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Chapter 1 
 

 

 

Introduction 
 

 

Understanding the correlations between natural elements is crucial in developing sophisticated 

systems for Earth Observation (EO) and analysis. These systems support sustainable development 

by enabling better decision-making in sectors such as agriculture, climate science, and 

environmental conservation. Advanced EO technologies uncover patterns that optimize land 

management practices, enhance crop yields, and provide early warnings for natural disasters. 

Remote Sensing (RS) technologies, by capturing high-resolution images in various spectral 

regions, help determine land usage, vegetation indices, and atmospheric conditions. Integrating 

Deep Learning (DL) with RS has revolutionized data interpretation by processing large datasets 

efficiently and accurately. This thesis proposes algorithms and methods that expedite data 

processing across various sensors, addressing significant challenges in EO and RS. 

 

 

1.1 Presentation of the Field of the Doctoral Thesis 

 

Satellite imagery is critical for applications like environmental monitoring and disaster 

management. Researchers use this imagery to track changes such as deforestation and urbanization 

[2]. However, RS data is challenged by high dimensionality, variability due to seasonal changes 

and weather conditions, and different resolutions [3]. Traditional processing methods, relying on 

algorithms like edge detection, struggle with complex patterns [6, 7]. In contrast, DL algorithms 

like Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs) provide superior 

classification performance by handling high dimensionality and variability, although they require 

extensive resources and labeled datasets [8]. 

DL impacts various fields, including Computer Vision (CV) and EO, with many studies 

highlighting its benefits. For example, [9-11] offer overviews of DNN architectures and their 

applications. Specifically, the EO community advances DL architectures to address classification 

tasks, such as land cover and land use classification [12-15]. Emerging techniques, such as graph 
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convolutional neural networks, show promise in correlating diverse data [17]. Additionally, 

innovations like network pruning and CNN modifications aim to reduce training time and enhance 

performance [33-36]. 

 

 

1.2 Scope of the Doctoral Thesis 

 

This thesis aims to develop methods for fast training with reduced datasets while maintaining 

performance comparable to state-of-the-art techniques. The research focuses on hybrid solutions 

that involve reducing input data dimensions and simplifying architectures. Key approaches include 

using pixel intensity histograms, applying Bag-of-Words (BoW), down-sampling patches, and 

simplifying architectures. The thesis also addresses the estimation of the Normalized Difference 

Vegetation Index (NDVI) from Synthetic Aperture Radar (SAR) data, typically derived from 

multispectral (MS) imagery. 

 

 

1.3 Content of the Doctoral Thesis 

 

The thesis is structured as follows: 

• Chapter 2: Introduces basic concepts in remote sensing and details the primary data 

sources—Sentinel-1 and Sentinel-2. 

• Chapter 3: Covers foundational deep learning principles and relevant software commands. 

• Chapter 4: Describes methodologies and results of fast training with multispectral data, 

testing various datasets, methods, and architectures. 

• Chapter 5: Applies the same fast learning methods to SAR data, introducing a dataset of 

high-resolution SAR images. 

• Chapter 6: Demonstrates the practicability of the most effective fast-learning algorithms, 

including use cases and limitations. 

• Chapter 7: Presents methods for estimating NDVI from SAR datasets. 

• Chapter 9: Concludes the thesis with a summary of contributions and future research 

prospects. 
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Chapter 2 
 

 

 

Remote Sensing Basics and Notions 
 

 

Remote sensing is a discipline used to study, analyze, and understand the surface of the Earth 

through various imaging systems that gather information across different wavelengths. These 

imaging systems facilitate the monitoring of agriculture, urbanization, deforestation, and climate 

change. The remote sensing process involves several components: 

1. Source of Electromagnetic Radiation: For multispectral sensors, sunlight serves as the 

source. For radar images, the satellite itself emits the electromagnetic radiation. 

2. Radiation Path: The radiation interacts with the Earth's surface and is then emitted, 

reflected, or transmitted. 

3. Target: The observed target can be a land cover type, water body, or urban area. 

4. Sensor: This detects and measures the radiation. Sensors can be passive (detecting natural 

radiation) or active (emitting and receiving radiation). 

5. Processing Station: This station digitizes and processes the data, converting raw sensor 

data into meaningful information through calibration and correction. The results are then 

analyzed for various applications such as classification, mapping, and change detection 

[37]. 

 

 

2.1 Multispectral Imagery 

 

Multispectral imagery captures data across multiple wavelengths, converted into spectral bands. 

With sensors equipped to capture data both passively and actively, multispectral images allow for 

applications such as vegetation monitoring, land-use classification, and water quality assessment 

[37][42]. The Sentinel-2 mission is a cornerstone of this technique, providing data from the visible 

to the short infrared spectrum with spatial resolution ranging from 10 to 60 meters over 13 spectral 

bands [39].  
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Key characteristics of multispectral images include: 

• Spatial Resolution: The smallest distinguishable feature, expressed in meters. 

• Spectral Resolution: The range of wavelengths captured. 

• Temporal Resolution: The frequency of image capture for monitoring changes. 

• Radiometric Resolution: The ability to detect minor differences in energy levels. 

• Geometric and Atmospheric Corrections: Adjustments to account for Earth's curvature, 

rotation, and atmospheric distortions [37]. 

Interpretation aspects include brightness, color differentiation, texture, shapes, shadows, and 

spatial context. These factors allow for accurate analysis and classification of land use and surface 

characteristics [37]. 

 

 

2.2 Characteristics of the Sentinel-2 Satellite 

 

Sentinel-2, part of ESA’s Copernicus Program, features two satellites equipped with a 

MultiSpectral Imager (MSI) that captures data from 443 nm to 2190 nm over 13 spectral bands 

[49]. Key characteristics of the Sentinel-2 satellites include: 

• Orbit Type: Sun-synchronous orbit at approximately 786 km altitude. 

• Orbit Period: Approx. 100 minutes. 

• Swath Width: 290 km. 

The MSI of Sentinel-2 features several bands with varying resolutions and applications. Band 

1, operating at a 60m resolution, is used for atmospheric correction and water quality analysis. 

Band 2 and Band 4, both at a 10m resolution, support monitoring water bodies and urban mapping, 

respectively. Band 5 focuses on crop health assessment at a 20m resolution, while Band 8, also at 

10m, is important for soil moisture and vegetation health. Lastly, Band 10, at a 60m resolution, is 

used for analyzing soil and vegetation moisture. This diversity enables the instrument to effectively 

support environmental monitoring, agriculture, and resource management. Corrections such as 

atmospheric correction (Sen2Cor processor), geometric corrections, surface reflectance products, 

and cloud masking enhance the quality and accuracy of the data [49]. 
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2.3 Synthetic Aperture Radar Imagery 

 

 

Synthetic Aperture Radar utilizes microwave radar to acquire high-resolution images, impervious 

to atmospheric conditions and daylight. SAR data acquisition involves transmitting microwave 

signals to the Earth's surface and receiving the backscattered signal. This is illustrated in Figure 

2.7, detailing data focusing in range and azimuth, speckle filtering, radiometric calibration, and 

orthorectification [51-53]. 

SAR data offers polarimetric characteristics such as VV, HH, VH, and HV polarizations, providing 

multiple layers of Earth surface information. 

 

Figure 2.7 Data acquisition in SAR technology. 

 

 

2.4 Characteristics of the Sentinel-1 Satellite 

 

Sentinel-1, also part of ESA’s Copernicus Program, features two SAR-equipped satellites operating 

in the C-band (5.405 GHz) and capable of different polarizations. Operating from an altitude of 

686 km, the Sentinel-1’s SAR systems facilitate high-resolution imaging applications ranging from 

urban studies to maritime monitoring. The Sentinel-1 satellite operates in three modes, each suited 

for different applications. The Interferometric Wide (IW) mode has a swath width of 250 km and 

a spatial resolution of 5m in range and 20m in azimuth, making it ideal for land monitoring, change 

detection, and vegetation analysis. The Extra Wide (EW) mode, with a 400 km swath width and 

40m resolution in both range and azimuth, focuses on maritime applications and open-ocean 

monitoring, suitable for observing sea ice and large-scale flooding. Finally, the Strip Map (SM) 
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mode features a narrower swath of 100 km with high spatial resolution of 5m in both dimensions, 

making it effective for urban studies and topographic mapping. [54]. 

 

 

2.5 Software Solutions 

 

The European Space Agency provides software tools for data processing via the Copernicus Data 

Space Ecosystem [50]. Essential tools include SNAP (Sentinel Application Platform) and its 

Python module, snappy. SNAP’s graphical user interface and extensive online community support 

various data processing activities, while snappy automates these processes through Python scripts 

[55]. 
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Chapter 3 
 

 

 

Deep Learning Basics and Notions 
 

 

Deep Learning has significantly transformed traditional services across domains such as medicine, 

education, agriculture, and Earth Observation [56]. Similar to how electricity revolutionized 

society, artificial intelligence (AI) is reshaping environments in areas like transportation, 

technology, and health. The rapid development of AI, particularly machine learning (ML) and DL, 

has driven advancements in various fields. 

In Earth Observation, DL techniques are applied to analyze remote sensing data, such as 

multispectral and radar images, enabling rapid development in applications like land cover 

classification and environmental change monitoring. Numerous libraries and tools, such as 

TensorFlow, Keras, dlib, and OpenCV, facilitate the creation of DL architectures. Package 

management programs like Anaconda help integrate these tools efficiently. Given the 

computational demands, DL solutions are optimized for machines equipped with GPUs, though 

CPU-based solutions are less effective [56]. 

 

 

3.1 Neural Networks Basics and Terms 

 

Artificial neural networks (ANNs) are inspired by the brain's neurons and their connections. These 

networks identify patterns and make decisions based on input data through a training process. 

There are various neural network architectures, from simple linear and logistic regression models 

to more complex structures [56]. 

• Linear Regression: Predicts continuous outputs through a hypothesis function of inputs 

and weights. It employs a cost function to optimize the weights via Gradient Descent, a 

strategy that iteratively minimizes the difference between predicted and expected outputs. 

Variants include Stochastic Gradient Descent, which updates parameters using random 

subsets of training data [56]. 

• Logistic Regression: Adds an activation function (usually a sigmoid) to make binary 

decisions, classifying data based on whether the hypothesis function exceeds a threshold. 
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• Shallow Neural Networks: Incorporate a single hidden layer with various activation 

functions, optimized through techniques like Gradient Descent. When multiple hidden 

layers are introduced, the architecture evolves into a deep neural network  capable of 

handling complex classification tasks [57]. 

 

 

3.2 Deep Neural Networks and Convolutional Neural 

Networks 

 

Deep Neural Networks use multiple hidden layers to detect progressively complex patterns in data. 

The first layer may identify basic features like edges, while subsequent layers detect more intricate 

structures, culminating in the recognition of complete objects (e.g., faces) [57]. 

Convolutional Neural Networks extend DNNs by incorporating convolution operations, 

essential for tasks like image recognition. These operations involve applying filters to input data 

to detect specific features. The architecture of a CNN typically includes: 

1. Zero Padding: Ensures the filter doesn’t reduce the input size. 

2. Convolution (Conv2D): Applies a filter to detect structures, moving in steps (strides). 

3. Activation Function: Often a Rectified Linear Unit (ReLU) for non-linear processing. 

4. Max Pooling: Downsamples the data to reduce dimensionality. 

5. Regularization (Dropout): Prevents overfitting by dropping random neurons. 

6. Flattening: Converts the matrix data to a vector. 

7. Dense Layer: Fully connected layer with activation functions. 

8. Output Layer: Uses activation functions like sigmoid or SoftMax for classification tasks 

[59]. 

Keras and TensorFlow are popular libraries for developing CNNs and other DL models. They 

offer comprehensive tools to create, train, and deploy neural networks efficiently. Understanding 

specific blocks and functions within these libraries is crucial for implementing effective DL 

solutions. 
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Chapter 4 
 

 

 

Fast Learning on Multispectral Images 
 

 

4.1 Introduction and State-of-the-Art 

 

Deep Neural Networks have substantially advanced the field of Computer Vision, with 

Convolutional Neural Networks being prominent for image classification [62]. However, these 

networks require significant computational resources and time for training, an issue magnified 

when handling Earth Observation data, which is categorized as Big Data [29]. Specifically, EO 

often involves multispectral or hyperspectral (HS) images, which have more channels than typical 

RGB images. 

The challenge is exacerbated by the scarcity of annotated datasets in EO. Notable datasets 

include BigEarthNet [84], which provides extensive MS images [26]. Previous studies have 

integrated Deep Learning with EO to various degrees of success. For instance, [63] provides a 

detailed review of DL applications in EO, while [64] and [65] introduce novel DNN architectures 

for specific tasks like object detection and SAR image classification. 

This chapter aims to examine methods that expedite CNN training on MS images. Although 

models like transfer learning exist, they often underperform with MS images due to the additional 

spectral information beyond the visible spectrum [26]. We explore reduction techniques, including 

reduced dataset sizes and input dimensions, to facilitate faster training without significantly 

compromising performance. 

 

 

4.2 Methods and Datasets 

 

Detailed explanations and results are presented in [1], [60] and [61]. Details about the MS datasets 

utilized are summarized graphically in Figure 4.1. The datasets include BigEarthNet, EuroSAT 

[66], UC-Merced [22], and RSI-CB [72], each covering different geographies and thematic classes, 

such as vegetation and urban areas.  
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Figure 4.1 Patches from the MS datasets used throughout our work revealing the complexity and 

variety of the used data. 

 

To demonstrate effective training with reduced datasets, we used various methods (Figure 4.2): 

• Histogram-based Training: Converting image patches into pixel intensity histograms. 

• Bag-of-Words Training: Replacing image patches with BoW representations. 

• Down-sampled Patch Training: Reducing image dimensions through down-sampling. 

These approaches aim to reduce dataset size, minimize training time, and simplify architecture by 

reducing parameters. The overarching goal is to validate these methods on various datasets to 

ensure generalizability. 

 

Figure 4.2 Description of the methodologies advanced to obtain optimized inputs of CNNs for 

training. The first approach will be to use histograms of pixel intensity, the second will derive the 

Bag-of-Words of the dataset to feed the network, while the third works with the downsampled 

patches. 
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The architectures are depicted in Figure 4.3. 

 

Figure 4.3 CNN architectures used in current work. (a) CNN_patch – CNN configuration for 

training patches, either with original or downsampled patches. (b) CNN_1D – CNN architecture 

proposed for histograms/BoW-based training. (c) CNN_simple – Simplified CNN architecture. 

 

 

4.3 Histogram-Based Training 

 

The workflow involves converting image patches into histograms with different bin sizes (32, 100, 

250) and training these histograms using CNN_1D architecture (Figure 4.3.b). The results (Table 

4.3) show that even with 32-bin histograms, training times are significantly reduced, e.g., from 

5040 minutes to 480 minutes for 12-channel patches, with only a marginal decrease in performance 

metrics. The last two rows, marked with Ref. perform are the reference performances and results 

without the proposed algorithms. This is seen throughout the whole thesis. 
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Table 4.3 Results of training BigEarthNet-S2 with histograms of pixel intensities on CNN_1D. 

Dataset P R F1 F2 Time [min] Size [GB] 

H-RGB-32 0.7457 0.585 0.6542 0.6106 300 0.11 

H-12B-32 0.7787 0.6549 0.7102 0.6757 480 0.43 

H-RGB-100 0.7652 0.6008 0.6724 0.6274 420 0.33 

H-12B-100 0.7885 0.6592 0.7175 0.6812 500 1.31 

H-RGB-250 0.7604 0.5875 0.6622 0.6152 690 0.84 

H-12B-250 0.7712 0.6655 0.7139 0.6839 750 3.29 

Ref. perform (RGB) 0.7949 0.5729 0.6656 0.6065 360 47.5 

Ref. perform (12B) 0.8103 0.6621 0.7287 0.6872 5040 190 

 

 

4.4 Bag-of-Words-Based Training 

 

This method involves generating BoW for each image patch and training the CNN_1D with BoW 

representations. Evaluations with dictionary sizes of 50, 100, and 250 entries (Table 4.4) revealed 

that even with a smaller dictionary size, BoW training outperforms histogram-based training, 

particularly in recall metrics. 

Table 4.4 Results of training BigEarthNet-S2 with BOW on CNN_1D. 

Dataset P R F1 F2 Time [min] Size [GB] 

BoW-50 0.8023 0.72 0.759 0.735 200 0.05 

BoW-100 0.8151 0.7316 0.7706 0.7466 250 0.11 

BoW-250 0.8272 0.7236 0.7711 0.7417 396 0.28 

Ref. perform (RGB) 0.7949 0.5729 0.6656 0.6065 360 47.5 

Ref. perform (12B) 0.8103 0.6621 0.7287 0.6872 5040 190 

 

 

 

4.5 Training with Down-Sampled Patches 

 

Using CNN_patch architecture, down-sampled patches (via scaling factors from 2 to 15) were 

evaluated (Figures 4.5). Training on down-sampled patches demonstrated that while some spatial 

resolution is lost, overall classification metrics remain stable, confirming the utility of reduced 

input dimensions. 
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Figure 4.5 Results for training patches on CNN_patch with scaling factors (SF) of 2, 4, 6, 12, 

and 15 of (a) RGB patches and (b) 12channel patches. The SF of two results in patches of size 60 

× 60, SF of 4 in size 30 × 30, SF of 6 in size 20 × 20, SF of 12 in size 10 × 10, and SF of 15 in 

size 8 × 8. 

 

4.6 Training with a Simpler Architecture 

 

The simplified CNN architecture (CNN_simple, Figure 4.3.c) with fewer layers and drastic down-

sampling was tested. The results (Table 4.5) indicate comparable performance to complex 

architectures, highlighting the benefit of fewer parameters and reduced overfitting. 

 

Table 4.5 Results of training on the architecture CNN_simple. 

Dataset P R F1 F2 Time [min] Size [GB] 

RGB 0.7962 0.6556 0.7185 0.6793 330 47.55 

12B 0.8041 0.6725 0.7484 0.6937 5060 190 

Ref. perform (RGB) 0.7949 0.5729 0.6656 0.6065 360 47.5 

Ref. perform (12B) 0.8103 0.6621 0.7287 0.6872 5040 190 

 

 

4.7 Dataset Reduction 

 

We explored performance impacts from reducing the training dataset size to 50%, 20%, and 10%. 

Combining dataset reduction with histogram and BoW training significantly diminished training 

times while maintaining satisfactory performance (Table 4.6). 
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Table 4.6 Results of training 10% of the training dataset on BOW-100 and H-250. 

Dataset P R F1 F2 Time [min] Size [GB] 

H-12B-250 0.7331 0.612 0.6671 0.6329 75 0.335 

BoW-100 0.7861 0.7123 0.7474 0.7259 25 0.02 

Ref. perform (RGB) 0.7949 0.5729 0.6656 0.6065 360 47.5 

Ref. perform (12B) 0.8103 0.6621 0.7287 0.6872 5040 190 

 

 

4.8 Validation on Other Datasets 

 

To validate the generalizability of BoW-trained networks, we fine-tuned CNN_1D trained on 

BigEarthNet-BoW on EuroSAT and UC-Merced datasets (Figure 4.9). Both datasets demonstrated 

improved performance metrics with BoW over traditional input representations, establishing 

BoW's viability for diverse datasets. 

 

Figure 4.9 Results of fine-tuning CNN_1D trained with BoW from BigEarthNet-S2 on UC-

Merced and EuroSAT. 

 

4.9 Fast Learning on Multispectral Data with Complex Texture 

 

Finally, we tested the method on RSI-CB, a dataset with intricate textures and high spatial 

resolution. The results (Table 4.7) confirmed that BoW enables effective learning even with high-

resolution, complex textures, further reducing training time and dataset size. 

Table 4.7 Results of training RSI-CB BoW on CNN_1D. 

Dataset P R F1 F2 Time [min] Size [GB] 

RSI-CB BoW 0.9783 0.9773 0.9778 0.9775 16 0.03 

Ref. perform 0.8301 0.7644 0.7953 0.7764 110 4.46 
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Chapter 5 
 

 

 

Fast Learning on Synthetic Aperture 

Radar Images 
 

 

5.1 Introduction and State-of-the-Art 

 

Synthetic Aperture Radar is paramount in remote sensing, providing high-resolution data 

regardless of atmospheric conditions or daylight. SAR imagery, however, presents unique 

challenges including noise and complex textures. The deep learning methodologies utilized to 

address these challenges often involve transfer learning, hardware optimization, model pruning, 

quantization, and adaptive learning rate adjustments. 

Key architectural strategies like convolutional neural networks and attention-based models 

(such as transformers) have shown efficacy [78]. Data augmentation remains crucial due to the 

scarcity of large, diverse SAR datasets, enhancing model performance by artificially enlarging the 

training datasets [80]. The aim is to optimize SAR imagery training for various applications, 

including real-time scenarios. 

 

 

5.2 Methods and Datasets 

 

Detailed explanations and results are presented in [1], [60], [61] and [73].The chapter evaluates 

the applicability of methods like histograms, Bag-of-Words, and down-sampling on SAR images 

using datasets such as OpenSARUrban [27], BigEarthNet-S1 [84], and VHRUrbanSAR (Figure 

5.1). Each dataset covers various global regions and thematic areas, from urban to vegetation 

classes.  
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Figure 5.1 Patches from the SAR datasets used throughout our work revealing the complexity 

and variety of the used data. 

 

 

5.3 Histogram-Based Training of Synthetic Aperture Radar 

Data 

 

Training using histograms of pixel intensity with bins of size 250 was conducted with CNN_1D 

and a custom VGG-19 (VGG19_red) architecture. Results (Table 5.3) indicate preserved 

performance across architectures, with less overfitting observed in CNN_1D compared to training 

with patches. 

Table 5.3 Results of training CNN_1D and VGG19_red with histograms from OpenSARUrban. 

Dataset P R F1 F2 Time [min] Size [GB] 

CNN 1D 0.6532 0.4782 0.5522 0.5053 50 0.31 

VGG19 red 0.691 0.5257 0.5971 0.5521 72 0.31 

Ref. perform (CNN patch) 0.5497 0.5124 0.5304 0.5195 15 1.22 

Ref. perform (VGG 19) 0.6213 0.6132 0.6172 0.6148 90 1.22 

 

5.4 BoW-Based Training of Synthetic Aperture Radar Images 

 

The BoW method, with dictionary sizes of 50, 100, and 250, was applied to both CNN_1D and 

VGG19_red. The training times were accelerated with minimal performance loss (Table 5.4). 

Techniques like data augmentation, class weighting, and transfer learning were tested to enhance 

results. Data augmentation notably improved performance metrics by around 10%. 
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Table 5.4 Results of training different architectures on BoW of SAR data. 

No. dict. BoW entries P R F1 F2 Time [min] Size [GB] 

ARCHITECTURE: CNN_1D 

50 0.6345 0.4883 0.5519 0.5119 33 0.003 

100 0.6121 0.4709 0.5323 0.4937 36 0.006 

250 0.6233 0.4476 0.521 0.4743 40 0.016 

Ref. perform (CNN patch) 0.5497 0.5124 0.5304 0.5195 15 1.22 

ARCHITECTURE: VGG19_RED 

50 0.7317 0.5075 0.5993 0.5406 43 0.003 

100 0.7221 0.4881 0.5825 0.5219 47 0.006 

250 0.705 0.5138 0.5944 0.5433 55 0.016 

Ref. perform (VGG 19) 0.6213 0.6132 0.6172 0.6148 90 1.22 

 

 

5.5 Training with Down-Sampled Synthetic Aperture Radar 

Images 

 

Using down-sampled images (reducing 100x100 pixels to as low as 10x10), training was 

performed on CNN_patch and VGG19 (Table 5.5). Performance decreased with higher down-

sampling factors, but acceptable results were maintained with half down-sampling. 

Table 5.5 Results of training SAR data at different down- sampling factors. 

SF P R F1 F2 Time [min] Size [GB] 

ARCHITECTURE: CNN_patch 

2 0.7436 0.4307 0.5455 0.4703 40 0.003 

4 0.7078 0.2483 0.3677 0.2854 33 0.006 

5 0.6603 0.2338 0.3453 0.2685 25 0.016 

10 0.4681 0.1205 0.1916 0.1415 20 
 

Ref. perform (CNN patch) 0.5497 0.5124 0.5304 0.5195 15 1.22 

ARCHITECTURE: VGG19 

2 0.7312 0.4441 0.5526 0.482 50 0.003 

Ref. perform (VGG 19) 0.6213 0.6132 0.6172 0.6148 90 1.22 
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5.6 Training on Other Synthetic Aperture Radar Datasets 

 

The methods were extended to BigEarthNet-S1, demonstrating that BoW can be effective even on 

datasets predominantly containing vegetation classes (Table 5.6). Despite speckle noise, CNN 

successfully classified BoW inputs, comparable to patch-based training. 

Table 5.6 Results of training BigEarthNet-S1 BoW on CNN_1D. 

Dataset P R F1 F2 Time [min] Size [GB] 

BigEarthNet-S1 0.7522 0.6013 0.6706 0.632 403 0.28 

Ref. perform 0.7449 0.5204 0.6111 0.553 618 63.3 

 

 

5.7 Introducing VHRUrbanSAR 

 

VHRUrbanSAR is a novel dataset containing high-resolution SAR images, particularly valuable 

due to its diversity in urban scenes and availability in multiple data types (Figure 5.3, Table 5.7). 

The dataset was used to fine-tune pre-trained models and study fast learning. 

 

 

Figure 5.3 Examples of patches prom each class: (a) Airport; (b) Dense residential area; (c) 

General residential area; (d) High buildings; (e) Highways; (f) Industrial areas; (g) Mobile 

homes areas; (h) Skyscrapers; (i) Urban vegetation; (j) Villas. 
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Table 5.7 Distribution of classes in VHRUrbanSAR. 

Class index Class name No. of patches per class 

1 Airports 232 

2 Dense residential area 3116 

3 General residential area 314 

4 High buildings 2378 

5 Highways 862 

6 Industrial areas 294 

7 Mobile homes 8 

8 Skyscrapers 1993 

9 Urban vegetation 756 

10 Villas 81 

 Total 8234 

 

5.7.1 Training VHRUrbanSAR on a Convolutional Neural Network 

 

Networks trained on VHRUrbanSAR using the CNN_patch architecture with different data types 

showed that uint16 data type outperformed others, possibly due to reduced image detail aiding 

generalization. The highest precision is 73.66%. 

 

5.7.2 Fine-Tuning of VHRUrbanSAR on OpenSARUrban 

 

Transfer learning was applied by fine-tuning the VHRUrbanSAR model on OpenSARUrban 

patches. Results (Table 5.9) highlighted that certain classes, such as urban vegetation and 

skyscrapers, benefited significantly from the fine-tuning process. 

Table 5.9 Performance of selected images in VHRUrbanSAR after Transfer Learning. 

Class A P F1 

Airports 0.45 0.42 0.4 

Dense residential area 0.56 0.53 0.49 

General residential area 0.57 0.59 0.55 

High buildings 0.23 0.25 0.2 

Highways 0.35 0.37 0.32 

Industrial areas 0.3 0.29 0.25 

Skyscrapers 0.81 0.79 0.75 

Urban vegetation 0.85 0.8 0.75 
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5.7.3 Fast Learning on Synthetic Aperture Radar Data with Complex Texture 

 

Finally, BoW methods were tested on high-resolution SAR data from VHRUrbanSAR. The results 

(Table 5.10) confirmed the CNN's capacity to learn from BoW representations, delivering robust 

performance despite the presence of speckle noise. 

Table 5.10 Results of training VHRUrbanSAR BoW on CNN_1D. 

Dataset P R F1 F2 Time [min] Size [GB] 

VHRUrbanSAR BoW 0.7658 0.7259 0.7436 0.7325 15 0.008 

Ref. perform 0.7063 0.7366 0.7211 0.7303 17 0.32 

 

This chapter substantiates that the proposed fast learning methods, applied previously to 

multispectral images, are equally effective for SAR imagery. The approaches demonstrated 

consistent performance gains and training efficiency across diverse SAR datasets, thereby 

reinforcing their potential for broader remote sensing applications. 
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Chapter 6 
 

 

 

Practicability of Bag-of-Words for Fast 

Learning 
 

 

6.1 A comparison between Bag-of-Words-based deep learning 

and various approaches 

 

Detailed explanations and results are presented in [1]. This chapter evaluates the functionality and 

practicability of the Bag-of-Words method combined with Deep Neural Networks. We demonstrate 

the superiority of BoW-based deep learning in various scenarios compared to traditional and state-

of-the-art methods. 

Key Findings: 

• BoW combined with DNNs surpasses BoW with Support Vector Machines (SVMs). 

• BoW and DNNs outperform state-of-the-art networks and feature profile-based methods. 

• Training time and computational efficiency of BoW are superior to pruning-based 

approaches. 

Comparative Analysis: Table 6.1 shows our method exceeds SVM in precision and recall for 

datasets like BigEarthNet-S2, RSI-CB, OpenSARUrban, and VHRUrbanSAR. The comparison 

with EfficientNet and MobileNet also highlighted that BoW with DNNs provides better 

performance metrics and reduced training times. 
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Table 6.1 Comparison between classifying BoW with DNN and classifying BoW with SVM. 

Classification method P R F1 F2 

BIGEARTHNET-S2 (BOW) 

DNN 0.8272 0.7236 0.7711 0.7417 

SVM 0.6752 0.6031 0.6312 0.6163 

RSI-CB (BOW) 

DNN 0.9783 0.9773 0.9778 0.9775 

SVM 0.9163 0.8981 0.9071 0.9017 

OPENSARURBAN (BOW) 

DNN 0.705 0.5138 0.5944 0.5433 

SVM 0.5102 0.4176 0.4593 0.4333 

VHRURBANSAR (BOW) 

DNN 0.7658 0.7259 0.7436 0.7325 

SVM 0.6162 0.5542 0.5836 0.5656 

 

6.2 Use Case Demonstration - Natural Disaster Scenario 

 

To further support the practicability of BoW, we applied it to a natural disaster dataset, including 

SAR and multispectral images from events like floods and hurricanes. The dataset featured 1135 

MS patches and 875 SAR patches, split into 80% for training and 20% for testing (Figure 6.1). 

 

Figure 6.1 Samples from the natural disasters’ dataset. 

Results: 

• BoW with DNNs and VGG-19 architectures showed satisfactory precision and recall 

metrics for both SAR and MS images (Table 6.2). 

• Transfer learning from BigEarthNet-S1 improved SAR disaster scene classification. 
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Table 6.2  Results of training the newly built disaster database with proposed method: precision 

(P), recall (R), F1- score (F1) and F2-score (F2), training time in minutes. 

Architecture P R F1 F2 Time [min] 

SAR Scenes 

CNN 1D 0.5981 0.5342 0.5643 0.558 10 

VGG19 0.6625 0.6101 0.6352 0.63 17 

MS Scenes 

CNN 1D 0.691 0.6243 0.656 0.6494 13 

VGG19 0.7432 0.6955 0.7186 0.7138 20 

 

This case illustrates the BoW method's utility in rapid mapping applications, suggesting it can be 

extended to other natural disasters and geographies. 

 

 

6.3 Bag-of-Words alternative purpose - landslide detection 

 

We explored BoW for detection tasks, specifically landslide detection in multispectral images 

using Landslide4sense. The algorithm achieved 0.56 precision and 0.45 recall, indicating 

limitations in detection tasks due to high data variability and disproportionate class distribution 

(Figure 6.4). Below we can see the RGB image of the landslide, the desired output and the output 

of the algorithm. 

 

Figure 6.4 Results of the algorithm on a sample. 

 

6.4 Discussion 

 

Rapid advancements in integrating Remote Sensing data with deep learning face challenges related 

to data complexity and resource demands. Our BoW-based methods aim to balance training 

efficiency with performance, demonstrating effective results on both multispectral and SAR data. 
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Advantages of BoW-based Methods: 

• Significant reduction in network training time. 

• Effective for small training datasets, enhancing feasibility for RS domain applications. 

• Enhanced classification accuracy with reduced input dimensionality. 

Recommendations: Our methods can be integrated into frameworks like Deep SAR-Net and 

optimized for real-time applications. Future work should focus on robust transfer learning 

approaches encompassing multispectral and SAR data, aiding in regression tasks and deriving 

specific parameters like NDVI from SAR datasets. 

 

 

6.5 Conclusion 

 

This chapter emphasizes the importance of reduced input methods like histograms and BoW for 

efficient EO data training. The methods demonstrated: 

• Reduced dataset size without performance degradation. 

• Preservation of spatial and spectral information. 

• Practical applications in real-time scenarios and cost reduction. 

Summary of Computational Efforts (Table 6.3): 

• Efficient generation of histograms and BoW across various datasets. 

• Parallelization techniques for large datasets like BigEarthNet. 

• Table 6.3 Computational efforts to generate histograms and BoW for each dataset. 

Dataset Effort for histograms [min] Effort for BoW [min] 

BigEarthNet-S2 300 600 

OpenSARUrban 10 20 

EuroSAT 20 30 

UC-Merced 5 7 

RCI-CB 15 25 

BigEarthNet-S1 180 300 

VHRUrbanSAR 5 5 
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Future Directions: 

• Extend BoW methods to include transfer learning across multiple sensors. 

• Generate large, diverse datasets from different sensors for comprehensive EO applications. 

This research underscores the potential of simplified, fast-learning methodologies to overcome 

challenges in remote sensing data processing, paving the way for more efficient and scalable deep 

learning applications in Earth Observation. 
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Chapter 7 
 

 

 

Estimating Normalized Difference 

Vegetation Index from Synthetic 

Aperture Radar Images Using Deep 

Neural Networks 
 

 

7.1 Introduction and State-of-the-Art 

 

The Normalized Difference Vegetation Index is crucial for vegetation monitoring but is hindered 

by atmospheric conditions when derived from multispectral images. Synthetic Aperture Radar 

data, unaffected by these conditions, offers an alternative. This chapter presents a deep learning-

based method to estimate NDVI from SAR data, utilizing convolutional neural networks for this 

purpose. 

Atmospheric conditions impact the usability of MS images. Existing cloud detection methods, 

such as those in [91], [92], and cloud removal algorithms [93], [94], [95], attempt to mitigate these 

effects but still lead to inherent data losses. Recent studies, like those in [96], illustrate that Cirrus 

clouds significantly distort NDVI calculations. Time-series estimation methods [97] provide 

partial solutions but retain some limitations. 

A few studies have highlighted the potential of SAR data in estimating vegetation indices. For 

instance, [98] described the correlation between SAR features and NDVI on maize fields, and [90] 

explored using SAR data to compensate for missing data in cloudy MS images. This chapter 

leverages SAR data combined with additional features using CNNs to predict NDVI, simplifying 

the process and improving efficiency. 
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7.2 Methodologies 

 

Detailed explanations and results are presented in [89]. We used the BigEarthNet dataset [26], [84], 

which includes corresponding Sentinel-1 (SAR) and Sentinel-2 (MS) patches. For this task, 

vegetation-related patches were selected, excluding 17 irrelevant labels, resulting in 328,586 

patches. The algorithm is depicted in Figure 7.1. 

 

Figure 7.1 The proposed methodology for estimating NDVI from SAR images. 

NDVI was calculated using Equation 7.1 where NIR is band 8, and RED is band 4 of Sentinel-2 

[100]. 

Equation 7.1 Formula for calculating NDVI. 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

The original SAR patches were augmented with Radar Vegetation Index (RVI) and Normalized 

Ratio Procedure between Bands (NRPB) for improved feature representation (Equations 7.2 a and 

b). 

Equation 7.2 Equations used along NDVI to enhance the results of NDVI estimation from SAR 

images. 

𝑅𝑉𝐼 =
4 ∙ 𝜎𝐻𝑉

0

𝜎𝐻𝐻
0 +  𝜎𝐻𝑉

0  
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𝑁𝑃𝑅𝐵 =
𝜎𝐻𝑉

0 − 𝜎𝐻𝐻
0

𝜎𝐻𝐻
0 +  𝜎𝐻𝑉

0  

 

Two CNN architectures were employed: a 3-layered CNN and VGG-19 [103]. NDVI estimation 

was converted into a classification task, dividing NDVI ranges into five intervals (Table 7.1). 

Table 7.1 The distribution of the NDVI values and of the number of patches in the 5 NDVI 

classes. 

NDVI class NDVI range No. of patches 

1 -0.192 → 0.368 65708 

2 0.368 → 0.5325 70054 

3 0.5325 → 0.7047 64978 

4 0.7047 → 0.7769 63900 

5 0.7769 → 0.9291 63953 

 

 

7.3 Results 

 

The three-layered CNN and VGG-19 architectures were trained on SAR patches, achieving 

precision values of 0.6528 and 0.7018, respectively. Despite longer training times, VGG-19 

showed improved performance (Table 7.2). 

 

Table 7.2 Results of training SAR images to estimate NDVI. 

Architecture Precision Recall F1 F2 

3-layered CNN 0.6528 0.6012 0.6259 0.6208 

VGG-19 0.7018 0.6615 0.6811 0.6771 

 

Using BoW for dimension reduction, the training time for VGG-19 decreased significantly while 

maintaining precision. Training times for the 3-layered CNN and VGG-19 were reduced to 400 

minutes and still provided comparable results. 

Figure 7.2 displays correctly and incorrectly classified patches, highlighting that structured 

patterns in SAR data facilitate accurate classification. 
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Figure 7.2 Patches samples that were correctly (right) classified in opposition to those 

misclassified (left). 

 

7.4 Conclusions 

 

This chapter proposed a robust method for estimating NDVI from SAR images using CNNs and 

augmenting SAR data with RVI and NPRB. By converting NDVI estimation into a classification 

task and utilizing BoW, we achieved efficient and accurate results. 

To enhance robustness, future studies should focus on optimizing learning rates, increasing 

sample sizes, and fine-tuning hyperparameters. This work sets the foundation for rapid NDVI 

estimation in atmospheric conditions where MS data may be unreliable, contributing significantly 

to vegetation monitoring and environmental management. 

By adopting these methodologies, the Remote Sensing community can accelerate NDVI 

estimation processes, making vegetation analysis more accessible and accurate under challenging 

atmospheric conditions. 
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Chapter 8 
 

 

 

Conclusions 
 

 

The primary focus of this thesis has been on developing and applying methodologies for fast 

learning in the context of Earth Observation data. Given the highly resource-intensive nature of 

EO data processing, the proposed solutions aim to optimize efficiency while maintaining accuracy. 

This chapter summarizes the obtained results, original contributions, and perspectives for further 

developments. 

 

8.1 Obtained Results 

 

The fast-learning algorithms developed and applied in this thesis include: 

• Using histograms instead of patches for training convolutional neural networks. 

• Using Bag-of-Words instead of patches for training CNNs. 

• Downsampling images prior to training. 

• Training on simpler architectures with integrated downsampling. 

• Training with reduced datasets. 

 

Key Findings: 

• Bag-of-Words Methodology: Among the algorithms, training networks with BoW proved 

to be the most effective. BoW transforms a multi-channel patch into a single vector, 

allowing efficient network training without significant information loss. This method 

facilitates straightforward transfer learning across different data types (e.g., SAR and 

multispectral images). 

• Downsampling: While downsampling artificially proved effective, the implications for 

sensor characteristics were also explored. A novel dataset comprising very high-resolution 

SAR images was created, validated with BoW processing to reinforce its effectiveness. 
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• NDVI Estimation: The estimation of the Normalized Difference Vegetation Index from 

SAR data was enhanced by incorporating additional bands (Radar Vegetation Index (RVI) 

and Normalized Ratio Procedure between Bands (NRPB)) into SAR images. This 

facilitated accurate NDVI estimation despite the absence of multispectral data due to 

adverse weather conditions or lack of daylight. 

• Limitations: Despite the effectiveness of BoW for classification tasks, its application in 

detection remains limited. This was evidenced in landslide detection exercises, indicating 

the need for segmentation-specific algorithms for such tasks. 

 

8.2 Original Contributions 

 

Below is a list of the main original contributions: 

• Developing a fast and simple learning method with Bag-of-Words and deep learning, 

suitable for both multispectral and SAR data; 

• Developing a very high-resolution SAR dataset; 

• Developing a dataset with multispectral and SAR data containing natural disasters; 

• Developing an algorithm for NDVI estimation from SAR data. 

 

8.3 List of Original Publications 

 

Journals: 

• I. Calota, D. Faur, and M. Datcu, "Dimensionality Reduction of Deep Learning for Earth 

Observation: Smaller, Faster, Simpler," IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, vol. 16, pp. 4484-4498, 2023. 

Proceedings: 

• I. Calota, D. Faur, and M. Datcu, "DNN-Based Semantic Extraction: Fast Learning from 

Multispectral Signatures," in IGARSS 2020 - 2020 IEEE International Geoscience and 

Remote Sensing Symposium, 2020. 

• I. Calota, D. Faur, and M. Datcu, "Low Resolution for DNN in SAR," in RadarConf 2020, 

2020. 
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• I. Calota, D. Faur, and M. Datcu, "Bag-of-Words for Transfer Learning," 2021 IEEE 

International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 

2021, pp. 808-811. 

• I. Calota, D. Faur, and M. Datcu, "Estimating NDVI from SAR Images Using DNN," in 

IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, 

2022. 

• I. Calota, D. Faur, and M. Datcu, “DNN for EO: Fast Training With Reduced Datasets,” 

ESA EO Φ-Week 2020, e-Poster, EO Applications, paper 200, ESA. 

 

8.4 Perspectives for Further Developments 

 

While much of this work has concentrated on fast learning and BoW, future research directions 

include: 

• Generative AI for Earth Observation: Exploring the potential of generative AI in EO, 

which could revolutionize data synthesis and analysis in this specialized domain. 

• Expansion of Datasets: Contributing to the creation of new datasets comprising images 

with different resolutions. While common in computer vision, such datasets are challenging 

to obtain in remote sensing and hold significant promise for further advancements. 

The innovations presented in this thesis offer valuable contributions to the EO community, 

particularly in enhancing the efficiency and practicality of deep learning applications in resource-

constrained environments. 
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