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Chapter 1 
 

Introduction 
 

1.1 Presentation of the field of the doctoral thesis 
 

Historically, deforestation began long ago in the Holocene epoch [6]. Since humans 

discovered fire, they initiated a slow but steady process of global deforestation. 

Initially, wood was used for basic needs such as heating caves or cooking meat after 

hunting. These activities did not pose a problem for the forests, which could 

regenerate after tree cutting. However, humans began using wood to build houses, 

entire cities, or medieval walls, processing wood with water-powered mechanical 

saws installed along rivers. By the end of the medieval period, the forest was affected 

by two other elements: the invention of the steam engine and the increasing need for 

agriculture [7]. It is estimated that nearly half of the Earth's original forest has been 

lost [8]. In just the last century, 10% of the world's forests have been cleared for crops 

or pasture, with the peak occurring in the 1980s. In that decade, the total area 

deforested was equal to the size of present-day Mongolia [9]. 

In recent years, various organizations and activists have begun to fight to save 

the forest and stop uncontrolled deforestation. Society has already started to realize 

the importance of forests and the toxic effects of deforestation. International 

associations such as the European Union or non-governmental organizations regulate 

this activity to achieve an optimal balance between tree cutting and forest 

regeneration. But old habits die hard, and abuses or defiance of laws are still 

practiced. In addition to the entire known and legislated timber industry, illegal 

logging is another major problem. By applying the intelligent methods researched and 

developed in this work for forest identification, substantial assistance is provided to 

environmental activists and efforts to combat deforestation. 

 

1.2 Scope of the doctoral thesis 
 

This research aims to find a globally applicable method with low implementation and 

usage costs for detecting deforestation. The ultimate goal is for the final automated 

segmentation algorithm to be an easy-to-use tool for any activist or operator to 

identify deforestation. It is crucial to achieve quick results in addressing deforestation, 

considering modern capabilities in tree cutting, transportation, and processing. Thus, 

the objective boils down to identifying forests in multispectral aerial images, with 

examples and analyses conducted for the forest class. 

In addition to these goals, a common impediment to artificial intelligence (AI) 

models is the need for resources. Most real-world implementations of AI models are 

carried out under challenging conditions or with very limited hardware capabilities, 

not to mention the need for fast data analysis and prediction. Another major objective 
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of this work was cost reduction. In the case of deforestation monitoring, this is a 

mandatory objective. Unfortunately, in the case of illegal logging, vast areas of forests 

can disappear overnight, so the method of combating it must be swift. Additionally, 

this method should be environmentally friendly and operate with minimal energy 

resources. Another issue with deforestation is the enforcement of laws or regulations. 

At present, the only method of detecting deforestation in real-time is through the 

patrols of volunteer activists in areas of interest and their reporting to the relevant 

authorities in case of suspicious activity. Given all of the above, the use of large 

aircraft for data collection is impractical. To achieve optimal results, monitoring of 

areas of interest must be carried out with small aerial platforms, such as drones, which 

can fly over areas of interest and report timely to a command center or relevant 

authorities. This would also address the issue of apprehending offenders or at least 

recording evidence against them. 

 

Chapter 2 
 

The current state of intelligent 

methods applied to multispectral 

images 

 

In recent years, there has been an increasing demand for image interpretation, 

accompanied by advancements in machine learning techniques. Currently, most 

image classification works focus on Convolutional Neural Networks (CNNs) applied 

to already labeled open-source data. Most augmentation or improvement techniques 

are related to training the neural network and fine-tuning its parameters, while 

clustering methods have decreased in popularity. However, each type of machine 

learning has its advantages and disadvantages. For instance, supervised learning may 

be more accurate but requires labeled data, which can be resource-intensive. On the 

other hand, unsupervised learning does not require labeled data but can be challenging 

to find similarities or correlations among pixels in an aerial image and generally has 

lower accuracy. To better understand these characteristics, it was necessary to analyze 

the current state and related works to the doctoral thesis for each of the two 

approaches. 

 

2.1 The current state of clustering techniques 
 

Even though there are other methods such as Support Vector Machines (SVMs) or 

autoencoders, unsupervised learning is predominantly represented by clustering 



 

3 

techniques, as the goal is often to identify groups with similar features in a dataset, as 

is the case with ours. Clustering methods vary from the simplest to the most complex. 

The most common and straightforward clustering technique to implement is the K-

Means algorithm. It is usually time-efficient and yields generally good results as it can 

adapt to most types of data. Often, this algorithm is implemented through various 

augmentation or preprocessing techniques tailored to the specific characteristics of 

each study [10-11]. 

Another clustering technique whose mathematical concepts can be traced back 

to the contributions of Carl Friedrich Gauss in the early 1800s is the Gaussian Mixture 

Model (GMM) algorithm. Although Gauss is renowned for developing the normal 

distribution, which serves as the fundamental basis for GMM clustering, the first 

explicit mention appears in the work of Karl Pearson in 1894 [13]. The method began 

to gain widespread recognition in the field of machine learning in the 1970s. A 

significant factor contributing to their popularity was the emergence of the 

Expectation Maximization (EM) algorithm, a robust method for efficiently fitting 

GMMs to data, presented by Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin 

[14]. Since then, various researchers have made constant efforts to apply and develop 

the method in the field of image classification [15-17]. 

 

2.2 The current state of deep convolutional learning 

networks 
 

Deep learning comprises several branches, but the most effective for image 

recognition tasks are Convolutional Neural Networks (CNNs). The first notion of 

CNN was introduced in the late 1980s by Yann LeCun and his colleagues [21], but 

the turning point came in 2011 when AlexNet was presented [22], a model that 

marked the birth of deep neural networks. Apart from its eight layers, AlexNet 

utilized techniques that seem commonplace today, such as the Rectified Linear Unit 

(ReLU) activation function and dropout regularization, techniques with a significant 

impact on the network's accuracy. After this, an infinity of possibilities arose 

regarding the architecture of a CNN, but only some stood out through innovation. In 

2015, Olaf Ronneberger, Philipp Fischer, and Thomas Brox introduced the U-Net 

architecture [25], an innovative and symmetric convolutional neural network oriented 

towards pixel classification. The initial aim of the study was biomedical image 

segmentation, but over time, U-Net has been adapted for use in a multitude of 

semantic segmentation tasks, such as handwriting recognition, medical observations, 

industrial automation, or satellite image segmentation, a domain under which 

deforestation monitoring falls under. Another reason for choosing U-Net over other 

architectures is its ability to function with fewer images and weak labeling.  

 

 



 

4 

Chapter 3 
 

Database 
 

Compared to other fields where images can be captured even with a mobile phone or 

a professional camera, collecting aerial images involves much higher resources and 

costs. Equipment such as photogrammetric systems or processing stations are 

expensive, and conducting and planning flights are complex activities. For this reason, 

most studies and research use open-source databases provided by government 

institutions, universities, or online communities. Even though they are free, most 

aerial or satellite image databases have relatively low radiometric resolution and are 

collected and possibly labeled for specific predetermined purposes, making their 

adaptation to other objectives challenging. Despite this, this doctoral thesis uses 

proprietary aerial images provided by the Defense Geospatial Information Agency for 

research purposes. 

 

3.1 Description of the photogrammetric system 
 

The aerial images were collected using a Leica Geosystems ADS80 (Airborne Digital 

Sensor 80) pushbroom digital photogrammetric system belonging to the Defense 

Geospatial Information Agency. The system was installed on a small Antonov An-30 

aircraft, a model specially designed for aerial photography purposes. Besides the 

auxiliary elements on board the aircraft, the photogrammetric system consists of the 

recording sensor, the control unit, the storage memory for the recordings, and the 

software applications used to obtain the final product. Considering all these aspects, 

the aerial images produced had the following resolutions and characteristics: 

 A spatial resolution of 50 cm, representing the size of one pixel on the ground; 

 A spectral resolution of four bands: R (Red), G (Green), B (Blue), and NIR 

(Near-Infrared), indicating the wavelength range within which the image was 

recorded; 

 An 8-bit radiometric resolution, corresponding to 256 possible grayscale 

values for recording the sensor's radiometric response. 

 

3.2 Acquisition and processing of raw data 
 

The information collected by the photogrammetric system consists of raw data, which 

is unusable for machine learning algorithms. This data underwent a complex 

processing procedure to obtain usable multispectral aerial images. The entire 

workflow is illustrated in Figure 3.3. After designing and executing the 

photogrammetric flight, the raw data was downloaded and visually inspected to 

identify clouds or birds that might compromise the clarity of certain areas. Following 
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a preliminary processing stage, the subsequent steps included aerotriangulation, 

orthorectification, and mosaicking. 

 
Figure 3.3 Steps of processing raw data to obtain aerial images 

 

3.3 Obtaining the final database 
 

Considering the institution's interests, the processed data has been exported to obtain 

two types of products: RGB (Red Green Blue) aerial images and CIR (Color 

InfraRed) images. Additionally, the flight area was divided into 10 × 10 km2 zones 

and saved as TIFF (Tagged Image File Format) files. To support the research for this 

doctoral thesis, AIGA provided eight such zones, four near the city of Târgu-Mureș 

and four near the commune of Roșia Montană, areas rich in forests but also mixed 

with other land cover classes such as human settlements, crops, pastures, or roads. In 

Figure 3.5, an example of a 100 km2 aerial image in both RGB and CIR formats can 

be visualized.  

 
(a) (b) 

Figure 3.5 Samples of aerial images; (a) RGB image; (b) CIR image 
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To eliminate this redundancy and retain only the relevant information, the 

near-infrared band was extracted from the CIR images and concatenated with the 

RGB images, resulting in RGBN images. Finally, the three datasets RGBN, RGB, and 

NIR were sliced into three dimensions of 4000 × 4000, 1000 × 1000, and 200 × 200 to 

introduce diversity before applying the learning algorithms. This generated a generous 

dataset, eliminating the need for augmentation used by many other studies in the field. 

 

Chapter 4 
 

Study of unsupervised algorithms 

for identifying terrestrial details 
 

The main idea for achieving the assumed objectives was as follows: to develop a 

flexible solution capable of ingesting aerial images collected under various conditions 

and to circumvent the need for their labeling, a clustering technique can be used, the 

result of which can serve to train a supervised network or be improved and used 

autonomously. This approach shortens prediction time by eliminating the 

photointerpretation step, and the developed algorithm will not overfit a particular 

dataset. To achieve the most efficient labeling, four clustering algorithms were 

selected for application to aerial images: K-Means, AGNES (Agglomerative Nesting), 

GMM, and Mean Shift. At the end of the chapter, it was concluded which of these 

four techniques yielded the best results and was chosen as the basis for further 

developments. 

To perform a manual analysis of the content of the processed images, a team 

of GIS experts specialized in photo interpretation was employed, following the 

workflow illustrated in Figure 4.1. They established five classes representing the 

percentage of forest area possibly present in an image, as follows: completely forest-

covered image (100%), large coverage (75%), medium coverage (50%), small 

coverage (25%), and image without forest (0%). Then, each image used as input data 

was categorized into one of these classes. Subsequently, for each segmented image, 

the amount of forest identified by the clustering algorithms was calculated and 

rounded to the nearest class among the five. Since the total number of pixels is 

known, this could be achieved through a simple proportion, after counting all forest-

containing pixels. Finally, accuracy was calculated by comparing the two labels: the 

input image label established by experts and the label calculated through counting. 
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Figure 4.1 Diagram for assessing the accuracy of clustering algorithms 

 

4.1 K-Means 
 

K-Means clustering was applied to both RGB and RGBN images. Surprisingly, the 

RGB images performed very well without any preprocessing, while the addition of 

the extra NIR band yielded weaker results. This situation is highlighted in Figure 4.5. 

The assumption for this phenomenon is that the near-infrared band contains high 

values for all healthy vegetation on the ground, not just forests, and the clustering 

algorithm could not distinguish this aspect during distance calculation, considering, 

for example, pasture as forest-covered areas. 

 
(a) (b) (c) 

Figure 4.5 Results of K-Means clustering; (a) ground truth; (b) segmented RGB 

image; (c) segmented RGBN image 

 

Two hundred aerial RGB images sized 4000 × 4000 were utilized. These 

images were labeled by GIS experts into the five established classes, and following 

clustering, an accuracy of 85.56% was calculated. This score was deemed satisfactory 
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as a starting point and a good basis for further implementations and improvements 

(Figure 4.7).  

 
(a) 

 
(b) 

Figure 4.7 Examples of K-Means clustering; (a) input images; (b) segmented images 

 

4.2 Agglomerative clustering 
 

Due to computational resource constraints, the maximum size at which the 

AGNES hierarchical algorithm could be applied to the NIR, RGB, and RGBN 

datasets was 200 × 200. Metrics used included L1, L2, and cosine distances, along 

with linkage criteria of single, complete, average, and Ward's method. The only 

scenarios that yielded satisfactory results were the complete linkage criterion using L1 

and L2 metrics and Ward's method. Complete linkage performed better using all four 

spectral bands, while Ward's method showed better results using the RGB dataset. 

Two hundred aerial images of size 200 × 200 were employed, and the final 

accuracies for each scenario were as follows: 

 Complete linkage, L1 norm, RGBN: 58.33%; 

 Complete linkage, L2 norm, RGBN: 73.33%; 

 Ward's method, L2 norm, RGB: 87.78%. 

Comparing Ward's method results for the RGB dataset (examples in Figure 

4.12) with the complete linkage results using the L2 norm for the RGBN dataset, a 

clear improvement was observed. The image exhibited less noise, and the forest edges 

were much better defined (Figure 4.11). Appendix 2 provides further magnified 

results of Ward's method applied to RGB images. 
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(a) (b) 

Figure 4.11 Comparative results of the L2 norm; (a) complete linkage criterion; (b) 

Ward's method 

 
(a) 

 
(b) 

Figure 4.12 Samples of AGNES clustering; (a) input images; (b) segmented images 

 

4.3 Gaussian mixture model 
 

In previous studies where K-Means and AGNES algorithms were 

implemented, the results of the RGB dataset proved to be better than the results of the 

RGBN dataset. However, with GMM, the outcomes were different. Applying GMM 
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to the NIR band yielded predictable results, as it was not feasible to construct a 

mixture with such limited information. The results of the other two datasets, at first 

glance, appeared similar, but the RGBN images exhibited slightly better performance. 

  
(a) (b) (c) (d) 

Figure 4.15 GMM results for images with different depths; (a) ground truth; (b) NIR; 

(c) RGB; (d) RGBN 

Another important factor of any machine learning algorithm is the size of the 

input images or the analysis window based on which calculations are made. Testing 

began with an initial image size of 20,000 × 20,000, and later the input size was 

reduced to smaller areas, namely 4000 × 4000, 1000 × 1000, and 200 × 200. Along 

with analyzing the results, computation time was also measured. It is presented in 

Table 4.1 using seconds as the unit of measurement. The number of inputs represents 

how many lower-order images compose a higher-order image. For the same area and 

the same input data, comparisons must be made diagonally. Taking all these factors 

into consideration, the best two input sizes were chosen: 4000 × 4000 and 1000 × 

1000. 

Table 4.1 Computation time of GMM for different input dimensions 

Dimension 20000 4000 1000 200 

No. of inputs - 25 16 25 

Average time (s) 17745.2750 151.7057 11.1756 0.6246 

Total time (s) - 3792.6430 178.8102 15.6150 

In the end, the 200 input RGBN images and the clustering results were 

presented to the GIS expert team for analysis. Following the labeling of the images 

into the five classes, the final accuracy of GMM for the four considered scenarios is 

presented in Table 4.2. The best results were obtained using input data of size 4000 × 

4000. In this case, both initialization methods performed very well, and the difference 

between their results consisted of a small number of pixels classified differently, 

which did not have a real impact on the expert evaluation and final accuracy.  

Table 4.2 The accuracy of the GMM algorithm 

        Dimensions 

 

Initialization    

1000 × 1000 4000 × 4000 

Random 86.11 92.22 

K-Means 88.89 92.22 
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(a) 

 
(b) 

Figure 4.18 Examples of GMM clustering; (a) input images 4000 × 4000; (b) 

segmented images 

 

4.4 Mean Shift 
 

If, in the case of the other three algorithms, each image was segmented 

independently, with a training stage where the centers of each cluster were identified, 

and a prediction stage where the entire image was segmented, for Mean Shift, it was 

decided to use a single image from which the centers of the two clusters were 

extracted, and then the other images were segmented using these two centers. For 

testing and accuracy calculation, 400 images of size 1000 × 1000 from the RGBN 

dataset were used. 

In addition to the well-documented theoretical basis of the Mean Shift method 

[67], the implemented algorithm was modified and augmented with certain elements. 

The implementation of the entire method is illustrated in Figure 4.20. First, the 

training image is introduced into a module that estimates the most important 

parameter of the algorithm, namely the bandwidth. Secondly, the training image 

undergoes an iterative process that provides a series of centroids. After removing 

duplicate centroids, only the centroids of the two classes of interest remain. Then, 

these centroids are used to predict forest and non-forest areas for the entire dataset. 
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Figure 4.20 Mean Shift diagram 

The algorithm requires two adjustable parameters to ensure convergence: the 

scaling factor Q and the maximum number of iterations T. After running several 

scenarios, it was determined that Q = 0.2 and a bandwidth B = 25.38 were optimal for 

this dataset. Three threshold values for the scaling factor were considered: 20, 30, and 

50. Following evaluation by GIS experts, the Mean Shift algorithm achieved good 

results, close to 90%: 

Mean Shift 20: 89.75%; 

Mean Shift 30: 90.75%; 

Mean Shift 50: 89.75%. 

Figure 4.24 presents some segmented images for the best-identified scenario, 

namely Mean Shift clustering with a scaling factor of Q = 0.20 and a threshold for the 

maximum number of iterations T = 30.  

 
(a) 
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(b) 

Figure 4.24 Samples of Mean Shift clustering; (a) test images; (b) segmented images 

 

4.5 Conclusions 
 

Due to the distinct characteristics of the methods, they could not be uniformly 

applied for the same areas of interest or input data size. They were studied 

independently, so for a comprehensive evaluation by GIS experts, a more detailed 

comparison was necessary to determine which technique performed better. To achieve 

this, computation time and memory allocation of the system were measured for each 

computational step, including data preprocessing, training, and prediction. 

To fairly compare the methods, measurements were scaled to the largest input 

size, that of the GMM clustering of 4000 × 4000 × 4. Specifically, using the input 

dimensions and the number of bands of the other three methods, a scaling factor was 

calculated to multiply all measured values (Table 4.9). Overall, the least performing 

method was AGNES, with values significantly higher than the others. Despite 

achieving over 90% accuracy, Mean Shift required approximately 2037.72 seconds 

and 718.4 Mb of memory to classify an image of size 4000 × 4000 × 4. The choice of 

the most performant technique thus boiled down to a comparison between K-Means 

and GMM. Although GMM required more than twice the time compared to K-Means, 

it performed much better in the other two categories, obtaining the lowest memory 

allocation of only 492.6 Mb and the highest accuracy of 92.22%, nearly 7 percentage 

points higher than K-Means. Thus, it was established that the clustering method 

underlying the subsequent study would be GMM. 

Table 4.9 Scaled performance of the clustering algorithms 

Method Total time (s) Total memory (Mb) Accuracy (%) 

K-Means 26.91 534.66 85.56 

AGNES 34549.84 2447.2 87.78 

GMM 61.89 492.6 92.22 

Mean shift 2037.72 718.4 90.75 
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Chapter 5 
 

CEM – Color extraction module 
 

Due to the absence of labeled data, unsupervised classification cannot automatically 

associate the clustering results with the real classes of membership, thus making their 

representation accurate. This aspect of clustering techniques has posed a challenge for 

manipulating and interpreting results during the study, as it has hindered the ability to 

present intuitive information for a lay user and slowed down the evaluation process. 

The development process of the CEM had to be automated in such a way that there is 

a link between clustering methods and input images. To serve purposes other than 

deforestation monitoring, it was established that the CEM should be independent of 

the implemented methods or their parameters and be easy to apply outside of the 

current study. The diagram of the CEM algorithm is presented in Figure 5.2, 

generalized for an infinite number of classes. In real applications, the number of 

classes can vary from 2, if specific elements need to be identified (lake, forest, human 

settlement, etc.), to many more for advanced land cover segmentations. 

 
Figure 5.2 CEM Diagram 
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After the training stage, each unsupervised algorithm calculates its own set of 

variables describing the classes. However, the results are quantified using a common 

attribute, namely the label assigned to each pixel. The matrix formed by the total 

labels constitutes the general mask of the image. This mask is then divided into n 

binary masks, one for each class identified after segmentation. In the next step, each 

of these masks is overlaid on the input image, forming n vectors of values describing 

each class. Although these n vectors are not traditional images, they are composed of 

pixel values, so their histograms are calculated. In the subsequent pixel operations 

stage, three averaging functions and two counting functions were implemented and 

compared to determine which best suited the purpose of the CEM. 

Ultimately, the three RGB values are used to represent each of the identified 

classes. The choice of the best function was established through visual and numerical 

comparison. Figure 5.6 illustrates the final representation of the two classes. The two 

classes are similarly represented by all five functions, with the general mode function 

having slightly better contrast than the others. Compared to the three means, which 

have values closer between the two classes, the mode functions extracted more 

eccentric values. In the example below, the non-forest class consists mostly of 

grassland and was illustrated with a lighter green than the forest, indicating that the 

road and the few human elements identified in this class did not have a major effect 

on the final representation. 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 5.6 Representation of two-classes clustering; (a) Ground truth; (b) AM; (c) 

GM; (d) HM; (e) Local mode function; (f) Global mode function. 
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On the other hand, the final representation for 4 classes is shown in Figure 5.7, 

and Table 5.2 presents the calculated values for each function. As can be observed, 

changing the number of classes to be identified for a clustering algorithm significantly 

altered their display mode for counting functions. The three means again had similar 

results and representations. For all five functions, the three classes representing 

grasslands, shadows, and forests were illustrated in a very intuitive manner, closely 

resembling their actual colors. The main difference between methods was constituted 

by the RGB values of the infrastructure class, which encompasses human elements in 

the image. This was illustrated by the local mode function in yellow, as the calculated 

blue value was much lower than red and green. The general mode function depicted it 

in off-white (253,253,227) due to the area around the central house, which constituted 

the majority of pixels. On the other hand, the mean functions leveled this area with 

the rest of the road and rooftops, obtaining different shades of gray. These are 

obtained when the RGB values are similar, as highlighted in Table 5.2. 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 5.7 Representation of four-classes clustering; (a) Ground truth; (b) AM; (c) 

GM; (d) HM; (e) Local mode function; (f) Global mode function. 

Comparing the differences in representation between two and four clusters, it 

was concluded that the largest deviations from reality will occur in classes with very 

high diversity, such as the infrastructure class, which can contain houses with 

different roofs, roads made of different materials, or various civil constructions. 

Taking all of the above into account, it was established that the safest and least 

unpredictable function for the pixel operations stage is one of the averaging functions, 

specifically the general mean (GM). The local mean (LM) represents classes too 
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darkly, while the adaptive mean (AM) contains even shades of yellow in some 

instances. CEM was implemented over the clustering methods, and its development 

significantly aided in accelerating the research and the overall study, especially in the 

visual interpretation and evaluation of the clustering results. Various representations 

for 4 classes are illustrated in Figure 5.9.  

 
(a) 

 
(b) 

Figure 5.9 Examples of final representations using CEM; (a) Ground truth; (b) CEM 

representation of clustering into four classes. 

 

Chapter 6 
 

GMM improvement through 

compression and signal processing 

techniques 
 

After implementing and comparing the four clustering techniques, at the end of 

Chapter 4, it was concluded that the best basis for developing a methodology to 

achieve the assumed objectives is Gaussian Mixture Model (GMM) clustering. 

However, the major problem identified in applying GMM was the long computation 
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time and large memory allocations, regardless of the native optimizations of the 

algorithm. To address this issue, methods of image compression and signal processing 

were studied. Thus, Discrete Cosine Transform (DCT), Discrete Fourier Transform 

(DFT), and Discrete Wavelet Transform (DWT) were applied to the input images 

before GMM clustering. 

Traditionally, discrete transformations are applied to smaller regions of the 

image to improve the feature extraction step. The methodology developed in this 

study proposes a different approach, illustrated in Figure 6.2, by using an extraction 

window for the entire image. First, the input image undergoes a decomposition stage 

into bands. Then, the three discrete transformations are calculated for each band in a 

two-dimensional space. To extract only the significant coefficients, an extraction 

window is applied over the transformed image. The window position depends on the 

type of transformation. For DCT, the most important coefficients are concentrated in 

the bottom-left corner of the transform, while DFT, after shifting the zero frequencies, 

concentrates them in the middle of the image. Several scenarios were created by 

modifying the size of the extraction window to determine the best value for the study 

objectives and to analyze the trade-offs in clustering quality and costs. Then, the 

extracted coefficients for each band are converted back using inverse transformations. 

It's worth noting that these extracted coefficients are not padded with zero values to 

maintain the original length and width of the image, meaning dimensionality 

reduction is achieved in this step. For DWT, these two extraction and inverse 

transformation steps do not exist, as this transform naturally extracts approximation 

coefficients, reducing the size of the images by half. Thus, there was no need to 

implement an extraction window and an inverse transformation. 

 
(a) (b) 

Figure 6.2 Compression algorithm diagram: (a) DCT / DFT; (b) DWT 
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After applying normalization and brightness transfer to the results of discrete 

transforms, the bands are concatenated and undergo a fast K-Means clustering stage. 

This serves as initialization for the GMM algorithm. Its speed comes from 

establishing the initial centroids probabilistically, not randomly, by calculating the 

distance between points. Finally, the results of GMM clustering are resized to the size 

of the original input using nearest neighbor interpolation. 

 

6.2 Evaluation of the results of the proposed 

methodology 
 

The proposed methodology was tested within a clustering of five classes using a 

generous dataset of 1600 images with dimensions of 1000 × 1000 × 4. To evaluate the 

results, we analyzed the proposed method from three perspectives: computational 

time, allocated memory, and performance. Unfortunately, for unsupervised learning 

algorithms, accuracy cannot be calculated in the true sense of the word because the 

data is not labeled. For this reason, performance was evaluated through the Davies-

Bouldin index (DBI). Computation time, allocated memory, and DBI scores were 

measured for each extraction window, as well as for the conventional, unmodified 

GMM algorithm. All values were transformed into percentages of the reference GMM 

algorithm.  

Thus, the percentage of time and memory should have been as low as possible, 

while the DBI percentages should have been as close to 100% as possible. Although 

all three 500 scenarios had small decreases in DBI score and faster calculation times, 

the results of DFT 500 and DWT 500 were neglected due to memory increase. DCT 

500 had a computation time of 32.82% while maintaining clustering quality and total 

allocated memory. For the second group of 250, the DBI score decreased by 

approximately 10%, but the total time and memory showed substantial improvements. 

This time, DCT 250 and DFT 250 had similar percentages and outperformed DWT 

250. While DTW 250 had a better DBI score, the difference of only 2% was not 

significant enough to outweigh the much larger memory allocation of 78.17%. 

Unfortunately, despite reduced computation times, the 125 scenarios experienced an 

approximate 20% decrease in DBI scores. Overall, DCT performed better than the 

other two transformations, mainly because it provides information in the form of a 

single set of coefficients. DFT obtains both real and imaginary coefficients, while 

DWT provides an approximation image and three detail images. 

Table 6.3 Percentage analysis of GMM scenarios performance 

Scenario DBI (%) Total time (%) Total memory (%) 

DCT 500 95.35 32.82 93.53 

DFT 500 94.31 31.42 115.63 

DWT 500 95.89 32.02 109.97 

DCT 250 89.76 8.94 53.37 

DFT 250 89.00 9.26 56.87 

DWT 250 91.78 8.89 78.17 
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DCT 125 80.99 2.78 41.78 

DFT 125 79.02 3.22 42.59 

DWT 125 87.66 3.13 66.04 

Comparing DCT 250 and DFT 250, we can observe that DCT 250 had slightly 

better performance than DFT 250 in all three measurements. Taking into account all 

the information presented above, we can assume that the best scenarios of the 

proposed method are DCT 500 and DCT 250. Depending on the implementation 

conditions, both can be suitable and worth considering. Figure 6.8 depicts the input 

image and the results of the two scenarios. 

 
(a) (b) (c) 

Figure 6.8 Results of the best scenarios: (a) Ground truth; (b) DCT 500; (c) DCT 250 

 

6.3 Conclusions 
 

This study aimed to implement a rapid and cost-effective unsupervised algorithm to 

keep pace with deforestation phenomena and provide real-time analysis and alerts to 

relevant authorities by improving a previously analyzed clustering method applied to 

the same dataset. The study focused on reducing the computation time of the GMM 

clustering method, previously used for forest segmentation, by proposing an algorithm 

that leveraged the advantages of discrete transformations conventionally used in 

image compression and signal processing. 

The proposed algorithm was tested using a dataset of 1600 aerial images of 

1000 × 1000 × 4 dimensions and spatial resolution of 50 cm each, by measuring the 

computation time, DBI score, and allocated memory for each considered scenario. All 

results were compared with the previous GMM algorithm, which served as a 

reference baseline for comparisons, with its performance measured under the same 

conditions. The scenarios exhibited much-improved computation time, but only DCT 

500, DCT 250, and DFT 250 maintained a DBI score close to the reference GMM 

algorithm while also improving memory allocation. On average, the GMM algorithm 

had a total computation time of 19.9158 s and a memory allocation of 37.1 Mb. DCT 

500 managed to reduce these costs to 6.5360 s and 34.7 Mb, with a minimal decrease 

in the DBI score. 
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In conclusion, this methodology achieved the study's objectives and can be 

considered a viable solution for classifications with limited resources. It can be 

strongly affirmed that the described algorithm solves the problem of computation time 

and even the memory allocated by the computing unit. 

 

Chapter 7 
 

Supervised learning using the U-

Net architecture 
 

7.1 Automatic data labelling 
 

This study proposes an approach using GMM clustering for the semantic labeling of 

images before training U-Net architectures for forest classification. To establish the 

dataset, the conclusions of Chapter 4 were applied, namely the use of 100 

multispectral aerial images of 4000 × 4000 × 4 from the Târgu-Mureș area. GMM 

segmentation is augmented by several techniques to improve labeling, such as 

computing informational criteria, merging clusters, and filtering resulting images. 

After applying GMM, Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) scores are calculated to validate the optimal number of clusters. Then, 

the resulting clusters are merged to form only the two classes of the study: forest and 

non-forest. After filtering the results, the DBI score is used to select the best-labeled 

images, thus constructing the training, validation, and testing datasets for U-Net. 

Finally, the labeled dataset is divided into smaller batches of 128 × 128 and fed into 

U-Net architectures composed of 19 convolutional layers and 4 skip connections. 

Figure 7.7 illustrates samples of the labeled dataset. 

 
(a) 
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(b) 

Figure 7.7 Examples of automatic labeling: (a) Training images; (b) Labels 

 

7.2 Description of the U-Net architecture 
 

U-Net utilizes an encoder-decoder architecture, composed of two main pathways. The 

encoding pathway systematically reduces the dimensions of the input image, thereby 

extracting higher-level features. On the other hand, the decoding pathway restores 

encoded features through upsampling, leading to an enhanced segmentation mask 

with high spatial resolution. This unique architecture enables the network to grasp 

both the broader context and local details during the learning process. The original U-

Net architecture consists of an input layer, four encoding blocks, a bridge, four 

decoding blocks, four skip connections, and an output layer (Figure 7.8). U-Net uses 

the ReLU (Rectified Linear Unit) activation function for all layers in the model, 

except the final layer, which requires a sigmoid function. Additionally, a dropout 

layer is employed at the end of the encoding pathway to prevent overfitting of the 

model. 

 
Figure 7.8 The original U-Net architecture 
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7.3 Optimization of the non-structural 

hyperparameters 
 

The multitude of hyperparameters of a CNN can be divided into two groups. 

Structural hyperparameters are those presented in the previous section, namely: the 

number of convolutional layers, the number of kernels, the kernel size for each 

convolution, activation functions, and pooling dimensions. To adjust the other non-

structural hyperparameters, computational power must be taken into consideration. To 

address this issue, the batch size for training, which determines the number of samples 

processed in one forward and backward pass for each iteration, was incrementally 

indexed until the system returned an Out of Memory (OOM) error. This way, the 

maximum supported value by the computing unit could be determined. In this 

analysis, the model was set to compute only one epoch, and the computation time for 

that epoch was monitored. The results are presented in Table 7.1. Thus, the maximum 

batch size accepted by the GPU was 16, which also had the best training time 

according to the table. 

Table 7.1 Computation time for different training batch sizes 

Batch size 2 4 8 16 32 

Computation  

time (s) 
1502 1112 805 520 OOM 

Validation  

accuracy 
0.9897 0.9912 0.9914 0.9903 OOM 

Having such a high initial accuracy, it was concluded that the rest of the 

adjustments should be made through fine-tuning over 10 epochs. Setting the batch 

size and optimizer directed us to the next hyperparameter to be adjusted, namely the 

learning rate. The best validation accuracy of 0.9951 was achieved for a learning rate 

of 10-4. Additionally, for this value, the validation accuracy was kept closer to the 

training accuracy throughout the 10 epochs. 

 
Figure 7.10 Micro-training accuracy of U-Net 
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7.4 U-Net model cost reduction 
 

Unfortunately, the original architecture, as presented earlier in Section 7.2 and as 

initially proposed in [25], was far too complex for the objectives of this study. With 

all non-structural hyperparameters adjusted, it was decided to simplify the U-Net 

architecture by systematically reducing the number of filters in each convolutional 

layer by half. Thus, multiple scenarios were created while maintaining the symmetry 

and indexing rules of the original architecture. 

To analyze the performance of the simplified models in detail, the allocated 

memory, accuracy, and computation time were measured for a single random image. 

For a better understanding of the improvements in the proposed scenarios, the 

measurements were graphically represented in Figure 7.12. The corresponding values 

for the graph are found in Table 7.5 and represent percentages of the original U-Net 

scenario. Thus, a successful scenario will be described by accuracy as close to 100% 

as possible, along with reduced time and memory allocation. The graph has two 

vertical axes, accuracy and time projected on the left axis, while memory is projected 

on the right. It can be strongly asserted that all scenarios yielded very good results. 

Accuracy maintains high percentages while time and memory consistently decrease 

until the point where S-UNet2 calculates twice as fast and utilizes only 3.38% of the 

initial memory. Analyzing the two exposures, it can be observed that S-UNet8 has the 

best balance between accuracy and reduction of time and memory. It managed to 

maintain 99.91% of the accuracy of the original U-Net model using only 4.38% of its 

memory and having a computation time almost twice as fast. 

Table 7.5 Percentage analysis of performance for simplified U-Net models 

Model Accuracy (%) Time (%) Memory (%) 

S-UNet32 99.98 74.71 27.25 

S-UNet16 99.99 61.16 8.56 

S-UNet8 99.91 56.56 4.38 

S-UNet4 99.45 55.44 3.83 

S-UNet2 99.45 51.71 3.38 

 
Figure 7.12 Performance graph for simplified U-Net models 
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Regarding the cost reduction of the proposed method, a much more complex 

analysis can be conducted. Table 7.7 describes the memory usage, total number of 

parameters, and total number of filters for LCU-Net [41], Half-Unet [43], and the 

simplified U-Net models. Even though LCU-Net has the same number of blocks and 

filter growth as the third scenario, from 16 to 256, due to the implementation of the 

Inception technique, the total number of filters and parameters is much higher. On the 

other hand, Half-Unet has 6 blocks with 64 filters each, as it disables 3 out of the 4 

decoder blocks, resulting in only 212,576 parameters. Except for S-UNet32, the 

proposed method yielded better results in terms of cost reduction for all other models. 

S-Unet16 managed to use only 55.7 Mb compared to the needs of LCU-Net and Half-

Unet, which are 103.5 Mb and 137.3 Mb, respectively. 

Regarding the average time, this metric can be strongly influenced by 

hardware resources. Data for Half-Unet were not presented, but LCU-Net predicted 

results on average in 0.15 seconds using an Intel(R) Core(TM) i7-8700 processor with 

3.20 GHz, 32 Gb RAM, and an Nvidia GeForce RTX 2080 graphics card with 8 Gb. 

In addition to the fact that the simplified U-Net models had much better prediction 

times, below 0.10 s, the computing unit used in our case also had a less powerful 

graphics card, which would lead to even faster results in the case of similar resources 

available with LCU-Net. 

Table 7.7 Comparison with related studies on costs and complexity of models 

Model Memory (Mb) 
Average  

prediction time (s) 

Total no.  

of filters 

Total no. of 

parameters 

LCU-Net 103.5 0.15 5392 3469393 

Half-UNet 137.3 - 768 212576 

U-Net 650.7 0.142 6848 31032321 

S-UNet32 177.3 0.106 3424 7760385 

S-UNet16 55.7 0.087 1712 1941249 

S-UNet8 28.5 0.081 856 485889 

S-UNet4 24.9 0.079 428 121761 

S-UNet2 22 0.074 214 30585 

 

7.5 Conclusions 
 

This chapter addressed a common problem in training neural networks, the lack of 

labeled data, and the disadvantages of obtaining them. To solve this problem, the 

GMM clustering method was used for automatic data labeling, and a workflow was 

implemented to obtain a consistent dataset for the supervised training of a 

convolutional neural network to identify forests in aerial images with very high 

accuracy. The consistency of the dataset was validated by training CNN models based 

on the U-Net architecture. Benefiting from the quality of the dataset, the accuracy 

achieved during training, validation, and testing was extremely high. Non-structural 

hyperparameters, such as learning rate, optimizer, or batch size, exhibited unusual 



 

26 

flexibility, demonstrating that the GMM clustering step further improved supervised 

training. 

The original U-Net model achieved a validation accuracy of 0.9951 and a 

testing accuracy of 0.9969, just after fine-tuning for 10 epochs. In conclusion, it can 

be strongly asserted that the GMM method aids in data labeling and augmentation and 

reduces the computational resources required for supervised CNN training for rapid 

and inexpensive deforestation monitoring. Regarding hyperparameter optimization, 

the study showed that an S-UNet8 model with 856 filters achieves more than 

satisfactory accuracy and reduces memory usage by 95.62%, thus obtaining a low-

cost model for semantic segmentation of extensive areas with a delay of only 5 

seconds. 

 

Chapter 8 
 

Conclusions 
 

This paper aimed to develop a fully autonomous algorithm for land cover 

identification, applied for deforestation monitoring, which does not require human 

intervention. In this way, the method should be able to segment an aerial image with 

the best possible accuracy without the need for manual labeling of pixels or objects or 

any other external human interventions. The motivation behind choosing this 

application was that deforestation is a global problem, out of control and with serious 

consequences for the environment and everyone, and traditional monitoring through 

the presence of environmental activists or authorities on-site is costly, time-

consuming, and inefficient. 

 

8.2 Original contributions 
 

The original contributions of the doctoral thesis are as follows: 

 Study of Clustering Methods (C1, C2, C4, C5): The thesis investigated various 

clustering methods applied to multispectral aerial images, analyzing the 

influence of their specific parameters on classification results. It compared 

these methods in terms of allocated memory and computation time to 

determine the most performant method. 

 Color Extraction Module (C3): A color extraction module was implemented to 

represent the clusters identified by unsupervised methods. While necessary for 

internal thesis needs, this module can be applied to any study using unlabeled 

data for result representation and better operator analysis. 

 Drastic Reduction in GMM Prediction Time (J2): The thesis achieved a drastic 

reduction in the prediction time of the Gaussian Mixture Model (GMM) 

algorithm by implementing a methodology based on Discrete Cosine 

Transform (DCT) for multispectral image processing and extracting the most 
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important coefficients. Traditionally, GMM can have very slow responses, 

especially when there are too many clusters to identify or when the images are 

too large. Unlike supervised techniques, where you can implement the trained 

model wherever necessary for future predictions, in image clustering, data 

preprocessing, and centroid calculation are steps performed along with 

prediction, not before implementing the solution. Despite an increase in 

preprocessing time, the proposed methodology significantly reduced training 

and prediction time. 

 Automatic Pixel Labeling (J1): The thesis implemented a completely 

unsupervised technique to label multispectral images without any other 

supervised training or pre-trained networks as a starting point. Compared to 

other studies, the dataset used consisted of proprietary aerial images recorded 

with modern capabilities. To demonstrate the technique's success, field reality 

and corresponding labels were tested against multiple U-Net architectures to 

prove its usefulness and effectiveness. The study demonstrated that the labels 

are precise enough for U-Net to learn from them and predict very good results 

without human intervention in manual labeling. 

 Reduction of U-Net Model Complexity (J1): Most real-world implementations 

of AI models are carried out under challenging conditions or with very weak 

hardware capabilities, not to mention the need for data analysis and rapid 

prediction. The presented study conducted tests on simplified U-Net models 

called S-Unet and achieved similar precise results to the original architecture 

while reducing the model's complexity by up to 60 times. The complexity 

reduction also decreased the average computation time and system memory 

allocation, resulting in significant cost reduction. 

 Fast Segmentation of Extensive Areas (J2): Satellite and aerial images contain 

a large number of pixels due to their wide field of view (FOV) and high 

resolution. This makes segmenting these images much slower than everyday 

images containing objects. The proposed methods can predict thousands of 

square kilometers of multispectral images in a reasonable time frame. 

 Development of a Fast, Low-Cost, and Environmentally Friendly 

Deforestation Monitoring Algorithm (J1): For example, S-Unet8 requires 28.5 

Mb to predict 106 pixels in about 5 seconds. This algorithm can substantially 

aid in combating illegal deforestation. By implementing it in a real 

environment, a workflow is created for monitoring areas of interest, 

identifying offenders, and enforcing laws. 
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