(𝑡)𝑑𝑡

𝑡𝑓

𝑡𝑖

 5.51 

 

where 𝑘𝑎_𝑒𝑟 și 𝑘𝜃̇_𝑒𝑟 are the weights that determine the influence of translation and rotational 

sensation errors in the cost function, and 𝑡𝑖 represents the start time and 𝑡𝑓 the test completion 

time. These weights are chosen according to previous research on motion algorithm models 

[56]. The objective function for the total human sensation error is the sum of the translation 

and rotation objective functions: 

𝑂𝑐_𝑠𝑒𝑛𝑒𝑟
𝑖 = 𝑂𝑐_𝑙𝑖𝑛𝑒𝑟

𝑖 + 𝑂𝑐_𝑟𝑜𝑡𝑒𝑟
𝑖  

5.52 

The following section defines the objective function of the cross-correlation coefficient, which 

indicates the dependence of two signals. To accurately follow the true feeling signal, an 

increased correlation coefficient is necessary. The Pearson correlation coefficient between two 

signals, 𝑦1(t) and 𝑦2(t) is defined as follows: 

𝐶𝑐(𝑦1, 𝑦2) =
𝐶𝑣(𝑦1, 𝑦2)

√𝐶𝑣(𝑦1, 𝑦1) ∙ 𝐶𝑣(𝑦2, 𝑦2)
 5.53 

But it can be expressed in another form like this: 

𝐶𝑐(𝑦1, 𝑦2) =
𝐶𝑣(𝑦1, 𝑦2)

𝜎𝑦1
∙ 𝜎𝑦2

 5.54 

The covariance of two signals is: 

𝐶𝑣(𝑦1, 𝑦2) = 𝐸[(𝑦1 − 𝐸[𝑦1])(𝑦2 − 𝐸[𝑦2])] 
5.55 

𝜎𝑦𝑖
= √𝐸[(𝑦𝑖 − 𝐸[𝑦𝑖])2] 

5.56 

where 𝐸[𝑦𝑖] represents the mean of the signals 𝑦𝑖, 𝜎𝑦𝑖
 represents the standard deviation of the 

signal and 𝐸[… ] representd the desired value 

The correlation coefficient between 𝑦1(𝑡) and 𝑦2(𝑡) is: 

𝐶𝑐(𝑦1, 𝑦2) =
𝐸[(𝑦1 − 𝐸[𝑦1])(𝑦2 − [𝑦2])]

𝜎𝑦1
∙ 𝜎𝑦2

 5.57 

Thus, the cross correlation objective function can be defined to provide a solution with a 

better approximation of the shape of the reference sensation signal thus: 

𝑂𝑐_𝑙𝑖𝑛𝑐𝑜𝑟
𝑖 = 𝑘𝑎_𝑐𝑜𝑟|1 − 𝐶𝑐(𝑎𝐴/𝐶 , 𝑎𝑠𝑖𝑚)| 

5.58 

𝑂𝑐_𝑟𝑜𝑡𝑐𝑜𝑟
𝑖 = 𝑘𝜃̇_𝑐𝑜𝑟|1 − 𝐶𝑐(𝜃̇𝐴/𝐶 , 𝜃̇𝑠𝑖𝑚)| 

5.59 

where 𝑘𝑎_𝑐𝑜𝑟și 𝑘𝜃̇_𝑐𝑜𝑟 are the linear and angular weights of the correlation coefficient.  

The total objective function of the correlation coefficient is defined as follows: 

𝑂𝑐_𝑐𝑜𝑟
𝑖 = 𝑂𝑐_𝑙𝑖𝑛𝑐𝑜𝑟

𝑖 + 𝑂𝑐_𝑟𝑜𝑡𝑐𝑜𝑟
𝑖  

5.60 

As far as the limits of the moving platform are concerned, linear and angular displacements 

should be kept to a minimum to avoid reaching the limit of the working space. To prevent 
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extreme linear velocities/accelerations and angular velocities being reached within the motion 

platform, the limiting objective function must include velocity and acceleration factors. 

The limiting objective function is represented as follows: 

𝑂𝑐_𝑙𝑖𝑛𝑙𝑖𝑚
𝑖 = 𝑘𝑥 ∫ 𝑥2(𝑡)𝑑𝑡

𝑡𝑓

𝑡𝑖

+ 𝑘𝑣 ∫ 𝑣𝑠𝑖𝑚
2 (𝑡)𝑑𝑡 + 𝑘𝑎 ∫ 𝑎𝑠𝑖𝑚

2 (𝑡)𝑑𝑡
𝑡𝑓

𝑡𝑖

𝑡𝑓

𝑡𝑖

 

 
5.61 

𝑂𝑐_𝑟𝑜𝑡𝑙𝑖𝑚
𝑖 =𝑘𝜃 ∫ 𝜃2(𝑡)𝑑𝑡

𝑡𝑓
𝑡𝑖

+ 𝑘𝜃̇ ∫ 𝜃̇𝑠𝑖𝑚
2
(𝑡)𝑑𝑡

𝑡𝑓
𝑡𝑖

 
5.62 

where 𝑘𝑥 is a weight for linear displacement limitation, and k_v and k_a are for linear velocity 

and acceleration limitations. In equation 5.62, 𝑘𝜃 is a weight for angular displacement. 

𝑂𝑐_𝑙𝑖𝑚
𝑖 = 𝑂𝑐_𝑙𝑖𝑛𝑙𝑖𝑚

𝑖 + 𝑂𝑐_𝑟𝑜𝑡𝑙𝑖𝑚
𝑖  

5.63 

These constraints have been incorporated into the simulation block in the form of constraints 

to restrict movements within the specific limits of the simulator. 

The AG selection process is utilised to choose individuals for breeding, giving a higher 

probability to the most suitable candidates. For each objective function evaluation, a 

MATLAB/Simulink model is simulated and run in a closed loop over the AG generation, which 

aims to minimise the objective function. The raw values are scaled by the selection operation 

using rank scaling as follows: 

𝑆𝑐(𝑓𝑖) =
1

√𝑅𝑖

 5.64 

where 𝑅 is the rank of individuals in the population, starting from 1 for the best individual. To 

calculate the objective function, Simpson's rule is applied. In AG breeding, the selection 

scheme proportional to fitness is adopted. Thus, a chromosome with a higher objective value 

has a higher probability of being copied in the next generation. Figure 5.10 illustrates the 

simulation scheme used to evaluate the performance of the optimal constraint filter algorithm. 

The algorithm is adjusted based on GA and considers several factors in the objective function, 

as mentioned earlier in this subchapter. The GA operations, including selection, crossover, and 

mutation (as shown in Figure 5.9), and the transfer functions of the optimal washout filter are 

simulated to minimize the total objective function. 

 
Figure 5.10 Structure of the genetic algorithm for adjusting the transfer functions of the OWF 
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Designing a closed-loop transfer function by selecting the numerator and denominator 

coefficients is a simplified process with GA optimization. The optimal washout filter is then 

optimized by incorporating new aspects and considering their effects. GA is used to adjust the 

magnitude and phase information in the transfer functions of the optimal washout filter and to 

improve the zeros and poles in the denominator and numerator. This is useful because each 

criterion can affect each parameter of the optimal washout filter transfer functions. To modify 

the poles and zeros of a transfer function, manipulate the numerator and denominator 

coefficients as follows: 

𝑊(𝑠) =
𝐵(𝑠)

𝐴(𝑠)
=

𝑎0 + 𝑎1𝑠
−1 + ⋯+ 𝑎𝑚𝑠−𝑚

𝑏0 + 𝑏1𝑠−1 + ⋯+ 𝑏𝑛𝑠−𝑛
 5.65 

where 𝑠 =  𝑗𝜔 is the frequency domain, 𝑚 is the order of the numerator, 𝑛 is the order of the 

denominator and 𝑎𝑖 și 𝑏𝑖 are the coefficients of the numerator and denominator. Their fit can 

be represented as follows: 

𝑊∗(𝑠) =
𝐵∗(𝑠)

𝐴∗(𝑠)
=

𝑎0𝑎
′
0 + 𝑎1𝑎

′
1𝑠

−1 + ⋯+ 𝑎𝑚𝑎′
𝑚𝑠−𝑚

𝑏0𝑏′
0 + 𝑏1𝑏′

1𝑠−1 + ⋯+ 𝑏𝑛𝑏′
𝑛𝑠−𝑛

 5.66 

where 𝑎′
𝑖 și 𝑏′

𝑖 are coefficients for manipulating the primary coefficients of the numerator and 

denominator, and 𝑎′
0 = 𝑏′

0 = 1 for steady-state error elimination. Then the parameterized 

transfer function is evaluated by means of the objective function to be optimized by adjusting 

the coefficients. 

Each solution can be represented as a vector 

𝑋 = [𝑎′
1, 𝑎

′
2, … , 𝑎′

𝑛, 𝑏′
1, 𝑏

′
2, … , 𝑏′

𝑚] 
5.67 

where 𝑋 represents the chromosome, and 𝑎𝑖 and 𝑏𝑖 are related genes. 

The aim of GA optimisation is to minimize the objective function in equation 5.47. The 

shifting of the zeros and poles considers the correlation coefficient, perceptual error limitations, 

and nonlinearities that are not accounted for in the LQR method. These additional aspects are 

included in the objective function to obtain an improved solution for the existing optimal 

washout filters. Figure 5.10 shows a schematic diagram of the GA fit evaluation used to 

develop the OWF based on GA optimisation.  

The GA considers the optimal washout filter solution as the initial individuals to be 

evaluated. 

(𝑋0
𝑖𝑛𝑡)1×(𝑚+𝑛) = 𝑋𝑛 = [1,1, … ,1] 

5.68 

By changing the numerator and denominator, the zeros and poles move from their original 

values.  

The rate of change for all factors is calculated as follows: 

𝑟 ≤ 𝑎′
𝑖 ≤

1

𝑟
 

𝑟 ≤ 𝑏′
𝑖 ≤

1

𝑟
 

𝑟𝑋𝑛 ≤ 𝑋𝑖
𝑡 ≤ 𝑋𝑛 

5.69 

where 𝑟 is an arbitrary rate less than 1,  but which must not be very far from this value. The 

selection of r depends on the case under study, and in the present study, after several attempts, 

the rate was set to 0,81. This setting guarantees that the new poles and zeros remain very close 
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to the previous solutions in the optimal washout filter algorithm, even in the case of the worst-

case solution. 

Equation 5.69 defines the parameter ranges for the GA search process used to solve the 

optimization problem. The simulation process evaluates each parameter set obtained for the 

washout filter. The GA evolution loop continues the search until the stopping criterion, which 

is a threshold for the objective function value, is met. 

 

6. Results 

This chapter highlights specific results for the optimal washout filter algorithm. The 

algorithm was formulated, designed, developed, implemented, tested, and validated to improve 

the flight simulation environment using the IRB 7600-500 serial robotic system-based flight 

simulator. To validate the applicability of the optimal washout filter and compare it with the 

modified filter based on information provided by the genetic algorithm, six flights were 

performed using a dynamic model for a fast-evolving aircraft. In the previous chapter, was 

implemented the optimal washout filter based on LQR with the centre of rotation of the 

simulator platform located in the subject's (pilot's) head area to eliminate potential false motion 

cues. The inputs to the washout filter are the linear acceleration and angular velocity. The 

vestibular system model, including the semicircular canal and the otolith organ, is part of the 

filter scheme to eliminate false motion cues. The parameters for the vestibular system, as 

defined in Chapter 5 for the otolith system and semicircular canal, are shown in the tables 

below, according to [56]. 

 

Table 6.1 shows the specific force parameters for the otolith system and the frequency response 

of the specific force sensation transfer function for the otolith system is shown in Figure 6.1. 

 

Table 6.1 Specific force parameters for the otolith system 

 X Y Z 

𝒌𝒐𝒕  0.4 0.4 0.4 

𝝉𝟏 [𝑠] 5 5 5 

𝝉𝟐 [𝑠] 0.016 0.016 0.016 

𝝉𝑳 [𝑠] 10 10 10 

𝑨𝟎 [𝑠−1] 1/𝜏𝐿 1/𝜏𝐿 1/𝜏𝐿 

𝑩𝟎 [𝑠−1] 1/𝜏1 1/𝜏1 1/𝜏1 

𝑩𝟏 [𝑠−1] 1/𝜏2 1/𝜏2 1/𝜏2 

𝒌𝑶 𝑘𝑜𝑡𝜏1𝜏2/𝜏𝐿 𝑘𝑜𝑡𝜏1𝜏2/𝜏𝐿 𝑘𝑜𝑡𝜏1𝜏2/𝜏𝐿 

Prag [𝑚/𝑠2] 0.17 0.17 0.28 
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Figure 6.1 Frequency response for the otolith model  

Table 6.2 shows the specific parameters of the rotational motion model for the semicircular 

system, and the frequency response of the rotational sensation transfer function for the 

semicircular channel is shown in Figure 6.2. 

Table 6.2 Specific parameters for rotational motion for semicircular system 

 Roll (x) Pitch (y) Yaw (z) 

𝒌𝒔𝒄 28.6479 28.6479 35.8099 

𝝉𝟏 [𝑠] 5.73 5.73 5.73 

𝝉𝟐 [𝑠] 0.005 0.005 0.005 

𝝉𝑳 [𝑠] 0.06 0.06 0.06 

𝝉𝒂 [𝑠] 80 80 80 

Threshold [𝑔𝑟𝑎𝑑/𝑠] 2.0 2.0 1.6 

 
Figure 6.2 Frequency response for the semicircular system 

The use of GA presents a significant challenge in selecting appropriate parameters, 

including population size, mutation rate, and crossover rate. These parameters determine 

solution accuracy and algorithm convergence speed. Therefore, setting proper crossover and 

mutation rates is crucial for successful results. The algorithm tests scenarios by achieving 

optimal crossover or mutation rates through trial and error. A population size of 60 

chromosomes is considered optimal for accurate results in the presented experiments. 

Increasing the population size beyond 60 chromosomes does not noticeably improve the 

solution. However, the computation time is increased and the convergence speed is 
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considerably decreased. Additionally, the optimal solution is highly dependent on the 

initialization of the chromosomes. Therefore, the initial values for each chromosome are 

selected based on the previous solutions provided by optimal washout filter based on LQR. 

Evolution is then started using these parameters. It is important to note that this approach aims 

to maintain consistency with the previous washout filter. The crossover rate of 0.78, mutation 

rate of 0.25, and 5% of the population size are used for elite breeding and rank scaling, based 

on research in the literature. 

Figure 6.3 shows the evaluation scheme for tuning the genetic algorithm used to develop 

an optimal washout filter in a MATLAB/Simulink simulation environment. 

 
Figure 6.4 Scheme of the GA fit evaluation for the optimal washout filter algorithm 

 

The following section presents the results obtained from the optimal washout filter based 

on LQR and the modified optimal washout filter based on genetic algorithm. Graphical 

representations are used to plot flight information and to compare the results of the two filters 

for linear acceleration, roll, and pitch motion during different flight phases. The results will be 

presented for short flight sequences of a maximum of 50 seconds, specifically during the cruise 

and landing phases. The scenario for the six flights comprised one lap of runway 08R LROP, 

which took approximately 8 minutes per flight. The recorded data were updated and stored 60 

times per second in a database. To highlight the shape of the signal recorded by the two filters, 

a graphical representation was chosen for flights 1 and 2.  

Figure 6.5 displays the parameters that describe the flight segment, including latitude, 

longitude, altitude, heading, and Mach number, during the cruise flight phase sequence for the 

first flight scenario. The gravitational force was recorded with minimum and maximum values 

of 𝑔𝑚𝑖𝑛 = 0.3914 and 𝑔𝑚𝑎𝑥 = 2.2256. 
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Figure 6.5 Flight scenario (1) - Flight parameters - cruise sequence (1C) 

In Figure 6.6, Figure 6.7 and Figure 6.8 it can be seen that the signal recorded by the 

modified optimal washout filter algorithm based on GA yields a signal shape correction for the 

states recorded by the original algorithm with a noticeable improvement for the roll motion. 

 
Figure 6.6 Acceleration - comparison between initial optimal washout filter and modified 

optimal washout filter (GA) (Flight Scenario 1C) 
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Figure 6.7 Roll angle - comparison between initial optimal washout filter and modified 

optimal washout filter (GA) (Flight Scenario 1C) 

 

 
Figure 6.8 Pitch angle – comparison between initial optimal washout filter and modified 

optimal washout filter (GA) (Flight Scenario 1C) 

 

Figure 6.9 shows the parameters describing the landing flight segment (latitude - longitude, 

altitude, heading, Mach number) for the sequence chosen for the second scenario, where the 

gravitational force recorded a minimum value of 𝑔𝑚𝑖𝑛 = 0.5385  nd a maximum value of  

𝑔𝑚𝑎𝑥 = 1.5923 during the flight. 
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Figure 6.9 Flight scenario (2) - Flight parameters - cruise sequence (2A) 

Figure 6.10, Figure 6.11 and Figure 6.12 show the outputs of the modified optimal washout 

filter compared to the original OWF motion algorithm with the average error between the two 

algorithms being highlighted as being of order 10−4. 

 

 
Figure 6.10 Acceleration - comparison between initial optimal washout filter and modified 

optimal washout filter (GA) (Flight Scenario 2A) 
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Figure 6.11 Roll angle - comparison between initial optimal washout filter and modified 

optimal washout filter (GA) (Flight Scenario 2A) 

 
Figure 6.12 Pitch angle – comparison between initial optimal washout filter and modified 

optimal washout filter (GA) (Flight Scenario 2A) 

The results show the effect on the fidelity of the motion indices. From the graphical 

representations it is observed that for pitch and roll motion the models show almost identical 

continuity of signal shape, the output signal is able to track the modified wash filter reference 

signal with a significantly higher degree of correlation, the average error recorded is in the 

order of 𝟏𝟎−𝟒. 

The modified optimal wash filter algorithm generates better motion with a more realistic 

feel in a more efficient way by reducing platform displacement. As a result, the simulator can 

efficiently use the extra space for other possible motions. 
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7. Conclusions and further developments 

7.1. General conclusions  

The first part of the PhD thesis presents a study on motion cueing algorithms for flight 

simulators, based on existing research. A comparative analysis of four types of washout filters 

was conducted, namely classical, adaptive, optimal control, and robust optimal control, using 

the results presented in the literature. The advantages and disadvantages of different algorithm 

designs have been presented to aid in selecting the most feasible option for the flight simulator 

of the serial robot motion platform. The study determined that the optimal washout filter was 

selected because it incorporates the vestibular system model, allowing for analysis of human 

perception error. Additionally, the algorithm tuning is easily accessible through adjustment of 

the cost function weights, providing a favourable framework for the optimization procedure. 

The dynamic simulation system for pilot-in-the-loop applications was mathematically 

modelled and used as a test platform for the two configurations of the designed and 

implemented optimal constraint filter. The motion cueing algorithm for the flight simulator was 

implemented and tested on the ABB IRB 7600-500 robotic system as the motion platform. The 

article presents the functional structure of the dynamic simulation system and the interaction 

mode between its components. It defines and plots the reference systems for the simulator 

platform. 

To test the motion algorithm, it was necessary to perform and simulate the inverse 

kinematics of the serial robot motion platform. The platform is represented as module 4 

according to the simulation structure shown in Figure 3.2. The robot's motion was controlled 

in different directions using various combinations of joint angles. The concept of direct and 

inverse kinematics was used to determine the end-effector position for fixed joint angles and 

joint angles for the fixed end-effector. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

optimization algorithm was used to solve the inverse kinematics problem in two simulation 

environments: MATLAB R2022b and Robot Studio. The simulation results are presented in 

subsection 3.4.2, and the model's effectiveness can be confirmed by moving along a predefined 

trajectory of the serial robot end-effector. The discussion also covered the result of the inverse 

kinematics for various combinations of joint angles, highlighting the differences in the position 

vector configuration. 

The proposed algorithm includes an essential module for scaling and limiting the 

workspace of the flight simulator. This involves redefining the minimum and maximum limits 

of the motion platform joints to ensure the simulator remains within safe limitations and 

constraints during use and testing. Modifications were made to the joint angles of the robot for 

hardware limitations, specifically for joint 𝑞3, 𝑞4 și 𝑞5, which now have limits of [-180 +40], 

[-175 +175], and [-90 +90] respectively. 

The motion algorithm transforms the acceleration and angular velocity of a simulated 

vehicle to reproduce high-fidelity motions within the physical limits of the simulator. In the 

PhD work, the optimal washout filter was designed based on the LQR method, which considers 

the vestibular system and the motion of the simulator to efficiently reduce the human 

perception error between the simulator and the real aircraft. 
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A limitation was applied to the ABB IRB 7600-500 serial robotic system for the 

translational and rotational channel due to physical constraints. The state vector signals (𝑢𝐴/𝐶) 

used as input to the algorithm model, a scaling was applied to change the signal amplitude 

uniformly across all frequencies. To achieve this, a third-order polynomial was implemented 

in the general scheme of the optimal washout filter algorithm. The scaling and limiting units 

are crucial for ensuring that the motions in the flight simulator remain within physical limits. 

They work together with the optimal washout filter to uniformly reduce the magnitude of 

translational and rotational motion signals across all frequencies in the algorithm. This helps 

to mitigate the effects of workspace limitations on reproducing simulator motions and improves 

the realism of the motion feel. 

Sub-chapter 5.3 presents the mathematical modelling of the vestibular system, which is a 

crucial component of the optimal washout filter motion algorithm.  

Simultaneously, the reference system with the centre of rotation at the pilot's head was selected 

to eliminate false motions and the sensation of cross-coupling between the simulator's rotation 

and the pilot's head translational motion. Additionally, it was chosen to reduce the displacement 

in the workspace of the motion platform. 

A new strategy based on evolutionary algorithms has been proposed to improve the optimal 

washout filter based on LQR. The main objective is to regenerate a signal that can closely track 

the reference signal, avoid false motion cues, and improve its shape. The genetic algorithm cost 

function considered several criteria, including the error between the motion sensation recorded 

by the real pilot and the simulated sensation, the imposition of dynamic simulator constraints, 

the setting of the human threshold limiter in the pitch coordination, the derivative of the human 

sensation error, and the cross-correlation coefficient. 

The results indicate that the proposed OWF method based on genetic algorithms can 

comprehensively handle all these aspects. The optimal motion cueing algorithm based on 

genetic algorithms was implemented using the MATLAB/Simulink software package. 

The results obtained demonstrate the superiority of the proposed optimal washout filter 

based on genetic algorithms due to its better performance, improved human sensation, 

increased shape tracking factor, and reduced displacement. The proposed optimal washout 

filter based on GA achieves a balance between human sensation error and shape tracking, 

resulting in better motion and a more realistic experience for the pilot in the simulator. 

Additionally, the filter efficiently utilizes the workspace, allowing for more possible motions 

to be included. The results showed that the algorithm is reliable, robust and efficient in this 

application for the ABB IRB 7600-500 serial robot motion platform-based flight simulator. 

The proposed algorithm has the advantage of being applicable as a tool for any type of 

simulator, regardless of physical limitations, or for the same simulator in other physical 

confinements. This can be achieved without requiring significant effort to tune the specific 

parameters of the motion indication algorithm. 
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7.2.Original contributions 

The PhD work involved designing, implementing, and testing a motion cueing algorithm, 

an optimal washout filter based on LQR, and an improved version of the filter based on genetic 

algorithms. This was the first time such algorithms were used for flight simulators based on 

ABB IRB 7600-500 serial robot motion platforms. The algorithm described in Chapter 2 has 

only been tested on simulators based on parallel robot motion platforms (Stewart type 

platforms).  

This study introduces a novel aspect by limiting and scaling the ABB IRB 7600-500 type 

motion platform for the serial robot system. This involves an application of specific procedure 

for the flight simulator. 

Designing and implementing motion cueing algorithms pose a significant challenge, 

particularly in allocating joint values to control human perception and achieve realistic motion. 

To mitigate human perception error and create faithful motion in the flight simulator 

workspace, the washout filter algorithm should be optimally implemented. The objective 

function is defined by two criteria: minimizing the workspace of the flight simulator and 

minimizing the human perception error. Two different maneuvers, roll and pitch, are 

considered. The results presented in Chapter 6 demonstrate that motion occurs within the 

simulator workspace and the perception error is minimal. The correlations of human perception 

before and after the application of the proposed eashout filter are higher than 85% for all studied 

manoeuvres, indicating that human perception does not change significantly when the washout 

filter is applied. 

In the optimal washout filter algorithm, the cost function used maximizes the correlation 

coefficient, specifically the Pearson moment correlation coefficient. This is done to increase 

the traceability of the reference signal shape in the produced signal. It is important to allow the 

regenerated signal to follow the shape of the signal from the real pilot, in addition to decreasing 

human sensing error. The cost function of the motion cueing algorithms implemented so far 

has not taken into account this significant aspect. 

The proposed washout filter reduces both the actual acceleration in the simulator workspace 

and the perception system error. This method accurately produces flight simulator platform 

motions with higher fidelity and efficiency while adhering to the physical limitations of the 

simulator. 

The OWF motion cueing algorithm has been improved by using the genetic algorithm for 

six degrees of freedom simulator configuration. 
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7.3. Future research directions 

To enhance the motion cueing algorithm, it is recommended to implement and test other 

optimization methods that can improve the fidelity of motion in various flight scenarios and 

operating conditions of the flight simulator platform.  

Additionally, further research is required to gain a better understanding of the subjective 

evaluations of test pilots. On top of this, conducting further experiments to investigate the 

impact of false cues and errors on motion perception fidelity could enhance the algorithm's 

applicability. 

In the future, it will also be important to optimise the initial position of the flight simulator 

to improve its workspace utilisation for specific simulation tasks. 

As a direction for future research, the proposed method implemented in the 

MATLAB/Simulink simulation environment as a computational program developed for 

optimizing motion cueing algorithms for flight simulators can be used to evaluate other types 

of motion cueing algorithms.  

Furthermore, evolutionary computational methods can be employed to design the nonlinear 

scaling unit. It is worth investigating and designing a nonlinear scaling unit based on prediction 

intervals. Conducting further tests using a flight simulator to analyze the results provided by 

the proposed method is planned for future phases of this research. 

To improve the usability and efficiency of the computational program for optimizing 

motion cueing algorithms, it is important to develop a graphical user interface with specific 

inputs for each module of the algorithm. Additionally, the interface should allow for 

comparison of results from different motion cueing algorithms to aid in selecting the 

appropriate algorithm for different test scenarios and flight simulator configurations. 
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