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Chapter 1

Introduction

The field of signal processing has a rich history, with its roots extending back several
decades. Signal processing involves the manipulation, analysis, and interpretation of
signals, which are representations of data in various forms. The historical development
of signal processing has witnessed significant advancements in both theory and practical
applications. Signal processing techniques have played a pivotal role in extracting mean-
ingful information from raw data, enhancing the quality of signals, and enabling efficient
communication systems. The filed have evolved even further with the development of big
data sets across diverse industries, employing machine learning (ML) and deep learning
(DL) algorithms. Those new techniques have emerged as transformative paradigms
within the signal processing landscape.

1.1 Presentation of the field of the doctoral thesis

Automotive Radar Interference. Addressing autonomous driving and road safety stands
as a crucial topic for mitigating the frequency of traffic accidents and fatalities. Automo-
tive companies are actively addressing this concern by advancing autonomous vehicle
technologies. A prevalent approach involves employing radar sensors to meticulously
scan the surrounding environment. Within the automotive industry, the predominant
choice for radar sensors is the deployment of frequency modulated continuous wave
(FMCW) or chirp sequence (CS) radars, which transmit sequences of linear chirp signals.
The signals transmitted and received by such sensors provide the means to estimate the
distance and the velocity of nearby targets (e.g., vehicles, pedestrians or other obsta-
cles). However, the growing adoption of radar sensors [17] increases the probability of
interference among sensors from different vehicles, generating corrupted and unusable
signals. Radio frequency interference could significantly elevate the noise floor, reaching
a point where discerning potential targets becomes challenging or even impossible. In
such instances, the interference may obscure targets entirely, thereby diminishing the



sensitivity of target detection methods [3]. To identify these obscured targets, it is
imperative to mitigate the radar interference.
Earth observation. Earth observation involves the comprehensive integration of the
physical, chemical, and biological systems of our planet. This is achieved through remote
sensing (RS) technologies employed in earth surveillance techniques. The process
involves the collection, analysis, and presentation of data to enhance our understanding
of Earth’s diverse systems [13]. Considering that the ocean accounts for about 71%
of Earth’s surface, the ocean observation has increasingly drawn the attention of the
research community over the last decades. Humans had minimal ocean observations
before 1978, when Seasat, the first Earth-orbiting satellite designed for remote sensing
of Earth’s oceans was launched [43]. Although Seasat only operated for about 100 days,
the mission acquired more data about the ocean than all previous sensors combined. This
event stimulated the fast development of ocean-satellite, leading to a growing number of
satellites carrying different sensors (e.g., microwave, visible, infrared) being launched to
improve our understanding about the ocean.

In addition to ocean observation, another crucial aspect has gained significant at-
tention, the diminishing sea ice, particularly in the Arctic. This effect is a prominent
consequence of global climate change. Consequently, the cover and concentration of sea
ice play pivotal roles in both climate change studies and navigation within polar regions.
Addressing the logistical demands of the transportation industry in these areas requires
intricate, high-resolution data on local Arctic marine conditions. Such information is
indispensable for strategic operational planning, route determination, and fostering the
sustainable development of Northern regions [6]. Once again, considering the high
amount of daily acquired data, the need of automated systems is of utmost importance.

1.2 Scope of the doctoral thesis

Considering the presented challenges in Earth observation and automotive radar industry,
the rapid evolution of sensors, coupled with the substantial volume of available data,
has resulted in processing algorithms that barely meet the current requirements. To this
end, our objective is to develop robust and accurate deep learning networks, assisted by
physics-aware processing techniques.

The main directions followed are:

1. To identify, develop and analyse the optimal deep neural network based framework
for automotive radar interference mitigation in complex scenarios (e.g., multiple
sources of interference).

2. To test the generalization capacity of the proposed radar interference mitigation
algorithms on multiple sensors.
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3. To identify, develop and analyse the optimal deep neural network based framework
for ocean phenomena analysis and classification on SAR vignettes.

4. To identify, develop and analyse the optimal deep neural network based framework
for sea ice segmentation in the Arctic areas.

5. To provide physics-based motivations and interpretation methods for the developed
architectures.

1.3 Content of the doctoral thesis

According to the main research directions followed during the PhD, this thesis is struc-
tured according to the following chapters:

Chapter 2 (Theoretical Background and Concepts) introduces the main concepts
that have been explored and used in the current work, such as physical-based concepts
presents the FMCW solutions, SAR systems and neural networks.

Chapter 3 (State of the Art) provides an overview of the research conducted in
our research directions. Our focus has been directed towards three primary domains:
automotive radar interference mitigation, algorithms employed in ocean SAR imagery
analysis, and methods for segmenting sea ice in Arctic regions.

Chapter 4 (Automotive Radar Interference Mitigation) succinctly introduces the field
of automotive radar and the need of radar interference mitigation algorithms. The section
delves into the description, concept, and results of our proposed FCN architecture. The
chapter concludes by detailing and discussing the advantages and disadvantages offered
by our framework.

Chapter 5 (Ocean Patterns Analysis) introduces the filed of ocean SAR imagery,
specifically focusing on vignette classification and image retrieval within oceanic areas.
The discussion extends to the description and concepts of developed algorithms, under-
scored by physical-based motivations. The chapter concludes in a detailed analysis and
discussion of the key elements introduced by our framework, emphasizing its potential
deployment in real-world scenarios.

Chapter 6 (Sea-Ice Segmentation for SAR Imagery) introduces the filed of sea
ice segmentation in Arctic regions, using SAR data. Subsequently, it describes the
development of deep neural network architectures aimed at achieving an optimal bal-
ance between speed and performance. Moreover, the IW-EW SAR data adaptation is
described, along with the practical importance and the used algorithms. The chapter con-
cludes in a comprehensive analysis and discussion of the innovative elements introduced
in our work.

Chapter 7 (Conclusions) comprises several sections describing the findings derived
from the outcomes and contributions of the thesis. Additionally, it includes a list of
published papers, followed by potentially future research perspectives.
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Chapter 2

Theoretical Background and Concepts

2.1 Physics-based concepts

2.1.1 Frequency Modulated Continuous Wave Radar

In FMCW radar solutions, the transmitted signal sT X(t) is a chirp sequence, whose
frequency usually follows a sawtooth pattern. In the presence of mutual interferences,
the receiving antenna collects a mix from two signals, the reflected signal and the
interference signal. Consequently, the received signal is formally defined below.

sRX(t) =
Nt−1

∑
i=0

Ai · sT X(t − τi)+
Nint−1

∑
l=0

sRFI,l(t), (2.1)

where Ai = Ai · e jφi is the complex amplitude, τi is the propagation delay of target i,
Nt is the number of targets, and Nint is the number of interferers. The receive antenna
collects the reflected signal sRX(t), which is further mixed with the transmitted signal and
low-pass filtered, resulting in the beat signal sb(t). Upon combining the signal reflected
by a point-like target with the transmitted signal, a signal with a constant frequency is
obtained. Thus, mixing an uncorrelated interference with the transmitted chirp results in
a baseband chirp signal.

2.1.2 Synthetic Aperture Processing

Synthetic Aperture Radar (SAR) is a modern radar technology that overcomes traditional
limitations and achieve unparalleled imaging capabilities. Unlike conventional radars
that rely on physically large antennas to achieve high resolution, SAR employs a method
to synthesize a virtual aperture by exploiting the motion of the radar platform. By
utilizing this motion and processing the reflected radar signals coherently, SAR can
achieve azimuth resolutions on the order of meters or even centimeters, far surpassing
the capabilities of traditional radars.
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Fig. 2.1 The preprocessing subaperture decomposition pipeline. The DCE block is an
additional algorithm, which can be omitted in accordance with the experiment performed.

At its core, SAR operates on the principle of coherent radar imaging, where a series
of radar pulses are transmitted towards the target area while the radar platform moves
along a predefined trajectory. As the radar waves interact with the land area, the waves
are scattered and reflected back towards the radar sensor. By measuring the phase and
amplitude of these reflected signals across the aperture, SAR creates a high-resolution
image of the target scene. By exploiting the phase information contained in the radar
echoes, SAR can effectively mitigate unwanted contributions, resulting in sharp and
clear images even in adverse environmental conditions.

2.1.3 Subaperture Decomposition

In classical SAR systems, backscatter from irradiated targets is acquired across various
positions and azimuth angles along the radar trajectory. Given a highly non-stationary
scene, e.g., ocean surface, observing it from different angles can yield additional in-
formation about the illuminated area. Therefore, by decomposing the SAR image into
subapertures, the scene could be artificially seen from different observation angles, cap-
turing additional information. Each subaperture corresponds to an image formed using
only a portion of the total azimuth angle, as illustrated in Figure 2.1 after the subaperture
generation block.

2.1.4 Doppler Centroids Estimation

Let Xi ∈ Rm×n be the ith subaperture for a SAR image, where m,n ∈ N are the azimuth
and range dimensions. Let Yi ∈ Rm×n be the delayed version with 1 sample in the
azimuth axis of Xi. We estimate the Doppler centroids for the ith subaperture as follows:

Di =−PRF · angle(Zi)

2π
, (2.2)
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where Zi = f ilt(Xi ·Y ∗
i ), Y ∗

i is the complex conjugate of Yi, PRF is the pulse repetition
frequency, angle() returns the angle of the complex input and f ilt() is a two dimensional
mean filter with d1 ×d2 kernel size. In the right part of the Figure 2.1 we illustrated the
DCE result for a SAR input image.

2.2 Deep Learning Techniques

2.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of deep learning models specifically
designed for processing structured grid data, such as images, audio, and time series.
They have achieved remarkable success in various tasks, such as image classification
[16, 29, 42, 24], object detection [7, 30, 5], and semantic segmentation [22, 28, 12]. The
basic building blocks of CNNs include convolutional layers, pooling layers, and fully
connected layers. Next, we briefly describe the first two blocks.
Convolutional layer. A convolutional layer applies a set of learnable filters to the input
data to produce feature maps. Without loosing the generality, we will formally describe
the two-dimensional scenario, the generalization being trivial. Let X ∈ R2 be the input
tensor, F ∈R2 be the filter tensor, and Y ∈R2 be the output feature map. The convolution
operation is defined as:

Yi, j = (X ∗F)i, j =
M−1

∑
m=0

N−1

∑
n=0

Xi+m, j+n ·Fm,n, (2.3)

where M ∈N and N ∈N are the dimensions of the filter F , and ∗ denotes the convolution
operation.
Pooling layer. Pooling layers downsample the input feature maps, reducing the spatial
dimensions while retaining the most important information, in accordance with a given
mathematical operation, e.g., maximum, minimum, average. The layer is applied on
each channel apart, thus only the spatial dimension of the input data is affected, while
the number of channels remaining unchanged.

2.2.2 Transformer Architectures

Transformer block. In the left side of the Figure 2.2 the overall transformer architecture
is illustrated. Let X = [x1,x2, . . . ,xn] be an input sequence, where xi ∈ Rm is the feature
vector for the ith input. The sequence is projected into tokens T = [t1, t2, . . . , tn], where
each token ti ∈Rd corresponds to the xi input data and d ∈N is the token embedding size.
Afterwards, the positional embeddings are added for all tokens, such that each token ti
could be uniquely identified by the given positional embedding. For batch processing,
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Fig. 2.2 (left) The transformer architecture [45]. (center) The scale dot-product attention.
(right) The multi-head attention.

all sequences are grouped in matrices, e.g., T ∈ Rn×d . Next, the token sequence T is
processed by the transformer block as follows:

Z = Norm(MultiHeadAttention(T )+T ) (2.4)

Y = Norm(FeedForward(Z)+Z), (2.5)

where Z ∈ Rn×d , Y ∈ Rn×d , Norm function is a normalization layer [1] and the Feed
Forward module is typically a multi layer perceptron. The block is applied N ∈ N times,
outputting the deep attention-based features for the input sequence.
Scale dot-product attention. The building blocks of the scale dot-product attention
are highlighted in the center of the Figure 2.2. The input consists of queries Q ∈ Rn×dk ,
keys K ∈ Rn×dk and values V ∈ Rn×d . We compute the dot products of the query with
all keys, divide the result with

√
dk and apply a softmax function to obtain the weights

(attention matrix) of the values. The block is formally described as:

Attention(Q,K,V ) = softmax(
QKT
√

dk
)V (2.6)

Multi-head attention. Multi-head attention in the transformer architecture lets the
model focus on different parts of the input simultaneously, improving its ability to
capture complex relationships. It applies multiple linear projections called heads to input
Q, K, V , computes independent attention, and concatenates outputs for the final result.
This enhances feature extraction and improves performance on tasks needing long-range
dependencies and contextual understanding. The block is visually described in the right
part of the Figure 2.2.
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Chapter 3

Automotive Radar Interference
Mitigation

3.1 Introduction

The most common radar senors used in the automotive industry are frequency modulated
continuous wave (FMCW) / chirp sequence (CS) radars, which transmit sequences of
linear chirp signals. However, the growing adoption of radar sensors [17] increases the
probability of interference among sensors from different vehicles, generating corrupted
and unusable signals. In Figure 3.1, we present a range profile of a radar signal with
(red) and without (blue) interference, highlighting that certain targets become absorbed
by the noise floor generated by multiple interference sources. To successfully identify
these targets, it is imperative to implement effective solutions for mitigating radar
interference. To address this problem, researchers have proposed various techniques
ranging from conventional approaches [18, 44, 14, 48, 2, 19, 27, 26] to deep learning
methods [35, 37, 36, 40, 9, 25, 39].

We extend our prior work [35] by designing a novel fully convolutional network
(FCN) [22] capable of retrieving both the phase and magnitude of radar beat signals and
can manage multiple non-coherent RFI sources. Our network takes as input the real and
imaginary parts, as well as, the magnitude of the Short-Time Fourier Transform (STFT)
of the beat signal with interference. The network outputs the real part, imaginary part and
magnitude of the clean range profile. While most deep learning approaches studied radar
interference mitigation with a single interference source [35, 9, 26], we aim to address
the RFI task under multiple interference sources. To attain this objective, we create
an extensive data set that closely mimics real-world automotive scenarios involving
multiple interference sources. Our training set incorporates up to three interference
sources, while for the testing set, we consider scenarios with up to six interference
sources. Moreover, we publish two data sets as open source for future efforts in the radar
interference mitigation field.



Victim Radar

Interfering Radar

Fig. 3.1 (left) The magnitude of the range profile of an FMCW radar sensor is depicted.
(right) The magnitude of the STFT corresponding to the above range profile is presented.
The targets are represented by thin horizontal lines, while the interference sources
manifest as thicker, more prominent diagonal lines.

3.2 Proposed Methods

3.2.1 Radar Signal Model

In FMCW radar systems, the transmitted signal sT X(t) is a chirp sequence. In the
presence of mutual interferences, the receiving antenna collects a mix from two signals,
the reflected signal and the interference signal. Following the 2.1.1, the analytical beat
signal sb(t) in the presence of interferences is expressed as:

sb(t) =

{
Nt−1

∑
i=0

Ai · exp( j2πkτit)+
Nint−1

∑
l=0

ARFI,l · exp
[

jπ(k− kRFI,l)(t − tRFI,l)
2] ·

· p
(

t − tRFI,l

TAAF,l

)}
· p

(
t − T

2
T

)
,

(3.1)

where ARFI,l is the complex amplitude of interference signal l and p(t) is the win-
dow function. As a result, sb(t) comprises a combination of complex exponentials
representing the targets and interfering signals in the form of baseband chirps.

3.2.2 Data Preprocessing

As depicted in Figure 3.1, the computation of the discrete STFT is essential to separate
the targets from the interference sources. The equation below outlines the transformation
of a time-domain signal into an image-alike representation using the discrete STFT,
using a hamming window. Additionally, to bring the input data approximately within
the range of [−1,1], we scale the STFT by dividing it with α = 40, a value obtained
statistically across the entire training set. To obtain clean range profiles from the STFT
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Fig. 3.2 The structure of our FCN model involves the processing of the input STFT
through a sequence of four convolutional blocks (comprising convolutional and pooling
layers). This processing continues until the vertical dimension is reduced to 1, obtaining
the spectrum of the beat signal.

of the beat signal, we conduct a Fast Fourier Transform (FFT) on our time-domain labels
to obtain the ground-truth clean range profiles.

3.2.3 Neural Network Model

Our aim is to develop a neural network model able to effectively address RFI by precisely
mapping a noisy STFT input to a clean FFT of the beat signal for any given signal,
considering both magnitude and phase aspects. To fulfill this goal, we introduced a
FCN architecture, visually represented in Figure 3.2. While prior works, such as [27],
have explored transformations from STFT to FFT, these approaches do not employ the
capabilities of deep learning techniques.

The novelty of our neural architecture primarily lies in the structure of the input and
output, each comprising a representation composed of three distinct channels. The first
and third channels of the input correspond to the real and imaginary parts of the STFT,
while the middle channel represents the magnitude of the STFT. The magnitude of an
STFT captures the most significant visual information and can be viewed as an attention
map [47, 46], which rather than being computed by the network, it is provided as an
input channel. The output follows to a similar channel-based design, with the primary
distinction lying in its spatial dimension, as described below. Although our network does
not explicitly calculate the phase, it can be derived from the real and imaginary parts.

Our neural model is structured to handle an input tensor of dimensions 154×2048×3
and produce an output tensor of dimensions 1×2048×3. The network systematically
reduces the dimension along the vertical axis (154), representing the number of time
bins for STFT computation, until it reaches the size of 1. Meanwhile, it maintains the
dimensions along the other axes constant, specifically the number of FFT points (Nx)
and the number of channels, respectively.

Our architecture, depicted in Figure 3.2, consists of 10 convolutional layers organized
into 4 blocks. Each of the first two blocks includes 3 conv layers followed by max-
pooling, while the third and fourth blocks have 2 conv layers each, with the latter lacking
pooling. Leaky ReLU [23] follows each conv layer except the last two. The number of

10



Table 3.1 Minimum and maximum values for each parameter in our joint uniform
distribution used for generating the samples in our database.

Parameter Minimum Maximum Step
Interference sources 1 3 1
SNR [dB] 5 40 5
SIR [dB] -5 40 -
Relative interference signal slope 0 1.5 -
Number of targets 1 4 -
Target amplitude 0.01 1 -
Target distance [m] 2 95 -
Target phase [rad] −π π -

filters starts at 32 and increases by 32 in subsequent blocks, reaching 128 in the final
block. The kernel size decreases from 13×13 to 5×5 along the network, the exception
being the last conv layer with a kernel of 1×1. Conv filters have a stride of 1×1 with
circular padding, and pooling filters are 2×1, halving the size vertically. Zero padding
ensures even-sized input activation maps for max-pooling.

3.2.4 Weight Pruning

We have developed a weight pruning method [11, 21], with two phases. The first phase
starts with a standard training phase. Subsequently, a noise-constrained training phase
is executed, specifically designed to prune the inner network noise and enhance its
signal-to-noise ratio. It is noteworthy that the network architecture remains unchanged
during testing. In the second stage, the pruning method reduce the inner noise of the
network by putting to zero the weights smaller than a certain threshold. The threshold
is determined by sorting the weights in accordance with the value and put to zero the
smallest r percentage of the weights.

3.3 Data Sets

We expand the ARIM data set [35] to include various real-world automotive scenarios
with multiple sources of interference. In our recent publication [36], we introduced a
novel and extensive database named ARIM-v2, comprising 144,000 synthetically gener-
ated samples that faithfully replicate real-world automotive scenarios. The generation of
each sample involves the random selection of values from a set of realistic parameters
detailed in Table 3.1.

Synthetically generated data grants full control over the process, providing compre-
hensive information for superior solutions. Clean signals serve as ground-truth labels
during machine learning model training, facilitating objective performance assessment
by comparing predicted output with expected output.
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(a) f0 = 76.25GHz,B = 1GHz. (b) f0 = 77GHz,B = 1.6GHz.

Fig. 3.3 Our FCN+pruning model’s qualitative outputs. The real signals are obtained
using the following setups: (a) with a radar sensor from FAU, and (b) with the NXP
TEF810X 77 GHz radar transceiver. Here, the parameter f0 denotes the interference
central frequency, and B signifies the chirp bandwidth.
Table 3.2 The results on the ARIM-v2 validation and test sets, which contains up to three
sources of interference per range profile. Amplitude is measured in decibels (dB), while
phase is measured in degrees. The symbol ↑ indicates higher values are preferable, while
↓ signifies lower values are better.

Validation set Test set

Method
∆SNR ↑ AUC↑

MAE↓ MAE↓
∆SNR ↑ AUC↑

MAE↓ MAE↓
Ampl. Phase Ampl. Phase

Oracle (true labels) 16.87 0.971 0 0 17.15 0.970 0 0

Zeroing 8.64 0.930 2.11 12.63 8.94 0.929 2.13 12.55

CNN [40] 12.64 0.952 2.14 8.25 12.94 0.953 2.17 8.13

FCN (ours) 15.02 0.961 1.39 7.32 15.28 0.959 1.40 7.44

FCN + pruning (ours) 15.09 0.963 1.25 6.41 15.36 0.961 1.27 6.58

3.4 Results
3.4.1 Evaluation Metrics
Our evaluation metrics are AUC, amplitude MAE, phase MAE, and mean Signal-to-
Noise Ratio improvement (∆SNR). The mean SNR improvement is calculated for the
target with the highest amplitude, representing the difference between the SNR before
and after interference mitigation in the range profile.

3.4.2 Hyper-Parameters Tuning
In all experiments, we utilized mini-batches of 16 samples, employing the Adam op-
timizer [15] with a learning rate of 5 · 10−5 and a weight decay of 10−5. The noise
reduction ratio (r) is validated across the set of values {0.15,0.3,0.45}, with the optimal
performance observed at r = 0.3. The network is optimized using the mean absolute
error for all three considered channels.
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3.4.3 Results on ARIM-v2
In the ARIM-v2 data set, we compared our FCN under both conventional and weight
pruning regimes with the oracle, zeroing baseline, and CNN by Rock et al.[40]. Results
in Table 3.2 shows that our approach obtained superior performance across all metrics,
close to the oracle levels. In challenging scenarios with multiple interference sources, our
FCN achieves significantly lower errors compared to zeroing. Our method outperforms
the state of the art methods, being a robust method even for multiple interferene sources.

3.4.4 Generalization to Real Data

The primary consideration when training a neural network on synthetically generated
samples is its ability to generalize to real-world data. Consequently, we assess the
generalization capacity of our FCN by testing it on real samples obtained from two
distinct radar sensors. In Figure 3.3, we present qualitative results for two real samples
featuring interference, comparing our method with the zeroing approach. The first plot,
illustrated in Figure 3.3a, are generated using real data sourced from FAU [10]. Upon
inspection of the results, it becomes evident that our network succeed to provide more
accurate estimations of target amplitudes, effectively mitigating interference and reducing
the noise floor. The second plot, represented in Figure 3.3b, contains data supplied by
the NXP company, captured using the NXP TEF810X 77 GHz radar transceiver during
a couple of outdoor experiments on a two-lane road. In these experiments, the victim
radar was affixed to the bumper of a car, while the interfering radar was positioned on
a tripod at a fixed location outside the roadway. Our approach successfully mitigates
the interference, yielding superior results in terms of target amplitude compared to the
zeroing algorithm.

3.5 Discussion

In this work, we present a significant contribution to the field of automotive radar signal
processing through the introduction of a novel fully convolutional network capable of
accurately estimating both the magnitude and phase of radar signals, particularly in
the presence of multiple interference sources. Complementing this advancement is the
creation of a comprehensive database comprising radar signals simulated within realistic
and complex scenarios. Moreover, our model is able to generalize to two distinct radar
sensors without any fine-tuning.
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Chapter 4

Ocean Patterns Analysis

4.1 Introduction

In our research, we build upon [33, 34] to develop the unsupervised ocean image retrieval
task. More exactly, we integrated the subaperture decomposition (SD) algorithm with
unsupervised deep learning (UDL). By employing UDL for image retrieval, we eliminate
the need for labeled data. Furthermore, by coupling it with a preprocessing algorithm
based on SD, we significantly enhance retrieval accuracy, approaching levels of accuracy
attained by supervised learning approaches. Additionally, we evaluate the capability of
our model to accommodate physics-guided remote sensing algorithms, such as Doppler
centroids images. Utilizing the described physics-aware techniques, we developed
an efficient query-by-image algorithm tailored to assist experts in identifying similar
phenomena on the ocean surface. Each vignette is characterized by an embedding vector
computed using a pretrained deep neural network, trained in an unsupervised fashion.
Furthermore, we have expanded the application of query-by-image to a more complex
approach named query-by-physical-parameters. Specifically, we have estimated the
Doppler centroids images of the subaperture single-look complex (SLC) vignettes and
utilized them for the query system.

4.2 Proposed Method
4.2.1 Subaperture Decomposition
Given the highly non-stationary nature of the ocean surface, observing it from different
angles can yield additional information about the illuminated area. Hence, we adopt a
strategy of decomposing the vignette into subapertures, each corresponding to an image
formed using only a portion of the total azimuth angle. This decomposition allows
us to simulate different observation angles of the same scene, thereby gathering more
comprehensive information. The SD algorithm is depicted in the first part of Figure 2.1.
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Fig. 4.1 The auto-encoding CyTran architecture. The red arrow highlights the place in
the network where the embeddings are considered.

4.2.2 Doppler Centroids Estimation
We proposed a physics-based preprocessing technique on the ocean surface based on the
DCE. Each vignette, or subaperture generated by SD, could be further processed in order
to obtain the Doppler centroids. This processing stage transforms the SAR data into
physical information, related to the movement of the illuminated area. The processing
is formally described in Section 2.1.4. An illustration of this process is depicted in the
orange box in Figure 2.1. When the DCE is integrated into the pipeline, each Doppler
image is estimated on a subaperture and subsequently decimated.

4.2.3 Unsupervised Neural Network
In our study, we employed the CyTran generative architecture, consisting of a convolu-
tional downsampling block, a convolutional transformer block, and a deconvolutional
upsampling block, as depicted in Figure 4.1. Inspired by the block proposed in our
related work [38], the convolutional transformer block is employed as the bottleneck
for the architecture. Let X ∈ Rc×m×n be the input tensor for the transformer block,
where c represents the number of channels, and m and n denote the width and height,
respectively. The spatial dimensions of the visual tokens are determined by the receptive
field of the filters in the convolutional projection layer, as illustrated in Figure 4.1. The
convolutional projection comprises three nearly identical projection blocks, each with
separate parameters. Let WQ, WK , and WV represent the learnable parameters of the three
projection layers. The query, key, and value embeddings are computed as follows:

Q = conv_projection(X ,WQ) ,

K = conv_projection(X ,WK) ,

V = conv_projection(X ,WV ) ,

(4.1)

where Q ∈ Rnq×dq , K ∈ Rnk×dk and V ∈ Rnv×dv . For the subsequent operation involving
matrix multiplications, we need dq = dk, and nk = nv. Due to the equal number of filters
in the pointwise convolution in all three blocks, dq = dk = dv. The output query, keys
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Table 4.1 Accuracy results for a ResNet18 model on the TenGeoP-SARwv test set. We
denote by “Subaperture (1)” that the input is only the first subaperture. The significantly
better results (level 0.01), according to a paired McNemar’s test, are marked with †.

Vignette 98.0
Subaperture (1) 94.0
Subapertures 98.9†

DCE Vignette 78.6
DCE Subapertures (1) 75.3
DCE Subapertures 93.3†

Table 4.2 Retrieval results for SD and DCE inputs. We included the results for the
supervised frameworks (S-) and unsupervised frameworks (U-) based on the proposed
CyTran architecture.

S-Vig S-Subap U-Vig U-Subap
S-Dop S-Dop U-Dop U-Dop

Vig Subap Vig Subap
P@5 98.1 98.9 47.4 72.6 76.9 91.3 51.1 66.7
P@50 97.4 97.2 32.6 57.3 69.8 88.0 36.0 52.0

and values are passed to a multi-head attention layer, with the goal of capturing the
interaction among all tokens by encoding each entity in terms of the global contextual
information.

We employ the CyTran architecture in an unsupervised manner, aiming to approxi-
mate the identity function through input auto-encoding. We considered the mean squared
error as the objective function and extracted the embeddings as illustrated in Figure 4.1.

4.2.4 Content-Based Image Retrieval
Considering a very large database with ocean SAR images, we introduce an unsupervised
algorithm designed to identify similar vignettes. We emphasize that our algorithm is
versatile, requiring no labels and not being constrained to any particular input data type.
To showcase the versatility of our approach, we consider two distinct data types as input:
SAR subapertures and Doppler centroids estimated from subapertures. Consequently, we
conduct content-based image retrieval using both amplitude SAR data and physics-aware
representations. Leveraging the latter data type, the algorithm can construct a more
sophisticated search engine capable of identifying phenomena based on specific physical
features, such as ocean currents with particular speeds.

Technically, the retrieval algorithm associate an embedding vector for all images
in the database. The embedding vector is obtained by encoding the image with the
CyTran network. Afterwards, having a query image, we obtain the embedding descriptor,
compute the cosine distance between the query and entire database and retrieve the most
N similar examples.
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4.3 Results
4.3.1 Data Set

The TenGeoP-SARwv dataset comprises over 37,000 ocean vignettes representing 10
distinct geophysical phenomena on the ocean surface. Following the methodology
outlined in [33, 34], we randomly divided the data into training (70%), validation (15%),
and test (15%) sets. Additionally, for experiments involving Doppler-based analyses, we
followed the pipeline depicted in Figure 2.1. For brevity, we will employ the following
abbreviations for the data set classes: POW - Pure Ocean Waves, WS - Wind Streaks,
MCC - Micro Convective Cells, RC - Rain Cells, BS - Biological Slicks, SI - Sea Ice, Ic
- Iceberg, LWA - Low Wind Area, AF - Atmospheric Front, OF - Oceanic Front.

4.3.2 Hyper-Parameters Tuning
In the classification experiment, we calibrated the hyper-parameters similar to those
specified in [33]. As for the CyTran model, we adhered to the identical network hyper-
parameters outlined in [34], making adjustments solely to the input and output channel
numbers to align with the input type. Training the model for 100 epochs, we employed
the Adam optimizer and a mini-batch size of 16. For DCE, we set d1 = d2 = 32 for the
mean filter.

4.3.3 Evaluation Metrics
We presented the accuracy for the classification task and conducted McNemar statistic
tests to demonstrate the statistical significance of our findings. As for the retrieval task,
given our focus on big data streams, we provided precision scores for 5 (P@5) and
50 (P@50) examples. Each score was averaged over 100 queries. More precisely, we
computed P@5 and P@50 for 100 query samples and then averaged the results.

4.3.4 Classification Results
We expand upon the findings presented in [33] in Table 4.1, where we present the
classification accuracy achieved by the ResNet18 model on the TenGeoP-SARwv test
set, considering various input data types. We observe that the SD algorithm improves
the accuracy for both amplitude SAR data and DCE.

4.3.5 Unsupervised Training Results
We trained the CyTran auto-encoder model [38] on the TenGeoP-SARwv training set and
selected the best-performing model based on the reconstruction loss on the evaluation set.
It is important to note that despite trying multiple models (such as ResNet auto-encoder
and U-Net), they failed to converge to optimal reconstruction results, thus were excluded
from consideration.
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4.3.6 Retrieval Results
In Table 4.2, we present the retrieval performance using embeddings generated by the
CyTran network trained on both original vignettes and subapertures, comparing them
against embeddings produced by a ResNet18 model trained in a supervised manner.
When comparing the supervised embeddings on original vignettes (S-Vig) and subaper-
tures (S-Subap), the results exhibit negligible differences, with overall variances smaller
than 1% for both P@5 and P@50. However, the introduction of the SD algorithm
consistently enhances precision in the retrieval results with unsupervised embeddings.
This reduction in the retrieval performance gap between supervised and unsupervised
approaches underscores the significant impact of the SD algorithm.

Moreover, in Table 4.2, we present the retrieval performance using embeddings
generated by the CyTran network trained on both DCE on original vignettes and sub-
apertures, comparing them against embeddings produced by a ResNet18 model trained
in a supervised manner. As anticipated from the classification experiment, the retrieval
performance sees significant improvement when utilizing supervised embeddings based
on subapertures.

We illustrated the retrieval results for the unsupervised embeddings trained on
subapertures for one query images in Figure 4.2 (pure ocean waves class). We notice
that the retrieved images, representing the most similar samples, are scattered across
the geographical area where the phenomena could potentially occur. This suggests
that the unsupervised model does not exhibit overfitting concerning the geographical
location. Additionally, we observed structural similarities among the images retrieved
with incorrect labels (highlighted by the red points in Figure 4.2). This observation
could indicate the presence of two phenomena in the same location or other intrinsic
similarities.

4.4 Discussion
In this study, we expanded upon prior research conducted in [33] by integrating the SD
algorithm into unsupervised feature learning pipelines with transformer networks. Our
objective was to leverage SD as a pretraining stage for models aimed at SAR retrieval
tasks on the ocean surface. Our investigation revealed the substantial impact of the SD
method on retrieval performance, particularly when incorporating more physics-based
algorithms such as Doppler Centroids Estimation for ocean retrieval. This experimental
paradigm enabled the development of more sophisticated search engines capable of
identifying similar physical parameters rather than merely analogous structures, such
as ocean current speeds. In essence, our approach centered around a data-centric
methodology aimed at augmenting the efficacy of both supervised and unsupervised
classification and retrieval algorithms.
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Chapter 5

Sea Ice Segmentation for SAR Imagery

5.1 Introduction

Sea ice is a crucial component of the Earth’s climate system, highly responsive to changes
in temperature and atmospheric conditions. Accurately assessing sea ice parameters is vi-
tal for understanding and predicting climate variations. However, manually analyzing the
extensive satellite data covering ice-covered areas is impractical. Therefore, automated
algorithms are essential to fully utilize the continuous satellite data streams. In this
study, we developed two architectures, one based on the previously described CyTran
and the second called UT-MHTA, a novel architecture based on the UNet transformer,
designed for sea ice segmentation using SAR satellite imagery. UT-MHTA replaces the
conventional multi-head attention (MHA) block with a multi-head transposed attention
(MHTA), enabling the capture of long-range pixel interactions while maintaining suit-
ability for large images. Our approaches outperforms state-of-the-art methods, delivering
superior results without significantly increasing computational complexity. Specifically,
our best network, UT-MHTA achieves a mean intersection over union (mIoU) of 68.76%
on the AI4Arctic [4] data set, with an inference time of 865ms for a 400 km2 product.

5.2 Proposed Methods

5.2.1 Data Preprocessing

Considering the extensive dimensions of the products within the AI4Arctic data set [4],
training neural networks on the entire data set samples becomes impractical. Instead, we
adopt a strategy of extracting fixed-length windows sized at 512×512. Each training
sample, sized at 512×512×3, includes both HH and HV polarizations alongside the
incidence angle.
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Fig. 5.1 U-CyTran segmentation architecture. The models contains upsampling and
downsampling blocks, with a convolutional transformer backbone.
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5.2.2 Residual CyTran-Based Architecture

The U-CyTran architecture is based on the success of the CyTran model [38] of being
both performance and speed optimized. Since our goal is to develop a systems which is
able to process the data near real-time (in milliseconds), we found suitable the CyTran
architecture, which speed-up the processing time by downsampling and upsampling the
input data for the transformer block. The architecture is built by downsampling and
upsampling blocks, with a bottleneck of a convolutional transformer module. The overall
architecture is visually described in Figure 5.1.

21



Q K V

 Multi-head attention

Norm layer

 Pointwise Convolution

Convolutional 
Projection

C
on

vo
lu

tio
na

l T
ra

ns
fo

rm
er

D
ow

ns
am

pl
in

g 
bl

oc
k

   
  U

ps
am

pl
in

g 
bl

oc
k

x 
L

C
on

v 
B

lo
ck

Tr
an

sf
or

m
er

 
B

lo
ck

$
L 1

C
on

ca
t 

B
lo

ck

Tr
an

sf
or

m
er

 
B

lo
ck

$
L 3

Tr
an

sf
or

m
er

 
B

lo
ck

$
L 2

Tr
an

sf
or

m
er

 
B

lo
ck

$
L 3

Tr
an

sf
or

m
er

 
B

lo
ck

$
L 4

C
on

ca
t 

B
lo

ck

Tr
an

sf
or

m
er

 
B

lo
ck

$
L 2

C
on

ca
t 

B
lo

ck

Tr
an

sf
or

m
er

 
B

lo
ck

$
L 1

Tr
an

sf
or

m
er

 
B

lo
ck

$
L 5

C
on

v 
B

lo
ck

H
$

W
$

C
H
$

W
$

C

H
/2
$

W
/2
$

2C

H
/4
$

W
/4
$

4C

H
/8
$

W
/8
$

8C
H

/8
$

W
/8
$

8CH
/4
$

W
/4
$

4C

H
/2
$

W
/2
$

2C
H
$

W
$

C

H
$

W
$

3

Pi
xe

l s
hu

⌅l
e

H
/4
$

W
/4
$

4C
H

/4
$

W
/4
$

4C

Pi
xe

l u
ns
hu

⌅l
e

Pa
th

N
or

m

R
R

R

$h$
w
$

c

C
on

v 
B

lo
ck

C
on

v 
B

lo
ck

C
on

v 
B

lo
ck

Q
K

V

hw
$

c
c$

hw

So
ft

m
ax

Tr
an

sp
os

ed
 

A
tt

en
tio

n 
M

at
rix

 (
A

)

R

C
on

v 
B

lo
ck

$

Y

X

h$
w
$

c

+

N
or

m

FC

+

Z
h$

w
$

c

Feed ForwardMulti-Head Transposed Attention

H
$

W
$

3

hw
$

c

c$
c

hw
$

c

h$
w
$

c

Fig. 5.3 Transformer block in UT-MHTA. The figure describes the processing flow for
the transformer block, the input being processed by the multi-head transposed attention
and the feed forward blocks.

5.2.3 Multi-Head Transposed Attention Transformer

5.2.4 UT-MHTA Architecture

Given the input data I ∈ RH×W×3, UT-MHTA applies firstly a conv block to obtain low-
level features F ∈ RH×W×C, where H,W,C ∈ N+. Both input and output conv blocks
are built by a convolutional layer, having the kernel size 3 and padding and stride 1.
The convolutional layer is followed by batch-norm and ReLU activation function. Next,
F passes through a four level UNet-alike architecture, where the processing modules
are Transformer blocks, as depicted in Figure 5.3. The layers on the downsampling
part of the architecture are composed solely of MHTA-based transformer blocks, the
downsampling operation being performed by pixel shuffle blocks (highlighted by the red
arrows in Figure 5.3). Regarding the upsampling part of the network, besides the identical
transformer block, we also employed a concatenation block, to aggregate the information
coming from early layers. Similarly, for the upsampling procedure we employed pixel
unshuffle operation. The pixel shuffle and pixel unshuffle operations are used to prevent
information loss along the network. Lastly, the output of the last Transformer block from
the UNet system is passed into a final Transformer block, followed by the output conv
block, which predicts the segmentation maps. Similar to the conventional MHA [8], we
split the number of channels into heads and learn separate attention maps in parallel.
Transformer block. In Figure 5.3, we provide a detailed overview of the transformer
block employed in UT-MHTA. The initial component of this block is the multi-head
transposed attention module, designed to facilitate channel-wise attention while main-
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taining linear time and memory complexity concerning the input dimensions h×w.
Notably, all convolutional blocks consist of a standard convolutional layer with a kernel
size of 3, along with padding and stride set to 1. We highlight that the attention matrix
A ∈ Rc×c exclusively operates on the channel dimension, ensuring low complexity. The
Feed Forward module employed here mirrors the structure from vanilla transformers [8].
This design choice allows for consistent performance and facilitates seamless integration
within the broader architecture.
Concat block. The Concat block performs a regular concatenation on the channel axis,
followed by a point-wise convolutional layer. The point-wise convolution keeps the same
number of maps and is intended to aggregate information from encoding and decoding
branches.

5.3 Results

5.3.1 Data Set

The AI4Arctic data set [4] was published for the AI4EO sea ice competition initiated by
the European Space Agency. This data set consists of Sentinel-1 active microwave SAR
data paired with passive Microwave Radiometer data from the AMSR2 satellite sensor.
The GRDM products cover a 400 km2 region, with a resolution of 90 meters and a pixel
spacing of 40 meters. We utilized the same data splits as outlined in [32].

5.3.2 Hyper-Parameters Tuning

U-CyTran. U-CyTran employs the Adam optimizer with the focal loss function [20]
to optimize model performance. We initiate training with an initial learning rate set to
10−3, accompanied by a decay factor of 0.1 applied after every 10 epochs. Each model
undergoes training for 50 epochs, with mini-batches comprising 32 samples.
UT-MHTA. The UT-MHTA is optimized using the AdamW optimizer in conjunction
with the focal loss function [20]. Training starts with an initial learning rate of 10−4,
followed by a decay factor of 0.5 applied after every 10 epochs. The model is trained 50
epochs, utilizing mini-batches of 8 samples. We configure the number of blocks across
different stages, with L1 = L2 = L3 = L4 = L5 = 3, and 5 attention heads.

5.3.3 Evaluation Metrics

In our semantic segmentation task involving three distinct classes, we have identified the
mean intersection over union (mIoU) as the most informative metric for evaluating model
performance. This metric proves particularly valuable in scenarios with imbalanced class
distributions, as it provides insights into the model’s ability to accurately segment each
class while accounting for variations in class sizes. Moreover, we report the inference
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Table 5.1 Segmentation and inference time results on the AI4Arctic test set. We included
for ablation the UT-MHTA against a vanilla Transformer and UT without MHTA block.

Method mIoU (%) Inference time (ms)
ResNet AE 53.04 87
UNet [31] 56.43 92
AE 51.23 47
Transformer 64.12 673
CyTran [32] 63.68 120
U-CyTran 63.98 121
UT 62.13 182
UT-MHTA 68.76 865

time for processing a full-resolution scene with spatial dimensions of approximately
1100×1100.

5.3.4 Experimental Results

U-CyTran. Table 5.1 presents a comparative analysis of the performance of U-CyTran
against two baseline methods: a ResNet-based auto-encoder and UNet [41], as utilized
in [31]. We observe that U-CyTran outperforms both baseline methods by more than 7%
in terms of accuracy. Notably, we also investigate the impact of different components
of the network. When solely employing the downsampling and upsampling blocks
(AE), we achieve the highest inference speed. However, this approach significantly
compromises performance. Conversely, utilizing only the transformer block results in a
notable decrease in speed, with a marginal improvement in accuracy of about 0.14%.
UT-MHTA. Table 5.1 showcases the comparative results of UT-MHTA against three
baseline methods: a ResNet-based auto-encoder, UNet [31], and CyTran [32]. UT-MHTA
outperforms all baseline methods by more than 5% in terms of mIoU. Specifically, com-
pared to the pure transformer architecture, UT-MHTA achieves a notable improvement
of 4.64% while experiencing a modest increase in inference time of less than 200ms.
This enhancement underscores the efficacy of integrating the MHTA block into the
UT architecture, which significantly boosts performance without highly compromising
computational efficiency.

5.3.5 Applicability to IW Data

Considering that or AI4Arctic [4] data set contains only EW GRDM data, we need to
further expand our processing techniques to handle IW SLC data. We avoid a laborious
manual labelling performed by experts, by proposing a preprocessing technique that
transforms the IW SLC data into a EW GRD-alike image, called IW-EW GRD. In Figure
5.4, we illustrate the processing framework from IW SLC image to multi-look detected

24



De-ramping and 
demodulation

SLC 
Image

Reduce range and 
azimuth bandwith

Multi-look 
6 x 2

Downsampling 
::10 / ::3

Multi-look 
detected image

Fig. 5.4 The preprocessing framework for IW SLC adaptation to EW GRD-alike image.

image (IW-EW GRD), aligning its resolution and pixel spacing closely with the EW
GRDM training data.

To subjectively evaluate the preprocessing techniques and the UT-MHTA model, we
have included a figures showcasing the obtained results. Figure 5.5 present HV mode
for both IW GRDH and IW SLC within the same geographic area. In the bottom of
the figure, we overlapped the labels predicted by the UT-MHTA network onto the HH
products. Clearly, the network demonstrates robust generalization to unseen data, with
similar predictions between SLC and GRDH products.

5.4 Discussion

In this work we introduced U-CyTran and UT-MHTA, two novel sea ice segmentation
architectures based on the UNet transformer framework, tailored for analyzing SAR
satellite imagery. In the U-CyTran architecture, we iterated over the work presented in
[32] by adding the skip connections, allowing the network to easily pass features between
input and output parts. In UT-MHTA, we innovate by replacing the conventional MHA
mechanism with our Multi-Head Transposed Attention. This adaptation enables the
capture of long-range pixel interactions, a crucial capability for accurately delineating
sea ice boundaries in large-scale images. Furthermore, UT-MHTA exhibits robustness
and scalability, making it well-suited for processing extensive datasets typical of satellite
imagery. Moreover, we extended the area of usage of our networks by applying a
preprocessing framework from IW SLC data to EW GRD-alike data. Considering
this additional stage, we observed in multiple products that the predictions are similar,
validating the usability of our network for directly Level 1 SLC products.
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IW GRDH IW SLC

GRDH Product name
S1A_IW_GRDH_1SDH_20220309T083924_20220309T083949_042242_0508E1_E3A0

SLC Product name
S1A_IW_SLC__1SDH_20220309T083922_20220309T083949_042242_0508E1_1A70

Fig. 5.5 In the top left part of the figure we illustrate the IW GRDH image after down-
sampling. In the top right part of the figure we illustrate the IW SLC image after the our
preprocessing framework. In the bottom part of the figure we illustrate the corresponding
outputs of our UT-MHTA network downsampling for the above images. All products are
in HH mode.
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Chapter 6

Conclusions

In our work we aimed to further develop in the field of signal processing by conducting an
application-based research and applying innovative deep learning techniques to overcame
existing gaps. We focused our research in two major areas, automotive interference radar
mitigation and earth observation. The conclusions are detailed below in accordance with
the specific domain.

6.1 Automotive Radar Interference Mitigation

Our contribution in this domain is as follows:

• We designed a novel fully convolutional neural network for automotive radar inter-
ference mitigation in complex scenarios, such as multiple sources of interference.
The designed FCN is able to estimate both the magnitude and phase of the clean
beat signal spectrum, being compatible with upcoming radar processing blocks
(e.g., speed estimation), which needs the phase.

• The publicly released ARIM-v2, a large scale data set for automotive radar inter-
ference mitigation. The database contains complex real-world scenarios, as well
as, multiple sources of interference.

• We conducted an extensive set of experiments, showcasing that our FCN attains
state-of-the-art results in the field. Moreover, we empirically proved the FCN
capability of generalization on real radar sensor data, mitigating the interference
for two distinct sensors, without any further fine-tuning.

6.2 Ocean Patterns Analysis

Our contribution in this domain is as follows:

• We applied the subaperture decomposition to improve the network performance
for both vignette and Doppler centroids maps.



• We developed a hybrid convolutional transformer for unsupervised image retrieval
on the ocean surface.

• We developed a data centric approach by combining both SD and DCE for a higher
unsupervised retrieval, as well as, a physics-based search framework. Our data
centirc approach proved to be generic and performant, allowing our model to learn
complex patterns, closing the gap between supervised and unsupervised image
retrieval.

6.3 Sea Ice Segmentation for SAR Imagery

Our contribution in this domain is as follows:

• We evolved the CyTran architecture to include UNet-alike skip connections for
more accurate sea-ice segmentation results. Moreover, we developed the UT-
MHTA architecture which replaces the conventional multi-head attention module
with a multi-head transposed attention mechanism, facilitating the capture of
long-range pixel interactions, while being suitable for high dimensional images.

• Considering the need of both accurate and fast algorithms in the field, we optimized
our networks to attain the best accuracy-speed trade-off, such that our networks
are feasible candidates for near real-time processing.

• We developed a preprocessing framework for IW SLC product adaptation to EW
GRD-alike images, extending the networks applicability to Level 1 SLC products.

6.4 List of Publications

Journal Articles

1. Ristea, N.C., Anghel, A. and Ionescu, R.T., 2021. Estimating the Magnitude and
Phase of Automotive Radar Signals Under Multiple Interference Sources with
Fully Convolutional Networks. IEEE Access, 9, pp.153491-153507.

2. Ristea, N.C., Anghel, A., Datcu, M. and Chapron, B., 2023. Guided Unsupervised
Learning by Subaperture Decomposition for Ocean SAR Image Retrieval. IEEE
Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-11, 2023, Art no.
5207111.

3. Ristea, N.C., Miron, A.I., Savencu, O., Georgescu, M.I., Verga, N., Khan, F.S. and
Ionescu, R.T., 2023. CyTran: a Cycle-Consistent Transformer with Multi-Level
Consistency for Non-Contrast to Contrast CT Translation. Neurocomputing, 538,
p.126211.
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Conference Proceedings

1. Ristea, N.C., Anghel, A., Datcu, M. and Chapron, B., 2022, July. Guided Deep
Learning by Subaperture Decomposition: Ocean Patterns from SAR Imagery. In
Proceedings of IEEE International Geoscience and Remote Sensing Symposium
(pp. 6825-6828).

2. Chirtu, A., Ristea, N.C. and Radoi, A., 2022, July. Convolutional Transformers for
Aerial Image Classification: a General to Specific Learning Curve. In Proceedings
of IEEE International Geoscience and Remote Sensing Symposium (pp. 659-662).

3. Ristea, N.C., Anghel, A. and Datcu, M., 2023, July. Sea Ice Segmentation From
SAR Data by Convolutional Transformer Networks. In Proceedings of IEEE
International Geoscience and Remote Sensing Symposium (pp. 168-171).

4. Ristea, N.C., Anghel, A. and Datcu, M., 2024, July. Multi-Head Transposed
Attention Transformer for Sea Ice Segmentation in SAR Imagery. In Proceedings
of IEEE International Geoscience and Remote Sensing Symposium.

6.5 List of Publications Outside of the Main Scope of the
Thesis

Journal Articles

1. Cutler, R., Saabas, A., Naderi, B., Ristea, N.C., Braun, S. and Branets, S., 2024.
ICASSP 2023 Speech Signal Improvement Challenge. IEEE Open Journal of
Signal Processing.

2. Cutler, R., Saabas, A., Pärnamaa, T., Purin, M., Indenbom, E., Ristea, N.C.,
Gužvin, J., Gamper, H., Braun, S. and Aichner, R., 2024. ICASSP 2023 Acoustic
Echo Cancellation Challenge. IEEE Open Journal of Signal Processing.

3. Madan, N., Ristea, N.C., Ionescu, R.T., Nasrollahi, K., Khan, F.S., Moeslund, T.B.
and Shah, M., 2023. Self-Supervised Masked Convolutional Transformer Block
for Anomaly Detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 46, no. 1, pp. 525-542.

Conference Proceedings

1. Ristea, N.C. and Ionescu, R.T., 2023, October. Cascaded Cross-Modal Trans-
former for Request and Complaint Detection. In Proceedings of the 31st ACM
International Conference on Multimedia (pp. 9467-9471).
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2. Indenbom, E., Ristea, N.C., Saabas, A., Parnamaa, T., Guzvin, J. and Cutler, R.,
2023. DeepVQE: Real Time Deep Voice Quality Enhancement for Joint Acoustic
Echo Cancellation, Noise Suppression and Dereverberation. In Proceedings of
INTERSPEECH Conference.

3. Ristea, N.C., Ionescu, R.T. and Khan, F., September, 2022. SepTr: Separable
Transformer for Audio Spectrogram Processing. In Proceedings of INTER-
SPEECH Conference (pp. 4103-4107).

6.6 Future Directions

Thanks to the significant focus placed on deep learning techniques, architectures undergo
continuous refinement and enhancement. Considering that the current solutions in the
signal processing field are far from being perfect, further development is necessary to
attain better performance or faster inference, such that the models would be seamlessly
deployed in real-world applications and settings. To this end, our future research will
focus to (i) integrate and adapt new models in the current described applications and (ii)
explore the possibility to integrate deep learning frameworks in more signal processing-
based applications. Summarising, our future research will focus on:

• Improve the proposed models in the radar interference mitigation task in terms
of speed, while keeping about the same performance. This research venue is
specifically intended to shrink the current models, such that the solutions would
be viable to run on real-time low-end devices.

• Improve the proposed model for ocean image retrieval in terms of performance.
Since the application’s speed requirements are more relaxed, further improvements
should be developed to surpass the current retrieval accuracy.

• Developing new unsupervised learning strategies, specifically designed for physical-
based ocean image retrieval. Exploring data characteristics could lead to better
unsupervised training regimes, which eventually would increase the retrieval
performance.

• The current performance of sea ice segmentation on the IW SLC products (by
performing IW-EW GRD transform) could be further improved by aligning even
more the resolution of the obtained product to the EW GRDM resolution. This
could be corrected by adapting the number of sub-looks and performing sub-looks
overlapping.

• Explore new areas of signal processing where deep learning techniques could be
applied, e.g., wind estimation based on SAR data for Earth observation.
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