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PART I-CURRENT STAGE OF THE DEVELOPMENT OF
BIODEGRADABLE ZINC ALLOYS

CHAPTER 1. ZINC AS APOTENTIAL BIOBORBIBLE METAL
Metals have a long history of use as implant material in the medical field [1-7].

The appeal of using metals is attributed to their unique combination of properties, including
good mechanical strength, ductility, toughness, wear resistance and formability. From the point
of view of biocompatibility, the first generation of metallic materials used for implant
applications had to be inert in the physiological environment.

1.1. Requirements of a biodegradable metal for stent and bone fixation device

Biodegradable metals are best suited for implants that require temporary functions in the body.
Two promising medical applications of bioabsorbable metals are in the manufacture of stents and
orthopedic fixation devices. A stent is a miniature tube that is placed in a hollow body structure
such as a blood vessel or urethra [24]. The main function of the stent is to keep the luminal
structure open and relieve constrictions. The stent can be delivered through various medical
procedures, such as percutaneous coronary intervention (PCI) to treat cardiac artery stenosis
[25].

In orthopedics, an internal fixator is an implant that is used to guide the healing process of bone
fractures. The implant stabilizes the fractured bone, thus preventing movement along the fracture
lines and allowing the damaged structures to heal quickly. Orthopedic internal fixators can be in
the form of plates and screws, wires (eg, Kirschner wires), and nails (eg, intramedullary rod)
[26].

1.2 Zinc as a metal for orthopedic biomedical applications

In the search for a bioabsorbable implantable material, current research has developed two
unanimously accepted types of materials. The first type is the polymeric material, in vitro
biocompatibility studies of polyglycolic acid/polylactic acid (PGA/PLA), polycaprolactone
(PCL), polyhydroxybutyrate valerate (PHBV), polyorthoester (POE) and polyethylene
oxide/polybutylene terephthalate (PEO/PBTP) being among the first to be reported [41-43].
These studies eventually led to the development of commercial bioabsorbable implants.
Examples include the Igaki-Tamai, DESolve and ABSORB stents, made from polylactic acid
(PLLA) [44].

Ideal BioStent consisting of salicylic acid/ adipic acid (SA/AA); and the REVA stent constructed
from tyrosine-derived polycarbonate [14,31]. There are also reports of the successful application
of polymer-based bioabsorbable screws for bone graft fixation [45].

The second class of bioabsorbable materials are metallic materials. Table 1.1 summarizes the
advantages and disadvantages of the most promising biodegradable metals, namely Mg, Fe and
Zn. These metals are considered essential micronutrients of the body, with the table including the



Recommended Daily Intake (RDI) for each metal. It is suggested that IDR is a key measure for
assessing the biocompatibility of a material [11].

Table 1.1-Advantages and disadvantages of biodegradable metals based on magnesium,
iron and zinc [9,11,12,15,23,55,]

Biodegradable | Recommended Benefits Disadvantage
metal daily dose, mg
Mg 375-700 Excellent biocompatibility Excessive corrosion rate
Compact corrosion product Low strength and limited
Good resistance formability
Low density and modulus of Evolution of hydrogen gas
elasticity (close to bone Premature loss of mechanical
properties) integrity
Compatible with MRI Unwanted increase in pH
Susceptible to stress corrosion
cracking
Fe 10-20 Good biocompatibility Corrosion rate too slow
Excellent strength and Bulky corrosion product that
formability accumulates and repels adjacent
Compatible with IRM tissues

(austenitic phase)
No gases are generated during
degradation

Zn 6,5-15 Good biocompatibility Corrosion rate too slow
Corrosion rate between that of | Bulky corrosion product that
magnesium and iron accumulates and repels adjacent

No gases are generated during | tissues
degradation
Low melting point and low Weaker mechanical properties
reactivity in the molten state Aging hardening

Chapter 2. Development of zinc and zinc alloys for biomedical applications
Research on biodegradable Zn and zinc-based alloys for biomedical applications is relatively
new, with most papers published within the last ten years. However, some of the first mentions
of Zn being used as a potential biodegradable implant include those of Bolz and Pop [68], who
suggested in a 2001 patent the feasibility of bioabsorbable coronary stents made of pure Zn and
some Zn alloys -X (X=Ti, Ca); and by Wang et al. [69] in 2007. Fig. 2.1 shows a possible
development of zinc and its alloys, depending on the alloying elements introduced.

Fig. 2.1 Design of Zn alloys for biodegradable applications [after 187]
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2.1 Pure zinc

In 2011, Vojtech et al.[19] published what appears to be the first study on biodegradable Zn
(99.95%) and other Zn alloys and essentially began formal research into the use of this metal for
bioabsorbable implant applications. They observed, following in vitro biodegradability tests, that
Zn does indeed corrode in a physiological fluid. Also, although he did not perform any
biocompatibility tests, he observed that the dose of Zn ions released by corrosion is negligible
compared to the maximum tolerable biological limit. He then concluded that Zn is not likely to
cause a toxic response if used as an implant and is therefore a possible alternative to
biodegradable Mg-based alloys.

2.2. Binary alloys

The main purpose of adding alloying elements to Zn is to modify two properties: (i) mechanical
properties and (ii) biocorrosion properties. The most logical approach to Zn alloying for
biomedical applications is to combine it with elements known to be biocompatible or essential
for human function, such as Mg, Ca, and Cu. Magnesium is the best known and most studied
biodegradable metal. It is therefore not surprising that a substantial number of studies have
looked at the combination of Mg and Zn. Vojtech et al. [19], in 2011, were the first to report the
use of Zn-Mg alloy for bone fixation applications. Development of binary Zn alloys continued
with notable work by Zheng et al [87,88] on Zn—Mg, as well as zinc—calcium (Zn-Ca) and zinc—
strontium (Zn-Sr) alloys.

2.3. Ternary alloys

Vojtech et al. [19] were also the first to report the biocompatibility of a ternary Zn alloy, namely
zinc-aluminum-copper (Zn-Al-Cu). Studies on other ternary combinations have been equally
well studied, most of them based on the Zn-Mg combination. Some of the reported Zn-Mg
ternary alloys include zinc-magnesium-iron (Zn-Mg-Fe) [114], zinc-magnesium-strontium (Zn-
Mg-Sr) [88,115], zinc-magnesium-calcium ( Zn-Mg-Ca) [88] and zinc-magnesium-manganese
(Zn-Mg-Mn) [116].

2.4. Quaternary alloys Currently, there are few reports on the use of quaternary Zn alloys. Only
one study may be cited; namely, the study by Bakhsheshi-Rad et al. [122], who analyzed the
zinc-magnesium-aluminum-bismuth (Zn-Mg-Al-Bi) combination.



2.5. Commercial alloys

Some commercially available Zn alloys have also been studied as a possible biodegradable
implant material. Commercial alloys offer the distinct advantage of good accessibility and
predictable composition. Wang et al. [123] investigated the biodegradability and
biocompatibility of ZA4-1 (3.5-4.5 Al, 0.75-1.25 Cu, 0.03- 0.08Mg), ZA4-3 (3.5-4.3Al , 2.5-3.2
Cu, 0.03-0.06Mg) and ZA6-1 (5.6-6.0 Al, 1.2-1.6 Cu) Zn alloys, while Kannan et al. [124]
studied similar properties in Zn-5Al-4 Mg alloys.

Chapter 3. Mechanical properties of biodegradable zinc

Zinc is not famous for its good mechanical properties. Zinc has lower flow and tensile strength
compared to Mg or Fe. As previously mentioned, one of the issues raised against zinc,
particularly when used for cardiovascular stent applications, is its poor strength. Stent materials
should have a tensile strength of about 300 MPa, while pure Zn has a tensile strength of about
28-120 MPa [21].Pure cast Zn is not technologically useful because it exhibits poor ductility (2—
2.5%) at room temperature [135,136]. Zn adopts the hexagonal close-packed (HCP) structure,
which inherently imparts poor ductility and toughness to the as-cast structure [137]. On the other
hand, pure machined Zn exhibits excellent ductility with an elongation at break of 60-80%
(tested parallel to the rolling direction) [136]. This high level of ductility in wrought Zn will be
crucial in the fabrication of stents. Stents are usually small hollow tubes with typical diameters of
approximately 2.5-3.0 mm [138] and strut thicknesses of 70-175 mm [138,139].

3.1. Influence of alloying elements Alloying refers to the process of adding impurities to
improve the properties of a metal. Alloying alters the properties of the host metal by inducing a
change in the microstructure and triggering a related hardening mechanism. For example,
impurities that are dissolved in a single-phase microstructure cause solid solution hardening,
while alloying elements that create a second-phase precipitate cause precipitation hardening
[137]. For biodegradable Zn, the mechanical properties of the alloy can be influenced by (i) the
type, 15 (ii) the number, and (ii) the amount or concentration of alloying elements, as noted in
Table 1.1.

Fig. 3.1 shows an Ashby diagram comparing the reported mechanical properties (i.e., ductility or
elongation at break, ef vs. tensile strength, UTS) of various Zn compositions, including (i) pure
alloys, (i) binary, (iii) ternary, and (iv) quaternization. The lines represent the target UTS (300
MPa) and ef (18 %) suitable for some biomedical applications. This graph can help us
understand the influence of alloying elements on the properties of Zn.
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Fig. 3.1. Graph of elongation at break (%) vs yield strength according to the number of Zn alloying elements.
The superimposed lines represent the standard ratings required for materials used for cardiovascular and
orthopedic medical applications. The colored region represents the space of acceptable properties [187]
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Fig. 3.2. Plot of (a) tensile strength and (b) elongation at break (%6) as a function of alloying element
concentration (%) for various binary Zn alloys formed by extrusion [187]

Fig. 3.2 (a) and (b) show the fracture toughness and ductility as a function of alloying element
proportion (%) for various binary Zn alloys (i.e. Mg, Ca, Sr, Cu, Ag, Al and Mn), respectively.
This comparison is made between alloys formed by a single type of manufacturing technique (ie
extrusion, including the hot isostatic extrusion variant) only to remove the influence of the
manufacturing method. For example, at a composition of 1%, the strength and ductility of the Zn
alloy varied with the alloying element (eg, Mg, Sr, Ca, Al, Cu).

Chapter 4. Biodegradation and biocompatibility of zinc

4.3. In vitro biodegradability of Zn alloys

In some of the studies that used polarization tests, the corrosion rate was reported in terms of
corrosion current density. While comparing in vitro biocorrosion rate results with in vivo results
is certainly inadvisable, comparing in vitro degradation rates reported by different studies and
obtained under different experimental conditions is equally questionable.

Indeed, it is rare to find even agreement between corrosion rates obtained from polarization and
immersion tests performed in a single study. A quick scan of Table 2 shows that the reported in
vitro tests, primarily the polarization and immersion tests, were performed under different test



conditions, such as different physiological solutions and immersion times. These test parameters,
along with others such as scan speed, electrolyte gas exchange, ratio of specimen surface area to
electrolyte volume, pH buffering techniques, and flow conditions, can influence the corrosion
behavior of the test specimen. [151,167].

4.4. In vitro biocompatibility of Zn alloys

Cytotoxicity tests, which assess the ability of a substance to destroy living cells, and
hemocompatibility tests, which assess the interaction between a substance and blood, are the
most commonly used tests to assess the biocompatibility of Zn. Antibacterial tests are mainly
popular for cases where Zn is alloyed with known antibacterial elements such as Cu and Ag.
Other tests to determine genotoxicity, mutagenicity, cellular functionality and inflammatory
response were also performed on biodegradable Zn.

PART Il OWN EXPERIMENTAL RESEARCH

CHAPTER 5 Materials, methodology and experimental program

5.1 Materials and methodology

To make the experimental materials, the experimental zinc alloys were developed in a classic
furnace, cast and prepared for structural investigations. Because casting allows easy adjustment
of the alloy composition, mass production of Zn-based alloys is achieved through this process.
The casting alloy processing process involves melting parts of the alloy, pouring the molten
metal into a mold, and finally solidifying. Melting took place in an induction furnace at a typical
temperature of 450-650 °C.

Aliaj Chemical composition, %gr
Mg Cu S P Si Fe Ni Zn
Zn - - 0.36 0.019 0.45 - 0.009 Rest
ZnCuAl 0.35 2.36 0.15 0.146 0.97 0.39 0.019 Rest
ZnCuMg | 3.66 3.05 0.14 0.001 0.36 0.95 0.02 Rest

Table 5.1- Chemical composition of experimental zinc alloys

In fig. 5.1 the experimental program drawn up in such a way as to lead to the fulfillment of the
initially proposed major objectives is shown.
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Fig. 5.1- Experimental program

CHAPTER 6 PHYSICAL-MECHANICAL CHARACTERIZATION OF
EXPERIMENTAL ZINC ALLOYS
6.1 Mechanical behavior of zinc alloys in the ZnCu(Mg) system

Alloy State Resistance to | Drip limmit, Rp, Elongation to Modulus of
breaking, (MPa) break, elasticity, E,
(MPa)
Rm, (MPa) As(%)
ZnCu martor 80 67.87 4.06 4.95
300°C/5h 94 49.08 4.14 11.03
300°C/10h 98 29.54 4.22 22.27
400°C/5h 0 31.96 3.35 15.17
400°C/10h 75 33.19 2.04 20.03
ZnCuMg martor 123 84.23 242 13.12
300°C/5h 180 84.93 3.24 14.55
300°C/10h 200 56.96 6.75 15.82
350°C/5h 162 57.64 3.87 13.78
350°C/10h 138 52.56 3.34 14.87




Table 6.1- The mechanical characteristics of the investigated zinc alloys, from the ZnCu(Mg) system

Table 6.1 shows the values of the mechanical characteristics resulting from their processing, of
zinc and experimental zinc alloys. From the analysis of the stress-strain curves in fig. 6.1
highlights the fact that the homogenization treatment applied to pure zinc at 400°C/5h is the one
that gives it the best tenacity, since the area under the curve is the largest, compared to the other
results. Similar results regarding the toughness of the experimental alloys can be observed for the
other experimental alloys. Thus, the same homogenization treatment at 400°C/5h is observed
either in the ZnCu alloy (fig. 6.2) or in the ZnCuMg alloy (fig. 6.3), which gives them maximum
toughness.

For a complete analysis regarding the mechanical behavior, histograms of each mechanical
characteristic obtained, depending on the structural state, were made in fig. 6.4 (for zinc), fig. 6.5
(for ZnCu alloy) and fig. 6.6 (for ZnCuMg alloy).
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Fig. 6.1-6.3.The appearance of the tensile curves of Zn(6.1), ZnCu(6.2), ZnCuMg(6.3)
Analysis of the results presented in fig. 6.4 highlights the evolution of the mechanical
characteristics of the experimental ZnCu alloy according to the homogenization thermal
treatment applied. It is noted that at a 300°C/10h homogenization, the highest mechanical
strength is obtained, respectively 100MPa (fig. 6.5a), the highest yield strength, respectively
68MPa (fig. 6.5b) and the highest elongation , respectively 4.13% (fig. 6.4c). On the other hand,
homogenization at 300°C/10h leads to obtaining the highest modulus of elasticity, respectively
22.27 MPa (fig. 6.4d).
Analysis of the results presented in fig. 6.5 highlights the evolution of the mechanical
characteristics of the experimental ZnCuMg alloy according to the homogenization thermal
treatment applied. It is noted that at a homogenization of 300°C/10h, the highest mechanical
strength is obtained, respectively 200MPa (fig. 6.5a), the highest elongation, respectively 6.8%
(fig. 6.5¢) and the highest modulus of elasticity, respectively 15.82MPa. Instead, homogenization
at 300°C/5h leads to obtaining the highest yield strength, respectively 84.93 MPa (fig. 6.5b).
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Fig.6.6 The variation of the mechanical characteristics of the ZnCuMg alloy, in different structural states: a-
mechanical resistance; b- flow limit; c- elongation; d- modulus of elasticity

6.2 Stereomacrostructural fractographic analysis of tensile specimens

Macrofractographic analysis of the tensile specimens, performed under a stereomicroscope, both
in longitudinal and cross-section, allowed the evaluation of the fracture surfaces after testing the
mechanical characteristics, as well as the critical analysis of the fracture mode of the
experimental zinc alloys compared to zinc pure in different structural states. In the case of the
ZnCu system, the surfaces are typical of fragile, transgranular, transcrystalline breaks, with a
bright crystalline appearance, with very fine annealing loops and areas with numerous
intermetallic compounds. The fractographic aspects are similar, both in the control sample (fig.
6.12), with crushed grains and bright crystalline appearance, and in the homogenized samples,
where no significant fractographic changes are recorded. Note the blue coloring of the various
crystallized zones in the fracture surfaces of this alloy.
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Fig. 6.15 Aspectul macrescopic al epruvetelor de tractiume din ZnCu, dupa recoacere Ia

Flg. 6.13-Aspectul macroscopee nl epruvetelor de tractiune din ZuCu, dapd recoacere la 400°C/ Sh: a)- im sectiume lomgitudinala, x8; b)- in sectiume transversals, x40
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Fig. 6.16-Aspectul pac al epr de t din ZoCu., dupd recoacere la
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Fig. 6.12-6.16.The macrostructural aspects of the tensile fracture surfaces of the ZnCu alloy specimens

If in the control sample the appearance is specific to a sudden brittle break, with fine grain, with
solidification loops and with large differences in relief, in the homogenized samples a finish of
the grain and fine transcrystalline breaks, with a shiny appearance, can be noted. The surfaces are
mixed, with areas with crushed grains and fine areas with the abundant presence of
intercrystalline compounds (fig. 6.19). No significant differences are observed between the
surfaces with different thermal homogenization treatments. Noteworthy is the blue color of the
various matted areas, generated by the complex alloying and the differentiated crystallographic
orientation of the grains.

Fig. 6.18-Aspectul macroscopic al upruvmlor de tractimne dim ZaCuMg, dupo recoacere ba

Fig. 6.17-Aspectal lor de tiune dis ZoCuMg, (proba martor): 0°C! 5h: a)- im secti dinals, x8; b)- im sectiume transversals, x40
2)- fn seegl ai 15, x40
5 =
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Fig621-Asp 1 pic al epr lor de tractiune dim ZoCuMg, dupa recoacere ba

350°C/ 10h: a)- im sectiume bongitudinala, x8; b)- im sectiume transversaly, x40

Fig.6.17-6.21.The macrostructural aspects of the tensile fracture surfaces of the ZnCuMg alloy specimens



Chapter 7. Structural characterization of experimental Zn alloys
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Fig.7.23 Aspecte strocturale ale aliajului ZoCu, stare turnat si onsogesizat la 300°C/Sore:  Fig 725 - Aspocte structurale ale aliajulus ZoCu, stare turnat si omogenizat la $00°C/S ore:
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Fig. 7.22-7.25.Structural aspects of the ZnCu alloy, control sample and after homogenization

The results of the structural analysis performed with the optical metallographic microscope
allowed the identification of the phases and structural constituents of the biodegradable zinc
alloys. In fig. 7.22 of the slide shows a structure made up of primary compounds of Cu5Zn6 in
the shape of the letter epsilon and a lamellar interdendritic eutectic, consisting of solid solution
based on zinc and intermetallic compounds. In fig. 7.23, the primary dendritic structure of the
casting homogenizes, after a 5-hour hold, not completely removing. Longitudinal axis dendrites
with intergranular separation are still noticeable. In fig. 7.24 the dendrite becomes island, the
compound and lamellar eutectic. At 400 degrees they completely disappeared and the
compounds remained. Increasing the homogenization temperature to 400 C (either 5 hours or 10
hours), in fig. 7.25 determines the complete elimination of the inhomogeneous dendritic casting
structure and the highlighting of the granular structure, in which Cu5Zn6 compounds have
polyhedral, island forms, with intragranular precipitation.

Fig. 7.26- Structural aspects of the ZnCu alloy, as cast and homogenized at 400°C/10 hours: a- x500; b- detail
of image a (x1000)

At 400 degrees/10 h, as can be seen from fig. 7.26, the dendrites completely disappeared and the
compounds remained.



Fig. 7.27 -Aspecte structurabe ale aliajulut ZoCuMg, stare turast (proba martor) :
3 x%00; b- detalie 2l isagindi a (x1000) Fig. 7.29. Aspecte strecturale ale aliajubul ZuCuMlg, stare tursat st emogenizat
1a 3009C/10 ore: a- x500; b - detalin al tmagiail 2 (x1000)
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Fig. 7.28- Aspecte strecturale ale aliajubul ZaCuMg, stare turnat si
omogenizat la 300°C/% ore: a- x500; b- detalku al bmagisii a (x1000) Ia 400°C/S ore: a- x500; b- detaliu al imagimii 2 (x1000)

Fig. 7.30- Aspecte stracturale ale aliajului ZaCulg, stare turnat 13 omogenizat

Fig. 7.27-7.30.Metallographic analysis of Zn alloys from the ZnCuMg system

The structural aspect of the ZnCuMg complex alloy in the cast state is shown in fig. 7.27.-
eutectic, dendritic solid solution and compounds. During homogenization, two phenomena
started: 1. the dendrite becomes island and 2. the globular lamellar eutectic. Islands have macles.
The application of thermal homogenization treatments causes the globulization of the eutectic
and the elimination of dendrites in island forms.

Fig7.31- Aspes curale ale ai;
ore: a- x500; b- decaliu al imagisii 3 (x1000)

i ZaCubz, sta i 00°C/10

Fig.7.31. Metallographic analysis of Zn alloys from the ZnCuMg system

In the ternary alloy, the structure changes, as can be seen from fig. 7.31, the eutectic becomes
lacy, we still have solid soil of Mg and Cu in Zn.



Fig. 7.32- Imagini SEM ale aliajulwi ZoCu, stare twrmat (proba martor):
2- x1000; b- detalin al imaging 3 (x2000)
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Fig. 7.33- Analiza 1a microscopul electronte ca baketa) a aliajulus bisar ZaCu:
a.  lmagise SEM; b- EDAX: ¢ distributia cupralus;
¢ distributiz zinculal; - sdcrocompezitie locals

Fig. 7.32-7.33. Scanning electron microscope analysis of alloys from the ZnCuMg system

In fig. 7.32 shows the appearance under the scanning electron microscope which indicates a
structure with large grains in which intermetallic compounds based on ZnCu are present. In fig.
7.33- we have the distribution of secondary electrons indicating Cu or Zn. Also, the local
chemical microcomposition that demonstrates the presence of Cu and Zn in the binary alloy and
the rendering of the weight of each element in the table.

Fig. 7.34- Lnsagini SEN ale allajulul ZaCuMg, stare tursat (proba martor):
2- x1000; b- detalin 2l imaginil a (x2000)
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Fig. 7.35- Analiza I» microscopul el ic cw baleiaj a aliajului complex ZaCuMg:
2. imagine SEM; b- EDAX; c- distribufia magnezinlui; d- distributia cuprului;
e- distributia zimcwlus; - microcompozitie locala

Fig. 7.34-7.35. Scanning electron microscope analysis of alloys from the ZnCuMg system

The complex alloying of Zn with Cu and Mg creates a zinc-based solid solution structure, in
which intermetallic compounds with different shapes and distributions are present, as well as the
presence of a lamellar herringbone-shaped eutectic (fig. 7.34). and next to insular intermetallic



compounds in the metal matrix made of zinc-based solid solution. In fig. 7.35 - the distribution
of Mg, Cu and Zn and also the local microcompositions with the weight of each element in the
bottom left (f).

Chapter 8. Biodegradation behavior of Zn-based alloys from the ZnCuMg
system. Corrosion and biodegradation mechanisms
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Fig. 8.2-8.3.The variation of the intermediate and absolute degradation rates depending on the degradation
time of the experimental biodegradable Zn alloys from the ZnCuMg system

The results regarding the biodegradation behavior of zinc alloys, compared to pure Zn, in a
human fluid simulation solution, can be seen in fig 8.2 of the image that Zn has a fairly good
biodegradation behavior, registering monotonically decreasing losses with small values. notices a
certain plateau in the degradation rates starting from the 14th day of immersion, with very low
speeds, below 0.0015mm/year. The presence of copper in the zinc alloy causes a considerable
increase in the rates of intermediate biodegradation, so that this rate then progressively decreases
to approximately 50% of the 3-day value. The pattern of variation in the ZnCu binary alloy is
similar to the variation of zinc intermediate velocities. It can be naturally concluded that the
simultaneous alloying of Cu and Mg in Zn causes a more weighted biodegradability behavior
than that of Zn, which means a better stability of the future biodegradable implant.
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Fig.8.4.Analysis of the PH variation of the SBF simulant solution



It is noted that after immersion periods of 3, 7 and 14 days, the highest ph values are obtained,
respectively 7.56 + 7.59, the lowest value being obtained after 21 days of removal.

Fig.8.5-8.6. Microstructural aspects of Zn, Zn Cu surfaces degraded in SBF after different periods of
immersion

The macrostructural aspects of the degraded surfaces at different immersion times in SBF, and
after the removal of the corrosion products of the experimental alloys are shown in fig. Above.
Degradation of Zn starts slowly, even after the first removal, from 3 days. The biodegradation
process is slow, proceeding with material pulling and dissolving in small quantities, so that after
35 days the appearance of corrosion points can be noticed on the test surfaces, initiated, as a rule,
on material discontinuities. The entire surface is covered with corrosion points, but only
sporadically, a sign of a relatively slow biodegradation, fig. 8.5h.

In the binary ZnCu alloy, the same slow biodegradation process is noted, with the deepening of
the degradation zones slowly and continuously, until the last removal time of 35 days. Also, the
biodegradation is initial on the discontinuity zones of the exposed surfaces and becomes more
and more aggressive until the last immersion time. The appearance of the degraded areas after 35
days, highlighted in fig. 8.6h, shows the development of areas with localized degradation, with
great depths of up to 0.05mm.

Fig.8.7. Microstructural aspects of ZnCuMg surfaces degraded in SBF after different periods of immersion



The complex alloy ZnCuMg has a behavior similar to that of Zn. Biodegradation starts very
slowly, even from the first removal, of 3 days, and continues progressively slowly, until the last
removal of 35 days. It is also noticeable an interconnected network of corrosion points, with
relatively small depths, in fig. 8.6 h. It is also noted that the degradation process is less obvious
than in the binary alloy, ZnCu. The comparison of the experimental results from this paper with
the data from the specialized literature confirms that alloying changes the biodegradation
behavior of Zn-based alloys, on the one hand, and the values obtained are comparative and even
unexpected for a complex alloy chosen in the paper. Thus, regardless of the alloying method, in
similar human environments, the degradation of either Zn or the various zinc-based alloys takes
place.

CHAPTER 9 CAVITATION EROSION BEHAVIOR OF EXPERIMENTAL
ZINC ALLOYS IN THE ZnCu(Mg) SYSTEM

The results of the cavitation test are expressed by diagrams containing the experimental values of
the three samples (red, green, black and blue color points), tested from each state of heat
treatment and the specific averaging curves, which give the variation of the cumulative average
depth of erosion MDE(t) and its speed MDER(t). They are the basis of the characterization of the
behavior and resistance of the surface structure to the erosive stresses of the vibrating cavitation
microjets. The diagrams, built on the basis of the experimental determinations, as mentioned in
the research method, show the variations of the cumulative mean depth MDE(t) and the related
erosion rate MDER(t), with the duration of exposure to cavitation and contain the values
obtained through the experimental determinations, the analytical curves averaging these values,
constructed with relations (2.1) and (2.2) and the values of the specific parameters. These
diagrams, through the evolutions of the averaging curves, the dispersion of the experimental
values, in different intervals, compared to the averaging curves, show the behavior and resistance
of the surface structure to the cyclic stresses of microjets and shock waves generated by vibrating
cavitation.According to the data from the, the parameter values are indicators of the resistance to
the cavitation stress, and by comparison they serve to identify the material structure with the best
resistance to the cyclic fatigue stresses of of shock waves and microjets developed by the
implosion of bubbles generated by the mechanism of the vibrating cavity. It should be noted that,
according to all the studies in this field [201-212], the dispersions of the experimental values, the
evolution forms of the averaging curves and the values of the indicated parameters are an effect
of the nature of the semi-finished product (cast state), of the parameters of the heat treatment
regimes (treatment type , temperatures, durations), of the microstructure and mechanical
properties (hardness, mechanical resistance to breaking, resilience, etc.).
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Fig. 9.1-9.4. Cavitational erosion behavior of experimental zinc alloys from the ZnCu system in the cast state
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Fig. 9.9-9.12.The cavitational erosion behavior of ZuCu alloy specimens in cast and homogenized state at 300
0C with holding time of 10 hours
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Fig.9.21-9.24. The cavitational erosion behavior of experimental specimens made of ZnCuMg alloy in the cast
state, with/without homogenization thermal treatment
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Fig. 9.25-9.28. The cavitational erosion behavior of ZnCuMg alloy specimens in cast and homogenized state at
3000C with holding time of 5 hours
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Fig. 9.29-9.9.32. Cavitational erosion behavior of ZnCuMg alloy specimens in cast and homogenized state at
300 C with 10-hour holding time

CHAPTER 10- COMPARATIVE ANALYSIS OF THE EXPERIMENTAL

RESULTS REGARDING THE CAVITATION EROSION BEHAVIOR OF

SPECIMENS FROM ZnCu(Mg) SYSTEM ALLOYS
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Fig. 1.5 Histegramas cempariril rezubiatedor privind comportarea la srezbunes cavitajionsli a Fig. 10.6- Histograma suprafefelor afeciate de cavitatia
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Fig.10.5-10.6. Quantitative comparative analysis of resistance to cavitational erosion of experimental
specimens from zinc alloys of the ZnCu system

In the graph on the left side of the image we can see that: the best resistance has the samples
homogenized by ZnCu at 400C/10 hours, the most cavitationally attacked is ZnCu 300/5h. In the
graph on the right we can see that the surface most affected by cavitation attack it is tested ZnCu

300/5h.
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Fig.10.7-10.8. Quantitative comparative analysis of resistance to cavitational erosion of experimental
specimens from zinc alloys of the ZnCuMg system

In fig. 10.7, regardless of the parameter, it shows that the best resistance has the specimens in the
cast state, not thermally treated. Fig. 10.8 shows the following aspects: The surface most affected
by cavitational attack, another important parameter in assessing the resistance to cavitational
erosion, is about 73.2% for the sample homogenized at 300 C/5 hours, and, respectively, 72, 5%
to the sample homogenized at 350 /5 hours. The sample in the cast state and homogenized at 350
C/10 hours has the smallest surface affected by cavitational erosion, respectively 48.2%. This
fact shows that a structure is homogeneous, but with a large grain size confers resistance to
cavitational attack compared to the inhomogeneous structure obtained after casting.



CHAPTER 11 CONCLUSIONS. ORIGINAL CONTRIBUTIONS.
PERSPECTIVES OF FUTURE RESEARCH

The work, by completing it, can bring the following contributions of own experimental research:
- The creation of new zinc alloys with superior biodegradation properties from the Zn-Cu binary
system and the ZnCuMg ternary system, other than those investigated so far in the specialized
literature, with well-defined chemical compositions;

- The complete physico-mechanical and structural characterization of the new biodegradable
zinc alloys and the realization of a structural correlation of the influence of the alloying elements
on the behavior of these alloys either cavitationally or biodegradable;

-Investigation of the cavitational erosion behavior of the new experimental zinc alloys in the
ZnCu and ZnCuMg system through a complete study, correlated with the different structural
states of the alloys;

- Investigating the biodegradation behavior of the new zinc alloys by performing laboratory tests

in human simulant fluid (SBF) at different immersion times, respectively 3,7,14,21,28 and 35
days and presenting the comparative values obtained by performing the curves of variation:
degradation rate and pH as a function of immersion time.

-The comparison of the experimental results from this paper with the data from the specialized
literature shows that alloying changes the biodegradation behavior of zinc-based alloys, on the
one hand, and the values obtained are comparative and even unexpected for a complex alloy
chosen in the paper.

- Fractographic analysis of cavitationally eroded surfaces, highlighting the mechanism of the
phenomenon and the compositional change through alloying of these alloys;

- Original assessment of cavitationally eroded surfaces through quantitative
stereomacrostructural analyses, highlighting the extension of both the total cavitationally
attacked surface and the most cavitationally attacked surface. Thus, the total surfaces affected by
cavitational erosion in cast alloys are around 60%, while in homogenized alloys it increases up to
70%. Also, the surfaces most affected by cavitational attack are smaller in cast alloys, about 55-
50%, compared to homogenized alloys, up to 60%.
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