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Chapter 1

Introduction

Analog integrated circuit (IC) verification is a major component in the development
of analog circuits because it ensures that the circuits will work as intended. It is also
an essential inspection step because it helps identify and rectify any defects or errors
introduced during the design process.

Analog IC verification consists of two parts. In the initial phase, compliance with
all requirements is examined. The functionality of these circuits is evaluated based on
a variety of operational parameters, followed by a comparative analysis with respect
to predetermined performance benchmarks. Various methods, such as simulation in
pre-silicon and measurement in post-silicon, can be used to accomplish this goal. These
methods will generate a series of signals that will be saved for subsequent examination.

In the second part of the analog IC verification, the signals need to be verified visually
by experts. This is necessary because even if for a certain product all the requirements
have been met, there is a possibility that it still does not work as expected. The challenge
at this stage of verification is that we must manually verify a vast number of signals, as
we must take into consideration signals from many possible combinations of operating
conditions.

In the current work, we propose a method to make the process of manual verification
of signals more efficient. This is accomplished by the process of signal clustering, which
enables the analysis of a vast volume of data without the need to individually examine
each signal. The purpose of this clustering procedure is not to verify the requirements,
but rather to visually inspect the signal in order to confirm the absence of unexpected
oscillations, overshoots, undershoots, or other forms of glitches.

The main objective of this method of optimization is to reduce the amount of time
required to visually verify analog IC signals, while a second objective is to support
IC fabrication by optimizing the process on how the production test sensor signals are
analyzed.



Chapter 1 – Introduction

1.1 Aiding analog IC verification and wafer production
testing

During the pre-silicon verification, simulators are used to ensure that the design meets
all requirements. It is also necessary to evaluate as many operating conditions as
possible in order to reduce the possibility of design flaws. Following these simulations,
a very large number of signals are generated, which need to be visually inspected by an
expert. However, due to the fact that scenarios may be created automatically within the
simulation, the verification becomes more challenging because of the increase in data
that requires visual inspection. Due to the large number of signals to be analysed, signal
clustering can have a significant impact at this stage.

In post-silicon verification stage, the IC was validated in simulation and must also
be validated in laboratory conditions. Measurement is yet another crucial process for
analog IC verification since it enables designers to actually measure the parameters of
the circuits and compare them to the simulated parameters that were anticipated. Signals
collected in laboratory are more challenging to evaluate than those used in simulation
environments due to the presence of noise and the possibility of glitches like oscillations,
overshoots, undershoots.

During wafer fabrication, the design is validated both pre-silicon and post-silicon;
however, it is necessary to test the circuits printed on wafers according to specific
parameters to ensure that production worked correctly. Therefore production is monitored
with a series of sensors that are subsequently analysed to determine whether or not the
fabrication process has functioned correctly. Several wafers will be affected if a particular
problem occurs on production. Analysing the sensors and identifying those sensors that
are correlated with the production error is the initial step in identifying the problem. Due
to the fact that this process requires a laborious analysis of the signals, we propose to
offer support for IC manufacturing by implementing an automatic method for identifying
the sensors that are correlated with the manufacturing error.

Supporting analog IC verification and wafer fabrication testing is essential for reduc-
ing manual work involved. Therefore, we propose a new method for analysing these
signals, by providing a more compact way of visualising the signals as clusters and
reducing the number of signals that needs to be assessed.

1.2 Scope of the Research

The objective of this work is to aid the process of analog IC verification and production
line testing by optimising manual work with the use of machine learning techniques. In
the process of optimizing verification processes, the implementation of such methods
may present certain challenges:
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• For machine learning algorithms to undergo training and evaluation, a substantial
amount of data is required. The task at hand may involve the acquisition and
labeling of extensive amounts of data from diverse ICs and operational scenarios
within the framework of analog verification. A portion of the effort expended on
these projects was devoted to the signal labelling process. This procedure had as
its objective the grouping of signals based on their waveforms.

• The evaluation accuracy of the findings is directly correlated to the quality of the
data that is used for training and testing the algorithms. The current objective might
require the meticulous selection and processing of data to effectively mitigate the
impact of unnecessary factors such as noise and other sources of imprecision.

• The process of feature selection may pose challenges, as it can be difficult to
ascertain in advance the features that are relevant to the specific application. As
a result, identifying the optimal combination of features to utilize might require
extensive examination and experimentation. In order to accomplish this, it was
necessary to evaluate a variety of feature extraction techniques to determine
which are able to extract valuable information from the analogue IC signals for
subsequent use in the clustering process.

• The task of selecting and adapting a suitable machine learning algorithm for
this particular application can pose a significant challenge. This is due to the
fact that there are multiple techniques and procedures that could potentially be
optimized, each possessing specific characteristics. Several processes that have the
potential for optimization include the identification of unexpected signal events,
the identification of sensors reflecting chip failure, and support of IC fabrication.

Employing machine learning techniques to lower the amount of manual inspection
required in the process of analog verification can be difficult, but it also has the potential
to offer considerable benefits in regard to coverage and efficiency of the analog IC
verification.

1.3 Motivation

The use of machine learning methodologies for the purpose of aiding analog verification
processes has the potential to reduce the amount of manual work, simultaneously facilitat-
ing the analysis of large quantities of data related to complex operational scenarios. This
may assist in accelerating the entire IC design process, while improving the efficiency of
the verification process. Consequently, there are multiple justifications for using machine
learning techniques to optimize the verification process:

The objective of this study is to maximize the optimization of the entire development
procedure of analog ICs through the integration and adaptation of machine learning
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methodologies into IC verification processes, with the aim of achieving the greatest
possible impact. The use of machine learning techniques for the enhancement and
automation of the analog IC verification process has the potential to yield significant
benefits.

1.4 Thesis Structure

In Chapter 2, we present fundamental elements of machine learning, including clustering
techniques used in the verification optimization process, machine learning techniques,
and the current state of optimization techniques based on machine learning for the analog
IC verification.

In Chapter 3, we will present a method for enhancing the pre-silicon verification
process by designing an algorithm to cluster signals based on well-known occurrences
identified by verification engineers. This clustering and optimization technique consists
of a time invariant-feature extraction algorithm, a clustering algorithm, and an algorithm
for signal visualization in the space of features.

The emphasis of Chapter 4 is on events present in post-silicon signals that the
algorithm presented in Chapter 3 is unable to characterize. In this framework, we have
developed two methods for automated feature extraction: one based on neural networks
and the other on a signal-processing approach called Dynamic Time Warping. Also in
this chapter, we conducted a comparison examination of several clustering metrics in
relation to our use case of analog IC verification.

In Chapter 5 we focus on supporting IC fabrication of wafers. This is done using the
most effective feature extraction technique presented in Chapter 4 in combination with
several classification algorithms and optimal clustering metrics for the specific use-case
of analog IC signals.

In Chapter 6, we form a broad conclusion about the approaches that were proposed,
discuss the influence on the current issue, and highlight the important contributions that
the author has made. In the conclusion of the thesis, several suggestions for potential
future research are presented on the subject of improving the efficiency of analog IC
verification.

4



Chapter 2

Related Work and Theoretical
Fundamentals

The focus of this study will be on assisting the verification of analog ICs in order to
reduce the manual effort involved in this process. With the evolution of the semiconduc-
tor industry, the technology allows more requirements, and the verification procedure
has become increasingly labor-intensive [GS19]. This was mostly due to the human
component of the verification system, which cannot keep up with the enormous amount
of data that must be visually evaluated [CK07].

Manual verification refers to the procedure of assessing the operational effectiveness
of analog circuits by means of human proficiency in the form of visual examination.
In the pre-silicon stage of the design process that comes before the IC is actually built,
manual verification is frequently utilized to detect unexpected behaviours under various
operating situations [GXGM19]. The analog circuits can be simulated with software
applications, and the results can be compared to the intended performance parameters.

Enhancing and facilitating manual verification can significantly influence the IC
analog verification process in both pre-silicon and post-silicon phases. The reason for
this is that manual examination conducted by humans can require a significant investment
of both time and resources. Hence, through the optimization of this particular aspect of
the verification process, it is possible to enhance the effectiveness of the overall design
process of analog ICs.

2.1 Analog IC verification methodology

The primary objective of the analog IC verification methodology pertains to the exami-
nation of analog IC’s simulated or measured signals. The signals under consideration
are primarily one-dimensional time-series that adhere to specific criteria, including
settling time, overshoot or undershoot levels, and signal values. Furthermore, unusual
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phenomena such as oscillatory patterns or atypical signal morphology are deliberately
sought after in these signals.

Using automated tools that are able to assess the simulated data and identify any
deviations from the set performance standards can be beneficial in making the process of
manual inspection more efficient [MGK+05]. Improving the quality of data visualization
serves as a supplementary measure to automation. In situations where a large volume of
data necessitates manual evaluation, engineers may employ a data visualization technique
that enables the simultaneous viewing and comparison of hundreds of signals in a clear
and understandable manner.

2.2 Optimize verification using machine learning

The analog IC verification procedure can be made more efficient by employing various
machine learning strategies. These methods involve training and fitting algorithms to
extract relevant features from analog signals. The first step of using machine learning
techniques for the verification of analog ICs is to gather and annotate vast volumes of
data from a variety of products and operating situations. This data may then be used to
develop machine learning techniques to uncover specific patterns in the analog signals
[MCC+22].

Researchers employed unsupervised machine learning approaches in [YWCW21].
The goal of the study was to evaluate signals and find faulty behaviours directly from the
time series without any preprocessing steps. The findings demonstrated that the machine
learning approaches were able to effectively identify faulty behaviours within the signals,
which resulted in an increase in the speed and accuracy of the visual inspection process.

2.3 Feature Extraction for Time-Series

The process of obtaining relevant features or traits from a database in order to include
them into a neural network model or use them in an algorithm is referred to as feature
extraction and is one possible first steps involved in machine learning [KD16]. The
purpose of feature extraction is to locate those aspects of the data that are the most
significant and pertinent to the problem at hand, thereby assisting the model in correctly
classifying the data.

When referring to signal processing, the term "feature extraction" may refer to the
process of extracting aspects of a signal such as the frequency spectrum, the shape of the
waveform, or the statistical qualities of the signal [RHW+16]. After that, these features
can be sent into a machine learning model in the form of input, where the model can be
trained to categorize or predict the signal based on these features.

6
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2.4 Waveform Clustering

Clustering is a machine learning technique that entails the formation of clusters from
sets of data points that exhibit similarities. The primary objective of clustering is to
identify recurrent patterns and interrelationships within the data. This process enables
analysts to gain novel insights and achieve a more comprehensive understanding of data
distribution, even facilitating visualization [XW10].

Clustering is a valuable method for gaining knowledge of the underlying distribution
of data as well as locating patterns and correlations that are present within it. Due to
these factors, we believe clustering can have a significant impact on the optimization of
the analog IC verification process, given the vast quantity of data involved.

2.4.1 K-means

K-means clustering is an algorithm that divides a dataset into a predetermined number
of groups depending on the distance between data points. The objective of k-means is to
minimize the sum of squares within a cluster, a measurement of the distance between
data points inside each cluster [JJJ+20].

The fact that k-means clustering can be implemented quickly and with little effort is
one of the many strengths of the method. In addition to this, it is an efficient method for
locating clusters that have fairly consistent densities and shapes. On the other hand, it is
possible for it to be sensitive to the initially selected centroids, and it may not perform
very well on datasets that have non-uniform densities or shapes. The K-means clustering
algorithm is a powerful and popular method that divides a dataset into groups based on
the average distance between each pair of data points in the dataset. Finding patterns
and correlations in the data, as well as getting insights into the underlying structure of
the dataset, are also effective applications of this technique.

2.4.2 Hierarchical clustering

Hierarchical clustering is a technique that groups data points based on a feature space
representation and creates a layered tree-like organization of the data. This type of
clustering may be broken down into two primary categories: agglomerative (or bottom-
up) and divisive (top-down) [PSJ15]. The most popular method of clustering is called
agglomerative hierarchical clustering, and it involves beginning with a large number of
tiny clusters and then merging them together based on the similarities between them until
all of the data points are included in a single cluster. In contrast, divisive hierarchical
clustering begins with a single large cluster and then splits it into several smaller clusters
depending on the similarity between the data points in each of the smaller clusters until
each data point is in its own cluster.

7
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Hierarchical clustering generates a visual representation of the clusters in the form
of a dendrogram, which provides a reasonably comprehensive interpretation, especially
for the analog IC verification data.

2.4.3 DBSCAN clustering

The approach known as Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) proposed by the authors in [Den20] is used to cluster individual data points
included within a dataset. It is predicated on the hypothesis that clusters in a dataset are
produced by high-density regions of points, which are then separated by low-density
regions. DBSCAN requires the definition of 2 hyperparameters; the first one is Epsilon,
the maximum distance to the closest neighbours and the second one is MinPts, the
minimum number of points needed for illustrating a cluster [BY21].

The ability of the algorithm to automatically count the number of clusters present in
the dataset, as well as its capacity to single out individual points that do not belong to
any cluster, are two of the many strengths of the algorithm. Additionally, it is relatively
efficient because it only needs to compute the distance between points that are within
Eps of one another in order to do its job.

2.5 Feature Space Dimensionality Reduction

The visualization of signals in a concise and comprehensible manner through the uti-
lization of algorithmically extracted features is a crucial element of this study. Given
that the feature space is characterized by multiple dimensions, it is necessary to employ
dimensionality reduction techniques in order to facilitate the visualization of signals as
points within a two-dimensional space.

Dimensionality reduction, also referred to as feature space dimensionality reduction,
is a technique employed in the domain of machine learning to decrease the number
of features or dimensions in a given dataset while retaining the maximum amount
of pertinent information. This provides benefits for numerous reasons, including the
following:

The process of reducing dimensionality requires careful consideration of its trade-
offs, as it can potentially reduce the amount of information available to the model, which
may compromise its performance.

2.6 Clustering Performance Evaluation

The monitoring of clustering performance efficiency is very important.We may split the
available clustering evaluation algorithms into two broad categories: metrics that need
knowledge of the ground truth called external evaluation metrics [dSCF+12], and metrics

8
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that evaluate the clustering result itself, called internal evaluation metrics [LLX+13].
Each of these types has benefits and drawbacks; hence, we have the following qualities
for each category.

2.6.1 External Evaluation

Purity Metric

Purity is one of the measures used to validate the results, which is a statistic that indicates
the degree to which a group comprises just one signal type [RJ18]. This measure is
substantially more effective when dealing with a small number of signal clusters, since it
is much easier to get the highest level of signal purity when there are numerous small
signal clusters. If we choose to associate each point with a cluster, we will obtain a
purity score of one hundred percent, rendering this statistic meaningless. In selecting
this metric, we thus took into account the necessity to restrict the number of clusters and
to have balanced data, as the purity metric does not produce relevant results in the event
of imbalanced data.

Fowlkes–Mallows index

The Fowlkes-Mallows (FM) external evaluation metric is used to measure the ability
of the clustering process to replicate the manual annotation distribution [ISAS21]. The
FM metric has a value that indicates how results of the clustering match the manual
annotations. To determine the Fowlkes-Mallows index, proposed in [FM83].

This statistic is good due to the fact that meaningful findings are produced for both
imbalanced and outlier-containing datasets, as both accuracy and recall are included.
Given its exhaustiveness as an external assessment metric compared to purity, this metric
is also well suited for comparing clustering outcomes with manual annotations conducted
on signals acquired from analog ICs.

2.6.2 Internal Evaluation

The aim of the category of internal evaluation metrics is to determine the degree to which
the signals may be differentiated from one another in the feature space. It is crucial to
consider this aspect as it is the means by which we can clearly assert that one algorithm
is capable of extracting more relevant features than another [LLX+10]. Although these
metrics assess essentially the same aspects, such as the degree of cluster compactness
and the distance between clusters [VK16], each has unique characteristics that make it
more or less ideal for analog signal clustering. In light of this, an objective comparison
of these measures is necessary, taking into account what we wish to emphasize in the
optimization of signal verification and flaw detection.

9
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Davies-Bouldin Metric

The Davies-Bouldin metric is a common clustering performance indicator utilized in
the scientific literature to assess the efficacy of clustering approaches [SMMS20]. This
algorithm examines the entire quality of clustering, including the degree to which points
are compactly clustered as well as the distance between groups of points. Therefore,
clusters that are farther apart from one another and more dense will have a lower score,
indicating superior performance [KMH17].

Silhouette Coefficient

The sensitivity of the silhouette coefficient to the number of clusters necessitates the
comparison of the silhouette coefficient across varying numbers of clusters in order
to ascertain the most optimal number of clusters. It is noteworthy that the silhouette
coefficient exhibits sensitivity to the data scale, thereby necessitating the normalizing of
data prior to the computation of the silhouette coefficient [SN20].

Calinski-Harabasz Index

The Calinski-Harabasz index (CH index) presented in [CH74], also referred to as the
Variance Ratio Criterion, is a metric that quantifies the degree of compactness and
separation of clusters within a given dataset. The use of an evaluation criterion is viable
for the purpose of ascertaining the most suitable number of clusters in a clustering
algorithm.

2.7 IC fabrication verification

During the wafer fabrication, numerous sensors monitor production process. In the
event of a production problem, these sensors must be analysed both automatically and
manually to determine the potential cause. The process of analysing wafers sensors
in order to identify problems may be enhanced in a variety of ways by using machine
learning [CTGK22]. One application of machine learning is the automation of data
collection and analysis, which can enhance the efficiency of these procedures. Machine
learning algorithms can be used to identify the fundamental causes of a problem by
analyzing extensive amounts of data related to the IC design, manufacturing process, and
test outcomes [RZWD15]. This can facilitate accelerating the process of investigating
the fundamental cause of the problem, thereby diminishing the quantity of time and
resources required to determine the source of the issue.

10



Chapter 3

Assisting pre-silicon analog IC
verification through a SIFT-based
algorithm

3.1 Introduction

In the process of pre-silicon verification of analog ICs, it is necessary to visually verify
the signals generated after the simulations. The step of manual verification of the signals
is necessary because there is a possibility of unexpected behavior occurring for which
checkers cannot be written in advance. This process is extremely labor intensive as
explained in the article [KC06]; therefore, we propose multiple techniques for signal
clustering to facilitate signal assessment as a solution to this issue.

Multiple experiments are conducted on each type of IC, after which signals are
generated and analysed. This strategy is very beneficial because, for each individual
test, the signals will be clustered, allowing engineers to concentrate on a few groups of
signals rather than inspecting each signal individually.

This enhanced automated technique for clustering the vast quantities of data makes
the verification process significantly faster and more reliable because if any of the
measured or simulated signals present unexpected events, they will be clearly separated
from the rest of the signals.

3.2 Scale Invariant Feature Transform Descriptor

3.2.1 Overview

One of the main challenges of waveform clustering is the variable length of the signals.
This issue often occurs in signals originating from simulations. Another challenge
is the high frequency signals generated by the simulation during pre-silicon phase,
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which can lead to challenges in identifying the appropriate similarity metric needed
for the clustering algorithm. Hence, time-scale and signal length invariance is a basic
requirement for waveform clustering of verification signals. Achieving this can be done
either by choosing the appropriate feature extraction methods or algorithms in general.

Feature extraction process involves examining the analog IC signal in three successive
steps to obtain an accurate feature multidimensional representation as shown in Figure
3.1, which depicts the functional block diagram of the full feature extraction algorithm.

The objective of the SIFT-based algorithm is to extract relevant characteristics
from signals, based on waveform similarity. In order to extract these features, the
algorithm identifies keypoints in the signals to locate significant features for extraction.
A descriptor is then used to characterize these regions as accurately as possible, using
as few coefficients as possible. Descriptors are obtained by performing a continuous
wavelet transformation (CWT) followed by a 2D Discrete Cosine Transform (DCT) on
the resulting scalogram of the CWT. One of the benefits of utilizing CWT is its ability to
effectively depict the time-frequency spectrum of the neighborhood of keypoints in a
resilient manner, as stated in [LO12]. The reason why we applied CWT to analog signals
was to accurately characterise short-transient behaviours, as some signal errors can have
a high frequency and short duration. In addition, DCT was used to compress the features
due to the large number of coefficients in the resultant scalogram [ANR74].

3.2.2 Detection of Critical Keypoints in Analog IC Time-series

To begin the process of feature extraction, the initial step involves the identification of
keypoints. These keypoints are defined as points of interest based on the SIFT approach.
In order to identify the aforementioned points of interest, a Gaussian filter will be
employed. This type of linear filter is frequently utilized in image processing to mitigate
noise or blur images, as explained in Lowe’s work [Low04] for the SIFT-based approach.
After applying Gaussian filters to the picture at several scales, the image is convoluted
with those filters, and then the difference between each subsequent Gaussian-blurred
image is obtained. The maxima and minima of the Difference of Gaussians (DoG) are
then used to determine the keypoints, which can occur across many scales.

3.2.3 Descriptor Aimed to Describe Significant Events for Analog
IC Signals

The descriptor was developed in such a way that it would provide a very unique repre-
sentation of the regions surrounding the keypoints. This stage involves the consideration
of two different operations: first, a wavelet transformation block, and then a Discrete
Cosine Transform (DCT) [ANR74].

The objective of the CWT is to accurately represent in time-frequency domain the
segments of the signal from each keypoint neighborhood. This representation, known
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Fig. 3.1 Scale Invariant Feature Transform feature extraction block [GND+20]

as a scalogram, is well suited describing the non-periodically variations and short time
transients that are common characteristics of our dataset. A time segment will be defined
for the frequency analysis to be carried out, and since this will happen for each keypoint
that is located by the SIFT block, multiple frequency representations will be carried out
for each individual signal depending on the number of keypoints.

In order to accurately represent brief occurrences with fluctuating frequency, we
employed the generalized Morse wavelets due to their computational efficiency in
examining isolated discontinuities, as noted in the literature [LO12].

With the help of this new ordered representation, it is possible to compress the
scalogram by employing a number of coefficients that is lower than 64. In the context of
the present work, the empirical research making use of the provided data revealed that a
reconstruction error of less than 5% is observed within the coefficient range of [25-35].

13
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The DCT coefficients were quantified using 31 quantization levels as described in [RS01],
in order to achieve a better compression level and to allow the feature aggregation step.

Therefore, for each segment of signals defined by a keypoint, 31 coefficients will be
used to characterize that region. These coefficients describe the proposed analog signal-
specific version of the descriptor. By employing frequency analysis and compression
techniques based on DCT, we are capable of describing transient events of short duration
which are of utmost importance for the verification process.

3.2.4 Bag-of-Words optimal representation

This final phase of constructing the feature space employs generating a dictionary of
symbols that is utilized to describe signals as histograms of symbols throughout the
clustering procedure. This signal characterization (also known as bag-of-words) has the
benefit of ensuring signal length and keypoint number invariance. The reason we chose
this strategy was to define the characteristics of a signal based on the shape of the signal
within a window centred on the keypoint. In order to accomplish this, it was necessary
to identify the most frequently encountered waveforms around the keypoints, and then
create a dictionary based on these waveforms.

In order to create the bag-of-words representation of the dataset signal, it is necessary
to split the resultant DCT descriptor space based on their hyperspace separability. This
is achieved using Density-Based Spatial Clustering [KuRA+14] on descriptors derived
from the entire dataset. In our scenario, the 31 resulting clusters will constitute the
dictionary of symbols.

3.2.5 Clustering Block

This step is performed to separate the signals of each individual test in the dataset
into separate groups with their own bag of words representation. This will allow the
verification engineer to visually check the signal sets more easily. For this purpose, we
used k-means clustering [KYY20], which is a simple and efficient approach when there
is a clear boundary between clusters in the multidimensional space of the characteristics.
Also, we employed hierarchical clustering with an agglomerative approach [KYY20] for
comparison reasons.

K-means was chosen because it successfully groups points with linearly different
features in a multidimensional space. In this case, the clustering approach was applied
to the multidimensional feature space. In order to apply the k-means approach, we need
to provide the number of clusters. This value was chosen based on the amount of labels
from the dataset for each test.

14
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3.2.6 Feature Space Visualisation

The visualization is also beneficial when there are outliers that are highly distinct from
the other signals, which will be displayed in the two-dimensional space far away from
the other locations. This visualization was realized by means of the Principal Component
Analysis (PCA) algorithm [MR93], which had the role of reducing the space of features
generated by the proposed algorithm to two dimensions.

Due to the fact that this dimensionality reduction has a loss in information [GK12],
it is vital to know how much information is kept in the first two components for effective
separation and 2D visualization. To establish the suitability of this type of presentation
for analog signals in a two-dimensional space while preserving multidimensional separa-
bility, it was imperative for our dataset to exhibit a significant proportion of variance in
the initial two principal components [DYL08].

3.3 Experimental Results

3.3.1 Dataset

In this stage of our research, we’ve created a dataset of using data coming from 10
simulations making up a total of 2,950 signals. These signals were obtained in a
simulation environment using Low Dropout Regulators. For each test, a verification
engineer manually labels the signals into two or three groups that reflect distinct positive
behaviours and failure events. Since we are doing unsupervised classification (clustering),
this also aids in evaluating the performance of the algorithm.

The length of the signals differs considerably among the whole dataset. This justifies
the need for a clustering algorithm that provides length invariance. In addition, the
dataset contains signals presenting phenomena relevant to the analog IC verification,
including overshoot, undershoot, and oscillations.

3.3.2 Experimental Use-Cases of Clustering Signals

In this work, a series of experiments were conducted with the primary goal of determining
the extent to which the SIFT-based algorithm can extract valuable features from analog
IC signals. Additionally, we determined which is the best clustering algorithm applied
on the feature space produced by SIFT-based algorithm. In order to examine all of these
aspects, ten groups of signals presented in the preceding chapter were used, along with
the SIFT algorithm and two clustering algorithms, K-means and Hierarchical clustering.

A first analysis was conducted based on the clustering purity metric to visualize the
degree of separation between the signals based on the manual annotation. In Figure 3.8
is presented the comparison based on the purity of the two clustering algorithms applied
to the same space of features. In the case of clustering based on k-means, as shown in
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Figure 3.8, we obtained an average purity of 97% for the tests, which demonstrates an
excellent separability of the signals in the feature space. Also, this analysis demonstrates
that hierarchical clustering yields less accurate clustering results, which suggests that
organizing the signals in the form of a dendrogram may not be the optimal solution for
the purpose of this work.

Fig. 3.8 Clustering results using purity metric

3.4 Summary and Conclusions

In this chapter, we have presented a method that can be used for clustering circuit
test waveforms by their similarity in order to decrease the time needed for pre-silicon
verification. We have achieved this by using a bag-of-words approach that uses a SIFT
framework for extracting signal features. Besides very good clustering results with a
98% purity, this approach also has the advantage of obtaining time-scale and signal
length invariances. Despite the availability of annotated datasets, we have developed an
unsupervised learning algorithm with the purpose of using it on a significantly larger
dataset, where the labeling process is impractical due to the associated effort.
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Chapter 4

Clustering Techniques for Post-Silicon
Analog IC Verification

4.1 Introduction

In this chapter, we developed two methods to aid the verification flow: one based on
Dynamic time warping (DTW) and the other on autoencoder. These two techniques
can be used for feature extraction from analog IC signals with unexpected behaviours.
DTW and autoencoders are two approaches that have the potential to be effective when
it comes to the extraction of features from analog IC signals that exhibit unexpected
behaviour. The features of the data and the objectives of the analysis will both play a
role in the selection of the appropriate algorithm. In order to determine which method
would yield the best results for a specific application, it might be essential to try out a
variety of algorithms and combinations.

4.2 Dynamic Time Warping Feature Extraction

4.2.1 Overview

The DTW-based algorithm is used in the suggested technique in order to measure
waveform differences between time-series originating from the same test. In order
to evaluate the proposed method, we utilized multiple clustering metric techniques
to measure the feature space separability between clusters and the execution time of
the algorithm. This approach, in its most basic form, involves the use of a warping
technique between 2 signals in order to compare them as clearly as possible. Following
the execution of the algorithm, it will result the DTW coefficient that indicates the degree
to which two signals are comparable to one another.
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4.2.2 Density-based spatial clustering for the selection of represen-
tative signals

The feature extraction method is based on DTW algorithm and its associated measure,
both of which are defined in works such as [HPB19], [MCC+15]. As the DTW technique
involves the comparison of a combination of two signals, it is necessary to construct a
collection of reference signals that can serve as a benchmark for the comparison of all
other signals. By applying the DTW method between a reference signal and another
signal, we will obtain the warping matrix containing the coefficients that can be used to
compress or extend a signal to achieve an ideal alignment between the signals.

Because the DTW algorithm performs very well when comparing relatively similar
signals, it would be optimal to choose a few sample signals from each test and establish
them as reference signals. For the selection process, we propose a first representation of
the signals in a two-dimensional form, in which all signals from a test may be grouped.
In line with the DTW technique, we will utilize two random reference signals. This
projection of the signals in the space of the coefficients results from the DTW algorithm
with these random reference signals T = [T1,T2]. Following the execution of DBSCAN
clustering, an algorithmic determination of multiple clusters will result. In order to select
reference signals, it is necessary to establish a technique for extracting the centroids of
each individual cluster.

4.2.3 Constructing the Analog Signal Feature Space

The DTW-based algorithm will be applied between the reference signals specified in
the previous stage and all the signals within a test. Therefore, each unique signal will
be assigned a set of C j coefficients that define its degree of similarity to the reference
signals.

Currently, the signals obtained from each individual verification test in the database
possess a multidimensional representation, which enables their analysis for the purpose
of identifying any linear separability that may exist between groups of signals. The imple-
mentation of a clustering strategy in laboratory experiments can potentially differentiate
signals that arise from experiments with expected behavior from those that result from
failure experiments or anomalous behaviors that exhibit outliers. This can be facilitated
by standardizing the test analog IC input signals. The feature space is constructed using
DBSCAN to automatically choose the reference signals. This approach is advantageous
since it aims to minimise the number of dimensions, or features, involved.
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4.3 Neural Network Model for Analog Signals

4.3.1 Overview

In this research, we offer a method of representation for analog IC signals. The initial
step in the representation process is the selection of relevant characteristics from the
acquired data. CNNs were selected in order to obtain the most relevant attributes in
the most effective way. CNN has been employed efficiently in various cases requiring
automated extraction of features, such as [KHH18] and [RMX+19].

4.3.2 Convolutional Neural Network Model

The objective of this AE-CNN model is to effectively extract the essential features of
input images by compressing the network coefficients into the intermediate layer. Autoen-
coders are equipped with an intermediate layer commonly known as the "bottleneck,"
which is notably smaller in size than the input and output layers.

The use of Convolutional Neural Networks is required by the necessity to automati-
cally retrieve signal properties for several analog IC events and test types. In addition,
this is crucial when dealing with signals that may offer unexpected occurrences for
which a robust representation is required to emphasize them throughout the visualization
process. The conventional methodologies require the manual design of descriptors for
specific events, which is a tedious process due to its empirical nature. The outcome is
not guaranteed to be optimal as it necessitates the consideration of numerous tests and
analog ICs.

4.3.3 Autoencoder hyperparameters optimization

We employed Bayesian optimization [AR08] to enhance the model parameters of the
CNN-AE model. We partitioned the database into 70% training and 30% testing in order
to improve and evaluate the model with the highest efficiency and prevent overfitting. By
altering the number of convolution layer coefficients, we assessed many configurations
for our particular use case. The following hyperparameter settings from Table 4.3
were found to yield the best clustering results after executing the model optimization
procedure.

4.4 Clustering Metrics Analysis

4.4.1 Overview

The manner in which we evaluate the quality of clustering is of utmost relevance since we
examine the feature extraction methods through the lens of a clustering metric. Selecting
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Table 4.3 CNN-AE model hyperparameters found after Bayesian optimization
[GDB+23]

Hyperparameter Optimal Value
CNN - kernel 2

MaxPooling - pool size 2
MaxPooling - strides 2

Dropout - rate 0.3
Activation function ReLu

Bottleneck - No. of Coefficients 128

the right clustering metric for our specific use-case is not a simple task since we wish
to emphasize certain behaviours seen throughout the analog IC verification process.
Therefore, a comprehensive examination of various metrics is necessary to identify
which one is most suited for our application.

4.4.2 Sensitivity Analysis of Internal Evaluation Metrics

In this study, we ran 13 tests with Gaussian distributions, and the results can be seen in
Table 4.4. In these tests, we adjusted the distance between clusters for tests 1-4, created
some clusters with incorrectly annotated points from tests 5-7 and created clusters with
outliers for tests 7 to 13. Also X1 and X2 are two random vectors that constitutes the
basis for the multivariate normal distributions for each set of generated points.

Table 4.4 Comparison between several clustering metrics

Id No. of Points Davies-Bouldin Silhouette CH FM
Set 1 400 0.149 0.851 6500 1
Set 2 400 0.424 0.686 1527 0.985
Set 3 400 0.798 0.426 444 0.794
Set 4 400 11.4 0.026 2 0.506
Set 5 403 0.238 0.825 4051 0.985
Set 6 410 0.264 0.788 2438 0.952
Set 7 430 0.394 0.676 1155 0.870
Set 8 401 0.206 0.852 4449 1
Set 9 403 0.233 0.834 2351 1

Set 10 410 0.281 0.810 1251 1
Set 11 410 0.474 0.755 322 0.952
Set 12 410 0.464 0.759 333 0.952
Set 13 200 0.211 0.850 3186 1
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4.5 Dataset

In this study, the database was expanded from ten tests consisting of 2950 signals to thirty
tests of signals totaling 10200 signals. Each test was composed of a limited number of
signal categories. For each distinct test of signals, a specialist grouped the signals into two
or three classes and labeled each signal with the respective class. These labels indicate
the ground truth that we will consider while only evaluating the clustering performance.
Because we are using unsupervised machine learning techniques, it is recommended to
compare the results with labels in order to display the overall performance.

4.6 Experimental Use-Cases of Clustering Signals

In this chapter, we attempted to determine which of the three previously proposed
algorithms is able to extract the best features from the analog signals measured during
the verification process. For the experiments, we used a more exhaustive database than
the one used to evaluate the efficacy of the SIFT-based algorithm in the preceding chapter.
As shown in Table 4.5, the DTW-based procedure yields the greatest results for the vast
majority of signal tests. The instances in which the CNN-AE technique is not surpassed
are those that exhibit a high degree of class differentiation and where the inter-cluster
distance holds significance.

4.7 Summary and Conclusions

In this chapter, we presented and proved the validity of clustering strategies for opti-
mizing the post-silicon verification process using a CNN-AE method and a DTW-based
algorithm. The CNN-AE strategy was achieved by combining convolutional neural
networks and autoencoder networks capable of generating a feature space suitable for
analog signals, while the DTW-based algorithm was implemented by using warping
distance of the DTW matrix as features with automatically chosen waveform references.
By comparing the purity and Davies-Bouldin metrics proposed in this paper with the
previously developed SIFT-based clustering approaches, we demonstrated that both meth-
ods in this chapter are superior.Despite comparable external evaluation performance,
as measured by purity metrics, the DTW-based clustering method exhibits a distinct
advantage over its counterpart when evaluated internally.

In this chapter, we have presented and validated two efficient methods for clustering
IC test response signals based on their visual similarity. As a result of the ability of the
algorithms proposed in this chapter to distinguish between distinct signal forms, we can
say that we have an impact on the post-silicon analog I verification methodology by
reducing the amount of manual effort required to identify outlier signals.
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Table 4.5 Comparison between SIFT, CNN-AE and DTW Results

Test Name
Purity (%) Davies-Bouldin

SIFT CNN-AE DTW SIFT CNN-AE DTW
Test 1 100 100 100 0.365 0.281 0.192
Test 2 100 100 100 0.544 0.255 0.179
Test 3 100 100 100 0.002 0.007 0.004
Test 4 98 98 100 0.546 0.239 0.152
Test 5 98 100 100 0.976 0.334 0.188
Test 6 97 100 100 1.422 0.318 0.001
Test 7 92 96 96 0.681 0.552 0.466
Test 8 93 97 100 0.421 0.418 0.211
Test 9 100 100 100 0.420 0.277 0.009

Test 10 88 99 100 1.526 0.401 0.250
Test 11 100 100 100 0.592 0.363 0.176
Test 12 100 100 100 0.370 0.229 0.194
Test 13 72.2 91 100 1.423 0.729 0.015
Test 14 73.6 77.6 100 1.488 1.198 0.265
Test 15 100 100 100 0.470 0.372 0.197
Test 16 100 100 100 0.311 0.214 0.163
Test 17 100 100 100 0.249 0.152 0.171
Test 18 94.3 100 100 0.527 0.418 0.364
Test 19 64.6 59.6 90.6 1.422 3.017 0.728
Test 20 94.8 96.8 100 0.663 0.558 0.242
Test 21 96.3 100 100 0.486 0.233 0.219
Test 22 100 100 100 0.336 0.185 0.091
Test 23 100 100 100 0.103 0.069 0.085
Test 24 87.3 100 100 0.881 0.365 0.222
Test 25 98.6 100 100 0.647 0.140 0.064
Test 26 100 100 100 0.335 0.277 0.255
Test 27 99.3 100 100 0.481 0.368 0.299
Test 28 100 100 100 0.164 0.082 0.104
Test 29 62 64 88 0.929 1.049 0.588
Test 30 74 86 92 0.953 0.729 0.662
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Chapter 5

Support verification of wafer
fabrication

5.1 Overview

This work addresses the issue of decreasing the amount of human labour required for the
analysis of the production sensors. This is accomplished using DTW-based algorithm
and metric clustering analysis in conjunction with an SVM classifier or Davies-Bouldin
metric. The utilization of DTW-based algorithm is motivated by its efficacy in encoding
dissimilarities between analogous signals, which is exemplified in speech signal analysis
software [HPB19] and also in our work [GDB+22].

Clustering is an effective methodology that can support analog IC fabrication. The
process of clustering data can aid in the identification of fundamental patterns and failure
modes, thereby facilitating the optimization of the manufacturing process and enhancing
yield.

5.2 Dataset

The validation dataset for the proposed approach includes 972 measured and labeled
wafers (171/801 fail/pass samples). Each wafer is defined by 56 sensor waveforms
obtained during the testing method, totaling 54,432 distinct waveforms. In addition, the
rating of each of the 56 related tests is presented. The experts generated these dataset
annotations and ranks using a visual examination technique. Due to the fact that the
study comprised a total of 54,432 unique waveforms, we can confidently assert that the
dataset used is large enough to verify the proposed methodology. This dataset could
not be used for the clustering scenario described in Chapters 3 and 4, as the labels were
assigned differently. This was determined not by the waveform of the signals, as in
previous instances, but by the behaviour of the wafer.
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5.3 Wafer failure detection

The technique for extracting features that might highlight waveform (di)similarities is
based on Dynamic Time Warping and its related measures, as described in [HPB19],
[MCC+15]. Each sensor waveform set shares a certain degree of similarity with respect
to non-faulty wafers, the DTW-based approach was chosen as the feature extraction
algorithm. The rationale behind selecting the DTW-based algorithm is attributed to its
superior performance in IC verification when compared to alternative algorithms. Also,
the algorithm’s resistance to noise and invariance to length were significant factors.

We used a trained SVM classifier to measure the degree of separation between each
sensor waveform, by locating the separation hyperplane between faulty and non-faulty
samples. The degree of class separability as determined by SVM classification accuracy
is a ranking parameter for sensors in regard to the correlation with the defective wafers.
An alternative ranking metric is a Davies-Bouldin cluster metric applied in the feature
space.

For determining the separability of the two classes inside the feature space, we used
the classification accuracy of a nonlinear classifier. We picked a Gaussian kernel for the
SVM classifier [DS17], due to its optimal maximum classification margin characteristic
[ZG08]. We have trained an SVM for each test sensor, with 75% of the data used for
training and 25% for testing. The training approach involved hyperparameter optimiza-
tion of the Gaussian kernel scale and box constraint utilizing a Bayesian Optimization
algorithm as the acquisition function [FIPG18]. We have also utilized a balanced weight
standardization to compensate for the imbalanced nature of the dataset.

The classification accuracy on the test set was employed as a ranking metric for
each sensor waveform feature set. The primary factors contributing to failure can be
attributed to the tests that offer the greatest precision in categorizing waveform properties.
The Davies-Bouldin metric has been employed to evaluate the degree of distinctiveness
between the two categories in the feature space for the purpose of comparison. The
clustering metric mentioned above is a simplified method that eliminates the requirement
for hyper-parameter tuning and is effective for categories that are linearly separable.

Additional hyperparameters of the SVM comprise the degree parameter and coeffi-
cient parameter, which are exclusively applicable to polynomial kernels. Additionally,
the cache size and convergence criteria are utilized to regulate the memory consumption
during training and the halting criterion for the optimization algorithm, respectively.

The selection of suitable hyperparameters for SVM is contingent upon the particular
problem at hand and the inherent attributes of the data. Experimentation and validation,
which aid in choosing appropriate hyperparameter values, can help achieve optimal
performance for a given problem.
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5.4 Experimental Results

During this experiment, the experts manually assessed which of the existing sensors in the
dataset are connected with the failure behavior and determined an order of significance
regarding this behaviour. Hence, in the Table 5.1 we ordered the first 20 sensors as it was
determined manually by the experts. This manual ranking will serve as the basis for the
analysis of the results. It is important to recognise that ranking can be a time-consuming
task, potentially spanning several weeks. As a result, our efforts were concentrated on
finding methods to automatically arrange these sensors in approximately the same order
in order to save time.

Although the three ranking methodologies exhibit variations, they maintain a sim-
ilar ranking order in comparison to the manual ranking reference. All three ranking
approaches produce an identical list of the most highly ranked sensors. The findings
indicate that the system has the capability to automate the mandatory evaluation of sensor
ratings in regard to their correlation with a repetitive failure, a process that typically
involves human expertise and significant manual effort, while maintaining a similar level
of accuracy.

Table 5.1 Top 20 Sensor Ranking based on SVM Accuracy and Davies-Bouldin metric

Manual Ranking SVM Accuracy [%] Davies-Bouldin Score
Sensor 12 67.07 0.88
Sensor 4 66.66 0.96

Sensor 35 65.02 0.94
Sensor 7 62.69 0.98
Sensor 5 64.60 1.05

Sensor 50 59.25 1.26
Sensor 35 60.08 1.14
Sensor 21 61.31 1.51
Sensor 17 58.02 1.36
Sensor 38 57.01 1.51
Sensor 28 57.61 1.45
Sensor 16 56.91 1.63
Sensor 3 54.22 1.52

Sensor 36 50.11 1.55
Sensor 41 51.55 1.91
Sensor 29 53.39 1.98
Sensor 44 53.61 1.92
Sensor 19 52.18 1.98
Sensor 31 49.36 1.89
Sensor 14 47.88 2.03
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In the third column of Table 5.1, we computed the Davies-Bouldin index for each
sensor, which is an simpler and faster method for determining linear separability. When
considering this index, it is important to keep in mind that a smaller value corresponds
to a higher degree of separability. As shown in the Table 5.1, this metric is validates by
the manually established order.

5.5 Summary and Conclusions

An automated ranking method for sensors associated with failure is a viable approach to
support wafer fabrication verification. The process entails the identification of sensors
that are potentially linked to the failure and subsequently prioritizing them based on their
significance or pertinence to the failure. In order to execute this methodology, it may be
necessary to collect information from the sensors and scrutinize it to recognize patterns
or tendencies that could be associated with the malfunction. One potential approach is to
employ statistical analysis or machine learning methodologies to establish associations
between sensor data and the occurrence of system malfunctions.

Upon ranking the sensors, it is plausible to utilize this data to ascertain the funda-
mental reason for the malfunction. In the event that a specific sensor proves a consistent
ranking as the most crucial sensor, it is plausible that it serves as the underlying factor for
the malfunction. Alternately, it may be necessary to conduct additional research on the
high-priority sensors in order to determine the underlying cause. Potential approaches to
address this issue may include conducting a thorough analysis of the data obtained from
the sensors, performing experimental investigations to validate hypotheses pertaining to
the underlying cause, or seeking input from relevant experts or stakeholders to obtain
supplementary insights.

This study presents an automated methodology utilizing machine learning to establish
a reliable correlation between wafer manufacturing failures and the signal waveforms
generated by the wafer testing sensors. The correlation rating holds significant value
in identifying the primary factors contributing to production loss, as each output from
the test sensor evaluates a unique aspect of the manufacturing process’s quality. The
methodology used in our approach produces results that are equivalent to those obtained
through the application of human expertise. Nevertheless, it is deemed to be more
efficient, namely in terms of the consistency of the ranking procedure and the mitigation
of manual effort.

By utilising either the SVM classification accuracy or Davies-Bouldin metric on
the retrieved features of the DTW-based method, we achieved sensor rankings that
are comparable to those achieved by human experts. Based on the efficacy of sensor
analysis, it can be concluded that there is a significant influence in terms of supporting
IC fabrication.
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Chapter 6

General Conclusions

The purpose of this study was to investigate the use of machine learning methods for the
optimization of the analog IC verification. The necessity of these techniques arises from
the considerable amount of human labour required for verifying analog ICs, which may
be substantially decreased.

6.1 General Objectives and Results

By combining individual signals into larger clusters, the first two phases of this process
are able to alleviate a portion of the challenge of improving the efficiency with which
ICs are verified. This is particularly helpful for the process of verification since it means
that engineers only need to visually evaluate a limited number of clusters whose signals
are mainly identical, as opposed to visually reviewing thousands of signals. Moreover,
in case of unexpected signals, an engineer can promptly identify the anomalies due to
the depiction of the characteristic space. This is due to the fact that the outliers will
exhibit a significant deviation from the average waveform of the remaining data points
in the dataset. In the third stage, we enhanced the process of identifying the root cause
of an issue, as opposed to solely acknowledging its existence, thereby elevating our
approach to a higher level. The aforementioned factor holds substantial influence over
post-silicon verification, in which numerous test sensors are present for every single
chip/wafer, necessitating correlation to determine the root cause of a recurring issue in
failure behavior.

O1. Reducing the time required to verify analog ICs
A significant amount of time is allocated to the verification process in the develop-
ment of ICs, which has grown highly expensive as requirements have increased.
Hence, there is a need for reducing the manual work involved in this process and
speeding up the IC verification.

O1.1. Feature extraction algorithm for expected behaviours
In order accomplish this objective we developed an algorithm capable of op-
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timally extracting characteristics of certain behaviours that happen regularly
during IC verification. This topic has been extensively discussed in Chapter
3, Section 3.2.

O1.2. Signal invariance optimization method for simulation conditions
This objective is achieved by implementing a DCT-type compression and Bag-
Of-Words approach. This objective is described in more detail in Chapter 3,
Section 3.2.3.

O1.3. Clustering of signals containing similar events
The outcome of this objective was clustering algorithms applied to the mul-
tidimensional space of features for the purpose of grouping similar signals.
This step was described in Chapter 3, Section 3.2.5.

O2. Enabling an increased and faster coverage of the process of IC verification
Combinations of parameters must be checked to provide excellent coverage and a
high quality standard, which creates a challenge for the verification process as the
number of requirements increases.

O2.1. Effective methods for the extraction of features for unusual behaviours
This goal was achieved by developing 2 machine learning algorithms capable
of extracting useful features from any kind of waveform with the purpose of
separating unusual behaviours that may be isolated. This was explained in
more detail in Chapter 4, Section 4.2 and Section 4.3.

O2.2. Defining most suited clustering metrics for analog IC signals
This aim is achieved by conducting a study on many clustering metrics to
select the best appropriate metric for IC verification applications. This was
further discussed in Chapter 4, Section 4.4

O2.3. Noise resistant optimization method for laboratory conditions
This objective is achieved by implementing a DBSCAN selection process
with the purpose of removing both redundant information and measurement-
related noise. This objective is described in more detail in Chapter 4, Section
4.2.

O3. Optimising the verification of wafer production
During the testing of post-silicon circuits, it is vital to determine the source of
repeated unexpected behaviours in order to ensure error-free and optimal manufac-
turing.

O2.1. Improving the Methodology for Testing Production Lines
This objective was accomplished by adapting the most effective machine
learning method for extracting attributes from those we evaluated and apply-
ing it to a different database of wafers. This has been presented in Chapter 5,
Section 5.3.

28



Machine Learning methods for supporting verification of analog integrated circuits

O2.2. Autonomous sensor ranking approach to support IC fabrication
This is achieved by implementing an automated method was accomplished
by integrating classification methods on the metrics of clustering sensor
results. Hence, achieving a ranking of sensors based on their correlation with
a repetitive failure behaviour. This has been presented in Chapter 5, Section
5.3 and 5.4.

6.2 Original contributions

The following is a list of the primary contributions made by Chapter 3:

• Developing an algorithm capable of optimally extracting specific properties that
appear regularly in the signals we examine during the verification process. We
created an innovative descriptor for this method based on a computer vision
technique that recognizes points of interest [GND+20].

• Providing a method for visualising feature space to optimise the verification phase
where human oversight is required [GND+20].

The following is a list of the primary contributions made by Chapter 4:

• Developing of an unsupervised feature extraction technique that is based on
dynamic time warping and is capable of accurately characterizing both typical and
unusual occurrences. [GDB+22].

• Designing of an algorithm based on an autoencoder-type neural network that is
optimized for the signals of interest and is capable of learning certain character-
istics and producing a representation of the signals with very few coefficients.
[GDB+23].

The following is a list of the primary contributions made by Chapter 5:

• Developing a machine learning feature extraction technique to enable its use in
the context of production line testing methodology [GBD+22].

• Developing an automated technique by merging classification methods with the
metrics of sensor clustering findings. Consequently, obtaining a rating of sensors
based on their association with a recurrent failure behaviour. [GBD+22].

6.3 List of Original Publications

1. [GND+20] Andrei Gaita, Georgian Nicolae, Emilian C. David, Andi Buzo, Cor-
neliu Burileanu, and Georg Pelz. A sift-based waveform clustering method for
aiding analog/mixed-signal ic verification. In 2020 IEEE European Test Sympo-
sium (ETS), pages 1–2, 2020, ISI WOS:000615974000037
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2. [GDB+22] A. Gaita, E. David, A. Buzo, H. Cucu, and G. Pelz. Waveform cluster-
ing based on dynamic time warping used in analog ic verification. In 2022 Inter-
national Symposium ELMAR, pages 49–52, 2022, ISI WOS:000935062500011

3. [GBD+22] A. Gaita, A. Buzo, E. David, H. Cucu, and G. Pelz. A machine learning
based wafer test ranking for root cause analysis. In 2022 International Symposium
ELMAR, pages 45–48, 2022, ISI WOS:000935062500010

4. [GDB+23] A. Gaita, E. David, A. Buzo, M. Grigore, C. Burileanu, H. Cucu, and
G. Pelz. Convolutional neural network model used for aiding ic analog/mixed
signal verification. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC
BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCI-
ENCE, 85(2):151–162, 2023, ISI WOS:001015488500009

6.4 List of Technical Reports

1. [Gai19b] A. Gaita. Ic optimization methods based on machine learning. Technical
Report No. 1, University Politehnica of Bucharest, June 2019

2. [Gai19a] A. Gaita. Augmented ic analog signals verification with waveform
clustering. Technical Report No. 2, University Politehnica of Bucharest, December
2019

3. [Gai20] A. Gaita. Assisted analog/mixed-signal integrated circuit verification
using a dtw-based waveform clustering. Technical Report No. 3, University
Politehnica of Bucharest, June 2020

6.5 Future Work

Prospective areas of research or improvements to the current work that could enhance
the validation of analog ICs include the following subjects:

• A notable expansion in the databases that comprise annotated signals, specifically
intended for the application of deep learning methodologies that require substantial
amounts of data.

• Improving the existing visualization techniques for the feature space to highlight
specific attributes for diverse use cases that may be of significance.

• Integration of the root cause algorithm within the verification framework, enabling
the automated identification of the sensors with the highest correlation to repetitive
failures.
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