

National University of Science and

Technology POLITEHNICA Bucharest

Doctoral School of Electronics, Telecommunications

and Information Technology

Decision No. 234 from 02-10-2024

Ph.D.

THESIS

SUMMARY

Diana DRANGA

Contributions to functional verification using Artificial

Intelligence

THESIS COMMITTEE

Prof. Dr. Ing. Mihai CIUC

National University of Science and Technology

POLITEHNICA Bucharest

President

Conf. dr. ing. Habil. Cătălin DUMITRESCU

National University of Science and Technology

POLITEHNICA Bucharest

PhD Supervisor

Prof. Dr. Ing. Cătălin CĂLEANU

Universitatea Politehnică din Timișoara
Referee

Prof. Dr. Ing. Ștefan TOMA

Academia Tehnica Militară
Referee

Conf.Dr.ing. Eduard POPOVICI

National University of Science and Technology

POLITEHNICA Bucharest

Referee

BUCHAREST 2024

iii

Content

Content ..iii

Chapter 1. Introduction into functional verification and thesis goal 1

1.1 Presentation of the field of the doctoral thesis ... 1

1.2 References .. 1

1.3 Scope of the doctoral thesis .. 2

1.4 Content of the doctoral thesis ... 2

Chapter 2. Artificial intelligence in general .. 3

2.1 Machine Learning .. 3

2.1.1. Machine Learning Algorithm ... 3

2.1.2. NLP ... 4

2.1.3. Optimization algorithms ... 4

2.1.4. Algorithms with adaptive learning rates ... 4

2.2 References .. 5

2.3 Possible uses of Artificial Intelligence in functional verification [1] 5

2.3.1. Introduction .. 5

2.3.2. Existing time-consuming issues ... 5

2.3.3 Possible enhancements of Functional Verification with Artificial

Intelligence ... 5

2.3.4. Study of debug support using Artificial Intelligence.................................... 6

2.3.5. Text – based source code classification approach .. 6

2.3.6. Image – based source code classification approach 6

2.3.7. Study of coverage support using Artificial Intelligence 6

2.3.8. CUDA enhancement of Artificial Intelligence ... 7

2.3.9. Comparison of CUDA vs OpenCL ... 7

2.3.10. Conclusions .. 7

2.3.11. Bibliographic References ... 8

2.3.12 Founding sources ... 8

Chapter 3. Large Language Models and applications into functional verification [2]

 9

3.1. AI in functional verification and other research.. 9

3.2. State-of-the-Art ... 10

3.3. UVM Testbench generation from scratch using ChatGPT4 10

iv

3.4. Generating various components of a UVM testbench starting from a protocol

diagram ... 12

3.5. Conclusions ... 12

3.6. References ... 13

Chapter 4. Generating System Verilog assertions using a Large Language Model

[3] 15

4.1. Introduction ... 15

4.2. Materials and Methods .. 15

4.3. Results ... 16

4.4. Conclusions ... 18

Chapter 5. AI used in functional verification [4]... 21

5.1. Introduction ... 21

5.2. Related Work... 21

5.3. Methodologies, Study Materials, and Databases .. 21

5.4. Results ... 23

5.5. Conclusions ... 25

5.6. References ... 25

Chapter 6. Conclusions .. 27

6.1. Obtained results ... 27

6.2. Original contributions ... 28

6.3. List of original publications .. 29

6.4. Perspectives for further developments .. 30

Chapter 7. Bibliography .. 31

Chapter 1. Introduction into

functional verification and

thesis goal

1.1 Presentation of the field of the doctoral thesis

Functional verification is a critical process in the research and development of

a System-on-Chip (SoC). Its main scope consists of making sure that the chip behaves

accordingly, within the descriptions of the documentation provided.

In many cases the verification environment is composed of different instances,

written in System Verilog using the Universal Verification Methodology (UVM). It

comprises of instances such as:

• uvm_driver, a class which receives UVM sequence items transactions

from the UVM Sequencer and drives it to the DUT Interfaces. It

converts transaction level stimulus into pin level stimulus [1].

• uvm_monitor, instance which samples the DUT and picks up the

information from the transactions, while also sending it out to other

components using a TLM analysis port [1].

• uvm_sequencer, it acts more as an arbiter used in controlling

transaction flow from multiple sequences [1].

• uvm_agent, an encapsulation of the classes presented above [1].

• uvm_scoreboard, instance which has the main function of checking the

behaviour of the DUT. It usually receives transactions from the inputs

and output of the DUT through UVM agent analysis ports, runs these

inputs against a reference model and compares the expected output vs

the actual output [1].

In order to correctly use these classes, there is an UVM Class Library which

provides all the support to develop in a swiftly manner robust testbenches and

reusable, verification components. In library, there are also utilities and macros.

The UVM Class Library provides even more utilities to further simplify and

aid the development of verification environments [1].

1.2 References

[1] Accelera, UVM Guide

Contributions to functional verification using Artificial Intelligence

2

1.3 Scope of the doctoral thesis

Artificial Intelligence may play a key role to functional verification of SoCs.

Functional verification is a time-consuming process in which multiple components of

the chip are tested. Due to time consuming nature of the process, it is essential to

implement various strategies of minimizing time using Artificial Intelligence.

Using various techniques, such as LLMs, CNNs and other technologies, the

verification step will be enhanced and offered a speed up. This speed up will provide

an early error catching mechanism. This will benefit the industry vastly, since now

SoC development is prolonged.

Using ChatGPT and CNN models are great starting points for research into

diminishing the time spent on functional verification.

1.4 Content of the doctoral thesis

In the first chapter of the thesis there is a summary of the verification field,

what is usually used in the industry, specific class constructs, methods, and tasks.

In the second chapter, the Artificial Intelligence field will be introduced into

the thesis, explain the broad concepts in order to understand thoroughly.

In the third chapter, further works using Generative AI will be introduced.

In the fourth chapter, a CNN is present, as it has been developed by the

engineer, with the goal of minimizing the time spent on analysing large

documentations which are usually seen in the industry.

The fifth chapter represents a conclusion of the thesis.

Chapter 2. Artificial

intelligence in general

Artificial Intelligence (AI) is flourishing field, sparking more and more

interest from a wide range of domains due to its practical applications [1].

A primal example of a Deep Learning model is the feedforward network,

commonly referred to as a Multi-Layer Perceptron (MLP). A Multi-Layer Perceptron

is essentially a mathematical function that maps a set of input values to corresponding

output values, achieved by combining numerous simpler functions.

Figure 2.1. Example of a Deep Learning model [1]

Deep learning addresses this challenge by breaking down the complex

mapping into a series of nested, simpler mappings, each handled by a different layer

in the model as it can be seen in Figure 2.1.

 Machine learning falls under the category of AI, a technique that enables

computers systems to improve over time through experience and data. Deep learning,

a subset of machine learning, gains its power and flexibility by learning to represent

the world as a nested hierarchy of concepts [1].

2.1 Machine Learning

2.1.1. Machine Learning Algorithm

Machine learning is enabling researchers and engineers to address tasks that

are too complex to solve using fixed programs designed by humans. An example

consists of a set of features quantitatively measured from an object or an event that

the machine learning process needs to process. For example, in the case of an image,

the features might be the different values of pixels of the image [1].

Some of the more common tasks used in machine learning are:

Contributions to functional verification using Artificial Intelligence

4

• Classification. Modern object recognition has been significantly

enhanced through the use of Deep Learning technique [2][3]. This

foundational technology also powers facial recognition systems [4]

enabling automatic tagging in individuals in photo collections [1].

• Regression.

• Anomaly decision.

• Denoising.

Unsupervised learning algorithms work with a dataset that contains many

features and learn valuable characteristics about the structure of the data. In deep

learning the goal is to learn the probability distribution that generated the dataset.

 Supervised learning algorithms work with a dataset that includes features,

where each example is accompanied by a label or a target.

 Many machine learning problems become more increasingly challenging when

the data has a high number of dimensions. This issue is known as the problem of

dimensionality.

2.1.2. NLP

 Natural Language Processing (NLP) refers to the use of human languages, by

a computer. Unlike specialized programming algorithms designed for efficient and

clear parsing by computers, natural languages are ambiguous and resist formalisation.

NLP contains applications such as machine translations, where a system must read a

sentence and in one human language and generate an equivalent sentence in another.

2.1.3. Optimization algorithms

 Most deep learning algorithms involve some sort of optimization.

Optimization refers to the task of minimizing or maximizing a function f(x) by

adjusting the variable x.

Optimization algorithms may struggle to find a global minimum when

multiple local minimums or plateaus exist. In deep learning, it is generally acceptable

to settle for these solutions, even if they are not absolute minimum if they result in

sufficiently low value of the cost function [1].

2.1.4. Algorithms with adaptive learning rates

 Neural network researchers have long recognized that the learning rate is one

of the most challenging hyperparameters to configure, as it significantly affects model

performance.

 The AdaGrad algorithm adapts the learning rates of individual model

parameters by scaling them inversely to the square root of the sum of their historical

squared gradients [12].

Chapter 2 Artificial intelligence in general

5

 Adam [6] is another adaptive learning rate optimization algorithm. The name

“Adam” stands for “adaptive moments”.

2.2 References

[1] I. Goodfellow, Y. Bengio și A. Courville, Deep Learning.

[2] A. Krizhevsky, I. Sutskever și G. and Hinton, ImageNet classification with deep

convolutional neural networks., In NIPS’2012 . 23, 24, 27, 100, 201, 371, 454,

458, 2012.

[3] S. Ioffe și C. and Szegedy, Batch normalization: Accelerating deep network

training by reducing internal covariate shift, 2015.

[4] Y. Taigman, M. Yang, M. Ranzato și L. and Wolf, DeepFace: Closing the gap to

human-level performance in face verification. I, In CVPR’2014 ., 2014.

[5] J. Duchi, E. Hazan și Y. and Singer, Adaptive subgradient methods for online

learning and stochastic optimization., Journal of Machine Learning Research,

2011.

[6] D. Kingma și J. and Ba, Adam: A method for stochastic optimization., arXiv

preprint arXiv:1412.6980 ., 2014.

2.3 Possible uses of Artificial Intelligence in functional verification [1]

 This chapter is adapted after the author’s article named “Review of Artificial

Intelligence enhancements in the field of Functional Verification”.

2.3.1. Introduction

In today’s world there is a necessity of documenting large amounts of data in

in an attempt to provide better services or products to customers.

In order to at least reduce the time spent on verification, artificial intelligence

might be used in order to extract or inject, depending on the application, crucial

debugging information messages in the verification environment or aid the engineers

in reaching maximum coverage.

2.3.2. Existing time-consuming issues

In most cases the verification environment will need an engineer to debug

because of multiple issues, thus increasing the time spent on it.

Furthermore, a large chunk of time is also spent on trying to reach maximum

coverage. For this, initially a verification plan is designed, which contains the

coverage bins, checkers’ mappings and tests which are to be written and exercised.

These are two cases where Artificial Intelligence might play a big role into

speeding up the process, one of them being debugging and the other reaching 100%

coverage. In this paper both cases will be reviewed.

2.3.3 Possible enhancements of Functional Verification with Artificial

Intelligence

Deep learning is a subset of Artificial Intelligence, which maps the “input”

Contributions to functional verification using Artificial Intelligence

6

features (analogues to prediction variables in traditional statistics) to an output.

There are multiple types of neuronal networks:

1. Feedforward neural network.

2. Recurrent neural network.

3. Convolutional neural networks with multiple layers, including a convolutional

layer, non-linearity layer, polling layer and fully connected layer.

2.3.4. Study of debug support using Artificial Intelligence

Text classification is a solution to be taken into consideration when debugging

complex verification environments in order to see which language was used for the

specific file [1].

Reyes et al. [2] managed to extract the features from a preprocessed source

code and trained the RNN (Recurrent Neural Network), by using the order for the text

sequences. The researchers obtained these results in 2016, on ten different

programming languages, 756 MB of files using the text classification technique [1].

Dam et al. used Natural Language Programming (NLP) [3], specifically the n -grams

and skip grams methods to be able to classify the source code on twenty programming

languages, 14.000 files utilizing text code classification [1]. Baquero et al. [4] came

forward with a model which could predict the programming language from comments

text data and code snippets [1]. The study had been conducted on eighteen

programming languages, 18.000 files using support vector machine (SVM) method.

2.3.5. Text – based source code classification approach

The pre-processing step is a must for text data. A transformation from text

elements to numeric features needs to be performed to be used as inputs for the

algorithm. A tokenization method is used in this step, in order to split the text into

sperate words and/or tokens. Embedding is the process of creating vectors which

contain real numbers that represent the tokens created in the previous step. Each word

or element is mapped into a vector or vectors which are learned by the Convolutional

Neural Network during its training phase [1].

2.3.6. Image – based source code classification approach

Among other advantages of the image-based approach is the ability to

interpret comments of the source code provided. While in the text–based approach,

the comments added in the code must be removed in order to interpret correctly the

file, here the Convolutional Neural Network will not have this problem. Furthermore,

the comments added may be useful information discarded by the text-based approach.

2.3.7. Study of coverage support using Artificial Intelligence

As mentioned in this study, functional coverage is labour-intensive for the

engineer, creating a bottleneck in the verification phase. Multiple studies have

explored the possibility of having a neural network enhancing the time spent on

coverage.

In simulation-based verification, the stimuli that are to be driven to the DUT

are generated random-constrained in the test. A quick improvement that can be

applied in order to rapidly increase coverage is the integration of CDG (Coverage-

directed Test Generation) [5].

Chapter 2 Artificial intelligence in general

7

Wang et al. [5] have reconsidered the issue of the complex ASICs, which

contain complicated RTL (Register Transfer Layer) blocks, with a tremendous

number of parameters, configurations and prone to having many faults. Their aim was

to develop a verification system that can discern between the parameters and

configurations which are relevant, and which are not.

Q.Guo et al. [6] have built a framework that intends to reduce the irrelevant

stimuli on the fly. If the stimuli are categorized as being redundant, then it will not be

sent to the Design Under Test. Therefore, only the stimuli that are relevant will be

sent to the DUT [6].

2.3.8. CUDA enhancement of Artificial Intelligence

The previous subsections exposed a handful of solutions to the existing

problems in the field of functional verification. These following subsections prospects

to lessen further the time spent by using AI and adopting the Computer Unified

Device Architecture (CUDA) platform by Nvidia.

2.3.9. Comparison of CUDA vs OpenCL

Open Computing Language (OpenCL) is a free source standard for

multipurpose parallel programming from CPUs, GPUs and multiple processors.

OpenCL has many similarities when compared with CUDA. First the thread

architecture of CUDA is almost identical to the one in OpenCL (work-item).

Secondly, in CUDA a grid is referring to a set of all the threads executing the same

kernel function. The grid contains arrays of blocks which should be the same size.

This is very similar with OpenCL definition of workgroup.

Some differences between CUDA and OpenCL are related to memory models.

In the case of CUDA, the local memory can be seen by each thread.

Regarding compilation, CUDA uses a static compiler which is responsible of

compiling the kernel and host code before throwing it to the GPU. On the other side,

OpenCL uses ahead-of-time (AOT) or a just-in-time (JIT) compiler which has good

portability. Because of the AOT, OpenCL needs additional initialisation time in order

to look devices [7].

2.3.10. Conclusions

This chapter presents the context for the verification of a chip and the

challenges of reducing the number of bugs to zero. This process is tedious and is

taking a large amount of time. Artificial Intelligence was reviewed as a solution to

reduce this blockage by attaining the aimed coverage percentage defined in the test

plan.

Contributions to functional verification using Artificial Intelligence

8

2.3.11. Bibliographic References

[1] Elife Ozturk Kiyak, Ayse betul Cengiz, Kokten Ulas Birant, Derya Birant,

“Comparison of Image – Based and Text-Based Source Code Classification Using

Deep Learning”, SN Computer Science (2020)

[2] Reyes J, Ramirez D, Paciello J, “Automatic classification of source code

archives by programming language: a deep learning approach”, International

Conference on Computational Science and Computational Intelligence, IEEE, 2016.

[3] Dam V, Kennedy J, Zaytsev V, “Software language identification with natural

classifiers”, International Con- ference on Software Analysis, Evolution, and

Reengineering (SANER), 2016.

[4] Baquero JF, Camargo JE, Restrepo-Calle F, Aponte JH, Gonzalez FA,

“Predicting the programming language: Extracting knowledge from stack overflow

posts”, Colombian Conference on Computing, Springer, 2017

[5] Wang, F., Zhu, H., Popli, P., Xiao, Y., Bodgan, P., & Nazarian, S. (2018),

“Accelerating Coverage Directed Test Generation for Functional Verification”,

Proceedings of the 2018 on Great Lakes Symposium on VLSI – GLSVLSI

[6] Guo, T. Chen, H. Shen, Y. Chen and W. Hu, "On-the-Fly Reduction of

Stimuli for Functional Verification," 2010 19th IEEE Asian Test Symposium, 2010,

pp. 448-454, doi: 10.1109/ATS.2010.82.

[7] Yan W, Shi X, Yan X, Wang L. “Computing OpenSURF on OpenCL and

General Purpose GPU”, International Journal of Advanced Robotic Systems. October

2013.

2.3.12 Founding sources

Funding sources for this paper were supported by the authors with the logistical

support of the Polytechnic University of Bucharest, Faculty of Electronics,

Telecommunication and Information Technology.

Chapter 3. Large Language

Models and applications into

functional verification [2]

This chapter is adapted after the author’s article named “Trials of using

Generative AI for APB UVM testbench generation”.

The functional verification process consists of multiple parts such drafting the

verification plan, environment implementation, tests implementation, debugging,

reporting the issues found and fixing the regression failures. As design increases in

development, it is integrated into the verification environment, thus tested for bugs.

The manner in which functional verification is done is presented in Figure 3.1

(Mammo, 2017).

Figure 3.1. Verification process steps (Mammo, 2017)

3.1. AI in functional verification and other research

Artificial intelligence can greatly improve the verification process in multiple

ways:

• Coverage completion. In this paper (Dinu et al., 2022), genetic algorithm

approaches are used to generate stimuli which are sent to the input port of the

Device under Test (DUT).

• Regression clustering and filtering. Various machine learning algorithms can

be used to filter different regression failures (Dinu & Ogrutan, 2019) and to

focus solely on more important failures;

Contributions to functional verification using Artificial Intelligence

10

• In documentation, pattern recognition on different images and text. By using

these, the project verification task can be defined better and more efficient;

• Generating various testbenches using Generative AI. This approach may be

used to generate full System Verilog UVM testbenches from scratch using

ChatGPT4, in order for the engineer just to analyse the code provided and

integrate the resulted verification environment into the respective system.

3.2. State-of-the-Art

Large Language Model (LLM) implementations such as ChatGPT have

become viable options for engineers in order to navigate or generate large, complex,

feature rich code (Khurana et al., 2024).

In this chapter, the approach using GenerativeAI to generate a System Verilog

UVM ARM AMBA (Advanced Microcontroller Bus Architecture) APB (Advanced

Peripheral Bus) testbench from scratch was used, among a short study regarding

System Verilog UVM code generation using a waveform diagram usually found in

official documentation.

3.3. UVM Testbench generation from scratch using ChatGPT4

In this chapter most of the UVM components were implemented, aside from

the scoreboard. These components have been generated entirely using ChatGPT4. The

only part which had to be manually adjusted due to ChatGPT4 limitations is the top.sv

file where the signals are connected to the DUT and the virtual interface. The code

was analysed and corrected by the verification engineer. The code was simulated

using the open source site EDA Playground which provides limited but enough

simulation capabilities with all three vendors tools (Cadence INCISIV, Questa, VCS).

Below are the snippets of the code generated by ChatGPT4.

A) B)

Figure 3.2 Item and driver classes generated by ChatGPT4

ChatGPT4 was requested to generate an item or transaction class using UVM

System Verilog which respects the AMBA APB protocol. In the first inquiry of

ChatGPT4 the LLM output was only the signals pwrite, paddr, pdata, prdata and

pready, which is incomplete as the pslverr and the penable signals are needed. On the

second run, as requested, the model added the two missing signals in the

Chapter 3. Large Language Models and applications into functional verification

11

uvm_sequence_item. For the apb_driver class, the model was asked in the same

manner to provide the code for specifying clearly to use the UVM Methodology and

SystemVerilog as the verification language. The output was also incomplete as the

reset functionality of the protocol, which is indispensable, was missing. The missing

parts of code were added by the verification engineer. Figure 3.2 A), B) and Figure

3.3 A), B) both illustrate the transaction and driver classes resulted by using the LLM

and correcting the missing items.

A) B)

Figure 3.3. UVM Driver class

For completing this APB UVM testbench a sequence was requested by the

verification engineer to the model in order to be able to use this sequence in a test.

Figure 3.4. UVM Sequence

The sequence in Figure 3.4 was used in a UVM APB test generated by a LLM.

After running the simulation, the waves were dumped in order to analyse it and ensure

the correctitude of the testbench. Figure 3.5 shows the waveforms.

 Figure 3.5. Results of the ChatGPT generated UVM testbench

Contributions to functional verification using Artificial Intelligence

12

The only file that was needed to be created by hand by the engineer was the

top.sv file. ChatGPT4 can replace or correct names quite easily, but as needed in a

top.sv file it cannot connect the interface to the virtual interface, uses wrong and

uncompilable code for uvm_set_config_db() and also for the run_test() method.

3.4. Generating various components of a UVM testbench starting from a

protocol diagram

In this study, a protocol image was fed to the model and asked to provide the

respective UVM Driver. This approach is useful when adding an individual UVM

component in an already existing testbench. This way, the code is already generated

using either an image, diagram or maybe waveforms and it will be imported into the

existing testbench. This approach saves valuable time, instead of writing the UVM

component from scratch. Figure 3.6 contains the image used and Figure 3.7 A), B) the

resulted code.

Figure 3.6. APB Write transaction waveforms (ARM, 2023)

A) B)

Figure 3.7. Generated classes

3.5. Conclusions

In this chapter, two approaches were presented to decrease the time spend on

functional verification. The first approach, where an UVM APB testbench is

developed from scratch, might be more suitable when wanting to have more control of

what the LLM is asked to output. By using a text-based approach in which the LLM is

asked specifically for the classes involved, the methodology used and the

programming language, the verification engineer has more control and less time spent

Chapter 3. Large Language Models and applications into functional verification

13

correcting ChatGPT4. The second approach, using a protocol picture (in this case an

ARM APB Write transfer) which is present in many documentations, can prove very

useful when change requests are needed.

This study aimed to prove, on a small testbench, the benefits and possible

ChatGPT4 use cases for the functional verification process. As presented above, two

approaches were used by the verification engineer, both with very good results and

decreasing time spent on the project."

3.6. References

Dinu, A. & Ogrutan, P. L. (2019) Opportunities of Using Artificial Intelligence in

Hardware Verification. In: 2019 IEEE 25th International Symposium for Design and

Technology in Electronic Packaging (SIITME), October 23-26, 2019, Cluj-Napoca,

Romania. pp. 224-227, doi: 10.1109/SIIME47687.2019.8990751 [Accessed on March

2024].

Dinu, A., Danciu, G. M., Ogrutan, P. L. (2022) Cost-Efficient Approaches for

Fulfillment of Functional Coverage during V erification of Digital Designs.

Micromachines. 13(5), 691. doi:10.3390/mi13050691.

Mammo, B. W. (2017) Reining in the Functional Verification of Complex Processor

Designs with Automation, Prioritization, and Approximation. Ph.D. thesis, University

of Michigan. [Accessed on March 2024].

Chapter 4. Generating System

Verilog assertions using a

Large Language Model [3]

This chapter is adapted after the author’s article named “Generative AI

Assertions in UVM-based System Verilog Functional Verification”.

4.1. Introduction

Assertion generation for various protocols such as Advanced Peripheral Bus,

AHB (Advanced High-Performance Bus), etc using a LLM such as ChatGPT can

vastly reduce the functional verification time. These assertions might be also

integrated in other verification environments; thus, it is useful to write the assertion

code in a good and reusable way.

4.2. Materials and Methods

In this study, ChatGPT has been asked using the prompt to generate System

Verilog assertions for an APB UVM testbench. Figure 4.1 presents the way the LLM

was asked to provide the results.

Figure 4.1. ChatGPT text prompt

There is another way of using the LLM, such as providing a protocol

waveform in order to let ChatGPT interpret the waveform rules and provide the

needed assertions. Figure 4.2 presents the Write transfer transaction waveforms of the

APB protocol being fed into the LLM and just asking ChatGPT to output the

assertions without writing any definition of the protocol or rules. The LLM’s task was

to interpret the waveform and generate the assertions according to the rules implied

by the waveform.

Contributions to functional verification using Artificial Intelligence

16

Figure 4.2. ChatGPT prompt fed with APB Write transfer waveform

 Using these two approaches, this chapter aims to underline how swiftly the

LLM can generate critical code, vastly reducing the time spent on verification. The

verification environment, and Register Transfer Layer (RTL) implementation were

developed by the researchers.

4.3. Results

Using the first approach the LLM was asked via text to provide the assertions

for different signals of the APB protocol. The output of the LLM for an assertion that

has the condition of PENABLE signal not active during reset is described in Figure

4.3.

Figure 4.3. ChatGPT output for text prompt

 The code of the LLM has been introduced in the top.sv file of the testbench

where the top module resides for easier integration.

Figure 4.4. Code output by the LLM and integrated in the top module

 A test was run with the lines 66-72 active (Figure 4.4). The test failed, because

the ChatGPT – 4 generated assertion was invalidated. In Figure 4.5, the failure log of

the respective test is presented. It can be seen clearly that the ChatGPT – 4 assertion

has correctly indicated the error in the test.

Figure 4.5. Test assertion failure log

 When asking the LLM for basic assertions for the AMBA APB protocol via

text prompt, the LLM output is presented in Figure 4.6. The figure presents the LLM

Chapter 4. Generating System Verilog assertions using a Large Language Model

17

providing the assertions with explanations on each point and carefully structuring the

code.

Figure 4.6. Text Prompt for AMBA APB basic assertions

These assertions provided by the LLM were integrated in the APB verification

environment. This is shown in Figure 4.7. Figure 4.7 presents all the basic AMBA

APB System Verilog assertions integrated in the top.sv file. The LLM suggested five

basic assertions such as: PSEL should be high when a transfer is in progress,

PENABLE should be asserted only after PSEL is asserted, PADDR should be stable

when PSEL and PENABLE are high, PWRITE should be stable PSEL and

PENABLE are high, PWDATA should be stable during the enable phase of the

transfer.

Figure 4.7. Assertion integration in the testbench

 In order to be able to resolve the simulation issues, the researchers have

renamed the signals from PCLK, PENABLE, etc. to clk, vif.penable. This was done

in order to correct the variables as to point to the APB virtual interface of the

testbench. The test was run, with errors triggered by the assertions suggested by

ChatGPT – 4.

 In the second approach, the LLM was fed an AMBA APB Write transfer

image and also an AMBA APB Read transfer image. No further details were added,

Contributions to functional verification using Artificial Intelligence

18

just the images themselves and the request to generate System Verilog assertions.

Figure 4.8 A) and B) exhibit the way the LLM was asked to provide the code and the

images fed into it.

A). Image prompt for an APB Write Transfer

B). Image prompt for an APB Read Transfer

Figure 4.8. Image prompt for an APB Read & Write Transfer

For the write transfer ChatGPT – 4 generated System Verilog assertions which

check the functionality of PADDR, PWRITE, PENABLE, PWDATA and PREADY.

ChatGPT4 has correctly generated the code for the assertions, although a few

modifications are sometimes needed, mostly for the integration in the existing

testbench.

 While these two approaches generate fast and quite accurate results, there is

the need for the verification engineer to supervise the model results in order to correct

them if it the case. Thus, here the LLM servers more as co-pilot.

4.4. Conclusions

In this chapter the researchers have proven the impact of using ChatGPT – 4

for generating System Verilog assertions and integrated them into an existing APB

UVM testbench. By generating assertions, time spent on functional verification was

Chapter 4. Generating System Verilog assertions using a Large Language Model

19

reduced to about 20% for the testbench presented in this study (APB UVM testbench),

by not implementing a dedicated score boarding class and relying only on assertions.

This environment is run on a free platform, which makes it harder to develop than in

an already dedicated simulation environment. Taking into consideration these finding,

using Generative AI to create assertions makes it a great candidate as to greatly

reduce time spent on functional verification.

Chapter 5. AI used in

functional verification [4]

This chapter is adapted after the author’s article named “Artificial Intelligence

Application in the Field of Functional Verification”.

5.1. Introduction

As Integrated Circuit development progresses in complexity and scalability, it

becomes essential for them to work as expected, being reliable and robust, especially

in critical files such as medical, aviation, and automotive files.

By using Artificial Intelligence, the verification process can be faster and

completed in less time.

5.2. Related Work

There are a multitude of areas where Artificial Intelligence can aid the

verification process. The tests are grouped according to the failure reasons. As stated

in [1], some machine learning algorithms can effectively classify the failing tests in a

regression according to their failure reasons. Although, according to [2], the outcome

is not as expected. Stimulus and test generation is conducted by using supervised and

reinforcement ML algorithms [3] to hit the planned coverage for the Device under

Test (DUT) [4]. In the verification process of a cache controller, a supervised Deep

Neural Network (DNN) [5] was used alongside the Q learning algorithm. The DNN is

trained to create sequences for four First-in-First-Out (FIFO)s.

5.3. Methodologies, Study Materials, and Databases

In this study, the researchers implemented the dataset alongside the model.

The dataset consists of important or critical information from documentation and non-

crucial information. Different specifications and documentations were analysed and

combined to create the dataset. Such documentations include, for instance, ARM’s

Advanced Microcontroller Bus Architecture APB and AXI. The specifications have

been thoroughly analysed by the engineer and the foremost information and irrelevant

data were categorized into relevant and irrelevant information.

Figure 5.1 is an example of other relevant data that must be considered by the

engineer. It contains a description of the PSLVERR, PREADY, and PENABLE

signals. These are signals usually used in an APB transfer.

Contributions to functional verification using Artificial Intelligence

22

Figure 5.1. APB signal short description.

These are some examples of relevant data in the created database. As for

irrelevant data, these can contain parts such as copyright rules that, to the engineer,

are not relevant when implementing the verification environment, and the test

scenarios and parts may not be implemented in the RTL design. Due to various

reasons, some parts of different modules, protocols, etc., may not be implemented in

the design. Figure 5.2– Figure 5.4 illustrate an example of irrelevant information

mentioned above.

Figure 5.2. Succinct APB list of protocol rules

Figure 5.3. AMBA AXI Copyright information

Figure 5.4. AMBA AXI signal conventions

Chapter 5. AI used in functional verification

23

Considering the means above, a database was constructed from scratch using

the verification engineer’s expertise and experience in the field. For this dataset,

information was carefully extracted from the Advanced Microcontroller Bus

Architecture Advanced Peripheral Bus (AMBA APB) and from the Advanced

Microcontroller Bus Architecture Extensible Interface (AMBA AXI). This dataset

will be used to train the model presented in this paper.

5.4. Results

In this presented application, data preprocessing was performed before feeding

it into the model.

Data were augmented using special libraries to enhance the database rapidly.

For this, the nlpaug library was used together with a synonym method, which was

applied to the dataset. The labels were encoded using LabelEncoder, and data were

then Tokenized. Test and training data were split into 80% training and 20% tests.

Two CNN sequential model implementations were tested. The architecture of the first

CNN model used is described in Figure 5.5. The sequential model is a deep learning

model that is made from linear stack layers. Layers are added to the model in

sequential order, and the output of each layer is the input of the next layer. The first

proposed model consists of an Embedding Layer, a convolution layer, an activation

Flatten layer, and one dense layer. For the activation layer, the Rectified Linear Unit

(ReLU) activation function was used.

Figure 5.5. First CNN architecture

This first proposed model ran 20 epochs, having at the end a test accuracy of

98.333340883255% and a loss of 10.25% with data augmentation applied one time

and concatenated with the created dataset. This first CNN model is a try-out to see

what needs to be done next to improve the accuracy and loss. There are a couple of

options, such as augmenting the data even more, adding more layers, or hyper

parametrizing the model. Figure 5.6 describes the training and validation accuracy

graph as well as the training and validation loss graph.

Figure 5.6. First CNN model graph for training and validation.

Contributions to functional verification using Artificial Intelligence

24

The model presents high percentages of precision—97%, recall—100%, F1-

score—98% for 0, and for 1, precision—100%, recall—96%, F1-score—98%. These

results make the model reliable for both cases, with high precision, recall, and F1-

score, performing very well in identifying relevant instances and making accurate

predictions, with a good balance between precision and recall (achieving high

precision and high recall at the same time).

Another sequential model was developed to try and achieve better results. An

architecture was defined using three convolutional layers, three activation layers, an

embedded layer, one MaxPooling layer, one Flatten layer, and one dense layer, as

presented in Figure 5.13.

Figure 5.7

Figure 5.7. Second CNN model architecture.

After applying data augmentation, we split the dataset into 80% training and

20% validation and trained the model with an accuracy of 96.66666984558105% and

a validation loss of 5%.

This model architecture uses three convolutional layers, has very high

precision scores for both 1 and 0 (100% and 93%), has a high recall percentage (94%

and 100%), and has a good F1-score (97%).

Figure 5.8. Second CNN model with three convolutional layers training and

validation

In this paper [6], a multitude of models were used to classify the binary data

for two datasets: DATASET-1 (similar to the Stanford Sentiment Treebank with only

Chapter 5. AI used in functional verification

25

negative and positive reviews) and DATASET-2 (Amazon review of Sentiment

Analysis Dataset). The best models applied on those datasets, TextConvoNet_4 (four

convolutional layers) and TextConvoNet_6 (six convolutional layers), achieved

accuracies of 82.2% and 81.9%, respectively, on DATASET-1. For DATASET-2,

TextConvoNet_4 has an accuracy of 90.4%, while TextConvoNet_6 has an accuracy

of 87.2%. If these results are taken into account, the proposed two CNN architectures

would outperform the TextConvoNet_4 and TextConvoNet_6 models. The accuracy

that the Bidirectional Encoder Representations from Transformers (BERT),

Hierarchical Attention Networks (HAN), and BerConvoNet models have achieved are

77.6%, 80.2%, and 83.1% on DATASET-1. For DATASET-2, the same models have

reached 77.2% (Bidirectional Encoder Representations from Transformers-BERT),

86.3% (HAN), and 88.3% (BerConvoNet). Therefore, the models presented in this

study are performing better than the ones used in [6].

5.5. Conclusions

In this paper, two AI implementations were used in order to aid the

verification process in finishing in less time. The two approaches consisted of using

two Convolutional Neural Network architectures, one with two convolutional layers

and one with three convolutional layers. In both cases, data augmentation was

performed. This means that, on the original dataset, a method was applied to

substitute some words with their respective English synonyms to enhance the dataset

further without adding any entries. The dataset was created, developed, and analysed

by the researchers, using their experience in the functional verification field. Both

Convolutional Neural Network models were developed using Python 3.12.3 and ran

using an Apple M1 hardware on a dedicated 10-core GPU with an Anaconda

environment.

For the first Convolutional Neural Network, a sequential model was defined,

and layers were added to it. This model implementation generated fine results, high

test accuracy (98333340883255%), high recall, precision and F1-score, and low

validation loss (10.25%), making it a reliable, robust, and well-adjusted model.

The second architecture generated high accuracy at 96.66666984558105% and

low validation at 5%. The scores for precision, recall, and F1-score are also good

overall, making the model trustworthy and solid.

5.6. References

[1] - Truong, A.; Hellström, D.; Duque, H.; Viklund, L. Clustering and Classification

of UVM Test Failures Using Machine Learning Techniques. In Proceedings of the

Design and Verification Conference (DVCON), San Jose, CA, USA, 26 February–1

March 2018.

[2] - El Mandouh, E.; Maher, L.; Ahmed, M.; ElSharnoby, Y.; Wassal, A.G. Guiding

Functional Verification Regression Analysis Using Machine Learning and Big Data

Contributions to functional verification using Artificial Intelligence

26

Methods. In Proceedings of the Design and Verification Conference and Exhibition

Europe (DVCon), Munchen, Germany, 25 September 2018.

[3] - Ismail, K.A.; Ghany, M.A.A.E. Survey on Machine Learning Algorithms

Enhancing the Functional Verification Process. Electronics2021, 10, 2688. [CrossRef]

[4] - Zaruba, F.A. An Open-Source 64-bit RISC-V Application Class Processor and

Latest Improvements; ETH: Zurich, Switzerland, 2018.

[5] - Hughes, W.; Srinivasan, S.; Suvarna, R.; Kulkarni, M. Optimizing Design

Verification using Machine Learning: Doing better than Random. In Proceedings of

the Design and Verification Conference (DVCON-Europe), Virtual Conference, 26–

27 October 2021.

[6] - Soni, S.; Chouhan, S.S.; Rathore, S.S. TextConvoNet: A convolutional neural

network based architecture for text classification. Appl. Intell. 2023, 53, 14249–

14268. [CrossRef] [PubMed]

Chapter 6. Conclusions

 The functional verification process involves several key stages, including

drafting the verification plan, implementing the verification environment, creating

tests, debugging, reporting discovered issues, and addressing regression failures. As

the design progresses, it is integrated into the verification environment and tested for

bugs.

6.1. Obtained results

Creating an UVM testbench from scratch using an LLM, like ChatGPT or

similar models, provides substantial benefits. LLMs are capable of understanding

high-level instructions and generating the essential components of a UVM

environment, such as drivers, monitors, agents, sequencers, and scoreboards. This

automation allows engineers to focus more on refining the design and less on routine

coding tasks. The iterative approach used—where the LLM provides a basic

framework and the engineer refines it—demonstrates that AI can handle the heavy

lifting of template generation, leaving complex logic and architectural decisions to the

human expert.

In the second approach, where the LLM generates a UVM component from a

given waveform, the AI's ability to recognize patterns from visual inputs and translate

them into functional code showcases an advanced application of machine learning.

This automation is particularly useful when dealing with a wide range of

protocols or when design specifications evolve rapidly. Instead of rewriting UVM

components from scratch or modifying existing ones manually, engineers can rely on

AI to handle those changes efficiently. There are a number of ways the LLMs can

further increase the speed of the verification process by:

• Efficiency and Time Saving.

• Error Reduction.

• Scalability.

• Flexibility and Adaptability.

Artificial Intelligence can further enhance functional verification by using

other strategies such as:

• Stimulus generation refers to the creation of input signals or conditions that

drive the DUT to exercise its functionality.

• AI can assist in understanding high-level design specifications and generate

tests that validate the implementation against the documentation.

Regarding the results obtained using the LLM to generate System Verilog

UVM assertions, they are promising and will provide great aid to the verification

process. By using two approaches, one text-based prompt and the other image-based

approach the assertions generated are syntactically correct and can be easily

integrated into the verification environment. The engineer will act similar to a

supervisor having to correct the LLM if the output is not respecting the protocol rules.

It is the task of the engineer to make sure that the text-based and image-based

approach are correct and the LLM is asked specifically for what it is needed.

Contributions to functional verification using Artificial Intelligence

28

By creating the dataset from scratch, architecting two Convolutional Neural

Networks, one with two convolutional layers and one with three convolutional layers,

debugging, training, and validating them an accuracy of 98.33% and 96.6% and very

good recall, precision and F1 score. This approach makes the verification process

faster by classifying the critical requirements in the documentation as for the engineer

to implement those as a high priority.

6.2. Original contributions

In this thesis, various and complex contributions have been added to the field

of functional verification such as:

• Investigation, analysation, and research of possible Artificial

Intelligence applications in the field of functional verification. Various

strategies, ideas were analysed such as debugging support, text-based

classification, and AI ideas in order to achieve 100% functional

coverage.

• Generating (using a LLM), supervising, correcting and debugging an

UVM APB testbench from scratch by using a text based prompt. This

task consists of asking the LLM to generate a full APB UVM testbench

without providing any other prior information about the protocol.

Mistakes and missing code were corrected by asking the LLM to add

additional lines or delete when it was the case. The only file not

generated by the LLM is the top.sv file, as it needed the verification

engineer’s input vastly.

• Generating an UVM Component by feeding an image into the LLM,

without any other information. This approach is useful when change

requests are in place, alongside with waveform example as the

component can be rapidly generated. The verification engineer’s role is

to supervise and correct the output.

• Generating, guiding, integrating, and correcting assertions for an UVM

testbench. The LLM was asked using text prompt to aid in generating

System Verilog Assertions. Further, the integration and validation of

the assertions was done by the verification engineer, thus underlining

even more the usefulness of the LLM in the functional verification

field.

• Creating a dataset from scratch using some of the AMBA protocols.

This dataset was lately used to train and validate the two Convolutional

Neural Network solutions.

• Creating, implementing, training, and validating a CNN model with

two convolutional layers which can classify parts of specification text

as complex or not complex. The degree of complexity is based on the

verification engineer s experience in the field (nine years). The model

has an accuracy of 98.333340883255%.

Chapter 6. Conclusions

29

• Creating, implementing, training, and validating a CNN model with

three convolutional layers which can classify parts of specification text

as complex or not complex. The degree of complexity is based on the

verification engineer s experience in the field (nine years). The model

has an accuracy of 96.66666984558105%.

6.3. List of original publications

• DRANGA, Diana and Radu-Daniel BOLCAS. “Review of Artificial

Intelligence enhancements in the field of Functional Verification.”

Electrotehnica, Electronica, Automatica (2021), vol 69, no 4., pp.95-102,

ISSN 1582-5175, DOI: 10.46904/eea.21.69.4.1108011 (Scopus, Elsevier –

BDI, published December 2021).

• BOLCAS Radu – Daniel, DRANGA Diana, “Challenges of facial emotion

recognition in machine learning”, in Electrotehnica, Electronica, Automatica

(EEA), 2021, vol 69, no 4., pp.87-94, ISSN 1582-5175, DOI:

10.46904/eea.21.69.1108010 (Scopus, Elsevier – BDI, published December

2021).

• Diana DRANGA, "Trials of using Generative AI for APB UVM testbench

generation", Romanian Journal of Information Technology and Automatic

Control, ISSN 1220-1758, vol. 34(2), pp. 75-84, 2024.

https://doi.org/10.33436/v34i2y202406 (ISI Journal, published June 2024).

• DRANGA, Diana, and Catalin DUMITRESCU. 2024. "Artificial Intelligence

Application in the Field of Functional Verification" Electronics 13, no. 12:

2361. https://doi.org/10.3390/electronics13122361 (MDPI ISI Q2

Electronics Journal, published June 2024).

• Valentin Radu, Diana DRANGA, Catalin Dumitrescu, Alina Iuliana Tabirca,

Maria Cristina Stefan ,”Generative AI Assertions in UVM-based System

Verilog Functional Verification” (MDPI ISI Q1 Systems Journal, accepted

September 2024).

• Petrica Ciotirnae, Catalin Dumitrescu, Ionut Cosmin Chiva, Augustin

Semenescu, Eduard Cristian Popovici, Diana DRANGA,”New method for

noise reduction by averaging the filtering results on circular displacements

using wavelet transform and local binary pattern”, (MDPI Electronics Q2, in

review).

• Bogdan Todea, Microchip Technology, Inc., Bucharest, Romania,

(Bogdan.Todea@microchip.com), Pravin Wilfred, Microchip Technology,

Inc., Bangalore, India (Pravin.Wilfred@microchip.com), Madhukar

Mahadevappa, Microchip Technology, Inc., Bangalore, India,

(Madhukar.Mahadevappa@microchip.com), Diana DRANGA, Microchip

Technology, Inc., Bucharest, Romania (Diana.Dranga@microchip.com)

Contributions to functional verification using Artificial Intelligence

30

“Break the SoC with Random UVM Instruction Driver”, presented at DVCon

India, 2019.

6.4. Perspectives for further developments

There are quite a few perspectives of the impact of AI in the function

verification field using the LLM:

• Expansion to Coverage-Driven Verification (CDV): LLMs could be further

used to automate the generation of coverage models.

• Automated Debugging Assistance: Expanding LLM capabilities to assist in

debugging could provide engineers with automatic suggestions for resolving

errors in the UVM environment.

• Enhanced Protocol Support: LLMs could be trained to handle a broader range

of protocols, integrating deep knowledge of specific industry standards such as

PCIe, USB, and Ethernet, to facilitate faster verification in multi-protocol

SoCs.

• Natural Language to System Verilog UVM: Further improving the ability of

LLMs to translate natural language descriptions of verification requirements

directly into UVM components could make the verification process more

accessible to those without extensive coding expertise.

Chapter 7. Bibliography

[1] - DRANGA, Diana and Radu-Daniel BOLCAS. “Review of Artificial Intelligence

enhancements in the field of Functional Verification.” Electrotehnica, Electronica,

Automatica (2021), vol 69, no 4., pp.95-102, ISSN 1582-5175, DOI:

10.46904/eea.21.69.4.1108011 (Scopus, Elsevier - BDI).

[2] - Diana DRANGA, "Trials of using Generative AI for APB UVM testbench

generation", Romanian Journal of Information Technology and Automatic Control,

ISSN 1220-1758, vol. 34(2), pp. 75-84, 2024. https://doi.org/10.33436/v34i2y202406

(ISI Journal, published June 2024).

[3] - Valentin Radu, Diana Dranga, Catalin Dumitrescu, Alina Iuliana

Tabirca, Maria Cristina Stefan, “Generative AI Assertions in UVM-based System Verilog

Functional Verification” (accepted September 2024, MDPI Systems Q1)

[4] - DRANGA, Diana, and Catalin DUMITRSCU. 2024. "Artificial Intelligence

Application in the Field of Functional Verification" Electronics 13, no. 12: 2361.

https://doi.org/10.3390/electronics13122361 (ISI Q2 Journal, published June 2024).

	Chapter 1. Introduction into functional verification and thesis goal
	1.1 Presentation of the field of the doctoral thesis
	1.2 References
	1.3 Scope of the doctoral thesis
	1.4 Content of the doctoral thesis

	Chapter 2. Artificial intelligence in general
	2.1 Machine Learning
	2.1.1. Machine Learning Algorithm
	2.1.2. NLP
	2.1.3. Optimization algorithms
	2.1.4. Algorithms with adaptive learning rates

	2.2 References
	2.3 Possible uses of Artificial Intelligence in functional verification [1]
	2.3.1. Introduction
	2.3.2. Existing time-consuming issues
	2.3.3 Possible enhancements of Functional Verification with Artificial Intelligence
	2.3.4. Study of debug support using Artificial Intelligence
	2.3.5. Text – based source code classification approach
	2.3.6. Image – based source code classification approach
	2.3.7. Study of coverage support using Artificial Intelligence
	2.3.8. CUDA enhancement of Artificial Intelligence
	2.3.9. Comparison of CUDA vs OpenCL
	2.3.10. Conclusions
	2.3.11. Bibliographic References
	2.3.12 Founding sources

	Chapter 3. Large Language Models and applications into functional verification [2]
	3.1. AI in functional verification and other research
	3.2. State-of-the-Art
	3.3. UVM Testbench generation from scratch using ChatGPT4
	3.4. Generating various components of a UVM testbench starting from a protocol diagram
	3.5. Conclusions
	3.6. References

	Chapter 4. Generating System Verilog assertions using a Large Language Model [3]
	4.1. Introduction
	4.2. Materials and Methods
	4.3. Results
	4.4. Conclusions

	Chapter 5. AI used in functional verification [4]
	5.1. Introduction
	5.2. Related Work
	5.3. Methodologies, Study Materials, and Databases
	5.4. Results
	5.5. Conclusions
	5.6. References

	Chapter 6. Conclusions
	6.1. Obtained results
	6.2. Original contributions
	6.3. List of original publications
	6.4. Perspectives for further developments

	Chapter 7. Bibliography

