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Chapter 1. Introduction into 

functional verification and 

thesis goal 
 

 

1.1 Presentation of the field of the doctoral thesis 

 

Functional verification is a critical process in the research and development of 

a System-on-Chip (SoC). Its main scope consists of making sure that the chip behaves 

accordingly, within the descriptions of the documentation provided. 

 

In many cases the verification environment is composed of different instances, 

written in System Verilog using the Universal Verification Methodology (UVM). It 

comprises of instances such as: 

• uvm_driver, a class which receives UVM sequence items transactions 

from the UVM Sequencer and drives it to the DUT Interfaces. It 

converts transaction level stimulus into pin level stimulus [1]. 

• uvm_monitor, instance which samples the DUT and picks up the 

information from the transactions, while also sending it out to other 

components using a TLM analysis port [1]. 

• uvm_sequencer, it acts more as an arbiter used in controlling 

transaction flow from multiple sequences [1]. 

• uvm_agent, an encapsulation of the classes presented above [1]. 

• uvm_scoreboard, instance which has the main function of checking the 

behaviour of the DUT. It usually receives transactions from the inputs 

and output of the DUT through UVM agent analysis ports, runs these 

inputs against a reference model and compares the expected output vs 

the actual output [1]. 

In order to correctly use these classes, there is an UVM Class Library which 

provides all the support to develop in a swiftly manner robust testbenches and 

reusable, verification components. In library, there are also utilities and macros.  

The UVM Class Library provides even more utilities to further simplify and 

aid the development of verification environments [1]. 

 

1.2 References 

 

[1]  Accelera, UVM Guide 
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1.3 Scope of the doctoral thesis 

Artificial Intelligence may play a key role to functional verification of SoCs. 

Functional verification is a time-consuming process in which multiple components of 

the chip are tested. Due to time consuming nature of the process, it is essential to 

implement various strategies of minimizing time using Artificial Intelligence.  

Using various techniques, such as LLMs, CNNs and other technologies, the 

verification step will be enhanced and offered a speed up. This speed up will provide 

an early error catching mechanism. This will benefit the industry vastly, since now 

SoC development is prolonged. 

Using ChatGPT and CNN models are great starting points for research into 

diminishing the time spent on functional verification. 

 

 

1.4 Content of the doctoral thesis 

 

In the first chapter of the thesis there is a summary of the verification field, 

what is usually used in the industry, specific class constructs, methods, and tasks.  

In the second chapter, the Artificial Intelligence field will be introduced into 

the thesis, explain the broad concepts in order to understand thoroughly.  

In the third chapter, further works using Generative AI will be introduced.  

In the fourth chapter, a CNN is present, as it has been developed by the 

engineer, with the goal of minimizing the time spent on analysing large 

documentations which are usually seen in the industry.  

The fifth chapter represents a conclusion of the thesis. 

 



 

 

 

Chapter 2. Artificial 

intelligence in general 
 

Artificial Intelligence (AI) is flourishing field, sparking more and more 

interest from a wide range of domains due to its practical applications [1].  

A primal example of a Deep Learning model is the feedforward network, 

commonly referred to as a Multi-Layer Perceptron (MLP). A Multi-Layer Perceptron 

is essentially a mathematical function that maps a set of input values to corresponding 

output values, achieved by combining numerous simpler functions.  

 

 
Figure 2.1. Example of a Deep Learning model [1] 

 

Deep learning addresses this challenge by breaking down the complex 

mapping into a series of nested, simpler mappings, each handled by a different layer 

in the model as it can be seen in Figure 2.1.  

 Machine learning falls under the category of AI, a technique that enables 

computers systems to improve over time through experience and data. Deep learning, 

a subset of machine learning, gains its power and flexibility by learning to represent 

the world as a nested hierarchy of concepts [1].  

 

2.1 Machine Learning 

 

2.1.1. Machine Learning Algorithm 

 

Machine learning is enabling researchers and engineers to address tasks that 

are too complex to solve using fixed programs designed by humans. An example 

consists of a set of features quantitatively measured from an object or an event that 

the machine learning process needs to process. For example, in the case of an image, 

the features might be the different values of pixels of the image [1]. 

Some of the more common tasks used in machine learning are: 
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•  Classification. Modern object recognition has been significantly 

enhanced through the use of Deep Learning technique [2][3]. This 

foundational technology also powers facial recognition systems [4] 

enabling automatic tagging in individuals in photo collections [1]. 

• Regression.  

• Anomaly decision. 

• Denoising.  

Unsupervised learning algorithms work with a dataset that contains many 

features and learn valuable characteristics about the structure of the data. In deep 

learning the goal is to learn the probability distribution that generated the dataset.  

 Supervised learning algorithms work with a dataset that includes features, 

where each example is accompanied by a label or a target.  

 Many machine learning problems become more increasingly challenging when 

the data has a high number of dimensions. This issue is known as the problem of 

dimensionality.  

 

2.1.2. NLP 

 

 Natural Language Processing (NLP) refers to the use of human languages, by 

a computer. Unlike specialized programming algorithms designed for efficient and 

clear parsing by computers, natural languages are ambiguous and resist formalisation. 

NLP contains applications such as machine translations, where a system must read a 

sentence and in one human language and generate an equivalent sentence in another. 

  

2.1.3. Optimization algorithms 

 

 Most deep learning algorithms involve some sort of optimization. 

Optimization refers to the task of minimizing or maximizing a function f(x) by 

adjusting the variable x.  

  

Optimization algorithms may struggle to find a global minimum when 

multiple local minimums or plateaus exist. In deep learning, it is generally acceptable 

to settle for these solutions, even if they are not absolute minimum if they result in 

sufficiently low value of the cost function [1]. 

2.1.4. Algorithms with adaptive learning rates 

 

 Neural network researchers have long recognized that the learning rate is one 

of the most challenging hyperparameters to configure, as it significantly affects model 

performance. 

 The AdaGrad algorithm adapts the learning rates of individual model 

parameters by scaling them inversely to the square root of the sum of their historical 

squared gradients [12].  
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 Adam [6] is another adaptive learning rate optimization algorithm. The name 

“Adam” stands for “adaptive moments”.  

 

2.2 References 

[1]  I. Goodfellow, Y. Bengio și A. Courville, Deep Learning.  

[2]  A. Krizhevsky, I. Sutskever și G. and Hinton, ImageNet classification with deep 

convolutional neural networks., In NIPS’2012 . 23, 24, 27, 100, 201, 371, 454, 

458, 2012.  

[3]  S. Ioffe și C. and Szegedy, Batch normalization: Accelerating deep network 

training by reducing internal covariate shift, 2015.  

[4]  Y. Taigman, M. Yang, M. Ranzato și L. and Wolf, DeepFace: Closing the gap to 

human-level performance in face verification. I, In CVPR’2014 ., 2014.  

[5]  J. Duchi, E. Hazan și Y. and Singer, Adaptive subgradient methods for online 

learning and stochastic optimization., Journal of Machine Learning Research, 

2011.  

[6]  D. Kingma și J. and Ba, Adam: A method for stochastic optimization., arXiv 

preprint arXiv:1412.6980 ., 2014.  

 

2.3 Possible uses of Artificial Intelligence in functional verification [1] 

 This chapter is adapted after the author’s article named “Review of Artificial 

Intelligence enhancements in the field of Functional Verification”. 

 

2.3.1. Introduction  

In today’s world there is a necessity of documenting large amounts of data in 

in an attempt to provide better services or products to customers.  

In order to at least reduce the time spent on verification, artificial intelligence 

might be used in order to extract or inject, depending on the application, crucial 

debugging information messages in the verification environment or aid the engineers 

in reaching maximum coverage.  

 

2.3.2. Existing time-consuming issues  

In most cases the verification environment will need an engineer to debug 

because of multiple issues, thus increasing the time spent on it.  

Furthermore, a large chunk of time is also spent on trying to reach maximum 

coverage. For this, initially a verification plan is designed, which contains the 

coverage bins, checkers’ mappings and tests which are to be written and exercised. 

These are two cases where Artificial Intelligence might play a big role into 

speeding up the process, one of them being debugging and the other reaching 100% 

coverage. In this paper both cases will be reviewed.  

 

 

2.3.3 Possible enhancements of Functional Verification with Artificial 

Intelligence 

Deep learning is a subset of Artificial Intelligence, which maps the “input” 
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features (analogues to prediction variables in traditional statistics) to an output.   

There are multiple types of neuronal networks: 

1. Feedforward neural network.  

2. Recurrent neural network.  

3. Convolutional neural networks with multiple layers, including a convolutional 

layer, non-linearity layer, polling layer and fully connected layer.  

 

2.3.4. Study of debug support using Artificial Intelligence 

Text classification is a solution to be taken into consideration when debugging 

complex verification environments in order to see which language was used for the 

specific file [1]. 

Reyes et al. [2] managed to extract the features from a preprocessed source 

code and trained the RNN (Recurrent Neural Network), by using the order for the text 

sequences. The researchers obtained these results in 2016, on ten different 

programming languages, 756 MB of files using the text classification technique [1]. 

Dam et al. used Natural Language Programming (NLP) [3], specifically the n -grams 

and skip grams methods to be able to classify the source code on twenty programming 

languages, 14.000 files utilizing text code classification [1]. Baquero et al. [4] came 

forward with a model which could predict the programming language from comments 

text data and code snippets [1]. The study had been conducted on eighteen 

programming languages, 18.000 files using support vector machine (SVM) method. 

 

2.3.5. Text – based source code classification approach 

The pre-processing step is a must for text data. A transformation from text 

elements to numeric features needs to be performed to be used as inputs for the 

algorithm. A tokenization method is used in this step, in order to split the text into 

sperate words and/or tokens. Embedding is the process of creating vectors which 

contain real numbers that represent the tokens created in the previous step. Each word 

or element is mapped into a vector or vectors which are learned by the Convolutional 

Neural Network during its training phase [1].  

 

2.3.6. Image – based source code classification approach 

Among other advantages of the image-based approach is the ability to 

interpret comments of the source code provided. While in the text–based approach, 

the comments added in the code must be removed in order to interpret correctly the 

file, here the Convolutional Neural Network will not have this problem. Furthermore, 

the comments added may be useful information discarded by the text-based approach.  

 

2.3.7. Study of coverage support using Artificial Intelligence 

 

As mentioned in this study, functional coverage is labour-intensive for the 

engineer, creating a bottleneck in the verification phase. Multiple studies have 

explored the possibility of having a neural network enhancing the time spent on 

coverage.  

In simulation-based verification, the stimuli that are to be driven to the DUT 

are generated random-constrained in the test. A quick improvement that can be 

applied in order to rapidly increase coverage is the integration of CDG (Coverage-

directed Test Generation) [5].  



Chapter 2 Artificial intelligence in general 

 

7 

Wang et al. [5] have reconsidered the issue of the complex ASICs, which 

contain complicated RTL (Register Transfer Layer) blocks, with a tremendous 

number of parameters, configurations and prone to having many faults. Their aim was 

to develop a verification system that can discern between the parameters and 

configurations which are relevant, and which are not.  

Q.Guo et al. [6] have built a framework that intends to reduce the irrelevant 

stimuli on the fly. If the stimuli are categorized as being redundant, then it will not be 

sent to the Design Under Test. Therefore, only the stimuli that are relevant will be 

sent to the DUT [6].  
 

2.3.8. CUDA enhancement of Artificial Intelligence 

 

The previous subsections exposed a handful of solutions to the existing 

problems in the field of functional verification. These following subsections prospects 

to lessen further the time spent by using AI and adopting the Computer Unified 

Device Architecture (CUDA) platform by Nvidia. 

 

2.3.9. Comparison of CUDA vs OpenCL 

 

Open Computing Language (OpenCL) is a free source standard for 

multipurpose parallel programming from CPUs, GPUs and multiple processors.  

OpenCL has many similarities when compared with CUDA. First the thread 

architecture of CUDA is almost identical to the one in OpenCL (work-item). 

Secondly, in CUDA a grid is referring to a set of all the threads executing the same 

kernel function. The grid contains arrays of blocks which should be the same size. 

This is very similar with OpenCL definition of workgroup.  

Some differences between CUDA and OpenCL are related to memory models. 

In the case of CUDA, the local memory can be seen by each thread.  

Regarding compilation, CUDA uses a static compiler which is responsible of 

compiling the kernel and host code before throwing it to the GPU. On the other side, 

OpenCL uses ahead-of-time (AOT) or a just-in-time (JIT) compiler which has good 

portability. Because of the AOT, OpenCL needs additional initialisation time in order 

to look devices [7]. 

 

2.3.10. Conclusions  

 

This chapter presents the context for the verification of a chip and the 

challenges of reducing the number of bugs to zero. This process is tedious and is 

taking a large amount of time. Artificial Intelligence was reviewed as a solution to 

reduce this blockage by attaining the aimed coverage percentage defined in the test 

plan. 
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2.3.12 Founding sources 

 

Funding sources for this paper were supported by the authors with the logistical 

support of the Polytechnic University of Bucharest, Faculty of Electronics, 

Telecommunication and Information Technology.  

  



 

 

 

Chapter 3. Large Language 

Models and applications into 

functional verification [2] 
 

This chapter is adapted after the author’s article named “Trials of using 

Generative AI for APB UVM testbench generation”. 

 

The functional verification process consists of multiple parts such drafting the 

verification plan, environment implementation, tests implementation, debugging, 

reporting the issues found and fixing the regression failures. As design increases in 

development, it is integrated into the verification environment, thus tested for bugs. 

The manner in which functional verification is done is presented in Figure 3.1 

(Mammo, 2017).  

 

Figure 3.1. Verification process steps (Mammo, 2017)   

3.1. AI in functional verification and other research  

Artificial intelligence can greatly improve the verification process in multiple 

ways:  

• Coverage completion. In this paper (Dinu et al., 2022), genetic algorithm 

approaches are used to generate stimuli which are sent to the input port of the 

Device under Test (DUT).  

• Regression clustering and filtering. Various machine learning algorithms can 

be used to filter different regression failures (Dinu & Ogrutan, 2019) and to 

focus solely on more important failures;  
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• In documentation, pattern recognition on different images and text. By using 

these, the project verification task can be defined better and more efficient;  

• Generating various testbenches using Generative AI. This approach may be 

used to generate full System Verilog UVM testbenches from scratch using 

ChatGPT4, in order for the engineer just to analyse the code provided and 

integrate the resulted verification environment into the respective system.  

3.2. State-of-the-Art  

Large Language Model (LLM) implementations such as ChatGPT have 

become viable options for engineers in order to navigate or generate large, complex, 

feature rich code (Khurana et al., 2024).  

In this chapter, the approach using GenerativeAI to generate a System Verilog 

UVM ARM AMBA (Advanced Microcontroller Bus Architecture) APB (Advanced 

Peripheral Bus) testbench from scratch was used, among a short study regarding 

System Verilog UVM code generation using a waveform diagram usually found in 

official documentation.  

3.3. UVM Testbench generation from scratch using ChatGPT4  

In this chapter most of the UVM components were implemented, aside from 

the scoreboard. These components have been generated entirely using ChatGPT4. The 

only part which had to be manually adjusted due to ChatGPT4 limitations is the top.sv 

file where the signals are connected to the DUT and the virtual interface. The code 

was analysed and corrected by the verification engineer. The code was simulated 

using the open source site EDA Playground which provides limited but enough 

simulation capabilities with all three vendors tools (Cadence INCISIV, Questa, VCS). 

Below are the snippets of the code generated by ChatGPT4.  

  
A)                                                                B) 

Figure 3.2 Item and driver classes generated by ChatGPT4  

ChatGPT4 was requested to generate an item or transaction class using UVM 

System Verilog which respects the AMBA APB protocol. In the first inquiry of 

ChatGPT4 the LLM output was only the signals pwrite, paddr, pdata, prdata and 

pready, which is incomplete as the pslverr and the penable signals are needed. On the 

second run, as requested, the model added the two missing signals in the 
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uvm_sequence_item. For the apb_driver class, the model was asked in the same 

manner to provide the code for specifying clearly to use the UVM Methodology and 

SystemVerilog as the verification language. The output was also incomplete as the 

reset functionality of the protocol, which is indispensable, was missing. The missing 

parts of code were added by the verification engineer. Figure 3.2 A), B) and Figure 

3.3 A), B) both illustrate the transaction and driver classes resulted by using the LLM 

and correcting the missing items.   

     
A)                                                                B) 

Figure 3.3. UVM Driver class  

For completing this APB UVM testbench a sequence was requested by the 

verification engineer to the model in order to be able to use this sequence in a test.  

 

Figure 3.4. UVM Sequence  

The sequence in Figure 3.4 was used in a UVM APB test generated by a LLM. 

After running the simulation, the waves were dumped in order to analyse it and ensure 

the correctitude of the testbench.     Figure 3.5 shows the waveforms.  

    Figure 3.5. Results of the ChatGPT generated UVM testbench 
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The only file that was needed to be created by hand by the engineer was the 

top.sv file. ChatGPT4 can replace or correct names quite easily, but as needed in a 

top.sv file it cannot connect the interface to the virtual interface, uses wrong and 

uncompilable code for uvm_set_config_db() and also for the run_test() method.  

3.4. Generating various components of a UVM testbench starting from a 

protocol diagram  

In this study, a protocol image was fed to the model and asked to provide the 

respective UVM Driver. This approach is useful when adding an individual UVM 

component in an already existing testbench. This way, the code is already generated 

using either an image, diagram or maybe waveforms and it will be imported into the 

existing testbench. This approach saves valuable time, instead of writing the UVM 

component from scratch. Figure 3.6 contains the image used and Figure 3.7 A), B) the 

resulted code.  

 

Figure 3.6. APB Write transaction waveforms (ARM, 2023)  

   

A)                                                                B) 

Figure 3.7. Generated classes  

3.5. Conclusions   

In this chapter, two approaches were presented to decrease the time spend on 

functional verification. The first approach, where an UVM APB testbench is 

developed from scratch, might be more suitable when wanting to have more control of 

what the LLM is asked to output. By using a text-based approach in which the LLM is 

asked specifically for the classes involved, the methodology used and the 

programming language, the verification engineer has more control and less time spent 
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correcting ChatGPT4. The second approach, using a protocol picture (in this case an 

ARM APB Write transfer) which is present in many documentations, can prove very 

useful when change requests are needed.  

This study aimed to prove, on a small testbench, the benefits and possible 

ChatGPT4 use cases for the functional verification process. As presented above, two 

approaches were used by the verification engineer, both with very good results and 

decreasing time spent on the project."  
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Chapter 4. Generating System 

Verilog assertions using a 

Large Language Model [3] 
 

This chapter is adapted after the author’s article named “Generative AI 

Assertions in UVM-based System Verilog Functional Verification”. 

 

4.1. Introduction 

Assertion generation for various protocols such as Advanced Peripheral Bus, 

AHB (Advanced High-Performance Bus), etc using a LLM such as ChatGPT can 

vastly reduce the functional verification time. These assertions might be also 

integrated in other verification environments; thus, it is useful to write the assertion 

code in a good and reusable way. 

4.2. Materials and Methods   

In this study, ChatGPT has been asked using the prompt to generate System 

Verilog assertions for an APB UVM testbench. Figure 4.1 presents the way the LLM 

was asked to provide the results.  

 

Figure 4.1. ChatGPT text prompt 

There is another way of using the LLM, such as providing a protocol 

waveform in order to let ChatGPT interpret the waveform rules and provide the 

needed assertions. Figure 4.2 presents the Write transfer transaction waveforms of the 

APB protocol being fed into the LLM and just asking ChatGPT to output the 

assertions without writing any definition of the protocol or rules. The LLM’s task was 

to interpret the waveform and generate the assertions according to the rules implied 

by the waveform. 

 



Contributions to functional verification using Artificial Intelligence 

 

16 

Figure 4.2. ChatGPT prompt fed with APB Write transfer waveform 

 Using these two approaches, this chapter aims to underline how swiftly the 

LLM can generate critical code, vastly reducing the time spent on verification. The 

verification environment, and Register Transfer Layer (RTL) implementation were 

developed by the researchers.  

4.3. Results 

Using the first approach the LLM was asked via text to provide the assertions 

for different signals of the APB protocol. The output of the LLM for an assertion that 

has the condition of PENABLE signal not active during reset is described in Figure 

4.3. 

 

Figure 4.3. ChatGPT output for text prompt 

 The code of the LLM has been introduced in the top.sv file of the testbench 

where the top module resides for easier integration. 

 

Figure 4.4. Code output by the LLM and integrated in the top module 

 A test was run with the lines 66-72 active (Figure 4.4). The test failed, because 

the ChatGPT – 4 generated assertion was invalidated. In Figure 4.5, the failure log of 

the respective test is presented. It can be seen clearly that the ChatGPT – 4 assertion 

has correctly indicated the error in the test. 

 

Figure 4.5. Test assertion failure log 

 When asking the LLM for basic assertions for the AMBA APB protocol via 

text prompt, the LLM output is presented in Figure 4.6. The figure presents the LLM 
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providing the assertions with explanations on each point and carefully structuring the 

code.  

 

Figure 4.6. Text Prompt for AMBA APB basic assertions 

These assertions provided by the LLM were integrated in the APB verification 

environment. This is shown in Figure 4.7. Figure 4.7 presents all the basic AMBA 

APB System Verilog assertions integrated in the top.sv file. The LLM suggested five 

basic assertions such as: PSEL should be high when a transfer is in progress, 

PENABLE should be asserted only after PSEL is asserted, PADDR should be stable 

when PSEL and PENABLE are high, PWRITE should be stable PSEL and 

PENABLE are high, PWDATA should be stable during the enable phase of the 

transfer.  

 

Figure 4.7. Assertion integration in the testbench 

 In order to be able to resolve the simulation issues, the researchers have 

renamed the signals from PCLK, PENABLE, etc. to clk, vif.penable. This was done 

in order to correct the variables as to point to the APB virtual interface of the 

testbench. The test was run, with errors triggered by the assertions suggested by 

ChatGPT – 4.  

 In the second approach, the LLM was fed an AMBA APB Write transfer 

image and also an AMBA APB Read transfer image. No further details were added, 
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just the images themselves and the request to generate System Verilog assertions. 

Figure 4.8 A) and B) exhibit the way the LLM was asked to provide the code and the 

images fed into it.  

 

A). Image prompt for an APB Write Transfer 

 

B). Image prompt for an APB Read Transfer 

Figure 4.8. Image prompt for an APB Read & Write Transfer 

For the write transfer ChatGPT – 4 generated System Verilog assertions which 

check the functionality of PADDR, PWRITE, PENABLE, PWDATA and PREADY. 

ChatGPT4 has correctly generated the code for the assertions, although a few 

modifications are sometimes needed, mostly for the integration in the existing 

testbench.  

 While these two approaches generate fast and quite accurate results, there is 

the need for the verification engineer to supervise the model results in order to correct 

them if it the case. Thus, here the LLM servers more as co-pilot. 

4.4. Conclusions 

 

In this chapter the researchers have proven the impact of using ChatGPT – 4 

for generating System Verilog assertions and integrated them into an existing APB 

UVM testbench. By generating assertions, time spent on functional verification was 
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reduced to about 20% for the testbench presented in this study (APB UVM testbench), 

by not implementing a dedicated score boarding class and relying only on assertions. 

This environment is run on a free platform, which makes it harder to develop than in 

an already dedicated simulation environment. Taking into consideration these finding, 

using Generative AI to create assertions makes it a great candidate as to greatly 

reduce time spent on functional verification.  

 





 

 

Chapter 5. AI used in 

functional verification [4] 

 
This chapter is adapted after the author’s article named “Artificial Intelligence 

Application in the Field of Functional Verification”. 

 

5.1. Introduction 

As Integrated Circuit development progresses in complexity and scalability, it 

becomes essential for them to work as expected, being reliable and robust, especially 

in critical files such as medical, aviation, and automotive files.   

By using Artificial Intelligence, the verification process can be faster and 

completed in less time.  

 

5.2. Related Work 

There are a multitude of areas where Artificial Intelligence can aid the 

verification process. The tests are grouped according to the failure reasons. As stated 

in [1], some machine learning algorithms can effectively classify the failing tests in a 

regression according to their failure reasons. Although, according to [2], the outcome 

is not as expected. Stimulus and test generation is conducted by using supervised and 

reinforcement ML algorithms [3] to hit the planned coverage for the Device under 

Test (DUT) [4]. In the verification process of a cache controller, a supervised Deep 

Neural Network (DNN) [5] was used alongside the Q learning algorithm. The DNN is 

trained to create sequences for four First-in-First-Out (FIFO)s. 

 

5.3. Methodologies, Study Materials, and Databases 

In this study, the researchers implemented the dataset alongside the model. 

The dataset consists of important or critical information from documentation and non-

crucial information. Different specifications and documentations were analysed and 

combined to create the dataset. Such documentations include, for instance, ARM’s 

Advanced Microcontroller Bus Architecture APB and AXI. The specifications have 

been thoroughly analysed by the engineer and the foremost information and irrelevant 

data were categorized into relevant and irrelevant information. 

Figure 5.1 is an example of other relevant data that must be considered by the 

engineer. It contains a description of the PSLVERR, PREADY, and PENABLE 

signals. These are signals usually used in an APB transfer.  
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Figure 5.1. APB signal short description. 

 

These are some examples of relevant data in the created database. As for 

irrelevant data, these can contain parts such as copyright rules that, to the engineer, 

are not relevant when implementing the verification environment, and the test 

scenarios and parts may not be implemented in the RTL design. Due to various 

reasons, some parts of different modules, protocols, etc., may not be implemented in 

the design. Figure 5.2– Figure 5.4 illustrate an example of irrelevant information 

mentioned above. 

 

 
Figure 5.2. Succinct APB list of protocol rules 

 
Figure 5.3. AMBA AXI Copyright information 

 
Figure 5.4. AMBA AXI signal conventions 
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Considering the means above, a database was constructed from scratch using 

the verification engineer’s expertise and experience in the field. For this dataset, 

information was carefully extracted from the Advanced Microcontroller Bus 

Architecture Advanced Peripheral Bus (AMBA APB) and from the Advanced 

Microcontroller Bus Architecture Extensible Interface (AMBA AXI). This dataset 

will be used to train the model presented in this paper.  
 

5.4. Results 

In this presented application, data preprocessing was performed before feeding 

it into the model.  

Data were augmented using special libraries to enhance the database rapidly. 

For this, the nlpaug library was used together with a synonym method, which was 

applied to the dataset. The labels were encoded using LabelEncoder, and data were 

then Tokenized. Test and training data were split into 80% training and 20% tests. 

Two CNN sequential model implementations were tested. The architecture of the first 

CNN model used is described in Figure 5.5. The sequential model is a deep learning 

model that is made from linear stack layers. Layers are added to the model in 

sequential order, and the output of each layer is the input of the next layer. The first 

proposed model consists of an Embedding Layer, a convolution layer, an activation 

Flatten layer, and one dense layer. For the activation layer, the Rectified Linear Unit 

(ReLU) activation function was used. 

 

Figure 5.5. First CNN architecture 

This first proposed model ran 20 epochs, having at the end a test accuracy of 

98.333340883255% and a loss of 10.25% with data augmentation applied one time 

and concatenated with the created dataset. This first CNN model is a try-out to see 

what needs to be done next to improve the accuracy and loss. There are a couple of 

options, such as augmenting the data even more, adding more layers, or hyper 

parametrizing the model. Figure 5.6 describes the training and validation accuracy 

graph as well as the training and validation loss graph. 

 

 

Figure 5.6. First CNN model graph for training and validation. 
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The model presents high percentages of precision—97%, recall—100%, F1-

score—98% for 0, and for 1, precision—100%, recall—96%, F1-score—98%. These 

results make the model reliable for both cases, with high precision, recall, and F1-

score, performing very well in identifying relevant instances and making accurate 

predictions, with a good balance between precision and recall (achieving high 

precision and high recall at the same time).  

Another sequential model was developed to try and achieve better results. An 

architecture was defined using three convolutional layers, three activation layers, an 

embedded layer, one MaxPooling layer, one Flatten layer, and one dense layer, as 

presented in Figure 5.13.  

Figure 5.7  

 

Figure 5.7. Second CNN model architecture. 

After applying data augmentation, we split the dataset into 80% training and 

20% validation and trained the model with an accuracy of 96.66666984558105% and 

a validation loss of 5%.  

 

This model architecture uses three convolutional layers, has very high 

precision scores for both 1 and 0 (100% and 93%), has a high recall percentage (94% 

and 100%), and has a good F1-score (97%).  

 

 
Figure 5.8. Second CNN model with three convolutional layers training and 

validation 

In this paper [6], a multitude of models were used to classify the binary data 

for two datasets: DATASET-1 (similar to the Stanford Sentiment Treebank with only 
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negative and positive reviews) and DATASET-2 (Amazon review of Sentiment 

Analysis Dataset). The best models applied on those datasets, TextConvoNet_4 (four 

convolutional layers) and TextConvoNet_6 (six convolutional layers), achieved 

accuracies of 82.2% and 81.9%, respectively, on DATASET-1. For DATASET-2, 

TextConvoNet_4 has an accuracy of 90.4%, while TextConvoNet_6 has an accuracy 

of 87.2%. If these results are taken into account, the proposed two CNN architectures 

would outperform the TextConvoNet_4 and TextConvoNet_6 models. The accuracy 

that the Bidirectional Encoder Representations from Transformers (BERT), 

Hierarchical Attention Networks (HAN), and BerConvoNet models have achieved are 

77.6%, 80.2%, and 83.1% on DATASET-1. For DATASET-2, the same models have 

reached 77.2% (Bidirectional Encoder Representations from Transformers-BERT), 

86.3% (HAN), and 88.3% (BerConvoNet). Therefore, the models presented in this 

study are performing better than the ones used in [6]. 

 

5.5. Conclusions 

 

In this paper, two AI implementations were used in order to aid the 

verification process in finishing in less time. The two approaches consisted of using 

two Convolutional Neural Network architectures, one with two convolutional layers 

and one with three convolutional layers. In both cases, data augmentation was 

performed. This means that, on the original dataset, a method was applied to 

substitute some words with their respective English synonyms to enhance the dataset 

further without adding any entries. The dataset was created, developed, and analysed 

by the researchers, using their experience in the functional verification field. Both 

Convolutional Neural Network models were developed using Python 3.12.3 and ran 

using an Apple M1 hardware on a dedicated 10-core GPU with an Anaconda 

environment. 

For the first Convolutional Neural Network, a sequential model was defined, 

and layers were added to it. This model implementation generated fine results, high 

test accuracy (98333340883255%), high recall, precision and F1-score, and low 

validation loss (10.25%), making it a reliable, robust, and well-adjusted model.  

The second architecture generated high accuracy at 96.66666984558105% and 

low validation at 5%. The scores for precision, recall, and F1-score are also good 

overall, making the model trustworthy and solid. 
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Chapter 6. Conclusions 

 
 The functional verification process involves several key stages, including 

drafting the verification plan, implementing the verification environment, creating 

tests, debugging, reporting discovered issues, and addressing regression failures. As 

the design progresses, it is integrated into the verification environment and tested for 

bugs.  

 

6.1. Obtained results 

Creating an UVM testbench from scratch using an LLM, like ChatGPT or 

similar models, provides substantial benefits. LLMs are capable of understanding 

high-level instructions and generating the essential components of a UVM 

environment, such as drivers, monitors, agents, sequencers, and scoreboards. This 

automation allows engineers to focus more on refining the design and less on routine 

coding tasks. The iterative approach used—where the LLM provides a basic 

framework and the engineer refines it—demonstrates that AI can handle the heavy 

lifting of template generation, leaving complex logic and architectural decisions to the 

human expert. 

In the second approach, where the LLM generates a UVM component from a 

given waveform, the AI's ability to recognize patterns from visual inputs and translate 

them into functional code showcases an advanced application of machine learning.  

This automation is particularly useful when dealing with a wide range of 

protocols or when design specifications evolve rapidly. Instead of rewriting UVM 

components from scratch or modifying existing ones manually, engineers can rely on 

AI to handle those changes efficiently. There are a number of ways the LLMs can 

further increase the speed of the verification process by: 

• Efficiency and Time Saving. 

• Error Reduction. 

• Scalability. 

• Flexibility and Adaptability. 

Artificial Intelligence can further enhance functional verification by using 

other strategies such as: 

• Stimulus generation refers to the creation of input signals or conditions that 

drive the DUT to exercise its functionality. 

• AI can assist in understanding high-level design specifications and generate 

tests that validate the implementation against the documentation.  

Regarding the results obtained using the LLM to generate System Verilog 

UVM assertions, they are promising and will provide great aid to the verification 

process. By using two approaches, one text-based prompt and the other image-based 

approach the assertions generated are syntactically correct and can be easily 

integrated into the verification environment. The engineer will act similar to a 

supervisor having to correct the LLM if the output is not respecting the protocol rules. 

It is the task of the engineer to make sure that the text-based and image-based 

approach are correct and the LLM is asked specifically for what it is needed. 
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By creating the dataset from scratch, architecting two Convolutional Neural 

Networks, one with two convolutional layers and one with three convolutional layers, 

debugging, training, and validating them an accuracy of 98.33% and 96.6% and very 

good recall, precision and F1 score. This approach makes the verification process 

faster by classifying the critical requirements in the documentation as for the engineer 

to implement those as a high priority. 

  

6.2. Original contributions 

In this thesis, various and complex contributions have been added to the field 

of functional verification such as: 

• Investigation, analysation, and research of possible Artificial 

Intelligence applications in the field of functional verification. Various 

strategies, ideas were analysed such as debugging support, text-based 

classification, and AI ideas in order to achieve 100% functional 

coverage. 

• Generating (using a LLM), supervising, correcting and debugging an 

UVM APB testbench from scratch by using a text based prompt. This 

task consists of asking the LLM to generate a full APB UVM testbench 

without providing any other prior information about the protocol. 

Mistakes and missing code were corrected by asking the LLM to add 

additional lines or delete when it was the case. The only file not 

generated by the LLM is the top.sv file, as it needed the verification 

engineer’s input vastly.  

• Generating an UVM Component by feeding an image into the LLM, 

without any other information. This approach is useful when change 

requests are in place, alongside with waveform example as the 

component can be rapidly generated. The verification engineer’s role is 

to supervise and correct the output. 

• Generating, guiding, integrating, and correcting assertions for an UVM 

testbench. The LLM was asked using text prompt to aid in generating 

System Verilog Assertions. Further, the integration and validation of 

the assertions was done by the verification engineer, thus underlining 

even more the usefulness of the LLM in the functional verification 

field. 

• Creating a dataset from scratch using some of the AMBA protocols. 

This dataset was lately used to train and validate the two Convolutional 

Neural Network solutions. 

• Creating, implementing, training, and validating a CNN model with 

two convolutional layers which can classify parts of specification text 

as complex or not complex. The degree of complexity is based on the 

verification engineer s experience in the field (nine years). The model 

has an accuracy of 98.333340883255%. 
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• Creating, implementing, training, and validating a CNN model with 

three convolutional layers which can classify parts of specification text 

as complex or not complex. The degree of complexity is based on the 

verification engineer s experience in the field (nine years). The model 

has an accuracy of 96.66666984558105%. 
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6.4. Perspectives for further developments 

 

There are quite a few perspectives of the impact of AI in the function 

verification field using the LLM:  

• Expansion to Coverage-Driven Verification (CDV): LLMs could be further 

used to automate the generation of coverage models.  

• Automated Debugging Assistance: Expanding LLM capabilities to assist in 

debugging could provide engineers with automatic suggestions for resolving 

errors in the UVM environment.  

• Enhanced Protocol Support: LLMs could be trained to handle a broader range 

of protocols, integrating deep knowledge of specific industry standards such as 

PCIe, USB, and Ethernet, to facilitate faster verification in multi-protocol 

SoCs. 

• Natural Language to System Verilog UVM: Further improving the ability of 

LLMs to translate natural language descriptions of verification requirements 

directly into UVM components could make the verification process more 

accessible to those without extensive coding expertise. 
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