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Abstract

The current world has been forever changed by the introduction of distributed com-
puting as a development paradigm. Instead of making single-core applications faster, a
process with diminishing returns, research has moved into transitioning computing to
multi-process, multi-processor, and multi-node work. By scaling processing horizontally,
we can increase processing capabilities for workloads at a smaller cost than increasing
processing power per core.

Cluster computing comes to help in this regard, by introducing a model that orga-
nizes applications based on the use case, and offering management tools to help users
implement workloads, customize environments, and add monitoring straightforwardly,
reducing the overhead for each user to manage their processes. Cluster computing of-
fers a cost-effective solution for groups of users working inside of the same institution to
share resources, allowing for better collaborations and a larger available resource pool
to take advantage of.

Grid computing comes as an evolution of the cluster computing model. A grid is
made up of multiple heterogeneous clusters, running the same management software
and coordinating on which workloads to run. Grid environments reduce the barrier
to entry for high performance computing, as an institution can partake in a grid by
dedicating their resources to the grid effort, and gaining access to more resources than
otherwise available, especially in the context of Big Science requiring tens or hundreds
of thousands of cores to participate in the research field. Grid environments enable
a more collaborative model for research, allowing multiple institutions to establish a
common processing framework that they can deploy and use no matter the local cluster
setup.

In light of the increase in demand for computing power in both cluster and grid comput-
ing, the following thesis implements optimizations for resource usage in grid environ-
ments through improving data transfers by reducing transfer overhead. Grid operations
managers must keep up with the resource demand from grid users and their workflows.
In this thesis, we explore the possibility of increasing available resources in grid environ-
ments by integrating multi-core workloads into grid environments, decreasing memory
usage and allowing for more processing to be done in parallel.

The distributed computing paradigm can be adapted in many fields, not only purely
research or commercial. Education has received a boost by moving to digitalize re-
sources and embracing e-learning. Applications such as Moodle, Draw.IO, or Microsoft
Teams have allowed teachers and collaborators to move some of the burden of organiz-
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ing classes off the shoulders of the educators. An avenue that hasn’t been explored as
much is that of automating class materials development, deployment, and assignment
checking, activities that are difficult to do and require a lot of manual work from teach-
ers. This thesis shows a framework built using distributed computing concepts such
as containerization, continuous integration, and continuous distribution, giving educa-
tors the ability to create and deploy class materials automatically. To further reduce
teachers’ workload, we have developed an assignment-checking middleware that inte-
grates with the Moodle e-learning platform, moving assignment-checking from teachers
to automated scripts deployed in public or private infrastructures. The new assignment
checker has been built based on the techniques used by grid management software, with
it being able to integrate with multiple institutional infrastructures based on GitLab,
and allowing students and teachers to schedule the verification process in queues shared
between classes.

With the evolution of cluster computing, there has been developed a breadth of man-
agement tools for deploying, maintaining, and operating clusters for various use cases
based on bare metal applications, containers, or virtual machines. This thesis develops
a model for cluster management using virtual machines, deploying OpenStack together
with its services to give users the freedom of setting up and managing their applications
in a secure environment. To ensure low downtimes, measures have been taken to deploy
highly available user virtual machines by taking advantage of current cloud computing
functionalities such as continuous health checks and network-mounted storage devices to
achieve fast virtual machine migration. Monitoring complex environments is a task that
requires advanced tools that flexibly integrate with applications to check their status
and alert administrators before issues appear, intending to use as much of the available
resources as possible. We have developed a model for monitoring virtualization-oriented
infrastructures based on currently available open-source tools which would allow admin-
istrators to be alerted in case of events, giving them proper information to prevent issues
or remediate them.
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Chapter 1

Introduction

As digitalization has been integrated into more facets of our lives, so have resource
requirements increased. In a digitalized environment computing resources must be used
efficiently and new types of computing resources have to be found in order to keep
pace. As computer scientists and engineers, it is our task to increase resource usage
by finding new means of integrating and using resources in innovative ways. With the
increase in resource usage and large-scale computing requirements, new methods must
be investigated for managing resources.

Computing has moved more and more from on-device processing, requiring powerful
processors that can only be used in conjunction with unwieldy hardware, generating
high amounts of heat and needing to be plugged into powerful circuits to an offloaded
computing model, with requests being offloaded to remote machines that can be man-
aged more efficiently. Offloading workloads to remote environments allows for them to
be run at a larger scale, combining multiple devices to help in accomplishing the work.
The distributed computing environment has allowed for large-scale usage of computers
for scientific, educational, and business purposes by making it easier for institutions to
use a digital environment and decreasing the barrier of entry to science, education, and
hard computing tasks.

A computing cluster is a distributed environment based on a combination of hardware
and software that runs specialized services responding to user requests. Clusters use
purpose-built enterprise hardware guaranteeing longevity and serviceability while being
built to allow better cooling and higher power draw than a regular home computer.
Cluster management software can be deployed in many different ways, depending on
the cluster use cases, some emphasizing security and availability, whilst others try to
attain as small an overhead as possible so that the cluster services can take advantage
of the available resources.

Grid infrastructures have appeared as a consequence of higher processing power needs.
A computing grid is an association of clusters that communicate with each other over
the network and have similar software environments. This allows for an application to
be distributed not only inside of the same cluster, but in multiple clusters, distributed in
locations, even different countries, taking advantage of available resources for computing
a single output in parallel on multiple machines. Grid infrastructures run specialized

1



CHAPTER 1. INTRODUCTION 2

software to report resource availability, schedule distributed file transfers and start
workloads along the grid. By entering grid environments, institutions can have more
processing power available at a time by guaranteeing that a certain amount of their own
resources will be used by other institutions.

A middleware is specialized software that manages software in cluster and grid environ-
ments. A middleware can be an application that starts a script on a specific machine or
makes sure that certain files are present on a storage solution inside the cluster. They
are a critical component of distributed computing, as they are used as the backbone for
the distributed software that is run by them.

1.1 Thesis Objectives

The main objective of the thesis is to increase resource usage efficiency in cloud, clus-
ter and grid computing, improving procedures, decreasing management overhead and
adding new types of resources to be used.

With the need for more processing power in for complex grid workloads, we need to
make sure that the resources available today are used at their highest capacity. To this
end, the thesis looks to implement improvements to data management, data transfers,
and data location in order to decrease the time spent waiting for data transfers and
data deletions.

Modern grid environments frameworks have introduced the need for multi-core jobs that
can share memory between processes. Multi-core jobs have been proven to decrease
memory usage in grid environments [22]. The thesis plans to implement an algorithm
for scheduling multi-core jobs in a grid environment, specialized to the ALICE grid
environment. Using the implemented multi-core job support, scavenging queues can
been explored and exploited as a new avenue for running grid workloads at no additional
cost.

This thesis explores the available configurations for managing clusters in research and
educational environments, which require high uptime and resilience in order to serve
user requests. The objective is to deploy a highly available private cloud infrastructure
to host educational and institutional resources such as user-oriented services, research
workloads and sandbox virtual machines for students.

Service uptime is not only a measure of deploying services that are self-sufficient, as even
these may fail. A robust infrastructure must deploy monitoring and alerting services
which can be used to gauge the status of clusters and services and can alert respon-
sible parties to issues that might arise. By efficiently managing monitoring, workload
scheduling, and storage management, a cluster can offer users a working environment
that allows their projects to develop, flourish, and succeed. In order to ensure service
availability a monitoring system must also be deployed inside a cluster.

Middleware development can be harnessed to allow, not only for efficient computing
for research and business, but also for education. The thesis approaches middleware
development from the lens of educational automatization, using middleware software to
enhance learning outcomes for students by automating tasks regularly done by hand by
teachers, enabling digitalization, and allowing educators to spend more time teaching
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and less time doing repetitive and menial tasks. The thesis aims to develop educa-
tional services which help automate educational processes like documentation building
and assignment checking using the distributed computing paradigms through pipelining
actions and parallelizing processing on multiple machines.

1.2 Thesis Contributions

An impactful issue in grid computing is ensuring that data is correctly distributed across
the grid environment, to increase job parallelization by removing the storage component
bottleneck. Data must be transferred from a central repository, or source of origin to
different storage solutions, such as archives and staging areas. We have optimized
data transfers for the ALICE grid, during a critical data transfer campaign by
optimizing data transfer performance in in highly variable bandwidth environments
over production network links and heterogeneous hardware and software solutions. By
reducing overhead, we have been able to spend less time waiting for files to be transferred
to the processing point, time which has been spent processing the data for the ALICE
experiment.

The new ALICE data processing framework has been rewritten by the ALICE team with
the purpose of running data processing on multiple cores. In this thesis we show the
JAliEn improvements we have made to account for multi-core jobs, enabling
running multiple multi-core jobs in parallel. Increasing the number of cores used
by a job has been done to decrease the memory usage per core, which leads to
being able to schedule more jobs in parallel, as computing centers are more limited by
the amount of RAM they can provide per processor [39], than the number of CPU cores
they can acquire. The new architecture required the re-engineering of the middleware,
monitoring multiple jobs, and adding code to limit the resources allocated for jobs.

While integrating support for multi-core jobs, we have implemented a mechanism
for dynamically allocating jobs based on available resources as such we are able
to take the scheduling burden from the Local Resource Management System (LRMS)
and take it upon the middleware to schedule processing. Integrating support for queues
where scheduling is done only per node, not per process, has allowed the ALICE exper-
iment to take advantage of clusters that otherwise would not have been available. As
the grid middleware is more in tune with job scheduling parameters than the LRMS,
we can make better scheduling choices by managing whole-node scheduling.

In the process of increasing the resource capacity of a grid environment, we have to take
into account untapped resources, or types of resources that we can integrate with no
additional costs. In batch job processing there exists a work scheduling mode in which
processes can be scheduled, and if a higher priority job is scheduled, the current running
job is stopped, called scavenging queues. Scavenging queues have been identified in this
thesis as a possible avenue of increasing available resources, by scheduling jobs on them
with the risk of the processing being interrupted by other kinds of jobs. The thesis
proves the viability of scavenging process time in clusters which allow for
flexible scheduling, despite the risk of processing time being wasted when
processing is preempted.

In the context of educational digitalization middleware software plays a role in manag-
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ing services and functionalities offered to students and teachers. Teachers and students
go through repetitive tasks, solved by hand, which can be automated using middle-
ware software built based on the lessons learned in software development for cluster
and grid environments. The thesis adapts middleware software, and software
development solutions such as Git, job management software, Continuous
Integration, and Continuous Deployment (CI/CD) to educational use cases
with the intent of helping teachers and students spend more time learning.

As part of the thesis, we tackle the task of managing institutional clusters and inte-
grating them in both research and production environments for institutional services.
The thesis implements a cluster management strategy based on OpenStack
virtual machines, including highly available services and control plane which
are automatically deployed. Using virtual machines allows systems administrators
to enhance cluster security and service isolation while giving the users flexibility in de-
ploying their own workloads and controlling the work environment, needing minimal
involvement from administrators. Providing highly available resources is crucial for en-
couraging users to adopt a cluster platform, as they can trust it to host their workloads
and services without disruption.

Monitoring cluster infrastructures is a task employed by most professional deployments,
as it allows visibility into resource usage patterns which can be used for preempting or
early detection of issues and notification for incident response. Being such a critical task,
there exists a breadth of solutions to cover this use case such as Grafana [24], CheckMk
[3], and many more, each covering distributed computing use cases. This thesis pro-
poses a reference architecture for monitoring clusters using Prometheus for data
point gathering and Grafana for visualizing data using custom-made dashboards.

1.3 Thesis Structure

The thesis follows the structure as such:

1. Chapter 1 defines the thesis scope, objectives and major contributions. The chap-
ter highlights the need for distributed computing to scale not only by acquiring
more hardware, but also by reducing current software overhead, integrating new
resource models and adding support for new kinds of resources.

2. Chapter 2 delves into the subject of resource usage efficiency in grid environments,
concentrating on avenues for improving the middleware to decrease resource usage
per core, increase file transfer efficiency, and add new resource types to gain more
available resources on the grid. Section 2.1 shows how the ALICE experiment at
CERN is managing data transfers, studying transfers made during the 2022-2023
time period, when experimental data has been moved to archival or processing
areas, discussing the optimizations done for increasing transfer speeds, which can
apply to grid file transfers overall. Section 2.2 talks about the work we have done
to adapt the ALICE experiment middleware to manage multi-core jobs on the
grid, with the advantage of decreasing the memory usage per core, by having
fewer duplicated memory areas.

3. Chapter 3 introduces the need for more digitalization adoption in education, con-
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centrating on Computer Science education, which contains many elements that
can be automated to decrease the number of repetitive tasks done by teachers and
students. Section 3.1 explains the work done on the openedu-builder platform, a
middleware build for automating class material management; automating mate-
rial creation and deployment using CI/CD techniques and Git [35]. Section 3.2
proposes the vmchecker tool, an automatic assignment checker middleware, which
handles student and teacher requests for running tests on student-written code.
vmchecker has been built with a centralized checking manager and plugins to
integrate with the Moodle e-learning platform [25].

4. Chapter 4 provides a template for organizing and deploying a cluster environment
using virtualization for use in running a grid site and offering specialized services
for an educational institution, using the UNSTPB cluster as a case study. Sec-
tion 4.1 defines steps to be made in order to achieve a highly available infrastruc-
ture for hosting services and compute workloads in a cluster environment based on
OpenStack virtual machines, which gives users the ability to host services and sen-
sitive workloads that should run without interruption. Section 4.2 describes the
current monitoring solutions used for maintaining cluster awareness and alerting
administrators in case of events. Because of the breadth of monitoring solutions
available, we provide descriptions for the currently available solutions and propose
a template for monitoring clusters and storages used for grid workloads based on
Grafana, Prometheus, and AlertManager.



Chapter 2

Improving Grid Resources Usage

The focus in grid computing is to run workloads as fast as possible, spreading processing
around over multiple clusters to scale the processing vertically. Adding new resources
to the grid environment is done through adding new sites, or through annual pledges
[33], where sites plan new hardware acquisition and integration. As these processes are
slow and incremental, the current systems must be improved to allow for less overhead
and increased efficiency.

Middleware applications are the nervous system of a grid environment. They coordinate
multiple sites, workloads, check various system availabilities, schedule jobs, manage
data, apply access restrictions to users and more. As a vital resource, they are the
first place where improvements can be applied to add features. As parts of this thesis
two possible avenues have been identified for increasing resource usage efficiency in grid
environments by modifying the grid middleware.

Jobs in the ALICE computing grid require input files which need to be located on
a storage system nearby. Files have to be transferred after first hand processing to
different sites for further processing or to archival storage to be stored for reprocessing.
A method of increasing transfer speed for file transfers in the ALICE grid has been
implemented and detailed in Section 2.1.

Memory usage is an issue in parallel processing, because it is a resource that is a hard
limit in terms of scaling up processing. CPUs can be oversubscribed, especially in mix-
use environments where not all processes are CPU-dependant, and IO can be saturated
and communication can still be established, but the current bandwidth won’t scale.
Memory on the other hand can only be extended through swapping, incurring a large
performance penalty. In this context the ALICE experiment has sought to reduce the
memory usage per job by implementing multi-core jobs which use the memory sharing
mechanism in Linux. Section 2.2 details how scheduling support has been integrated
for multi-core jobs in the JAliEn middleware used by the ALICE experiment, capable
of managing multi-core jobs in the grid environment.

The following chapter presents our inquiries intro ways to increase process efficiencies
in grid environments and the measures implemented in the ALICE grid environment to
increase resource usage.

6
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2.1 Improving Transfers

The ALICE detector [17] has been upgraded for the LHC Run 3 (2022–2025) with
a triggerless data acquisition system. In this mode, the data rate is several orders
of magnitude larger than in the previous data taking periods. Through a real time
compression (O2) performed close to the experimental setup, ALICE is able to reduce
the size of the data stream 10 fold, to about 100 GB/s [18]. The efficient management
of this data requires a profound changes in the various levels of data persistence and
movement.

The ALICE O2 disk buffer has been designed and deployed as a storage element for the
output of the O2 compression which is stored in Compressed Time Frame (CTF) [43]
format. The CTFs can be reduced further to smaller file sizes by at least 95% through
the process of skimming. The skimmed CTFs are archived after being converted into the
second generation Analysis Object Data (AO2D) format, which is used for physics data
analysis. The AO2D format is a table-based data file that represents the reconstructed
experimental data in an easy to parse way. These are distributed across the Grid storage
elements and are read by the analysis workflow.

Since the start of detector commissioning for Run 3 in late 2021, the management of
the data on the O2 disk buffer presented an issue, as the methods to control the data
flow and annotate it according to the type was not yet fully designed and deployed.
This was especially the case for detector-specific calibration and test data, which is not
converted to AO2D. One of the first tasks of the new data management system was
to separate the different data types and to redirect these to the specific set of storage
elements, for example archival type, and to remove the processed data from the O2
buffer, thus keeping it free for the incoming CTFs. It also consists of removing data
with bad quality and data not suitable for physics analysis - this action is accomplished
through flags set in the run logbook by the ALICE Run and Physics coordination.

2.1.1 Storage Configuration in the ALICE Experiment

The ALICE computing Grid is made up of a variety of software and hardware solutions
for storage systems configuration and management, and each storage level of perfor-
mance is reflected in a set of data transfer parameters.

Figure 2.1 shows the data flow out of the ALICE detector and from Monte Carlo pro-
duction to the various storages and their bandwidth and capabilities. The diagram does
not show the data read by the analysis tasks. Among these storages three main systems
can be used for moving the data:

• EOSALICEO2 buffer, used for storing raw data and CTF files temporarily before
processing, skimming, and archiving;

• EOSALICE, which is the main storage system dedicated for the ALICE experi-
ment in the CERN data center. It stores the AO2D files produced by the data
reconstruction and MC simulation, as well as the output of the physics analysis
tasks.

• CERN CTA is the tape archive (custodial storage) used for long term storage of
CTF files and AO2Ds.
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Figure 2.1: The ALICE experiment data flow.

Across the ALICE Grid, there are about 60 storage nodes, encapsulated in the figure
as ’Local storage’ of the corresponding T1 and T2 centres and analysis facilities. These
also play a key role in the data management picture.

The protocol used for transferring and managing files on storage systems, and the
respective storage systems in use are described in the following.

XRootD

The ALICE experiment uses the XRootD [16] protocol to transfer files. This protocol
is a standard for physics experiments, as it interfaces with the ROOT [23] program
library and its I/O system. ROOT is a framework widely used in the HEP community
to write reconstruction and analysis software. The framework provides as a container
the .root files with internal structure resembling a UNIX file directory. A .root file
can contain directories and objects organized in unlimited number of levels and stored
in machine independent format. The XrootD protocol is aware of the internal structure
of these files and uses this knowledge to perform optimal data transfer over short and
long network distances (LAN and WAN) by adjusting dynamically the transfer buffer
sizes and through read-ahead of entire objects from the .root files.

EOS

EOS [30] is a storage management solution built at CERN on top of the XRootD
application and protocol, with the purpose of providing XRootD based endpoints for
storing multi-PB file namespaces in an efficient way. An EOS instance is deployed for
each of the four LHC experiments at CERN and at many Grid sites around the world.



CHAPTER 2. IMPROVING GRID RESOURCES USAGE 9

EOSALICE

The main production storage for ALICE is an EOS based storage element hosted at
the CERN IT data center. It is built from inexpensive high-density JBODs connected
to front-end server nodes through high-speed SAS HBA cards. The data stored on this
instance is used for running jobs located at CERN, which means that the jobs both
read and write large amounts of data to this storage system[19]. This makes the EOS
ALICE storage a uniquely important element of the ALICE computing infrastructure.

EOSALICEO2 buffer

The EOSALICEO2 buffer is the storage area where the results of the real-time data
compression are stored by the O2 Event Processing Nodes (EPN). The buffer must
provide sufficient space to store the CTFs for one Pb–Pb data taking period, of the
order of 80PB with average input rate of approximately 100 GB/s. After the end of
the Pb–Pb period, the data are read and processed to AO2Ds, which are stored on
Grid SEs for further physics analysis. The entirety of the Pb–Pb CTFs are copied from
EOSALICEO2 to custodial storage, at CERN (2/3 of the volume) and to 6 T1 centres
(1/3 of the volume). The reconstruction is run on the CERN and T1 batch systems
and on the EPN nodes outside the data taking periods.

Tape archive

Tape archives are a form of long term storage suitable for keeping infrequently used data.
The cost, expressed in price per terabyte, is still considered [26] more advantageous
than for hard disk based storage and the modern tape systems offer a high level of
data redundancy, thus making it a very secure format. The disadvantages of using tape
media is the lower egress speed and linear access, in addition to the inherent complexity
and the required special support. Since the entry barrier for setting up and operating
tape archives is rather high, these are deployed at large computing centres only.

2.1.2 The ALICE Transfer Middleware

The ALICE experiment produces, stores, and reads a large amount of data. Conse-
quently it requires a robust framework that can handle the considerable number of file
operations (copy, move, read, remove) that are done on a daily basis.

This subsection hilights the way files and file transfers are being handled by the ALICE
Central Services.

File registration of CTFs

The CTF files that are generated by the EPNs are initially stored on the internal SSDs
of the nodes. They are moved to the EOSALICEO2 buffer using a purpose-build system,
EPN2EOS, which copies the data, registers the files in the ALICE catalogue, and upon
successful registration, deletes them from the EPN SSD.

In the ALICE catalogue, each file is associated the following logical and physical at-
tributes upon registration:
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• An LFN, that is used to refer to a file in a POSIX compliant manner, using a
path in a file system, for example
/alice/data/2023/LHC23a/539457/ctf_run00539457.root ;

• A GUID, used to identify file uniquely, which is an equivalent to an inode number
in a UNIX file system. The file example above has the following GUID:
cfa6adab-1ac0-11ee-a3ab-0242f0fa34f9 ;

• A Physical File name (PFN), which contains the physical location of a file, and
the protocol to access it. A file can have multiple PFNs, if it has multiple replicas
on different storage nodes. Example for a file with 2 replicas:
pfn = root://eosalice.cern.ch:1094/13/19787/cfa6adab
pfn = root://mgm.spacescience.ro:1094/13/19787/cfa6adab;

• ACL, which shows the file ownership and access permissions.

Transfer management

The entire ALICE Grid Central Services system is built in Java, and this includes the
transfer management software. A user can request a file transfers either through a
standalone Java client or using the alimonitor [1] transfers web page.

When a transfer is requested, a call is sent to a Central Services instance with a list of
files to be transferred, a transfer message to identify it, a source and target SEs, and
the nature of operation - move or replicate. The Central Services instance receives the
request and adds it to the transfer_requests table of a PostgreSQL[13] database
it manages. Each transfer request has an ID, a destination, a name and in the case of
move operation, on file transfer success, the replica will be deleted on the storage element
marked as source. The database entry will also contain entries for each file transfer,
so that the state counters are stored in a persistent manner. This will determine the
state of a transfer, which can be RUNNING, SUCCESSFUL, or ERROR, if some of the
transfers could not be performed. A transfer was successful if there were no errors for
the entire set of requested files.

Transfer optimizations

For some originating storage nodes, for example EOSALICEO2 buffer, the target SEs
are limited to T1 custodial storages due to the type of data. In such cases there is a
static optimization which limits the transfer bandwidth to each individual SE and sets
a specific portion of the data which should be received by the target SE. For the other
transfers, the optimization methods are described below.

Client transfers The first type of optimization is with regard to the number of
concurrent transfers that are allowed per storage. If the number of files that are being
transferred to a storage element is large, but the file sizes are small, the maximum
bandwidth can be maintained only if a large number of transfers is started in parallel.
This happens as the transfer time is dominated by the setup overhead rather than the
copy operation itself.

Sending large files with many threads is also sub-optimal, as the speed will already
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be limited by the available network throughput or the bandwidth limitations of the
receiving storage.

Thus the client transfer limit is a balance of the two cases and is set per target storage
element through a configuration stored in a database based on the Lightweight Directory
Access Protocol (LDAP). At present, this value must be changed manually, to reflect
evolution of the target storage elements or network fabric. Although not ideal, this
is a reasonable operational compromise as the storage elements and WAN changes are
infrequent.

Third party copy A simple way to copy using xrdcp is to transfer the files from
one endpoint to another through the host originating the transfer. This is the way the
xrdcp command operates by default, as it is the predominant way of client interaction
with the storage on a processing node. This method certainly poses a severe limitation
on data transfers between storage nodes in the existing heterogeneous Grid structure,
where the two elements from/to which the data should be copied can be at a very large
distance, thus increasing considerably the transfer latency. It also presents a scaling
issue, as the host will route all traffic and multiple host must be set to assure sufficient
bandwidth for all requested transfers.

Third party copy (TPC) is a mechanism which allows the copy process to be initiated
by a central machine with the actual data transfer done directly between the source and
destination storage nodes. This naturally enables a more efficient and direct data flow,
and allows the use of one or few central machine to manage all data transfer. TPC is
a fully implemented option of xrdcp and all ALICE storage elements are configured
with it. TPC is using the same authorization and authentication plugin and envelopes
as the normal clients to enforce security.

2.1.3 Results of 2022 Transfer Campaign

This subsection presents the data life-cycle on the EOSALICEO2 buffer and the tuning
of the various transfer operations to secondary storage elements.

EOSALICEO2 buffer data lifecycle

Figure 2.2 shows the data accumulation cycle on the EOSALICDEO2 buffer in the data
taking periods of year 2022 (July to October), the end of year LHC accelerator stop
(November to May), and data taking periods of year 2023 (May to July). A typical
10 PB/month data volume is collected during the data taking periods and throughout
the year, some of it is removed from the buffer, indicated by the downward slope of the
curve, as it is being processed to AO2D, copied to other storage elements or identified
as low quality. In the time period in Fig 2.2, the buffer has received 146 PB of data
from the EPNs, of which 17.7 PB has been transferred out and 54 PB has been deleted.
It should be noted that the availability of the EOSALICEO2 buffer was above 99.8%
throughout the entire period and 100% during the data taking. The remaining 0.2%
are in scheduled downtime for planned upgrades of the EOS software. The bulk of the
data on the buffer will be removed before the Pb–Pb period in November 2023 to make
place for the large volume expected during the Pb–Pb data taking.
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Figure 2.2: EOSALICEO2 buffer data accumulation.

Transfer of data to EOSALICE

Figure 2.3: EOSALICEO2 to EOSALICE transfer speed.

The data transfers from EOSALICEO2 to EOSALICE are one of the standard data
paths in the ALICE data management cycle. Figure 2.3 shows a typical rate and fre-
quency of transfers to EOSALICE. It includes only data transferred from EOSALICEO2
and does not show the data written by the reconstruction process or data analysis, which
is substantially higher.
The total transferred data volume during the period on Fig. 2.3 is 221 TB and the
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speed is limited to about 20 GBps in the configuration of the transfer tools. Although
higher speed is easily achievable, this value was chosen to minimize the effect on the
usual high volume data reading and writing to this EOS instance.

Transfers to CERN custodial storage

Figure 2.4: Transfer to CERN custodial storage in July-August 2022.

Figure 2.5: Transfer to CERN custodial storage in November 2022.

Two periods of data transfers are shown in Figs. 2.4 and 2.5. In the period July to
August 2022, data accumulated between November 2021 to June 2022 was moved to



CHAPTER 2. IMPROVING GRID RESOURCES USAGE 14

the tape archive. The files have 1 GB size with small variations and 1250 simultaneous
threads were sufficient to saturate the set bandwidth of 10 GBps. During the initial
period in July, the custodial storage was tuned for performance, indicated by the fre-
quent variations of the transfer speed. On August 5th we started transferring runs from
October 2021, with files of smaller sizes. This necessitated an increase of the number
of parallel transfers to 3000, done on 8 August. With this final parameter in place, the
10 GBps nominal speed was achieved.
In November 2022 there was another set of large file transfers, as shown in Fig. 2.5 with
stable speed to custodial storage. On 21 November, this speed was decreased to about
7.5 GBps due to high concurrency of tape operations from the other experiments and
slight decrease in the ALICE tape share.

Figure 2.6: Tape transfer clients.

In total 17.7PB of data have been transferred.

Control of transfer bandwidth

One of the standard methods to control the transfer bandwidth to any storage is the
number of parallel threads. Given a known average file size and if the available band-
width is not a limiting factor, increasing or decreasing the number of threads results
in almost linear increase/decrease of the transfer speed. This is a trivial, but very ef-
fective method of control and is the primary one used in the ALICE transfer system.
The transfer speed is affected also by the overhead of setting each individual thread,
however, it has a smaller weight for reasonable file sizes (of the order of 100 MB+). It
only becomes dominant for very small files (of the order of tens KB).
The effect of number of threads on the transfer speed is illustrated in Fig. 2.6. In
the period 5–13 August, the step at 8 August is due to the change from 1250 to 3500
parallel threads (factor 2.8) to accommodate for the small size of the files being trans-
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ferred. The transfer speed increased from 4.3 GBps to 9.8 GBps, a factor 2.3. The
approximately 20% difference between the two factors is due to the transfer overhead
and some throttling in the receiving storage element.

2.1.4 Conclusion and Further Work

The ALICE experiment data management system has been upgrade for the LHC Run
3 to cope with the considerably higher volumes of detector and the more complex data
paths. A new storage node, EOSALICEO2, was introduced in the system, able to ac-
commodate more than 100PB of data and to support sustained data rates of the order
of 100 GBps. At the same time, the data management of the more than 60 storage
nodes around the world was upgraded with new transfer methods and tools, capable of
controlling the data flows automatically and adapt to the variations of conditions of a
distributed computing system. The new data management is fully in production and
has shown its abilities to store and distribute data in excess of 150PB per year, and at
the same time to maintain the working status of the storage elements, which are serving
a large number of compute nodes preforming data reconstruction and analysis.

In the future we will continue to update the data management system with more au-
tomatic functions, one of these is the dynamic transfer triggers (DTT). DTT will be
activated on completion of a previous actions, for example end of processing of set of
files, and will enable the move, copy or deletion of the file set. It can also trigger an
operation, for example start of analysis on a dataset upon its replication to a specific
storage node.

2.2 Decreasing Memory Usage by Integrating Multi-core
Jobs

The Grid is constantly evolving, and the available resources are increasing. In order to
get the most out of them, the services and clients of the framework have also evolved and
have been re-implemented in the new framework. This reimplementation has allowed
deployments to be carried out more easily and with greater scalability. The authentica-
tion and authorisation mechanisms have also been improved, making use of the Token
Certificates provided by the JAliEn Certificate Authority X.509.

The ALICE Grid pools together the computational, storage and network resources of
multitude of distributed computing centres around the world. This allows for the mas-
sive amounts of collected data to be processed and analyzed by the physicits in relatively
short amount of time and assures the necessary growth of the combined resources as
more data is collected by the experiment in the ongoing LHC operation.

The software that enables researchers to run jobs on the ALICE Grid is the JAliEn
middleware. It is made up of JAliEn Computing Elements services that run on dedicated
nodes on each site (called VOBox-es), which connect to their infrastructure and submit
generic jobs from the Grid to the cluster. Another component of the framework is the
Central Services, located at CERN, that work as a centralized point of management
which dispatches payloads to run on sites, manages the input and output files required
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by the jobs, catalogues them and steers the clients to the appropriate Grid storage nodes
to write their output to.

For LHC Run3 the ALICE experiment has upgraded its detector and changed the
data acquisition model from a triggered to a streaming mode with sharp increases
in bandwidth and storage requirements. The paradigm shift from processing events
to looking at 10ms long continuous data frames required a complete rewrite of the
experiment software, from simulation and reconstruction to the analysis framework.
For an efficient processing of the new data type the framework requires larger physical
memory allocations per job, in the order of 10 to 20 GB. Swapping them out is not an
option as the entire data file content is accessed and thus the CPU efficiency would be
dramatically impacted.

The new experiment software is multi-threaded and allows for efficient use of multiple
core slots on the sites while maintaining the existing 2 GB per core ratio demand from
the resource providers. This thesis addresses the modifications that have been made to
the experiment Grid middleware JAliEn for brokering and running multi-core jobs.

2.2.1 The JAliEn Middleware Architecture

The Java ALICE environment (JAliEn) is the Grid middleware used by the ALICE
experiment to store, process and analyse data obtained from the physical phenomena
[29]. It is an evolution of the legacy AliEn [20] middleware and has been developed
taking into account the evolving needs of the upcoming LHC Run 3. The Worldwide
LHC Computing Grid (WLCG) infrastructure [33], which is composed of more than
200 computing centres in 39 countries around the world, is used for its operation.

The JAliEn framework has two types of services, some of which run on each of the Grid
sites and others which are run centrally on servers hosted at CERN. Figure 2.7 shows
how the main components of the framework are organised and how they relate to each
other.

Central Services

The framework has a centralised architecture, which means that job executed at different
locations of the WLCG connect to the Central Services (CS) at CERN. The centralized
management point dispatches payloads to run on sites, manages the input and output
files required by the jobs, catalogues them and steers the clients to the appropriate
Grid storage nodes to write their output to. Having central data and task management
entities provides the system with load balancing capabilities between its multiple sites.

Grid site

The ALICE Grid is currently composed of 53 sites where jobs that study the physical
phenomena are executed. Job scheduling takes into account the data locality (as per
the central file catalogue) in order to minimize the IO latency and thus the resources
consumed by the job.

Computing Element The Computing Element (CE) is the gateway to each of the
sites on the Grid. It runs on a persistent point of presence on the site called VOBox
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Figure 2.7: Diagram of the main components integrating the framework
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Figure 2.8: Diagram of the CPU Cores parameter definition and mechanism used for
the execution of multi-core jobs.

(Virtual Organization Box) and from there it submits generic jobs to the site Batch
Queue via a Local Resource Management System (LRMS), upon instructions from the
Central Services. The CE also performs monitoring and resource accounting functions.

Worker Nodes The worker nodes are the machines where the jobs are executed, being
configured with an environment containing all the needed tools. This environment can
be set up either directly on the machine or in a container.
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Job Agent and Job Wrapper The generic jobs started by the LRMS launch Job
Agent (JA) instances on the worker nodes. They connect to the Central Services and
advertise their available resources, receiving an actual job that matches the constraints.
The JA then forks a Job Wrapper (JW) that executes the actual payload inside a
sandboxed directory or a container where available. The JA supervises the correct
functioning of the JW and interacts with the CS to guarantee continuous monitoring
and supervision of the resources used.

2.2.2 Integrating Multi-core Job Support in the JAliEn Middleware

The nature of the new experiment’s hight throughput requires for a shift in the analysis
framework, because of the large abount of data this framework will work differently, and
it will have to work in a multi-core fashion. We have to be able to provide middleware
support to the software. Our goal is to find a way in which to manage this new type
of jobs by refactoring the way we to job scheduling, resource management and job
launching. A consequence of this refactoring is that now we can run our software in
an efficient way on a whole-node scheduling queue because of the resource management
components that we have added.

The framework had to be adapted to increase its throughput while using the available
resources more efficiently. This thesis presents the implementation of the logic that
enables the execution of multi-core jobs, besides continuing to offer support for single-
core jobs. It has involved a refactoring in several domains, such as job scheduling,
resource management and job launching.

The first of these structural changes is in the scope of job scheduling, involving mod-
ifications to the Local Resource Management System architecture used. To address
that issue, the running LRMS-based implementation has been modified to allow multi-
threading, letting the middleware spawn job running threads. This approach not only
has benefits in terms of scheduling, but also in terms of consumption of RAM resources,
as the new model does not make use of a JVM instance for each of the Job Agents
launched.

The process of requesting new jobs to run, i.e. communicating with the Central Services,
has also varied due to the non-homogeneous nature of the Grid. The involvement of
the Job Agent threads in that process is needed to be able to configure the granularity
of the jobs to be executed depending on the resources available at any given time.

To manage the new dimension of CPU cores resources we have introduced an intermedi-
ate entity called Job Runner (JR), replacing the direct calls to start JAs via LRMS with
others that start the new component. JRs keep track of the available resources (CPU
cores, memory and disk space) and spawn JA threads to pick up actual jobs from the
queue (and subtract the respective amount of resources from the pool). This approach
also reduces the amount of Java Virtual Machine processes on the worker node and
consequently the memory footprint from the LRMS point of view.

A new parameter, CPUCores, has been added to the JDL syntax to enable the definition
of multi-core jobs. With this new parameter, the number of cores to be used is defined
and then taken into account by the Central Services when scheduling new jobs.

The task scheduling logic previously described has been adapted to accommodate this
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new parameter. In addition, the definition of the sites has been extended to include
their constraints in terms of the available CPU cores and their distribution among the
advertised job slots. In the definition of the Computing Elements in the LDAP system,
three parameters have been added that refer to the requirements and possibilities of each
of the worker nodes. Figure 2.8 illustrates the definition of the involved parameters and
the steps followed for the execution of multi-core tasks.

Before adding the support for the execution of multi-core jobs, the framework was just
capable of providing all the CPU cycles with only one CPU core per slot.

The Computing Element has been configured to retrieve the matcharg:CPUCORES
parameter from the LDAP database when initialized. This parameter can have two
behaviours: either be set to make use of a fixed amount of cores, which are going to be
used as default allocation for the slot, or be stated to make use of the whole node, which
means that it is going to auto-detect the number of cores that will be utilised and ad-
vertised to the Central Services. In this last case the parameter matcharg:CPUCORES
is assigned a value of 0. In the example shown in figure 2.8, the Job Agent can make
use of a total of 32 CPU cores for job execution.

As the Grid resources are not homogeneous, the Job Agent needs to advertise the
available resources to the Central Services in order to receive jobs tailored to its available
resources. Therefore, when the Job Agent communicates with the Central Services to
request a new job, it must report the number of free CPU cores, as well as the amount of
RAM memory and disk space available. Based on this information, the Central Services
scheduler performs the matching process to find a job that matches the requirements,
and adds it to the accounting information.

Listing 2.1 shows the scheduling steps taken by the JobAgent for saturating a slot, as
described above.

1 retries = 0
2 TTL = getRunnerTimeToLive()
3
4 if cpuCores == 0 then
5 availableCores = min(getCpuCores(), getRamCapacity()/4)
6 else
7 availableCores = cpuCores;
8 end if
9

10 while availableCores > 0 and TTL > 0 and retries < 5 do
11 jdl = getNextJob(availableCores, TTL)
12
13 if jdl == null then
14 retries = retries + 1
15 sleep(300s)
16 continue
17 end if
18
19 retries = 0
20 availableCores = availableCores - jdl.JobCores
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21 runningJobs = runningJobs + 1
22
23 startJob(jdl)
24 done

Listing 2.1: JobAgent scheduling algorithm

Resource isolation on a whole-node scheduling context

Because the new payload framework launches sub-process and coordinates them, in-
stead of doing all the computation in a single process, we cannot be sure that a single
payload would not launch as many processes as the system has free resources. We have
implemented a mechanism which keeps the resource consumption within the bounds of
the initial allocation.

CPU isolation In our research scenario, we want to make sure that the CPU cores
are only used by the process to which they have been assigned. When a single job is
submitted to a Grid site, the internal mechanisms of its LRMS that takes care of the
scheduling of the tasks are also responsible for guaranteeing the isolation of resources.
Although whole-node scheduling provides the framework with great flexibility and has
the potential for efficient job execution, it does not in itself provide resource isolation
for each of the processes. For this reason, it is necessary to provide the system with
additional tools to perform this function. The task of finding tools for this purpose is
not as easy as it may seem, since there are many limiting constraints, mostly caused by
the few privileges granted on the Grid sites.

There is a variety of ways in which a job’s CPU usage can be isolated such as cgroups
versions 1 and 2 [31], isolcpus [21] and taskset [15]. Each of these options handles
CPU isolation in different ways, and some sites have already implemented some of them
independently of the JAliEn framework.

Proposed solution We propose to use the taskset command to pin each job to a set
of CPU threads of the same size as the number of requested CPU cores, in order to
ensure that jobs cannot overrun their allocation. We have implemented a mechanism
that checks for the CPU threads that have already been pinned and, avoiding those,
selects a set of cores on which to run a new job.

Although each situation has its own peculiarities, we can distinguish three main scenar-
ios:

• Sites where no constraint is applied on the CPU cores to be used. In this case,
we are free to make use of taskset and pin the payload processes to explicit cores.

• Sites where our processes are already constrained to run on specific cores. The
task affinity that will be assigned to them may have been set either via its cgroup
(cpuset) or via taskset. Although the configuration can be done using different
tools, the CPU affinity masks of the processes can be seen using the taskset com-
mand.
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• Sites where containers are being used. In these sites, cpuset or taskset should
be configured by the system administrators because it is not possible to inspect
external processes from inside the container, as they are isolated.

2.2.3 Observed Reduction in Memory Usage and Use of Scavenging
Queues

The JR mechanism has enabled the execution of new workflows on new system types. In
order to evaluate the updated job execution architecture, we have studied the number
of jobs that have run so far using the new mechanism, how many of these jobs are
multi-core jobs, and if the goal of reducing the amount of memory used per core has
been accomplished.

Running multi-core jobs

We have chosen to analyse two different types of jobs, as they give us an overview of
how multi-core jobs will run on the Grid when their usage increases popularity, and
because they have run in a large enough number of nodes to get meaningful results.

These two types of jobs are:

• Reconstruction jobs which convert raw experiment data into AOD format. These
jobs load into memory the compressed files in order to parse them, so they run on
sites with a large amount of memory that can accommodate the raw files parsed;

• Organized analysis jobs, which use pipelines and start multiple processes that read
events resulted from the aforementioned conversion or from other productions.
These jobs access many files in parallel and do a large amount of I/O operations,
so they require a fast connection between the computing nodes and the storage
connected to the site.

These two types of jobs have different requirements, so they run on different Grid sites.
Because of the fluid situation of the payload software, and the fact that it has not been
run on a large scale, we will limit the observations to two queues: CERN-CORONA,
that runs reconstruction jobs, and Wigner-KFKI-8core, that runs analysis jobs.

We noticed that while both CORONA and Wigner run 8 core jobs, these jobs do not
use all the resources that the sites provide. The sites also have to run single core jobs
in order to not waste CPU resources. This reveals that the Grid hasn’t fully moved to
the multi-core job infrastructure.

Memory usage per core As expected, the amount of RAM used per job has in-
creased from an average of 3.17 GB, to an average memory usage of 9.04 GB. That
being the case, if we divide by the number of cores, we notice that the memory foot-
print per core has decreased to 1.13 GB. These results are in line with what we expected,
meaning that we will be able to fit more computational power per batch slot, because
the resource that is lacking Grid-wide is mainly memory. By lowering the memory
usage, we will be able to run fewer jobs that do more computational work.
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Isolating CPU usage

For testing CPU isolation we have chosen to run a prototype of simulation jobs that
haven’t yet been fully deployed on the Grid. We use these jobs for testing because they
are the most likely to run on more CPUs than required, as they use a forking mechanism
that is prone to launching more than eight processes that could be eventually scheduled
at the same time.

Figure 2.9: Per job CPU usage before isolating tasks

Figure 2.10: Per job CPU usage after isolating tasks

We notice from figure 2.9 that although multi-core jobs request eight cores, they actually
use more than this amount of CPUs on average. There are jobs whose CPU usage goes
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up to 1600%, meaning that they fully use 16 cores. We expect this to be an issue that
will escalate in the future, as more physicists start using the new framework.

Figure 2.10 represents the CPU usage of jobs after implementing the task isolation
system. As expected, the CPU usage has decreased to close to 800%, equating to 8
CPUs working at 100%. In the graphic we can notice a peak of 1000%, but this is
caused by the accounting method used by the monitoring software.

Opportunistic job deployment so far

In order to test the integration with new queue types, we have installed the JAliEn
Computing Element on two new resource types:

• Cori supercomputer [28], run by the National Energy Research Scientific Comput-
ing Center and hosted at the Lawrance Berkeley National Lab, which has been
deployed as a test site;

• The HPCS (High Performance Computing Service) cluster hosted at LBNL, which
uses scavenging queues.

The two selected systems represent new resources that the ALICE Grid can make use
of because the sites already have access to them, but they had not being used for job
execution yet.

Figure 2.11: CORI job distribution

HPC jobs After deploying the new job framework on the Cori supercomputer, we
have managed to find the correct TTL (Time To Live) and job submission rate so that
there would be a constant amount of jobs running on the supercomputer. This constant
flow of jobs can be seen in figure 2.11.
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Figure 2.12: Lawrencium job distribution

Scavenging queues When deploying on the HPCS cluster, we see that while jobs
run, we get allocations that are equivalent to a small Grid site. This happens because
we have chosen to limit the maximum number of jobs that can run at a time on the
site, as jobs on scavenging queues will be preempted and shutdown. If we chose to run
a larger number of jobs on this cluster, more jobs will be killed because there will be a
larger number of jobs that will be preempted. Figure 2.12 illustrates the way jobs are
being cut off by jobs with higher priority.

2.2.4 Conclusion

We implemented a mechanism capable of managing multi-core slots and even whole
nodes allocated by ALICE Grid sites and using the given resources to launch single
and multi-core jobs from the Grid with a user-defined granularity. This new feature
allows the experiment to run the new generation of jobs, but it also allows the software
to be deployed on new sites, such as whole-node scheduling sites and supercomputers.
Furthermore, this thesis proposes a solution for slot fragmentation on the nodes and for
CPU resources isolation.

Whole-node queus have been integrated into the ALICE grid, seen by using the example
of the Lawrencium site, hosted at the Lawrance Berkeley National Lab, which runs as
a scavenging queue, using resources on an opportunistic basis, without the experiment
being charged for them.

Further research questions that arise from this thesis are as follows:

• What is the impact of job containerization in regards to the job efficiency once
the new framework has been broadly deployed on the Grid;

• How could Computing Element deployment automation be done on supercomput-
ers;
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Adapting grid environments to
educational environments

Education has long lagged in implementing the advancements that software development
has enabled in other fields such as automation, cloud resource hosting, and outside
sourcing for contributions. Following the 5Rs principles for Open Educational Resources
(retain, reuse, revise, remix, redistribute), we have identified a set of goals for class
organization in a digital age:

• resources must be easily available online or offline, so more users can have access
to them, and later contribute;

• classes have to use as much automation as possible; teachers are tasked with
guiding and mentoring students, having them do administrative tasks defeats this
purpose;

• the resources have to be easy to contribute to, as this allows interested parties to
contribute without hassle.

The focus of our work is on creating automation mechanisms to reduce time spent
building and maintaining materials, allowing teachers to focus on the act of teach-
ing. We intend to increase resource availability by making hosting resources online
for teachers using our Open Education builder framework. By using a Git-centered
workflow, we make it easy for parties to contribute by creating change requests
through Pull Requests or raising issues through the community features Git reposito-
ries have. The building framework has been implemented for three classes and other
classes have expressed interest in migrating to it.

Building class materials is just one aspect of class preparation. Evaluating students
is another facet of teaching that requires the attention of teachers. In the context of
Computer Science education, student evaluation can be done through quizzes, exams,
or practical assignments. Open Education Hub presents a way in which quiz and exam
evaluation can also be automated.

While there exist platforms for managing and automating classroom quizzes and exams,
the problem of grading assignments at scale is not yet solved. The current tools allow for
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limited flexibility in evaluation, and they do not offer integration with existing learning
management software that has been adopted as part of the learning digitalization effort.

We propose the VMchecker assignment checker to solve the issue of time waste during
assignment evaluation. VMchecker has been integrated with success as part of 11 classes
at the National University for Sciences and Technology POLITEHNICA BUCURES, TI,
having run 40,000 homeworks and covering use cases that could not be using other
existing software solutions such as virtualization and multi-core assignments. It has
increased the availability of homework checking, removing the overhead of assignment
setup by using template and CI/CD techniques to easily deploy assignment checkers.

This thesis makes the following contributions:

• a framework to automate the workload of building and maintaining class materials;

• processes, tools, and materials that can be used by educators to create their class
materials;

• an educational resource management platform and class-building framework that
builds and deploys classes, permitting others to contribute to them;

• a tool to automate the task of assignment checking and grading.

Section 3.1 presents the goals, architecture, and implementation of the content building
platform, called the OER-builder. Section 3.2 discusses the challenges of automating
homework checking and our approach to solving this issue by implementing a new tool
called VMchecker. Section 3.3 debates the results obtained when deploying the imple-
mentation, the classes that we have migrated, and the achievements of the VMchecker
tools during the school year. Section 3.4 concludes the thesis by highlighting the work
done, and the growth opportunities for the Open Education Project moving forward.

3.1 Open Education Resources Builder

Educational content has been hosted online since the dawn of the internet [34] in the
form of wikis, tutorials, blog posts, and others. The internet has, by its nature, increased
access to educational resources, and it has increased the amount of information that is
proliferated. As part of the Open Education Hub project, we have taken to creating tools
that make building, distributing, and using educational materials across the internet
easier.

The issue with current educational resources is that in many cases they are not built in
an OER fashion. Resources cannot be remixed, or reused without hassle, or they have
restrictive licensing, especially if they come from higher education institutions, which
use them to generate more revenue. As part of OER resources, they should also be
easy to contribute to and remix. To achieve this, resources should be organized in an
easy-to-change format to the maximum extent.

3.1.1 Educational Content Builder Goals

Open Education Hub wishes to use a framework with which students and teachers
can build and contribute to educational resources. Using existing software solutions
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for enabling OER contributions is a priority because this means less time spent on
maintaining code, and adding new features. An existing solution can evolve without
the need to change the framework.

An OER builder should allow for an automated setup for the required resources, to spend
less time managing the framework and more time creating content. The framework
should have options for automated checking for various aspects, such as spelling errors,
or bad formatting. While documentation builders exist, they are focused more on
generating content such as manuals and tutorials. They do not cover the breadth
of materials such as quizzes, tutorials, slides, and interactive work. This limits the
amount of resources a class can include in them if used as an out-of-the-box experience.
A content builder has to be easy to use and configure. A minimum number of steps
should be taken to start creating and deploying content. The content that is deployed
has to be easy to copy and re-build by other interested parties. Text must be de primary
content storage method because it can be easily edited without requiring special tools.
It should be used whenever possible, even for diagrams, because changes can be easily
tracked using a versioning tool.

3.1.2 oer-builder Architecture

The oer-builder project has been built as a modular project, that can be flexible in
integrating different kinds of materials in a class. The builder also needed to allow for
integrating different kinds of use cases.

Git was chosen as a text management solution for class materials. Since we require that
all class materials be in text format, so we can edit them with basic applications, using
Git was a viable solution.

Classes need to be built in a rich text format that can be converted into deployable
content. The rich text needs to support links, formulas, itemized lists, enumeration,
images, GIFs, and more. We have chosen to create content in the Markdown (MD)
format because it is used by many existing documentation builders. Markdown is ex-
tendable and text can be converted to it from other formats such as RST or LaTeX
using already existing tools, allowing easier migration from other content forms.

Tutorial Content

We have concluded that the Minimum Viable Product for a class would be an interactive
class where students would follow tutorials available on a page online.

This requirement would map directly to the use of a documentation builder. Docusaurus
was chosen as a documentation builder because it is fully featured and provides plugins
for added functionality. Docusaurus supports the Markdown text format, which sup-
ports the use of rich formatting, and admonitions and can even include in-page iframes,
allowing us to add more advanced features to pages.

A user has to create a configuration file in which they have to specify the paths to the
markdown files they wish to include and the chapter name. Mode advanced options can
also be included, to customize the course.
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Slide Content

In academia, slides are regularly stored and displayed in PDF or PPT format. We
chose not to use this because while the slides contain text, they are stored in binary
format PDF and PPT slides make integrating feedback a manual process that cannot
be tracked and automated easily.

reveal-md [14] is a tool that builds markdown files into JavaScript content to be viewed
inside a browser window. The JavaScript content can be integrated into other forms of
content, or it can be viewed by itself.

Non-graded Quiz

oer-builder integrates support for quizzes in the tutorial material. Quizzes are a way
of testing students on the knowledge gained during the tutorials. A quiz is also a tool
to keep them engaged with the content when it skews towards being more theoretical.
They can be graded or non-graded. As we do not link the oer-builder to any institutional
infrastructure, there is no way to authenticate students to store their grades.

A common quiz template has been created to represent a question and a set of answers,
with the correct answer being marked.

3.1.3 Deploying Content

Deploying content is the action of making content built locally by creators and con-
tributors publicly accessible. This requires having a platform where the content can be
hosted The content also needs to be in a format that can be accessed using commodity
software.

The deployment actions allow for code to be deployed automatically on changes, not
requiring any input from the user after the code is uploaded to Git. Both GitHub and
GitLab also provide DNS entries, so the pages can be easily accessible if the user knows
the project and repository names. oer-builder outputs HTML code, which is viewable
in an internet browser. Because the code is HTML, it can be hosted as static content
on many types of platforms.

3.2 Assignment checker

One of the greatest challenges of teaching is evaluating the students’ work. For a teacher,
the action of grading work is repetitive and requires a large amount of attention.

In Computer Science there is a breadth of tools that do code evaluation. This is a
process that happens both in a commercial context, but also in research and education.
Code evaluation is used to check the functionality and the expected behavior of a tool
or a project.

Assignments in IT education take the form of code assignments or projects, where
students have to implement a set of tasks inside of a template or framework. The
grading system for these assignments is based on a score for the code functionality, and
good coding practices, such as the use of certain design patterns, or efficient use of
memory allocation.
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Teachers use code evaluation tools to test students’ assignments, projects, or lab work
based on a set of reference tests written by the teachers. The output of the evaluation
tool should be a score for the functionality of the homework, and code feedback.

The current landscape of assignment evaluation tools is made up of software that has
to be licensed from companies, or that doesn’t automate enough of the work. The ex-
isting tools are not integrated with popular e-learning platforms, such as Moodle. This
increases the overhead of integrating an evaluation tool into the institutional infrastruc-
ture.

VMchecker proposes a free and open source software solution for homework evaluation
that uses integrations with other tools such as Moodle for front-end user and homework
lifetime management, and GitLab for running the code in a safe environment.

3.2.1 Goals

VMchecker is built to satisfy the goals of the Open Education Hub project. They are
the same goals as the ones set for the oer-builder, but they have been particularized for
assignment checking as follows.

VMchecker has to be easy to use and set up by infrastructure managers, teachers, and
students. This can be done through automation, providing setup scripts to allow for
automatic setup.

The goal of VMchecker is to be a software solution that requires as little coding as
possible. A low-code solution is a low-maintenance solution, requiring fewer interven-
tions from programmers. A smaller codebase leaves less room for bugs to be added by
software developers.

VMchecker aims to teach students how to use code versioning tools such as Git, so they
will be able to manage a production code environment while working on projects.

As resource usage increases, and demand is increased for VMchecker, it should be able
to scale the amount of assignments that it checks in parallel. A parallel approach means
students don’t have to wait in long queues for assignment checking.

Seeing as VMchecker is supposed to be a free and open source solution, it should be
built on free and open source solutions. VMchecker must be compatible with the OER
5R requirement. Using open source solutions allows us to patch the solution that we
are using if issues are encountered.

Many educational institutions use e-learning platforms to manage classrooms. These
tools allow users to upload materials, test students, and grade assignments using a single
application. Integrating VMchecker with e-learning platforms makes it more appealing
to integrate for institutions that already rely on these systems. Educational institutions
need a seamless process from assignment submission to grading in a shared grade book.

3.2.2 Architecture

VMchecker has been built with a modular architecture so that it fits the diverse needs
of educational institutions.
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Figure 3.1: VMchecker architecture

Figure 3.1 displays the minimal components needed to have a working VMchecker ser-
vice.

• front-end - receives assignments from students, uploads them to the VMchecker
middleware, and receives the assignment run information after it has finished;

• middleware - receives requests from the front-end and uploads the homework to
the assignment checking infrastructure, which runs the assignment, waits for the
result, and then uploads it to the front-end;

• assignment runner - receives homework checking requests from the middleware
service, and runs the homework using a specific recipe defined by the assignment.

Front-end

The first component required is a front-end that presents the students with a homework
upload area and gives teachers a place to manage assignments and download and upload
assignments.

For the first implemented example at UNSTPB, we have used a purpose-built Moodle
plugin that connects to the already existing assignment module built into Moodle. By
using Moodle, we have been able to reduce the amount of code needed to manage
assignments, as this is already handled by Moodle.

Middleware

The middleware is the application that handles requests from the front-end. It offers
a REST API so that multiple front-ends can be used, even in parallel, as they have
to create HTTP requests to assignment management operations in VMchecker. The
VMchecker middleware manages the lifetime of homework checking.

GitLab Integration

One can run code in the GitLab CI/CD infrastructure by creating a commit that triggers
a pipeline that runs a configured script. VMchecker needs to be configured through
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the front-end with a project and access to the project’s GitLab instance. This allows
the middleware to create a commit through the middleware that triggers assignment
checking.

GitLab Runner

A GitLab CI/CD pipeline needs physical resources to start the checker script. The
CI/CD resources are managed by GitLab runners, which can be freely available on the
platform, or they can be configured per repository if specific conditions are needed.

3.2.3 VMchecker Use Cases

VMchecker has been built with scenarios in mind for three different users:

• the institutional system administrator who manages VMchecker and has to main-
tain it and ensure a service level agreement, especially during high load situations,
such as homework deadlines;

• the teaching staff whose role is to create an assignment and to grade the student
assignments once the deadline has passed;

• the student who uploads the assignment, checks the output and receives the grade
once it is marked by the teacher.

Each of these users must interact with VMchecker through a user-friendly interface. The
task of building a front-end interface for the users takes a large amount of programming
work to manage, keep up to date, and implement new features. This is the reason
why we chose to use a front-end that was already built, maintained, and used at large
educational institutions.

3.2.4 Container Infrastructure

The issue with using the same assignment checking script for many students is that
they can have different libraries and applications installed on their systems. Different
environments may lead to certain optimization inconsistencies. To mitigate this, we
recommend teachers set up the checking infrastructure in VMchecker so that the scripts
run inside of a container. The VMchecker team provides a minimal template that can
be expanded based on individual class needs.

The container infrastructure presents an easier approach than the one seen in current
solutions, which either require an internet connection for remote checking, or a virtual
machine, which uses more resources. Using containers allows for easier patches to the
environment, for example installing a new library, because the changes will be sent
incrementally, the student not needing to download a whole new image.

3.3 Results

The Open Education Hub GitHub organization has been created to automate the oper-
ation of the different components that take part in class management and class creation.
A methodology has been created to guide teachers in building and maintaining OER
classes.
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3.3.1 oer-builder

The GitHub organization has been created to maintain classes that have been built using
the methodology and whose maintenance is passed to the Open Education Project. This
frees content creators from the burden of managing pull requests and issues with the
class.

Classes can be freely forked and remixed by other projects or institutions; automation
having been put in place to allow classes to have automatic deployment and linting
using the GitHub API.

Three classes have been integrated into the Open Education Hub GitHub organization.
These courses have been rewritten to take advantage of the oer-builder. They include
quizzes, slides, figures, tutorials, and assignments in the repositories.

The Operating Systems Class

The Operating Systems class was the first one integrated. The repository is based on
the class that is taught at the National University of Science and Technology POLITE-
HINCA Bucharest (UNSTPB). It was migrated from a wiki-based format where the
content was hosted on institutional servers. While the wiki was easy to access for the
students, including student feedback was difficult without giving students access to the
whole class workspace which included internal documentation for the OS team.

The class is focused on tutorial work done by students as part of interactive sessions with
TAs. Consequently, the largest part of the repository is taken up by written content
and assignments.

Figure 3.2: Operating Systems Slides

Figure 3.2 displays slides built using the builder integrated into the operating systems
class web page.

The quiz format we have deployed is displayed in Figures 3.3 and 3.4. We can see they
display the right answer and an explanation for why it is correct.

The class has gone through two semesters of teaching based on the new materials. The
idea of providing feedback and raising issues in GitHub has been promoted among the
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Figure 3.3: oer-builder quiz correct answer

Figure 3.4: oer-builder quiz feedback

students, with them being rewarded with a physical Operating Systems pin for service
to the community.

Students have opened 32 pull requests which have been integrated into the class mate-
rials.

The new content building process has allowed the team to scale up the amount of
people who can work in parallel on the content. By using GitHub, each new content
chapter had its pull request. This helped organize the feedback process, as the changes
could be discussed on the page, and suggestions were made in-line. The content was
automatically checked for format and spelling errors, allowing users to concentrate on
the content quality. When merging the new content, it is automatically deployed,
removing the need for a systems administrator to do this and coordinate the different
merges.

CCAS

The CCAS class is a statistics class taught at the University of Iceland. It is a course
focused on lab work based on a class written for the R programming language.

The class has been migrated from a lab book that was built in LaTeX and it was
distributed as a PDF document. This approach is not easy to deploy, as you need a
shared space with the students or a public website, it is not easy to search for, and it is
not easy to contribute to, because the source code is not shared. Another issue is that
LaTeX requires more expertise than a rich text format to write in, and the packages
needed to use it are large and not ubiquitous on all platforms.
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A script based on the pandoc tool was used to migrate the LaTeX content to Mark-
down. Because the classes were already in a text format, stored centrally, the process
of converting them to another format was easier than having the resources dispersed in
multiple classes or multiple PDFs.

The fact that we were able to use scripts to automatically convert content proves that
other classes could convert their content to work with the oer-builder, and take advan-
tage of its features.

Security Summer School

Security Summer School (SSS) is a workshop focused on teaching security principles.
It is taught online, with resources hosted online. The resources were already built
using Docsy [4], which is a documentation builder that converts MD files to HTML. It
was already using GitHub Actions to automate resource deployment and pull request
checking.

Although the setup was done following OER principles, it was difficult to replicate
by other institutions and make changes locally because it was using Docsy-specific
configuration files. A user would have to learn the Docsy configuration parameters to
learn how to contribute to the project. This presented a hurdle in encouraging other
users and institutions to contribute content.

The SSS workshop has been migrated to the Open Education Hub. It has been con-
figured to run the oer-builder and integrate with Docusaurus. The migration was easy
to do, as it only involved moving the Markdown files to a new repository which was
configured using the builder.

3.3.2 VMchecker

VMchecker has been put into the production environment at UNSTPB as of September
2022. The middleware is connected to the UNSTPB Moodle instance through the
Moodle VMchecker plugin. The middleware has been configured to connect to the
GitLab instance deployed at UPB because we wanted to take advantage of the large
storage space provided by the institution and the integration with institutional IDs.
The integration allows students to add their TAs to the assignments to receive feedback
and reviews.

VMchecker has been used by eleven different classes, each with different assignment
structures and requirements. The following are noteworthy requirements and observa-
tions made from certain classes:

• The Operating Systems Internals class required starting virtual machines for code
checking, a task that was supported.

• The Parallel and Distributed Algorithms class required multi-core support and
resource isolation so the run time for different users will be computed in the same
way for all users, as the assignments were graded based on solve time.

• The Computer Architecture assignments were GPU-dependant, this required a
specific runner that had access to the UNSTPB cluster, where workloads could be
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submitted to the institutional grid; the solution to this requirement has increased
the potential size of VMchecker checking infrastructure from a GitLab runner
running on a virtual machine inside the cluster to the whole institutional grid
infrastructure, measuring at 600 cores and more than 2.5 TB of memory available.

• The Communication Protocols class required the use of raw networking capabili-
ties, which were not enabled by default inside containers.

More than 40,000 assignments have been checked during the school year. The assign-
ments used the container infrastructure to run the same assignment environment

3.4 Conclusion and Future Work

The Open Education Hub project has developed and deployed tools that help teachers
reduce the administration load that is set on teachers. We have done this by creating
workflows, templates, and frameworks that automate the tasks of integrating and de-
ploying new materials and checking assignments. These actions have been done while
also increasing educational resources availability by posting all materials online in an
open source fashion, allowing third parties to both consume the content and reuse it.

We have built an Open Source tool that improves the process of creating materials
and publishing them. Creating the tool, we have migrated three classes to the OER
standard improving the process of maintaining the classes.

The task of automated assignment checking has been enhanced at UNSTPB by integrat-
ing VMchecker. A large number of classes have already picked up the new assignment
checking tool, as it scales up better than other tools, and requires fewer setup steps.
Using the existing institutional infrastructure, we have been able to increase the per-
formance of homework checking, while making the process of grading, creating, and
managing assignments easier.

The conversion process has already begun for other classes at the UNSTPB. We are tar-
geting easy wins, classes that are already text-based, that can be more easily converted
than writing them from scratch.

We aim to increase student and third-party engagement with the public resources avail-
able in Open Education Hub. To achieve this, we want to implement digital rewards
using Smiley Coins, an educational cryptocurrency. Integrating it in a production envi-
ronment will be a priority, as we have already implemented a Proof of Concept for the
Operating Systems class.



Chapter 4

Highly available clusters for grid
computing purposes

Cluster architectures have become a crutch on which institutions and companies lean
to offer services to users and clients which would otherwise have not been available.
Services such as Single Sign On, web hosting, shared storage spaces, learning platforms
all need a backing infrastructure that manages their life time, assigns hardware resources
and offers security assurances.

Virtual machines can be used as such a backing infrastructure, as they offer an isolated
environment, running their own independent operating system. Users can take advan-
tage of permissions in cluster environments that would otherwise not be granted, such
as root access or network configuration privileges without putting at risk the underlying
cluster infrastructure.

Since virtualized environments are now used to host mission-critical services, they have
to be always available to serve their users. Clusters have to be designed considering
fault-tolerance, to maximize server and virtual machine uptime. Measures have to be
implemented so that the cluster state is continuously monitored so that faults can be
prevented before they appear, as to not lead to service downtime. In the case that such
a fault appears, it has to be detected and remedied as soon as possible. Monitoring
systems fulfill this need, allowing for data points to be gathered from host systems, and
be used to trigger alerts on events such as node failures, disk degradation or network
bottlenecking.

The following chapter investigates deployment methods for highly available clusters,
concentrating on using the OpenStack system, testing them in the UNSTPB cluster. As
a result, mechanism for deploying highly available has been deployed, allowing for rapid
response times in the case of host server failures. Monitoring systems have been designed
and deployed in the UNSTPB cluster, gathering data from services and hardware to
manage the status of running applications.

36



CHAPTER 4. HIGHLY AVAILABLE CLUSTERS FOR GRID
COMPUTING PURPOSES 37

4.1 Creating Highly Available Environments

As the need for computing resources grows, so does the overhead to manage these re-
sources. In our times, the computing resources that most people use are not hosted on
our own machines, laptops, phones or workstations; they are hosted in cloud infrastruc-
tures, where they can be managed by system administrators using specialized software
to wrangle the resources. The advantage of doing this is that you will move all the
heat generation, power consumption and maintenance costs away from the users and
towards the data center managers, while also benefiting from economies of scale when
it comes to resource aquisition, power draw and cooling efficiency.

Most people use the cloud - from regular people who watch movies to programmers, re-
searchers, and non-technical personnel who offload their workloads from local computers
to remotely accessed systems.

Institutions can either choose to buy resources from large infrastructure or services
providers, such as Amazon Web Service, Google Cloud, Oracle Cloud, Digital Ocean,
and others, or they can buy resources and deploy them in a local cluster. The advantage
of running services in an already deployed cloud platform is the fact that, while in the
long run it might cost the institution more, the upfront cost of deploying a smaller service
will be smaller, because you will not have to buy the hardware to run it, and the pricing
will be dynamically scaled, based on the resource usage [27]. The main disadvantage is
that for larger scale institutions, private clouds may become more economical, as the
difference between private clouds and public clouds can lead up to being equivalent to
multiple Full Time Employment salaries.

Our use case would be a large research institution, with more than 100 physical nodes,
which expects to run more than 1000 medium or large scale virtual machines. For this
kind of employment, it is more cost effective to deploy a private cloud solution.

As OpenStack [32] is the largest private cloud manager, and one of the largest open-
source projects, we have chosen to deploy it on the nodes hosted at University Po-
litehnica of Bucharest. Because OpenStack is such a large application, it has been
developed to have many components that manage different subsystems, such as the im-
age management service, the authentication service, the network management service
and many more.

Our intent for the OpenStack cloud cluster is to host both student virtual machines,
which are used for running different test and laboratories workload, but also for hosting
mission critical services, such as homework checkers, data repositories, authentication
platforms and others. Because of this, we need a mechanism that will guarantee high
availability without increasing the resource usage of the nodes.

This thesis aims to explore the ways in which an operator can deploy a large OpenStack
cluster and what are the options available in which one can increase the availability of
resources in case of node or process failure without increasing the hardware costs of the
cluster.
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Figure 4.1: Openstack Node architecture

4.1.1 OpenStack Cluster Infrastructure

OpenStack Components needed for running a large cluster

Because OpenStack is a large and modular system, a site administrator can pick and
choose what services are needed in order to run a cluster that is tailor made for the
particularities of their workloads.

The cluster infrastructure at UPB has a mixed workload: The research teams, run
different services for their outward facing purposes, such as project dissemination, ex-
ternal user access and others, and computing workloads, such as Machine Learning,
image processing and High Energy Physics. The second type of usage is for students
who run some of their homework and lab work on the cloud infrastructure, which puts
a load on the control plane because they build and delete many machines.

The services we have chosen to deploy at UPB are represented in Figure 4.1.

In this subsection we will take a look at all the services deployed, and we will explain
their use inside of the cluster, and also the changes that we have made to them in order
to run.

Keystone Keystone [10] is the identity management service, which handles user and
service authentication and authorization. By default it stores all the users in a database.
Because we are part of a large institution, the cluster has to support authentication using
institutional IDs. In order to accomplish this, we configured Keystone to connect to
the LDAP instance where user data is stored. Keystone is configured on the controller
node.

Database and Message Queues The MariaDB[5] database and the RabbitMQ[36]
instances were configured by Kolla-ansible on separate nodes, because they are critical
services that must be able to communicate, even if the control plane is offline, because
the compute and networking services also communicate through these nodes.
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Glance image service The Glance [8] image service stores the base images for the
machines, from which they will be copied on the hypervisors. This service is configured
with the default settings on a separate node from the other control plane services because
it needs to be connected to a large storage device, since it will store many large files,
and it needs a good storage connection.

Nova The OpenStack Nova [12] service is the core component which manages the
Virtual Machine resource scheduling, lifetime management. This service has many
components that are managed by Kolla-ansible such as:

• Nova API, which receives requests from the user about VM operations such as
boot up, shut down, creation, deletion and others;

• Nova Conductor, also deployed on the controller node, which manages communi-
cation with the systems hosting VMs;

• Nova Scheduler, which picks the host systems where the VMs will be running;

• Placement, which is a separate service but which is tightly integrated with Nova,
as it manages the resource inventory, knowing which systems have what resources
available;

• Nova compute, which is a daemon deployed on the compute machines which ac-
tually starts up the virtual machines, prepares the environment, downloads the
image files and makes sure that the VMs are running correctly.

Neutron Neutron [11] is the OpenStack service which manages the network. Open-
Stack provides support for running virtual machines on already existing networks, or it
can provide Software Defined Networks (SDNs) that can be created at will by the users.
This advantage lets us dynamically allocate public IPs, and also isolate communication
between critical VMs and regular ones by creating virtual networks that run over the
overlay network, as seen in Figure 4.1.

Cinder Cinder [7] is the block storage solution used by OpenStack. This service
allows a Virtual Machine to use a remote storage, connected through remote storage
protocols. The advantage of removing the VM storage from the node is the fact that
if there is a node failure the data will not be lost, because the storage is on another
medium. The storage volumes are mainly used for critical services, which cannot afford
the downtime. We cannot use Cinder for all Virtual Machines, because it will be too
much of a resource drain.

Heat The Heat [9] service is the OpenStack orchestration service. This in itself is not
a core service, but it is widely used because it can ease the user’s job when repeatedly
creating similar virtual machines. It takes a resource specification as input, and it
generates the requested virtual machines, the request API being the same as the popular
AWS CloudFormation [2] API.
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4.1.2 Automating OpenStack Install

Since the entire infrastructure involves a large number of nodes that need to be con-
figured, we want to have a solution where system administrators put as little effort as
possible into integrating machines into the system. For the software stack required to
run OpenStack, we need to ensure that the same versions of applications are installed
on all systems, and we want to have the right configuration files for the role of all sta-
tions in the system. In order to ensure that we meet all these conditions, we want to
automate as much of the application installation and configuration system as possible,
thus ensuring the homogeneity of software solutions and the configuration of systems
with as little intervention by administrators as possible.

Automating core system deployment

The first step in preparing a system to run on the OpenStack infrastructure is to install
the operating system and core applications that OpenStack needs. To ensure that all
systems use the same applications, we use the installation automation solution provided
by the CentOS operating system, as it provides an easy scripting interface through
which we can specify which applications to install. Another advantage of the solution
offered by CentOS, called Kickstart, is that in addition to installing applications, we
can configure disk partitioning and set options to installed applications.

Since we want to automate the process of installing operating systems as much as
possible, we have chosen to use the PXE boot system for remote installation of the
operating system. PXE boot is a mechanism that instructs a system to boot a basic
operating system over the network. Once the operating system is loaded onto the
network, it will perform a set of operations. In the case of CentOS, the server will
download the previously described Kickstart script and interpret each line in it. Once
the script is finished running, the system will have a fresh operating system installed
with all the necessary applications for the subsequent installation and running of the
OpenStack system.

Automating the installation of OpenStack services using Kolla Ansible

Depending on the OpenStack service in question, there is a list of applications that it
depends on, from the OpenVSwitch application for the network management service, to
the libvirt library for the virtual machine management service on the host system. In
addition to dependencies, each service needs a service-specific configuration file. Thus,
it becomes a burden for the administrator to manually configure each OpenStack service
on each host system and ensure that all applications remain in the same operational
state.

For this reason, we chose to use the service installation automation solution based on
Kolla Ansible. Kolla Ansible is a set of recipes written in the format specific to the
Ansible software suite, which allows us to install and configure the entire OpenStack
installation using only two major configuration files: a configuration file where we spec-
ify system options, /etc/kolla/globals.yaml and a configuration file where we
configure the association between the names of the services and the nodes on which
they must be installed. /etc/kolla/multinode.
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Authentication System Installation Automation To install the authentication
system, it was necessary to modify the source files of the Kolla Ansible service, because it
did not allow configuring predefined usernames, especially for admin users, who manage
each service individually. We needed to do this because admin users are predefined in
the university’s already existing LDAP infrastructure.

Automating Compute Service Installation Because each physical server we run
virtual machines on has a different configuration, depending on the server model used,
the network card used, and other hardware-related aspects that we cannot control, it
was necessary to modify the configuration file where we defined associations between
roles and nodes.

To make configuring nodes easier and reduce the complexity of the configuration file,
we have assigned each node family a name, and then mapped the node family to the
type of service that will run on the node.

4.1.3 Running High Availability Virtual Machines

High-availability not only helps with user satisfaction by assuring higher uptimes with-
out the need for human intervention, but provides a safety net for important or critical
services deployed inside OpenStack. The high-availability of resources in OpenStack
can be achieved using the Masakari [6] service. Masakari provides a recovery mecha-
nism for VM instances in the case of failures at multiple levels across the deployment.
Its architecture makes use of independent monitors for processes, instances and hosts,
generating notifications for the Masakari engine to process and trigger a recovery se-
quence. Since our deployment is based on the Kolla Ansible tool, which automatically
deploys OpenStack services in containers, the process monitoring function of Masakari
will not be included due to the limitations imposed by process namespace separation in
containerized environments. The process monitor can be deployed manually on the host
and configured to monitor the processes that launch containers in execution, restarting
said containers if needed. Since this complicates the deployment process we choose to
only focus on instance and host monitoring in our testing.

Virtual machine monitoring tracks hypervisor processes started on compute nodes (in
our case qemu); in case of sudden termination of such a process, the virtual machine is
launched back into execution using the initial command. Monitoring of compute nodes
uses already existing software (Corosync and Pacemaker [41]); when a computing node
shutdown is detected, the evacuation process is triggered: the virtual machines on that
node will be launched again in execution on available nodes. In both cases it is possible
to specify, by using metadata, the restart or evacuation of a subset of virtual machines.

4.1.4 Virtual Machine Recovery Performance

The tests were split in different scenarios, varying parameters such as VM flavor, disk
size, operating system and number of VMs. The flavors used in our tests can be seen
in Table 4.1. The results and a summary of each scenario will be presented in the next
paragraphs.
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(a) Detection and restart time for varying number of
VMs

(b) User downtime for varying VM resources

Figure 4.2: Instance monitoring performance

Instance monitoring For instance monitoring, we first measured detection time and
time to restart, varying the number of VMs in the process. We deployed up to three
Ubuntu Server 22.04 VM, m2.tiny flavor with a 10 GB disk. Results are shown in Figure
4.2a. Detection time remains constant at 350ms, with the total time to restart all the
VMs increasing linearly with the number of VMs.

Second test was done with the intent of measuring user downtime. For this, we deployed
a single Ubuntu Server 22.04 VM with a 10 GB disk, varying the flavor of the VM from
m2.tiny to m2.medium. From Figure 4.2b we can observe that the resources of a VM
do not influence the user experienced downtime. This is in part due to our web server
serving static content; a more complex application might benefit from more resources.

Host monitoring For host monitoring, we measured evacuation time, both absolute
and average per instance, and user downtime. In the case of host monitoring, Masakari
allows the user to configure the number of threads used for the evacuation process. This
first scenario varies the number of VMs from 2 to 16, in steps, with 3 (the default) and
8 evacuation threads. The controller processing these notifications had 16 CPU cores.
The VMs were Ubuntu Server 22.04 with a 10 GB disk and the m1.small flavor.

From Figure 4.3a we can see that the absolute evacuation time is similar to the average
evacuation time when the number of VMs is smaller than or equal to the number of
threads, increasing abruptly when this threshold is passed. Figure 4.3b shows the results
for 8 threads. Since the number of threads causes a higher load on the controller node,
this increases the average evacuation time, but the absolute evacuation time is overall

Flavor vCPUs RAM

m1.small 1 1 GB
m2.tiny 1 512 MB
m2.small 1 2 GB

m2.medium 2 4 GB

Table 4.1: Virtual machine flavors
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(a) 3 evacuation threads (b) 8 evacuation threads

Figure 4.3: Evacuation time for varying number of VMs and evacuation threads

better than with less threads, following the trend seen before.

User downtime is not influenced in an absolute way (reduced or increased). Instead,
with more evacuation threads than CPU cores, the user downtime starts to vary more
than before, as seen in Figure 4.4.

Variations such as operating system choice and VM flavor did not have a perceivable
impact on evacuation time or overall user downtime.

4.1.5 Conclusion and Future Work

In the previous subsections we have looked at ways in which an institution can deploy a
private cloud infrastructure in order to save costs by not running virtual machines in a
public cloud infrastructure. We have explored the different deployment strategies, and
what they add to installing OpenStack, and we have made an argument for why UPB
has chosen Kolla-ansible as a deployment system for OpenStack.

Kolla-ansible provides us with a good balance between the configurability of Ansible
roles and the ease of use of deploying pre-build Docker container on our own cluster,
and we have showcased how this has improved the deployment strategy for the UPB
private cloud while highlighting the different OpenStack components deployed using
OpenStack.

We have also explored the performance of instance and host high-availability in Open-
Stack, using Masakari. While instance high-availability works as expected, we encoun-
tered a few issues with host monitoring. One such issue was the stability, marked by
random occurrences of service disabling on healthy nodes. We plan on investigating the
root cause of this.

An issue highlighted by our research was the performance, with up to 7 minutes of user
downtime in the case of a host failure. Analysis showed us that half of this time is spent
in bugs regarding to notification processing or in the default values for configurable
timeouts. Our plan is to investigate the necessity of the timeouts, since the need for
them is not documented or clearly stated.

We will also keep on improving the security of the private cloud offering, taking into
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Figure 4.4: User downtime for varying number of VMs and evacuation threads

consideration the OpenStack security guidelines and building upon them.

4.2 Monitoring Cluster Infrastructures

As the size of institutional IT clusters has increased, the likelihood of systems failure
has turned from a rare occurrence into an expected cost of doing business. In order
for the mission critical services to not be affected system issues have to be detected or
prevented from appearing.

System administrators use monitoring tools to extract information about the state of
nodes and applications. The status can be represented by metrics, such as request rate,
memory usage, response time for applications, or resource usage for hosts. Logs can
also be an information source that can indicate issues with nodes or services.

There exists a breadth of monitoring and observability tools that can be deployed and
configured. Each solution has advantages, such as optimized information lookup, visu-
alization support, easy scalability and setup.

In this thesis we will present the current state of the art of free and open source mon-
itoring solutions. We will focus on their advantages, deployment use cases and disad-
vantages, taking into account scalability, visualization support, alerting support.

Based on the state of the art we will be presenting a use case for deployting monitoring
solutions in a HPC cluster environment situated at the National University of Sciences
and Technology Politehnica Bucharest (UNSTPB). The infrastructure description will
include the services and types of nodes that we integrate and issues that we have had
in deploying the monitoring tools.
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4.2.1 Monitoring Infrastructure

Based on the state of the art for monitoring solutions we have had to make a choice of
what system to use in the institutional deployment. The monitoring solution selected
should be easy to set up, and configure. It should provide a flexible node configuration
system that allows for splitting hosts into groups. We should be able to visualize the
state of the different systems deployed, with further detailed panels available for deep
dives. An alerting system should be setup which checks the node states and notifies
administrators of outages and system failures.

The following chapter presents the infrastructure deployed at UNSTPB, which satisfies
the above mentioned requirements, using free and open source software. We will be
detailing the configurations made, the software solutions chosen and we will display the
resulting visualizations.

Cluster infrastructure overview

The UNSTPB cluster is made up of an OpenStack [32] private cloud infrastructure that
servers the compute needs of the teaching and research staff. The private cloud runs
on physical machines distributed in three data centers which serve as both compute
and service nodes collocated, installed through the kolla-ansible [40] deployment
tool. The cluster also hosts a SLURM [42] grid that runs compute-intensive workloads
for users who want to run multi-machine OpenMPI [37] jobs or GPU accelerated ap-
plications. Both the grid and cloud software use a CEPH [38] storage cluster which is
deployed in a single data center location.

Managing OpenStack logs

To achieve this we need to take preventive measures to ensure that the system has as
much uptime as possible and issues can be solved before they impede system functions.
Log messages can be ingested into a centralized log management system so that we can
easily inspect the health of services and investigate service logs easily.

We chose to use industry standard solutions such as the ELK Stack, consisting of
Logstash, Elasticsearch and Kibana to reduce the amount of effort to maintain log
ingestion, parsing and display information. We use syslog to aggregate service logs and
send them to a central log aggregation systems.

We have installed Kibana to view the logs once they are uploaded. Figure 4.5 displays
a log filter used in Kibana to display OpenStack logs. The filter detects WARNING type
messages launched by the nova-compute service within the Nova service.

Implementing the runtime data collection service

The OpenStack infrastructure hosts a large number of services and the nodes, which
requires a scalable method to regularly monitor host and service health. Logs are not
enough to inspect the health of a service, because they are a way to display certain
errors, but they do not display a simple to parse message. Metrics can be used to parse
at a glance the general state of services and systems. They can be used to determine
both the operational parameters in which services and systems are expected to run, and



CHAPTER 4. HIGHLY AVAILABLE CLUSTERS FOR GRID
COMPUTING PURPOSES 46

Figure 4.5: Logs lookup in Kibana

also deviations from the expected behaviour. Logs would only allow us to see when a
system actually fails, not the iterative process of its failure.

For the collection of statistical data, we chose to use the Prometheus service. Prometheus
works by connecting to a list of endpoints configured to export runtime parameters.

We chose to use Prometheus because it runs using the pull model, where it connects to
services, instead of the push model, where services connect directly to a central node.

The disadvantage of using Prometheus is that we have to ensure connectivity between
the system on which Prometheus is running and all the stations from which we want to
collect information.

Prometheus provides a graphical interface in the form of a web page where we can run
queries and view the results.

Since it was necessary to configure the Prometheus service for more than 100 phys-
ical nodes, each hosting several services, we developed a set of scripts that generate
Prometheus configuration files based on a set of services and node groups that are
associated with the.

We have integrated the following information using different exporters:

• OpenStack service status and statistics;

• Compute node resource usage;

• Web service status, such as GitLab, login services, e-learning platforms and storage
systems;
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• SSL certificate lifetime for managed web services;

• Data center generator power and fuel status;

• ICMP prober for checking latency between systems;

• SLURM grid metrics;

• Storage statistics such as bandwidth usage and IO time;

• GPU usage metrics.

Investigating the health of services using dashboard

For advanced investigation of systems health, we chose to use the Grafana service to
generate graphs and dashboards from which we can visualize complex images based
on time series. We have chosen to use Grafana because of its extensive visualization
support, because different services have different visualization needs. Grafana offers us
the query functionality of the Prometheus service, so we can use the Prometheus Query
Language queries that we have used so far directly from the Prometheus dashboard to
easily view the information.

Grafana is configured to access information based on the time frame we request access
to. Since there have been cases where there are too many systems for which we collect
the information, we have chosen to add to each metric in Prometheus a tag that defines
the type of service provided, so that we can filter the metrics in queries based on the
type of service we want to investigate.

The advantage of using Grafana for graphs is that it has a very flexible suite of visu-
alization modes, which allows us to present information in many different ways, from
regular graphs and numerical summaries to heatmaps and histogram graphs. We can
integrate other dashboards in Grafana by creating our own or using the existing dash-
boards published by the community.

We have integrated into Grafana dashboards for viewing the following elements:

• OpenStack infrastructure status;

• Connection latency between nodes;

• Web services status;

• Power generator status;

• Resource consumption of host nodes;

• CEPH storage status;

• Grid services status and usage;

• GPU usage per node.

Monitoring disk health

UNSTPB runs a large amount of hard disks for different use cases. Hard disks wear
out over time, which requires monitoring for errors that might appear due to hard disk
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failure.

We needed to have a method to check the disk health and prevent a situation where
they might fail during high demand loads. To inspect the disk state at a given time, we
can use the S.M.A.R.T. metrics exposed by the disk, which gives us insight into disk
wear. The S.M.A.R.T. metrics that we are interested in are the read error rate, the
running temperature of the disk, and how many errors occur when transmitting data
from the disk to the system. They can indicate the first signs that a disk might fail in
the near future.

To interpret the S.M.A.R.T. characteristics we use the values recommended by the
manufacturers for the condition of the discs.

To expose the metrics in an easy-to-read environment, we used a script that collects the
S.M.A.R.T. and exposes them using the already installed node_exporter service.

The Prometheus service, installed on the Grafana instance automatically, pulls the
metrics. They are used to output generate Grafana dashboard through which we can
view the state of the disks, where disks suspect of failure can be highlighted through
the S.M.A.R.T. metrics.

4.2.2 Alerting Infrastructure

In this subsection we will be discussing the choices made in order to implement an
automated alerting system which can be configured using the existing metrics to send
messages to the system administrators if issues are detected with the systems.

Because we have access to a large amount of metrics by accessing the Prometheus
service, we can easily determine the state of the systems at any given time.

Infrastructure issues must be detected as early as possible, and administrators must be
notified in advance when a service is not operating within appropriate parameters. For
this reason we want to have the fastest possible method of being alerted when problems
arise.

We have chosen to use AlertManager as an alert system. The advantage of using
AlertManager is that it can connect directly to Prometheus and query the metrics
database. Thus, we can use AlertManager to query the state of the system constantly
and send messages to responsible administrators in case a service stops working, or
technical failures have occurred at a node.

We have enabled the AlertManager service to send mail directly to system adminis-
trators for any critical event that occurs, to allow early notification of administrators.
If successive events occur, administrators will be notified for each. If alerts are false
alarms, or are an acknowledged issue, administrators can disable rules using expressions
to granularly disable alerting rules.

We have created AlertManager notifications for the following situations:

• Network services that cannot be contacted;

• Too much disk space used on a node;

• Computing services that cannot be contacted;
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• Web services that cannot be contacted;

• Too much memory used on nodes;

• A web service’s certificate will expire in the next two weeks;

• A system cannot be contacted.

We use the metrics exposed through S.M.A.R.T. to detect a disk failure before it occurs.
We use the WORST and THRESH to identify if a drive has already shown signs of failure.
If the WORST value approaches the THRESH value, it means that the drive will fail soon.

4.2.3 Conclusion and Further Work

We have researched the optimal monitoring system for managing metrics for a private
cloud infrastructure which also host institutional and e-learning systems.

Each viable monitoring solution has been analyzed and we have deployed Prometheus
to download metrics from nodes, storage systems and services. Grafana was used to
display the metrics in a new dashboards that allow administrators to see at a glance
the cluster state.

We have deployed an alert system for notifying administrator when services fail, SSL
certificates expire, or when disks show signs of degradation. The new system has allowed
us to pre-empt disk failure incidents by replacing disks and rebuilding storage arrays in
time and notice anomalous events in service behaviours leading to bug fixes.

In the future we aim to move the monitoring setup from virtual machines to a container-
based environment with automated setup, so that it can be easier to install and replicate
for further use.



Chapter 5

Conclusion

Distributed computing has allowed more processing to be done in parallel, accelerating
both research and education by making it easier for users to run complex workloads and
automation in a remote environment. The demand for more parallel processing has led
to the adoption of cluster computing and grid computing.

In this new and dynamic environment, we must discover new ways to include resources
in cluster and grid computing and adapt them to our workloads, so that we can take
advantage of their power. To take advantage of these newly introduced resources we
must also be able to make use of them efficiently, spending less time in non-computing
tasks such as environment preparation, such as transferring files.

5.1 Summary

This thesis has proposed new avenues for using middleware to enhance cluster and
grid environments by increasing resource usage efficiency through improving parallelism
during file transfers and tapping into new possible resource types such as scavenging
queues. By implementing support for multi-core jobs we have enabled the ALICE grid
environment to workloads with a lower memory-per-core footprint, allowing for more
jobs tu run in a memory restricted environment.

We have also deployed the same middleware techniques used to manage grid infrastruc-
tures to automate educational activities such as assignment checking and class materials
building. We have used existing developer-centric solutions such as GitLab and CI/CD
documentation builders to achieve our goals of automating class activities for teachers.

A high availability cloud computing infrastructure has been deployed in the UNSTPB
cluster, using modern day deployment techniques, offering fault resistant virtual en-
vironments for research and education-oriented users. The thesis has defined through
the case study of the UNSTPB cluster reference deployment models for monitoring in-
frastructures and high availability cluster deployments used for virtualizing educational
services and grid workloads.

50
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5.2 Contributions

The thesis analyzes possible optimizations that can be done to grid transfers to increase
transfer bandwidth and decrease transfer times. In the context of the ALICE experi-
ment transfer campaign, we have been able to decrease the transfer times for data
generated by the experiment by increasing the rate of transfers handled by the grid
services based on the number of files transferred and their size. During the transfer
tests, we have been able to achieve the advertised rate of 100 GBps, which would allow
the experiment to continuously transfer data to storage sites without its main buffer
being filled. By increasing transfer rates we have made data processing faster, as it can
be accessed sooner by interested parties.

We have decreased the memory usage for the ALICE grid by implementing sup-
port for multi-core job management, enabling lower RAM usage jobs to run on the grid,
thus giving memory-deficient sites the ability to run more jobs in parallel without in-
creasing the available RAM. In implementing multi-core job support we have taken into
account the issue of workloads running on more cores than allocated, demonstrating
the ability to limit used CPU cores by using the taskset mechanism.

We have identified in this thesis a class of clusters that could be integrated into the
ALICE grid environment if support for managing multiple jobs in parallel through a
single pilot job were added. In the ALICE experiment, we have implemented support
for running multiple payloads from the same pilot jobs and managing a multi-core slot
or a whole node by accounting for job resource usage and currently available resources.
By implementing support for multi-job slots we have been able to integrate
more computing resources in the grid.

As part of this thesis software has been designed and developed to help educators
in automating documentation generation. The framework has been developed
based on DevOps techniques for generating class materials, creating a pluggable frame-
work that now implements Docusaurus to output HTML content based on markdown
files and publish the files to the Internet using GitLab CI/CD. With classes being au-
tomatically built and published online, other teachers can pick up the material, edit it
using Git, improve it, and publish it automatically, without the need to build their own.

An assignment-checking solution, called vmchecker, has been developed,
based on the job managing principles behind grid management software, using work-
loads to represent student assignments and CI/CD pipelines for sites. vmchecker allows
both users and teachers to check assignments using the same environment and scripts,
and it automatically uploads the checking results to a front-end viewer, such as the
e-learning platform Moodle. The platform having been deployed in the UNSTPB clus-
ter and used for more than 10 subjects, it has checked more than 40.000 assignments
for students and decreased the time teachers spend on grading and checking students’
assignments by hand.

The thesis proposes an architecture for deploying institutional cluster environments
emphasizing reliability, flexibility, and ease of use for the end-user. An example ar-
chitecture has been deployed in the UNSTPB cluster, running OpenStack and
hosting research projects and institutional services in a highly available manner, on
virtual machines-based systems.
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The field of cluster monitoring has been explored in this thesis, focusing on tools that can
help administrators maintain a view of the cluster state at a given moment. Monitoring
tools have been investigated which can allow users to troubleshoot complex systems
and enable the use of preemptive measures such as alerts to prevent service issues.
The thesis proposes a reference architecture deployed at UNSTPB based on
Grafana and AlertManager, configured to pull node data, service data, and storage
health and alert concerned parties in case of a fault such as a disk failure or a service
not responding to requests.
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