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1 Introduction

This section is an overview of the thesis, dealing the potential of vision-based navigation and scene
understanding, focusing on aerial imagery analysis and reconstruction. The main questions addressed
are:

• Can we navigate an environment using only camera input?

• How well do we need to understand the environment for effective navigation?

• How can we leverage and improve existing map data?

• Can all basic processing be performed on a drone?

The research is divided into four main areas: Localization, Mapping, Scene Reconstruction, and
Interactive Scenes.

1.1 Localization

Localization is crucial for autonomous navigation, especially in urban environments where GPS signals
may be unreliable. Vision-based localization offers a robust alternative, drawing inspiration from
human visual capabilities. The challenge lies in developing efficient algorithms that can run on limited
compute budgets typical of drone hardware.

Recent work in aerial image localization has shown promising results. For instance, [1] proposed a
method for ground-to-aerial geolocalization by learning a shared embedding space for both ground and
aerial images. [2] extended this idea to wide-area image geolocalization using aerial reference imagery.

1.2 Mapping

Building on localization, robust road mapping is essential for navigation and can provide a foundation
for using intersections as localization landmarks. The goal is to bridge the gap between existing map
data and real-time visual information.

Early approaches to road detection in aerial images relied on manually designed features [3–5].
Deep learning techniques have led to significant improvements, with [6] and [7] among the first to
apply convolutional neural networks (CNNs) to this task.

More recent approaches have focused on leveraging context and multi-scale information. [8] pro-
posed a dual-stream network that processes both local and global context, showing particular effec-
tiveness in handling complex urban scenes.

1.3 Scene Reconstruction, Navigation, and Representation

This area focuses on creating accurate world replicas for advanced simulations, heritage preservation,
and enhanced user experiences. It explores the synergy between geometric and analytical methods for
novel view synthesis and investigates efficient representations for low-cost, vision-focused navigation
systems.
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Depth estimation from monocular images has seen significant progress, driven by advances in
deep learning. [9] demonstrated the feasibility of training CNNs to predict depth from single images.
Unsupervised and self-supervised learning techniques, such as those introduced by [10] and [11], have
gained popularity as they alleviate the need for expensive ground truth depth data.

The field of 3D reconstruction has seen a paradigm shift with the introduction of Neural Radiance
Fields (NeRF) by [12]. NeRF represents scenes as continuous volumetric functions and has demon-
strated impressive results in novel view synthesis. Subsequent work, such as Instant-NGP [13], has
focused on improving efficiency and scalability.

For large-scale aerial reconstruction, traditional photogrammetry techniques remain widely used.
Structure-from-Motion (SfM) pipelines, such as COLMAP [14], can reconstruct 3D scenes from large
collections of unordered images. However, these methods often struggle with the scale and complexity
of city-scale reconstructions.

1.4 Interactive Scenes

The final area addresses the challenges of generating views for imperfect replicas and integrating
virtual characters into reconstructed environments. It also explores the potential of generative art in
human-machine interaction, particularly in conveying emotions.

In the context of human-AI interaction, there has been growing interest in generating appropriate
emotional responses from virtual agents. [15] have explored the use of computational models of emotion
to drive the behavior of virtual characters. [16] has investigated data-driven approaches to generate
realistic facial expressions for virtual agents in real-time.

1.5 Motivation and Applications

The motivations behind this research include:

• Developing robust, vision-based localization systems for airborne devices to enhance safety in
urban areas.

• Demonstrating the feasibility of vision-only navigation, building on successes in niche areas like
drone racing [17] and simulated environments [18].

• Enabling automatic, large-scale map updates through the combination of precise localization and
visual recognition.

• Improving 3D reconstruction quality by exploiting complementary information from classical and
neural methods.

• Creating plausible novel views to fill information gaps in reconstructed scenes.

• Designing efficient algorithms suitable for embedded use, ensuring autonomous agents can operate
safely even in the event of network failures.

1.6 Related Work

The field of aerial image analysis has evolved from early approaches using manually designed features
[3–5, 19, 20] to modern deep learning techniques. Significant advancements have been made in semantic
segmentation, with methods like those proposed by [8] and [21] improving accuracy in complex urban
scenes.

Geolocalization research has progressed from traditional feature-matching methods [22, 23] to deep
learning approaches that learn robust representations [1, 2]. In the context of UAV navigation, vision-
based localization has been explored as an alternative or complement to GPS [24].

Depth estimation and 3D reconstruction have seen significant advancements, from early learning-
based approaches [9] to more recent unsupervised techniques [10, 11]. The introduction of Neural
Radiance Fields (NeRF) [12] has revolutionized novel view synthesis, with subsequent work focusing
on improving efficiency and scalability [13].
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Safe landing area estimation for UAVs has evolved from methods based on hand-crafted features
[25] to deep learning approaches [26]. Recent work has explored the use of synthetic data to address
the limited availability of labeled training data [27].

In the field of human-AI interaction, research has progressed from traditional approaches to emotion
recognition [28] to deep learning methods [29]. Work on generating appropriate emotional responses
from virtual agents [15] and real-time facial expression generation [16] has opened new avenues for
natural and intuitive interfaces.

1.7 Conclusion

This research stands at the intersection of computer vision, robotics, and human-computer interaction.
It builds upon existing foundations while introducing novel techniques to advance the state-of-the-art
across these interconnected domains. The work has potential implications for autonomous navigation,
urban planning, 3D modeling, and the development of more intuitive AI systems.

By addressing these challenges, the research aims to contribute to the development of more robust,
efficient, and intelligent autonomous systems capable of understanding and interacting with complex,
real-world environments. The interdisciplinary nature of the work highlights the potential for cross-
pollination of ideas between different subfields of computer vision and robotics.

2 Localization from roads and intersections in aerial images

2.1 Introduction

Aerial image analysis has important applications in automated mapping, urban planning, environment
monitoring and disaster relief. This chapter addresses the task of automatic geolocalization of aerial
images from recognition and matching of roads and intersections. We propose a novel pipeline for
geolocalization, from road and intersection detection to identifying the geographic region by matching
detected intersections to manually labeled ones from OpenStreetMap (OSM). This is followed by
geometric alignment between detected roads and OSM annotations. We test on a dataset of aerial
images from two European cities and use OSM for ground truth road annotations. Experiments
show accurate localization when training on one city and testing on the other, even with relatively
poor quality aerial images. We also demonstrate that alignment between detected roads and OSM
annotations can improve road detection quality.

2.2 Related Work

Road detection in aerial imagery has been addressed using manually designed features [3, 4] and
more recently convolutional neural networks [6, 7]. Some methods attempt to correct misaligned
road vectors by aligning them to aerial images [30]. Geolocalization for UAVs using sparse manually
designed features has been proposed [24]. Other approaches fuse camera input with GPS and IMU
data [31, 32]. Geolocalizing ground images using aerial image pairs has also been explored [1, 2].

2.3 Approach

Our method has several stages:
Road pixel-wise classification using a dual stream local-global CNN [33]. Intersection detection

based on the detected roads. Matching detected intersections to a stored dataset of OSM intersec-
tions using learned descriptors. Geometric alignment for improved localization and road detection
enhancement.

We use intersections as anchors for localization as they are sparse, computationally efficient, and
tend to have unique surrounding road patterns useful for recognition.

2.3.1 Road and Intersection Detection

For road detection, we use a state-of-the-art dual stream local-global CNN [33] that combines local
appearance and larger contextual information. For intersection detection, we train an adjusted AlexNet
that takes as input the RGB image and estimated road map.
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Figure 1: Enhancing road detection by region recognition and geometric alignment to OSM roads.
Our procedure improves detected road maps and could correct OSM labels.

Table 1: Localization errors before and after alignment (in meters)
Method Before After

Mean Median Mean Median
1NN pix2pix 470.50 53.90 57.97 1.60
1NN MSMT Stage 1 34.11 31.65 454.79 1.40
MSMT with LocDecoder-R-2 88.92 53.90 57.97 1.60
MSMT with LocDecoder-S-128 9.03 6.85 1.89 0.75
MSMT with LocCombined 26.93 7.27 18.42 0.78

2.3.2 Intersection Matching and Localization

We represent each intersection by a learned descriptor such that identical intersections from detected
and OSM roads have similar descriptors. We fine-tune the intersection detection network to adjust
distances in descriptor space and improve matching performance. Localization is refined by geometric
alignment between estimated roads and OSM roads in regions centered at matched intersections.
We use a bipartite graph matching approach to find correspondences between detected and OSM
intersections.

2.3.3 Geometric Alignment and Road Enhancement

We use the Iterative Closest Point algorithm to align the road segmentation with OSM roads at the
predicted location. We developed a simplified version that only estimates translation, assuming images
are aligned with cardinal points. To enhance road detection, we apply soft dilation on the estimated
road map, multiply it with the aligned OSM map, smooth with a Gaussian filter, and thin using
non-maximum suppression.

2.4 Experiments

We collected aerial images of two European cities (A and B) aligned with OSM road maps. City A has
4027 512x512 pixel images used for training, while city B has 3177 images used for testing. The spatial
resolution is 1m/pixel. For road and intersection detection, we achieve an F-measure of 82.22% on
the European Roads Dataset [34] and 99.88% on our localization dataset with 3-pixel relaxation. For
localization, 96.84% of test locations have an error ¡20m without alignment. After alignment, 94.56%
are within 2.5m and 97.58% within 5m of ground truth, comparable to commercial GPS accuracy [35].
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2.5 Conclusions

We presented a complete system for geolocalization from aerial images without GPS. Our pipeline
includes efficient methods for road and intersection detection, intersection recognition with geometric
alignment for accurate localization, and road detection enhancement. The approach could be used as
a GPS alternative or in conjunction with GPS for applications requiring offline or real-time processing.
Future work could focus on improving detection speed, expanding the search space to multiple cities,
and adapting the pipeline for nighttime use.

3 Detecting roads and buildings in aerial images

3.1 Introduction

Recognizing roads and intersections in aerial images is a challenging problem in computer vision
with applications in UAV localization and navigation. While recent deep learning approaches have
improved pixel-level segmentation, we argue roads should be recognized at the higher semantic level of
road graphs. We present a two-stage method: 1) Detect roads and intersections with a novel dual-hop
generative adversarial network (DH-GAN) for pixel-level segmentation. 2) Find the best covering road
graph using smoothing-based optimization (SBO). We also present a multi-stage improvement of this
pipeline.

3.2 Road Detection with DH-GAN and SBO

Our DH-GAN architecture consists of two conditional GANs: the first generates road segmentations,
while the second generates intersections using both the original RGB input and the road segmentation
from the first GAN (Figure 2). The full architecture is trained end-to-end. We represent roadmaps

Figure 2: Proposed DH-GAN architecture.

as graphs G = (V,E), where V are nodes with positions (xi, yi) and E are edges with associated
line segments. We define edge cost c(i, j) as the average distance to the nearest road point in the
segmentation, and overall graph score S(V ) as the intersection over union between the dilated graph
and pixelwise map. Our SBO approach optimizes node locations to maximize S(V ), starting from
intersections found by DH-GAN and iteratively adding midpoints. We also apply a greedy sampling
baseline for comparison. We evaluate on the European Road Dataset [33], with 200 training, 20
validation, and 50 test images. Tables 2-3 show our results compared to baselines. DH-GAN
outperforms other methods in pixel-level accuracy. The graph-based approaches (DH-GAN+Greedy
and DH-GAN+SBO) trade some accuracy for significant storage savings (Table 4). Qualitative results
are shown in Figure 3.

3.3 Multi-Stage Ensemble Approach

We propose a three-stage method for road extraction:
1. Train multiple U-net-like networks with different dilation rates for road and intersection segmen-

tation. 2. Combine partial predictions with RGB input in another network for improved segmentation.
Generate road vectors using SBO. 3. Add missing links using both segmentation and road vectors.
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Method F-measure

GAN [36] 77.70%
LG-Seg-ResNet-IL [37] 81.06%
U-net [38] 79.79%
DH-GAN 84.05%
DH-GAN + Greedy 80.81%
DH-GAN + SBO 81.74%

Table 2: Road detection results. Higher is better.

Labeling Type Method F-measure

OSM GAN [36] 54.89%
DH-GAN 63.01%
DH-GAN + Greedy 31.81%
DH-GAN + SBO 59.79%

Independent GAN [36] 64.42%
DH-GAN 82.65%
DH-GAN + Greedy 43.42%
DH-GAN + SBO 86.00%

Table 3: Intersection detection results. Higher is better.

Method Vertices Edges

LG-Seg-ResNet-IL [37] 782* -
DH-GAN 1345* -
DH-GAN + Greedy 23 21
DH-GAN + SBO 19 17
OSM (ground truth) 29 31

Table 4: Average storage cost. Lower is better. *Vertices obtained by thinning roads to single pixel
width.
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Figure 3: Qualitative results for road detection and map generation using graphs.

Table 5: Roads segmentation results on our training/validation split.

Model Our Training Our Validation
IoU F1 IoU F1

Max dilation 32 0.6432 0.7824 0.6483 0.7883
Max dilation 48 0.6577 0.7913 0.6601 0.7957
Max dilation 64 0.6591 0.7919 0.6640 0.7966

We use the DeepGlobe Dataset [39] with 6226 training, 1243 validation, and 1101 test images. Our
U-net variants use chained dilated convolutions with different maximum dilation rates (32, 48, 64).
We also train a network on constant-width roads. Results are shown in Tables 5-??.

We found that training on thicker roads improved performance (Table 6).

3.4 Conclusions and Future Work

We presented two approaches for road detection in aerial imagery:
1. DH-GAN with SBO for efficient road graph extraction, combining deep learning and graph

optimization.
2. A multi-stage ensemble approach using multiple dilation rates and road vector refinement.

Both methods show improvements over baselines. Future work includes improving existing maps,
multi-level representations combining ground and aerial views, and addressing road width variations.
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Table 6: Road thickness study using Max dilation 32 model.

IoU Our Training IoU Our Validation

Same width Thin (≈ 4m) 0.6282 0.6123
Thick (2x thin) 0.6918 0.6751

Variable width Thin (original) 0.6432 0.6483
Thick (2x thin) 0.7254 0.6889

Figure 4: NGC can put together different interpretations of the dynamic scene, such as 3D structure,
pose, motion, semantic segmentation of objects and activities in different regions of space and time,
into a unified neural graph, in which multiple paths reaching a given node become teacher through
consensual agreements to any single edge net reaching the same node. Trained in this self-supervised
manner, NGC can reach robust unsupervised learning in the face of unlabeled data. The scene in the
figure is taken from a virtual environment used to collect data for our experiments.

4 Towards a complete understanding of the world with a drone

We aim to better understand the world from multiple representations. First, we present SafeUAV, a
safe landing solutions that leverages depth and surface normals to output safe landing regions. We
then present Neural Graph Consensus, a self-supervised algorithm for improving scene understanding
based on a diverse set of representations, as shown in Figure 4.

4.1 Safe landing for UAVs

We propose SafeUAV-Net, an embeddable system based on deep convolutional networks for depth and
safe landing area estimation using only RGB input. We produce a synthetic dataset and train on it,
showing compelling performance on real drone footage.

4.1.1 SafeUAV-Net for depth and plane orientation estimation

We aim to predict depth and classify plane orientation into three classes: horizontal, vertical and
other. Our tasks are related to semantic segmentation as we predict a categorical value for each pixel.
We use a variant of the U-Net model proposed by [40] for aerial image segmentation. We developed
two variants: SafeUAV-Net-Large runs at 35 FPS on Nvidia’s Jetson TX2, while SafeUAV-Net-Small
runs at 130 FPS. The detailed architectures are described in Figure 5.

4.1.2 Dataset

We construct our virtual dataset using Google Earth [41] 3D reconstructions. The dataset consists of
11,907 samples in an 80
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Figure 5: Our proposed SafeUAV-Nets for both on-board and off-board processing, trained for depth
estimation and plane orientation prediction.

Table 7: HVO prediction results for SafeUAV-Net-Large and SafeUAV-Net-Small trained on full
dataset.

Model Input Accuracy Precision Recall mIoU

U-net [38] RGB 0.729 0.560 0.505 0.356

DeepLabv3+ [42] RGB 0.840 0.753 0.739 0.597

Small RGB 0.823 0.728 0.693 0.551

Large RGB 0.846 0.761 0.748 0.607

4.1.3 Experiments

We report qualitative and quantitative results on depth estimation and HVO segmentation on all four
regions from our dataset. Tables 7 and 8 show the results. Our experiments on unseen synthetic test
cases show that our system is numerically accurate while being fast on an embedded GPU. We believe
the use of our approach on commercial drones could improve flight safety in urban or suburban areas
at high speeds and complement on-board sensors.

4.2 Semi-Supervised Learning for Multi-Task Scene Understanding using
Neural Graph Consensus

We propose Neural Graph Consensus (NGC), a novel model for semi-supervised learning of multiple
scene interpretations. NGC connects multiple deep networks into a large neural graph, where each
node represents a different interpretation of the scene (e.g., depth, semantic segmentation, pose). The

Table 8: Results on depth estimation for SafeUAV-Net-Large and SafeUAV-Net-Small trained on full
dataset. Errors are expressed in meters.

Model Input RMSE Meters

U-net [38] RGB 0.041 9.63

DeepLabv3+ [42] RGB 0.034 8.49

Small RGB 0.031 7.22

Large RGB 0.026 6.09
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Iteration 0 Iteration 1 Iteration 2
Representation Evaluation Metric EdgeNet NGC Distil. EdgeNet NGC Distil. EdgeNet
Depth L1 (meters) 4.9844 3.4867 4.2802 3.2994 3.9508
Surface Normals (C) L1 (degrees) 8.4862 7.7914 8.2891 7.4503 7.6773
Surface Normals (W) L1 (degrees) 11.8859 8.8248 10.7500 8.5282 8.6714
Semantic Segmentation mIOU 0.4840 0.4978 0.4980 0.5258 0.5159
Wireframe Accuracy 0.9617 0.9655 0.9654 0.9661 0.9655
Position L2 (meters) 25.7597 15.5383 20.0204 12.0764 15.5599
Orientation L1 (degrees) 3.8439 2.5001 3.3961 2.2088 3.0005

Table 9: Results for our proposed ensemble NGC and distilled EdgeNets on 6 representations, over 2
iterations of unsupervised learning.

edges between nodes are deep networks that transform one representation into another. The NGC
model is illustrated in Figure 6.

Figure 6: Neural Graph Consensus (NGC) model architecture

4.3 Neural Graph Consensus Model

Each node i in the graph has an associated layer Li, encoding a specific view or interpretation of the
space-time world. Layers at nodes can be predicted from other layers by deep nets forming edges in
the graph. During unsupervised learning, each net becomes a student of the NGC graph and is trained
by the mutual consensus from contextual pathways reaching the same output node. NGC becomes a
self-supervised system where agreement is the ultimate teacher for unlabeled data.

4.3.1 Experimental Analysis

We capture a large dataset using a customized CARLA simulator [43], where a drone flies above a
city predicting scene depth, 3D surface normals, absolute 6D pose, scene wireframe, and semantic
segmentation from a single image. We developed a general NGC framework on top of PyTorch [44].
For EdgeNets we used Map2Map and Map2Vector architectures, each with about 1.1M trainable
parameters. The total NGC model has 27 edge nets, totaling about 30M parameters. Table 9 shows
results for our proposed ensemble NGC and distilled EdgeNets on 6 representations over 2 iterations of
unsupervised learning. We compared NGC with state-of-the-art multi-task learning methods NDDR
[45] and MTL-NAS [46], and semi-supervised learning method CCT [47]. Tables 10 and 11 show the
results.

Figure 7 visualizes the improvements achieved by NGC over baseline single-task models for various
scene understanding tasks.
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Task Metric EdgeNet(iter 0) NGC NDDR*(no pretrain) NDDR*(pretrain) NDDR MTL-NAS
Semantic mIOU 0.484 0.498 0.141 0.343 0.315 0.368
Segm. Acc. 90.017 91.816 48.7 84.2 86.9 87.8
Normals (C) Err (deg.) 8.4862 7.7914 9.820 7.727 6.801 6.533

Table 10: Multi-task learning results. All methods were trained on the same supervised data (our
train set) and tested on the evaluation set.

Metric EdgeNet (iter 0) NGC (iter 2) EdgeNet (iter 2) CCT (supervised) CCT (semi-supervised)
mIOU 0.484 0.526 0.516 0.353 0.353
Accuracy 0.9001 0.9245 0.9283 0.8463 0.8503

Table 11: Semantic segmentation comparisons on our evaluation set with the semi-supervised CCT[47].

Figure 7: Visual comparison of NGC results with baseline methods for various scene understanding
tasks

4.4 Conclusions

We presented SafeUAV-Net for depth and safe landing area estimation, and the Neural Graph Con-
sensus model for multi-task semi-supervised learning. Both approaches show promising results on
synthetic and real data. Future work could explore using spatial and temporal continuity in video
sequences for more robust predictions, and improving safety through visual geolocalization.

5 Towards efficient building of the 3D structure

We propose an efficient method for unsupervised learning of metric depth estimation from a single
image in the context of unconstrained videos captured from UAVs. We combine the accuracy of
an analytical solution based on odometry with the power of deep learning. Our approach, called
UFODepth, outperforms state-of-the-art methods on a UAV dataset that we significantly extend.
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5.1 UFODepth: Unsupervised learning with flow-based odometry opti-
mization for metric depth estimation

5.1.1 Introduction

Unsupervised learning of metric depth estimation from video and odometry can have a strong impact on
autonomous navigation. For UAVs, safe landing is a crucial task that should be done with high precision
using solely sensors available on-board. Our approach combines two complementary directions:

UFODepth has an analytical solution for depth estimation from optical flow and measured camera
velocities - corrected with a novel optimization approach. The analytical depth is then used both as
input and as an additional cost term for training the final UFODepth net for depth estimation.

5.1.2 Scientific context

Recent real-time SLAM methods result in low resolution output (256x192 pixels) [48]. Other ap-
proaches that achieve real-time 3D reconstruction (e.g. NeuralRecon [49]) are based on SDF repre-
sentations that do not directly output a depth map. Recent deep learning methods such as consistent
depth estimation [50] or NeRF-based approaches [51, 52] produce metric depth only if they start from
scaled intermediary SfM results and need fine-tuning on each scene. Several methods rely on un-
supervised learning [53–55]. The two most similar works for unsupervised depth claiming real-time
operation are [56] and [57]. Other recent approaches providing high-quality depth output generally
require heavy pre-training on very large datasets [58, 59].

5.1.3 Flow-based odometry optimization

We aim to compute robust metric depth from optical flow and camera odometry. First we derive an
analytical solution, which we then use to correct the initial odometric measurements. The image-
to-image optical flow caused by camera movement can be written as a sum of two components: the
linear flow Fν caused by translations, and the rotational flow Fω produced by rotation. The temporal
derivative of a 3D scene point P = (X,Y, Z) in the camera coordinate system is related to the camera
movement by linear (ν) and angular (ω) velocities:

Ṗ = −ω ×P− ν. (1)

We can define optical flow as a function of instantaneous camera motion and depth:(
˙̄uν ˙̄vν

)
=

1

Z

(
−f 0 ū 0 −f v̄

) (
νx νy νz

)
. (2)

(
˙̄uω ˙̄vω

)
=

(
ūv̄

f
−f2 + ū2

f
v̄
f2 + v̄2

f
− ūv̄

f
−ū

)(
ωx ωy ωz

)
. (3)

5.1.4 Unsupervised training

Our training procedure is inspired by [55]. We build upon the geometry consistency loss, termed LGC,
and introduce two additional losses, LDepth and LPose. Our objective is minimizing:

L = LReconstruction+ LGC + LDepth+ LPose. (4)

An overview of our approach is shown in Figure 8.

5.1.5 Experimental analysis

We test on and extend a recently published dataset for UAV vision research. Slanic and Herculane
Dataset: This dataset includes a total of 20 minutes of 4K video sequences from two urban scenes from
Eastern Europe [56]. It includes odometry information at 10 Hz frequency. Extended Odometry
Dataset: We introduce three novel scenes (Oveselu, Olanesti, Chilia) with various landscapes. The
dataset has a total of 33 minutes of real drone flight, at 30 FPS.
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Figure 8: Overview of our approach (UFODepth). We combine three types of losses with an improved
mathematical formulation for depth from optical flow.

Table 12: Mean absolute and relative errors against DSfM ground truth depth.

Method Slanic Chilia Olanesti Herculane Oveselu Overall
Metric Rel. Metric Rel. Metric Rel. Metric Rel. Metric Rel. Metric Rel. Coverage

DTriangulation[60] 25.39 18.9 14.79 11.2 51.82 49.3 23.19 13.4 21.79 19.9 21.29 15.6 74.0 %
DOdoFlow [56] 18.33 13.7 12.90 11.0 13.5 11.4 17.36 9.6 19.50 17.7 16.32 12.7 74.0 %
DOdoFlow++ 16.06 12.4 13.92 10.4 13.4 11.7 14.46 8.6 18.52 17.3 15.27 12.0 74.0 %

5.1.6 Results

Table 12 shows the performance of our analytical depth estimation method DOdoFlow++ compared
to previous work. Table 13 compares our full UFODepth approach to state-of-the-art methods.
Our results show that UFODepth outperforms previous methods on average across all scenes. The
analytical DOdoFlow++ component provides accurate depth estimates where valid. The full UFODepth
approach generalizes well to novel scenes while maintaining competitive inference speed.

5.2 Depth distillation: unsupervised metric depth estimation for UAVs

We also explore a depth distillation approach that combines analytical and data-driven methods. An
overview is shown in Figure 9. We use three types of depth maps:

DSfM : Depth from structure-from-motion, used as ground truth for evaluation. DOdoFlow: An-
alytical depth from optical flow and odometry. DUnsup: Depth from an unsupervised deep network,
scaled to be metric using DOdoFlow.

Table 13: Mean absolute and relative errors against DSfM ground truth depth. Methods that do not
provide metric estimations are scaled towards DOdoFlow++ for fair comparison.

Method Slanic Chilia Olanesti Herculane Oveselu Overall
Metric Relative Metric Relative Metric Relative Metric Relative Metric Relative Metric Relative

DUnsup[55] 25.00 15.4 44.52 23.4 25.85 18.4 34.40 16.0 31.10 22.3 32.17 19.1
DEnsemble[56] 24.83 14.9 37.93 18.4 22.46 15.2 34.28 16.6 33.15 22.1 30.53 17.44
Tiny-16 [56] 26.34 16.7 46.11 23.7 26.76 19.5 41.30 19.8 32.76 23.8 34.65 20.7
DPT [59] 34.33 22.8 23.87 13.9 26.36 20.1 30.48 14.8 28.57 26.8 28.72 19.7
BMD [58] 42.09 33.1 46.83 36.5 33.75 31.4 80.44 44.1 38.83 41.4 48.4 37.3

PackNet [57] 34.36 21.4 43.82 25.4 31.34 22.9 42.64 20.1 33.41 25.2 37.11 23.0
UFODepth-RGB 21.52 14.4 49.90 27.6 25.28 18.5 32.52 16.2 30.80 23.0 32.0 19.9

UFODepth 22.36 14.9 33.56 17.0 21.98 15.4 26.45 13.0 26.73 19.4 26.21 15.9
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Figure 9: Overview of our depth distillation approach, combining several complementary pathways
for accurate metric depth estimation.

Slanic Herculane
Metric Relative Metric Relative

DUnsup 27.28 m 17.10 % 44.39 m 20.29 %
DOdoFlow 26.05 m 16.34 % 39.67 m 17.53 %
DEnsemble 25.63 m 15.88 % 41.18 m 18.29 %
Tiny − 16 21.58 m 14.58 % 46.77 m 24.09 %
Large− 16 21.84 m 14.65% 48.00 m 23.97 %

Table 14: Mean absolute and relative errors on entire valid map against DSfM ground truth depth.

We form an ensemble teacher by CopyRetryClaude’s response was limited as it hit the maximum
length allowed at this time.IPlsea continueEditcombining DOdoFlow and DUnsup, and use this to train
a lightweight student network for real-time depth estimation.

5.2.1 Results

Tables 14 and 15 show results on the full image area and the ”good” area where DOdoFlow is valid.
The distilled student networks (Tiny-16 and Large-16) outperform their teachers on the Slanic test

set. While performance degrades on the unseen Herculane dataset, the students remain competitive.
Table 16 shows inference speed on desktop and embedded GPUs.

Slanic Herculane
Metric Relative Metric Relative

DUnsup 21.06 m 15.31 % 31.61 m 16.60 %
DOdoFlow 19.56 m 14.39 % 24.97 m 12.72 %
DEnsemble 19.03 m 13.81 % 27.10 m 13.79 %
Tiny − 16 16.11 m 12.90 % 37.42 m 22.95 %
Large− 16 16.66 m 13.41 % 37.43 m 22.41 %

Table 15: Absolute and relative errors on the good area, where both DSfM and DOdoFlow predictions
are valid.
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Method Parameters Desktop[FPS] Embedded[FPS]

DUnsup[55] 14,842,236 166.703± 3.27 11.631± 0.55)
OpticalF low(only)[61] 15,263,888 83.404± 2.65 43.699± 3.13
DOdoFlow n/a 26.807± 6.17 10.127± 0.73
Tiny − 16[62] 1,119,862 54.922± 1.33 10.357± 0.22
Large− 16[62] 2,005,239 51.969± 1.32 9.045± 0.13

Table 16: Frames per second on desktop and embedded GPUs. The depth from flow algorithm runs
on CPU. The desktop features a RTX 2080 GPU and Ryzen 7 3700 CPU.

5.3 Conclusions

We propose two complementary approaches for unsupervised metric depth estimation from UAV videos:
UFODepth combines an analytical depth estimation method with unsupervised deep learning,

achieving state-of-the-art results on our extended UAV dataset. A depth distillation approach that
uses an ensemble of analytical and unsupervised methods as a teacher to train a lightweight student
network.

Both methods demonstrate good generalization to novel scenes and near real-time performance on
embedded platforms, making them suitable for on-board deployment on UAVs. Future work could
explore incorporating additional geometric constraints and optimizing for real-time performance on
embedded devices.

6 A self-supervised cyclic neural-analytic approach for novel
view synthesis and 3D reconstruction

Generating novel views from recorded videos is crucial for enabling autonomous UAV navigation.
Recent advancements in neural rendering have facilitated rapid development of methods capable of
rendering new trajectories. However, these methods often fail to generalize well to regions far from the
training data without an optimized flight path, leading to sub-optimal reconstructions. We propose a
self-supervised cyclic neural-analytic pipeline that combines high-quality neural rendering outputs with
precise geometric insights from analytical methods. Our solution enhances both RGB and mesh re-
constructions for novel view synthesis, particularly in undersampled areas and regions entirely distinct
from the training dataset.

6.1 Introduction

Traditional approaches to novel view synthesis predominantly focus on object-centered or synthetic
datasets characterized by minimal noise in the input data. Testing typically occurs on the same
images used for training or at regular intervals within a sequence [63]. Although current neural
rendering techniques can produce high-quality reconstructions on the training data – with PSNR values
often exceeding 30 [64], camera paths diverging significantly from the training data frequently lead to
inferior reconstructions. A prevalent strategy to mitigate these limitations involves segmenting datasets
into smaller, consistent regions [65, 66]. However, this approach demands substantial computational
resources, as a separate model must be trained for each sequence [67, 68]. We introduce a cyclic
neural-analytic approach that utilizes the strengths of structure-from-motion and neural rendering
methods to synthesize high-fidelity RGB images on novel poses far from the training set. Our pipeline
employs a dual-phase reconstruction strategy. Initially, an analytic 3D reconstruction aligns with neural
rendering branch outputs to refine geometric consistency. Subsequently, we repurpose a lightweight
transformer for image restoration to achieve high-resolution reconstruction of novel 2D views. Our
main contributions are:

1. We combine analytical and neural 3D reconstruction methods through a novel cyclic self-supervised
transformer-based approach and show improvements for both novel view synthesis and 3D re-
construction through iterative learning.

2. Our framework demonstrates generalization capabilities, generating quality images from test
locations without additional training data.
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Figure 10: Overview of our self-supervised cyclic neural-analytic pipeline for novel 2D view synthesis.
We rely on both traditional and modern 3D reconstruction methods which we combine through a
self-supervised transformer-based U-net style model for improved image reconstruction. We employ
an iterative learning procedure in which the outputs from the first learning iteration become inputs for
the next to further refine the results in terms of RGB and mesh, without additional new images. We
work in the UAV video domain and use the last 20% from the image sequence as testing to simulate
a more realistic reconstruction scenario. Original RGB frames from the TEST set are used
exclusively for evaluation purposes.

3. We show improvement compared to state-of-the-art methods on difficult cases of real-world scenes
captured by UAVs, spanning large areas with significant noise in pose and depth.

6.2 Method

Our pipeline consists of complementary analytical and neural modules (Figure 10). Both are capable
of rendering images from novel poses. The initial iteration uses the training set for both modules. New
images are generated from the test poses and included in the training data. We repeat the cycle with
the newly generated images.

6.2.1 Analytic 3D Reconstruction

We employ a standard photogrammetric 3D reconstruction pipeline [14, 69, 70]. The pipeline processes
unordered images to reconstruct 3D scenes, through feature extraction, matching, structure-from-
motion, and multi-view stereo. The resulting dense point cloud is transformed into a textured mesh.

6.2.2 Neural 3D Reconstruction

We leverage the Gaussian Splatting method [64], which represents the scene using 3D Gaussians
characterized by position, anisotropic covariance matrix, and opacity. This representation efficiently
captures scene details without dense sampling. The rendering process utilizes tile-based rasterization,
projecting 3D Gaussians onto a 2D plane for efficient blending.

6.2.3 Self-supervised Neural-Analytic Novel View Synthesis

We combine the previous analytical and neural 3D reconstruction by adapting a lightweight transformer-
based architecture [71] for enhanced image reconstruction. The model resembles a U-net style archi-
tecture with transformer blocks used instead of simple convolutional layers. We train the model in
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Table 17: Comparison to state-of-the-art methods for novel view synthesis. PSNR reconstruction
results on the Aerial dataset [72] for the test set exclusively. Best numbers for each individual set are
bolded.

MethodScene Slanic Olanesti Chilia Herculane Mean

SFM [70] 18.43 17.63 18.75 18.27 18.27
DVGO [77] 15.34 14.34 16.43 15.43 15.38
Plenoxels [78] 17.22 15.92 18.59 16.07 15.38
Instant-NGP [13] 16.54 19.25 21.01 19.12 18.98
Neuralangelo [76] 16.79 16.20 16.96 15.82 17.29
GeoView [79] 20.28 18.64 19.04 18.17 19.03
Gaussian Splatting [80] 19.37 19.34 21.85 20.85 20.35

CNA (Ours) 19.85 19.81 22.21 21.39 20.82

a self-supervised manner using RGB frames from video sequences as supervision when computing
pixel-wise mean squared error loss on predictions.

6.2.4 3D Cyclic Refinement

Our method includes cyclic refinement that improves results without additional supervision. By feeding
rendered images from test poses back into the algorithm, we observe performance gains in image
reconstruction.

6.3 Experimental Analysis

We apply our framework to a range of outdoor scenes, aiming to improve performance on the test set
without additional labels or retraining. We use the following datasets:

• Aerial dataset [72]: Features telemetry data and diverse landscapes captured by UAVs.

• BlendedMVS [73]: An outdoor scene reconstruction dataset with rendered images.

• Rubble [74]: A drone-captured dataset with detailed imagery.

• Tanks and Temples [75]: We use the Family scene for object-centric evaluation.

We split each scene into 80% training and 20% testing data. Results are evaluated on the test set to
ensure generalization.

6.4 Results and Discussion

We compare our method against state-of-the-art approaches including Instant-NGP [13], Neuralangelo
[76], Direct Voxel Grid Optimization [77], Plenoxels [78], and Gaussian Splatting [64]. Table 6.4 shows
results on the Aerial dataset. Our Cyclic Neural-Analytic (CNA) approach yields improved results
without additional labels, with consistent improvements across scenes. Results on other datasets
are shown in Table 6.4. We observe improvements across different scene types, including object-
centric, drone-captured, and synthetically reconstructed scenes. Our ablation study (Table 6.4) shows
consistent improvement across iterations, demonstrating the effectiveness of our cyclic approach. We
also assess 3D reconstruction quality by comparing meshes generated from training data only versus
those enhanced by CNA rendered images. Results show consistent improvement in 3D reconstruction
accuracy (Table 6.4).

6.5 Conclusions

We presented a self-supervised cyclic neural-analytic pipeline that blends neural rendering with mesh-
based analytical methods. Our solution enhances both RGB and 3D mesh reconstructions for novel
view poses significantly different from the training set. Experiments demonstrated the effectiveness of
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Table 18: Test set comparison with Instant-NGP, Gaussian Splatting and the baseline analytical
reconstruction method on three additional scenes. We have selected scene 5b69cc0cb44b61786eb959bf
from BlendedMVS, the Rubble scene from MIL-19, and the Family scene for Tanks and Temples. The
split structure is the same as with our previous experiments (80% training, 20% testing). Best numbers
for each individual set are bolded.

MethodScene BlendedMVS Rubble Tanks and temples Mean
Instant-NGP [13] 14.54 11.54 14.61 13.56
Analytical [70] 13.95 13.65 15.73 14.44
Gauss.Splatt. [80] 21.52 15.53 19.63 18.89
CNA (Ours) 21.67 16.04 19.81 19.17

Table 19: Ablative studies for each of the components in our proposed method, CNA on the Aerial
dataset [72]. PSNR reconstruction results are reported on the test set exclusively. (1) and (2) denote
the first and second iteration of CNA. Best numbers for each individual set are bolded.

MethodScene Slanic Olanesti Chilia Herculane Mean

Iteration (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)
Analytic (only) 18.43 18.66 17.63 16.99 18.75 19.12 18.27 18.83 18.27 18.40
Analytic (aligned) 19.11 19.33 17.73 17.05 18.95 19.81 18.42 19.01 18.55 18.80
Neural (only) 19.49 19.73 19.48 19.85 21.28 22.19 21.27 21.38 20.38 20.79

CNA (Ours) 19.65 19.85 19.81 19.81 21.90 22.21 21.32 21.39 20.67 20.82

Table 20: 3D reconstruction errors over iterations on the Aerial dataset [72] for the test set exclusively.
Best numbers for each individual set are bolded.

MethodScene Slanic Olanesti Chilia Herculane

Mean Median Mean Median Mean Median Mean Median
Iteration 1 0.6102 0.5263 0.5053 0.5013 0.5324 0.4932 0.5289 0.4802
Iteration 2 0.4832 0.4392 0.3806 0.3646 0.3553 0.2934 0.4125 0.4225

both neural and analytic modules and the usefulness of cycling. Our design allows for drop- Copy-
RetryClaude’s response was limited as it hit the maximum length allowed at this time.IPlease contin-
ueEditHere is the continuation and conclusion of the condensed chapter: in replacement of modules,
covering new ground in this area and having the potential to push the boundaries further towards
novel view synthesis grounded in the 3D physical world. While most methods are tested on synthetic
scenes and on the same images used for training, we evaluated and showed improvements over state-
of-the-art from viewpoints drastically different from those seen in training. Moreover, we showed that
our method suffers from little degradation between seen (training) vs unseen (testing) data, unlike
recent competition which shows significant degradation, indicating strong overfitting.

6.6 Future Work

We aim to improve the efficiency of the training pipeline to benefit from the latest innovations in 3D
reconstruction - faster training, better accuracy, depth, surface normals and mesh as output represen-
tations. Ideally, we would iteratively improve over a textured mesh that has used all the information
in the RGB image. Preprocessing for rolling shutter and motion blur could result in higher PSNR
output, as shown in 3GS Deblur [81]. Comparing meshes over time is an important area of concern
(e.g., detecting environmental changes such as vegetation growth or historical building decay) and
we aim to adapt the concept presented here towards a mesh output instead of RGB. We would use
the experience gained from synthetic data rendering and 3D reconstruction to assign pixel classes
and build a more robust output. Figure 11 illustrates the consistent improvement in PSNR across
test frames for our CNA method compared to baselines. This demonstrates the robustness of our
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Figure 11: PSNR error on Slanic on each test frame. CNA consistently improves over the other
baselines, despite not receiving additional RGB images. The performance gains are not only average,
but on the vast majority of frames.

approach in generating high-quality novel views. In conclusion, our cyclic neural-analytic approach
offers a promising direction for improving novel view synthesis and 3D reconstruction, particularly
for challenging real-world scenes captured by UAVs. By combining the strengths of analytical and
neural methods in an iterative framework, we achieve better generalization to unseen viewpoints and
improved 3D reconstruction accuracy. Future work will focus on further enhancing efficiency, incorpo-
rating additional scene understanding, and extending the approach to temporal mesh comparisons for
environmental monitoring applications.

7 Beyond Static Virtual Scenes: A Real-time Non-Verbal Chat
for Human-AI Interaction

We present a novel approach to Human-AI interaction through real-time nonverbal chat, leveraging
facial expressions and body movements to enhance engagement. Our system aims to capture and
respond to user emotions using computer vision techniques, operating in real-time with minimal com-
putational resources. We offer three complementary approaches based on retrieval, statistical, and
deep learning techniques, integrating an artistic component to transmit emotions. Our experiments
compare diffusion models for 2D emotion translation and introduce a 3D avatar, Maia, with facial and
body movements for a more natural experience.

7.1 Introduction

Recent advances in AI, particularly Large Language Models (LLMs), have shown impressive perfor-
mance in text-based tasks. However, they lack the ability to engage in complex, multi-modal interac-
tions that characterize human communication. Current LLM-based systems are limited in their ability
to tailor responses to individual needs and miss crucial nonverbal cues like gestures, body language,
and facial expressions. These elements convey complex emotional and intentional information beyond
written text. Our work addresses these limitations by focusing on nonverbal aspects of communication,
aiming to bridge the gap between AI capabilities and the nuanced nature of human interaction. We
propose a system that interprets and responds to a wide range of emotions using facial keypoints and
body movements, potentially leading to more intuitive and comprehensive Human-AI communication.

7.2 Methodology

7.2.1 Nonverbal Expressions Dataset (NED)

Due to the scarcity of nonverbal expression transmission datasets, we collected our own dataset, which
we will make publicly available. The dataset contains 30 videos for each emotion type, ranging from
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Set Humans (Mean) GPT-4o

3 emotions 91.66 55.56
5 emotions 50.69 47.22

Table 21: Human and machine-level evaluation for 3 and 5 emotions generated with DreamBooth and
ControlNet. Accuracy over all classes in percentages.

Method Humans (Mean) GPT-4o

NN 55.56 27.78
PCA 66.67 22.22
Retrieval 44.44 38.89
All 55.56 29.63

Table 22: Human and machine-level evaluation for each proposed 3D facial expression generation
method. Accuracy over all classes in percentages.

3 to 6 seconds per video, captured at 30 FPS. For our experiments, we focused on positive emotions:
happy, laughing, and surprised.

7.2.2 Introducing Maia

We created Maia, an animated character converted to 3D using VRoidStudio [82] and original artistic
oil paintings. For animation, we use VSeeFace [83]. The texture used for creating our avatar is derived
from a painting depicting the emotion ”happy”.

7.2.3 Evaluation Procedures

We employ two means of evaluation: an automatic evaluation using GPT-4 [84] and a human-level
evaluation. For the automatic evaluation, GPT-4 analyzes individual frames from test videos, assigning
emotion labels based on detected facial expressions and contextual cues. For human evaluation, we
recruited individuals to evaluate the same test set as used in the automatic evaluation.

7.2.4 2D generation with diffusion

Our 2D approach uses OpenCV for video input processing, OpenPose [85] for pose estimation, and a
depth estimation pipeline [86] to generate depth maps. We employ a Stable Diffusion XL model [87]
with dual ControlNet [88] conditioning for image generation.

7.2.5 3D facial expression generation

We propose three methods for 3D facial response:
Expression Space Reconstruction: Uses PCA for dimensionality reduction to create an embedded

space for emotions. Reaction Distillation: An unsupervised learning framework using a Teacher-
Student paradigm with an MLP-based neural network. Similar Emotion Retrieval: Retrieves the most
similar keypoint sequence from a predefined dataset.

7.2.6 3D body movement generation

We extended our experiments to include body movements, focusing on three emotions: ”happy to
see you”, ”enthusiastic,” and ”laughing”. We collected around 100 videos of 5 seconds each for these
emotions and evaluated how well Maia conveyed the desired emotion through body movement.

7.3 Results and Discussion

For the 2D generation with diffusion, human annotators achieved a mean accuracy of 91.66% in the
three emotions scenario, significantly outperforming GPT-4o’s 55.56% accuracy (Table 21). For 3D
facial expression generation, the PCA method performed best when evaluated by human annotators,
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Set Humans (Mean) GPT-4o zero-shot GPT-4o few-shot

3 emotions 93.44 57.67 73.00

Table 23: Human-level and automatic evaluation for the Maia body movement experiments on our
test set.

Figure 12: The process of creating our 3D avatar Maia. We used a default VRoidStudio feminine
avatar on top of which we applied the facial texture from the painting on top of the avatar’s face
matching each correspondence manually and then customizing her with hair and clothing based on her
personality. We used a different painting as the background for Maia.

while the Retrieval approach scored highest with GPT-4o (Table 22). For 3D body movement gen-
eration, human evaluators achieved a mean accuracy of 93.44%, while GPT-4o achieved 57.67% in
zero-shot and 73.00% in few-shot scenarios (Table 23).

7.4 Ethical Considerations

We prioritize privacy and data protection in our approach. Our method relies on facial and body
keypoints rather than raw video data, serving as a privacy-preserving feature. We extract these
keypoints from facial data and emotional insights, anonymizing the information and discarding the
original video input. This approach allows us to build a comprehensive data lake of emotions without
risking user privacy.

7.5 Impact and Future Work

Our system has potential applications in education, therapy for individuals with communication chal-
lenges, and interactive museum exhibits. It could be particularly beneficial for special needs children
who require constant engagement and interaction. Future work will focus on generating combined full
body and facial keypoints-based animated avatars in real time. We also plan to explore online and
continual learning procedures to enhance emotion-based human-AI interaction, involving a dynamic
system that continuously updates its knowledge and behavior based on real-time interactions.

7.6 Conclusion

Our real-time nonverbal chat system represents a significant advancement in Human-AI interaction. By
bridging the gap between verbal and nonverbal AI communication, we open new avenues for creating
more empathetic, engaging, and naturalistic AI systems, bringing us closer to the goal of truly intuitive
human-machine interfaces through art.
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Figure 13: Maia in action. We present visual results of our PCA method applied to our 3D avatar.
Currently, we focused on 3 positive emotions but can be extended to many more.

8 Conclusion

This thesis has explored several key aspects of building efficient and robust systems for aerial scene
understanding, reconstruction, and novel view synthesis using unmanned aerial vehicles (UAVs). The
work spans multiple interconnected areas including localization, semantic segmentation, depth estima-
tion, 3D reconstruction, and non-verbal human-AI interaction. Throughout the various chapters, we
have made several contributions that advance the state-of-the-art in these domains.

8.1 Key Insights

The insights below summarize key learnings from the thesis and also point towards directions for future
research in aerial computer vision and robotics:

1. Synergy of Geometric and Learning-Based Approaches Combining classical geometric
techniques with modern deep learning approaches often yielded robust and effective solutions.
This synergy leverages the interpretability of geometric methods and the flexibility of learning-
based approaches. For example, our novel view synthesis pipeline uses multi-scale voxel carving
alongside a neural rendering module.

2. Importance of Unsupervised and Self-Supervised Learning Given the challenges of ob-
taining large-scale labeled data for aerial vision tasks, unsupervised and self-supervised learning
techniques proved valuable. From depth estimation to novel view synthesis, we demonstrated
how to leverage inherent geometric and temporal consistency in the data to train models without
manual annotations.

3. Bridging Simulation and Reality We explored techniques for bridging the gap between
synthetic training data and real-world deployment. Our work on safe landing area estimation
and depth prediction showed that carefully designed synthetic datasets, combined with domain
adaptation techniques, can lead to models that generalize to real-world scenarios.
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4. Efficiency and Real-Time Operation A consistent theme was the focus on developing meth-
ods that are computationally efficient and suitable for real-time operation on embedded plat-
forms. The resulting methods, such as SafeUAV-Net and our efficient novel view synthesis
pipeline, demonstrate that it’s possible to achieve competitive performance within the computa-
tional constraints of UAV platforms.

5. Importance of Multi-Scale Representations Across various tasks, from road detection to
3D reconstruction, we found that multi-scale representations were helpful in handling the wide
range of scales present in aerial imagery. Our multi-scale voxel carving approach for novel view
synthesis is an example of how this principle can be applied.

8.2 Conclusions

This thesis has explored several aspects of building systems for aerial scene understanding, reconstruc-
tion, and novel view synthesis using UAVs. The work spans multiple interconnected areas including
localization, semantic segmentation, depth estimation, 3D reconstruction, and non-verbal human-AI
interaction. Chapter 2: Localization from roads and intersections in aerial images We pre-
sented a method for automatic geolocalization of aerial images without GPS information, by matching
detected roads and intersections to publicly available map data. Our approach achieved localization
results even when trained on images from one city and tested on another [? ]. Key contributions of
this chapter include:

• A method for automatic geo-localization in aerial images without GPS information

• A dual-stream local-global deep CNN for detection of roads and intersections

• A geometric alignment procedure for localization and road detection enhancement

Chapter 3: Detecting roads and buildings in aerial images We introduced a dual-hop gener-
ative adversarial network (DH-GAN) for producing pixelwise segmentation of roads and intersections
simultaneously at two levels of interpretation [? ]. Key contributions of this chapter include:

• A dual-hop GAN architecture for simultaneous road and intersection detection

• A smoothing-based optimization (SBO) approach for extracting road graph structures from pix-
elwise segmentation

• An evaluation on a dataset of European roads, demonstrating improvements over previous meth-
ods

Chapter 4: Towards a complete understanding of the world with a drone We tackled two
problems for UAV operation: safe landing area estimation and comprehensive scene understanding.
For safe landing area estimation, we proposed SafeUAV-Net, a convolutional neural network for both
depth and safe landing area estimation using RGB input. Key contributions include:

• A CNN architecture suitable for embedded deployment

• A synthetic dataset for training safe landing area estimation models

• Results on both synthetic data and real RGB drone footage

For comprehensive scene understanding, we introduced the Neural Graph Consensus (NGC) model,
an approach to multi-task semi-supervised learning. Key aspects of this work include:

• A graph-based architecture for multi-task learning

• An approach for semi-supervised learning through consensus

• Results on multiple scene understanding tasks, including depth estimation, semantic segmenta-
tion, and pose estimation
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Chapter 5: Towards efficient building of the 3D structure We introduced two contributions in
the area of depth estimation from monocular imagery: First, we proposed UFODepth, a method for
unsupervised learning of metric depth estimation from a single image in the context of unconstrained
videos captured from UAVs. Key innovations include:

• A flow-based optimization procedure to correct noisy odometry measurements

• An analytical depth estimation method based on optical flow and corrected camera velocities

• An unsupervised learning architecture that incorporates both analytical and data-driven con-
straints

Second, we explored a depth distillation approach that combines multiple complementary pathways
for metric depth estimation. Key aspects include:

• An ensemble approach combining analytical and learning-based depth estimation

• A distillation procedure to train a compact student network

• Generalization to novel scenes and performance on embedded hardware

Chapter 6: Putting together 3D and Novel view synthesis We addressed the problem of
novel view synthesis for large-scale aerial scenes. We made two contributions in this area: First, we
introduced a self-supervised approach for novel 2D view synthesis of large-scale scenes captured by
UAVs. Key innovations include:

• A multi-scale geometric method based on voxel carving

• A self-supervised neural rendering module for refining the geometric reconstruction

• Performance on real-world data with noisy pose information

Second, we extended this work to a cyclic neural-analytic approach that iteratively refines both 2D
novel view synthesis and 3D reconstruction quality. Key aspects of this work include:

• A cyclic refinement procedure that alternates between geometric and neural reconstruction

• Improved performance on both novel view synthesis and 3D reconstruction tasks

• Handling of large-scale scenes and noisy real-world data

Chapter 7: Beyond Static Virtual Scenes: A Real-time Non-Verbal Chat for Human-AI
Interaction We explored a direction in human-AI interaction by proposing a real-time non-verbal chat
system based on facial expressions. We introduced Maia, an animated avatar capable of responding to
human emotions in real-time using visual cues. Key contributions of this work include:

• A dataset of nonverbal expressions for training emotion recognition and generation models

• Approaches for generating expressive responses, including 2D image generation with diffusion
models and 3D facial and body animation

• An evaluation framework comparing human assessment and automatic metrics

This work opens up possibilities for AI interactions, with potential applications in education, therapy,
and interactive exhibits.

8.3 Future work

While this thesis has made contributions to various aspects of aerial scene understanding and recon-
struction, there are numerous directions for future research that could build upon and extend this
work. We outline several promising avenues for future investigation across the different areas explored
in the thesis. Geolocalization and Mapping

• Multi-modal fusion: Incorporate additional sensors (IMUs, low-cost GPS) for improved accuracy.
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• Temporal consistency: Leverage video sequences for better stability in challenging areas.

• Adaptive map updating: Develop online algorithms for continuous map refinement.

• Semantic enrichment: Expand detection to include buildings, vegetation, and water bodies.

Semantic Segmentation and Road Extraction

• Multi-task learning: Integrate building detection and land use classification.

• Weakly-supervised learning: Utilize noisy map data for larger-scale training.

• Temporal consistency: Incorporate constraints for video sequences.

• Fine-grained road attributes: Detect lanes, road types, and traffic conditions.

Safe Landing Area Estimation

• Multi-sensor fusion: Integrate LiDAR and thermal cameras for robustness.

• Dynamic obstacle detection: Track moving vehicles and pedestrians.

• Semantic understanding: Differentiate between surface types for landing.

• Reinforcement learning: Develop end-to-end policies in simulated environments.

Depth Estimation

• Multi-view consistency: Enforce consistency across multiple frames.

• Joint optimization: Optimize depth, camera pose, and 3D structure together.

• Adaptive sampling: Focus resources on informative regions.

• Transfer learning: Develop techniques for quick adaptation to new environments.

Novel View Synthesis

• Large-scale scenes: Develop approaches for city-scale reconstruction.

• Dynamic scenes: Handle moving objects and changing lighting.

• Semantic-aware synthesis: Incorporate semantic information for improved realism.

• Real-time rendering: Push towards real-time synthesis on embedded platforms.

Human-AI Interaction

• Multimodal interaction: Incorporate gesture, pose, and physiological signals.

• Personalization: Adapt to individual users’ styles over time.

• Context-aware responses: Consider conversation history and environmental factors.

• Ethical considerations: Address privacy and potential misuse concerns.

Cross-Cutting Themes

• Uncertainty estimation: Develop techniques for robust uncertainty propagation.

• Continual learning: Investigate methods for ongoing adaptation without forgetting.

• Explainability: Make complex systems more interpretable to users.

• Benchmarking: Create more comprehensive, real-world evaluation datasets.

• Energy efficiency: Develop algorithms optimized for limited power budgets.

Addressing these challenges will require interdisciplinary collaboration across computer vision, robotics,
and machine learning. Advances in these areas have the potential to enable transformative UAV
applications in urban monitoring, disaster response, and beyond.
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slam for medium and high altitude flying uavs. Journal of Intelligent and Robotic Systems, 54
(1-3):137–161, 2009.

[33] Alina Marcu and Marius Leordeanu. Dual local-global contextual pathways for recognition in
aerial imagery. arXiv preprint arXiv:1605.05462, 2016.

[34] Dragos Costea, Alina Marcu, Emil-Ioan Slusanschi, and Marius Leordeanu. Creating roadmaps
in aerial images with generative adversarial networks and smoothing-based optimization. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2100–2109,
2017.

27



[35] Per Enge Frank van Diggelen. The world’s first gps mooc and worldwide laboratory using smart-
phones. Proceedings of the 28th International Technical Meeting of The Satellite Division of the
Institute of Navigation (ION GNSS+ 2015), pages 361 – 369, 2015.

[36] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. arXiv preprint arXiv:1611.07004, 2016.

[37] Alina Marcu and Marius Leordeanu. Object contra context: Dual local-global semantic segmen-
tation in aerial images. AAAI Workshops, 2017. URL https://www.aaai.org/ocs/index.php/

WS/AAAIW17/paper/view/15177/14658.

[38] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pages 234–241. Springer, 2015.

[39] Ilke Demir, Krzysztof Koperski, David Lindenbaum, Guan Pang, Jing Huang, Saikat Basu, Forest
Hughes, Devis Tuia, and Ramesh Raskar. Deepglobe 2018: A challenge to parse the earth through
satellite images. arXiv preprint arXiv:1805.06561, 2018.

[40] Alina Marcu, Dragos Costea, Emil Slusanschi, and Marius Leordeanu. A multi-stage multi-
task neural network for aerial scene interpretation and geolocalization. arXiv preprint
arXiv:1804.01322, 2018.

[41] Google. Google earth, 2018. URL https://www.google.com/earth/. Available at https://

www.google.com/earth/, version 7.3.0.

[42] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-
decoder with atrous separable convolution for semantic image segmentation. arXiv preprint
arXiv:1802.02611, 2018.

[43] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla:
An open urban driving simulator. arXiv preprint arXiv:1711.03938, 2017.

[44] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
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