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AUTOMATIZAREA PROCESULUI DE DIMENSIONARE A

CIRCUITELOR INTEGRATE

ARTIFICIAL INTELLIGENCE TECHNIQUES FOR INTEGRATED
CIRCUIT DESIGN AUTOMATION

THESIS COMMITTEE

Prof. Dr. Ing. Mihai CIUC
PresidentNational University of Science and Technology Politehnica Bucharest

Prof. Dr. Ing. Corneliu BURILEANU
PhD SupervisorNational University of Science and Technology Politehnica Bucharest

Acad. Prof. Dr. Ing. Horia-Nicolai TEODORESCU
Referee„Gheorghe Asachi” Technical University of Ias, i

Prof. Dr. rer. nat. Georg PELZ
RefereeInfineon Technologies AG & University of Duisburg-Essen

Conf. Dr. Ing. Horia CUCU
RefereeNational University of Science and Technology Politehnica Bucharest

BUCHAREST 2024



Table of contents

1 Introduction 1
1.1 Presentation of the field of the doctoral thesis . . . . . . . . . . . . . . 1
1.2 Scope of the doctoral thesis . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Content of the doctoral thesis . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 7
2.1 Technical Brief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Literature Brief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Evolutionary Algorithms for Circuit Sizing 10
3.1 Calibration on Synthetic Benchmarks . . . . . . . . . . . . . . . . . . 10
3.2 Evaluation on Real Circuits . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 The Most Promising Algorithm for Circuit Sizing . . . . . . . . . . . . 11

4 A Machine-Learning enhanced Evolutionary Algorithm 12
4.1 Surrogate Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1.1 Using Gaussian Processes . . . . . . . . . . . . . . . . . . . . 13
4.2 Multi-Objective Optimization based on Differential Evolution and Bayesian

Inference (MODEBI) . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.1 Machine Learning Enhanced Generalized Differential Evolution 3 13

4.3 MODEBI Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.1 Results of MODEBI . . . . . . . . . . . . . . . . . . . . . . . 15

4.4 Strengths and Limitations of MODEBI . . . . . . . . . . . . . . . . . . 15
4.4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 The Evolutionary Bayesian Optimization (EBO) 16
5.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 EBO Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3 EBO Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.4 Strengths and Limitations of EBO . . . . . . . . . . . . . . . . . . . . 18



Table of contents

6 Operating Corners’ Management 19
6.1 Two-steps Circuit Sizing . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.1.1 The "designer-like" approach . . . . . . . . . . . . . . . . . . . 20
6.2 Periodic Worst-Corner Selection (PWCS) Mechanism . . . . . . . . . . 20

6.2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3 Efficiency Centric Sizer . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.4 Simulation Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 Conclusions 24
7.1 Original contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.2 List of original publications . . . . . . . . . . . . . . . . . . . . . . . . 28
7.3 Perspectives for further developments . . . . . . . . . . . . . . . . . . 29

References 31

iii



Chapter 1

Introduction

1.1 Presentation of the field of the doctoral thesis

Figure 1.1 outlines the initial steps of the analog circuit development flow. The process
begins with a list of circuit specifications defined by the circuit architect or application
engineer, based on the desired functionality. The designer then selects an appropriate
circuit topology. The next step, circuit sizing, involves determining the optimal values
for the circuit components to meet the functional constraints specified and enhance
overall performance. A shallow verification is typically performed during this stage to
ensure basic robustness of the design. The verification stage starts with a comprehensive
performance evaluation, considering various environmental variables. If the circuit fails
under certain conditions, the sizing process is revisited to address these failures.

Once the circuit passes verification, the layout is manually generated. At this point,
the circuit’s performance is re-evaluated, taking parasitic effects from the layout into
account. If these parasitic effects significantly degrade performance, adjustments to the
layout are necessary. Once the circuit meets the performance and robustness criteria,
it moves into production. After fabrication, post-silicon verification is conducted to
validate the circuit’s behavior under real-world conditions, ensuring it meets the original
design specifications.

With the advent of Artificial Intelligence, there has been increasing interest in au-
tomating analog circuit design processes. Consequently, recent research has extensively
explored various design tasks such as pre-silicon verification [1, 2], layout generation [3],
and post-silicon verification [4]. Moreover, circuit modelling [5, 6] has been employed
to enhance the reusability of the designs. This thesis addresses the task of circuit sizing,
and it incorporates the shallow verification process typically associated with this stage.

The norm in circuit sizing is that highly skilled engineers choose the suitable values
for the circuit components. This activity requires manual effort and keeps the circuit
designer busy for a significant amount of time. Even though manual circuit sizing is an
iterative task, it cannot be easily automated since it is highly dependent on the designer’s
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Fig. 1.1 Stages of the analog circuit design flow

experience. This task became a popular challenge in Electronic Design Automations and
numerous techniques have been proposed over the years. The goal of these methods is
to reduce the designers’ effort, letting them focus on more creative tasks. As a result,
the productivity and employee satisfaction in the semiconductors companies can be
positively impacted.

1.2 Scope of the doctoral thesis

The automated circuit sizing techniques can be divided into qualitative and quantitative
approaches. One qualitative method is rule-based design [7]. It involves creating
algorithms and equations based on designers’ prior knowledge. This method provides
some degree of automation, but it still requires significant effort from the designer.
Another class of qualitative methods is model-based sizing. They use simplified model
equations, so they are quick and reusable. One example is Geometric Programming
[8–10] where circuit responses are expressed as posynomial equations of the design
parameters. Another example is Semidefinite Programming (SDP) relaxations [11]. It
uses regression models based on simulation data to express the circuit responses. Even
though they have important advantages, model-based sizing methods are unreliable due
to the model’s intrinsic deviation from the real circuit. [12]
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Quantitative approaches rely on circuit simulations. As a result, they maintain
fidelity to the real circuit without introducing deviations. The circuit is formulated as
a constrained multi-objective optimization problem, with design parameters serving as
inputs and circuit responses as outputs. The most commonly used methods to address this
problem are evolutionary algorithms (EAs) [13]. They are stochastic global searching
engines that mimic the survival of the fittest natural processes. Other quantitative
approaches used in automated circuit sizing are Simulated Annealing (SA) [14, 15] and
Particle Swarm Optimization (PSO) [16, 17]. The drawback of these methods is the high
number of circuit simulations required.

To address the shortcomings of pure quantitative approaches, hybrid methods have
been developed. They combine the global searching power of EAs with model-based
circuit sizing to reduce the number of circuit simulations required. Due to the increased
availability of computing power in the last two decades, Machine Learning (ML) models
became a popular choice. Some early examples are focused on radio-frequency integrated
circuits design [18, 19]. However, during the time these methods were employed in a
broader range of applications, with recent developments being general purpose analog
circuit sizing methods [20, 21].

The two aspects that have to be taken into consideration while discussing ML
enhanced EAs are the model and the algorithm. A significant part of the proposed
solutions [19, 21, 22] use Gaussian Processes [23, 24] as ML model. Alternatively, some
recent works try to integrate neural networks [20] to reduce the computational costs of
Gaussian Processes. However, it is not a straight forward path since neural networks
need many more training points to work properly. In terms of the algorithms used, many
works [19, 20, 22] are based on Differential Evolution [25]. Other methods are based on
genetic algorithms [26–28], specifically, the nondominated sorting genetic algorithm II
(NSGA-II) [29, 30].

Even though ML enhanced EAs were thoroughly debated in the literature, there are
some limitations that have to be addressed. Mainly, most of the circuit sizing applications
require optimizing conflicting objectives. However, many methods are either focused on
solving single objective problems [19, 31], or they use scalarization to deal with multiple
objectives [32, 12]. Curiously, there are just a few true multi-objective ML enhanced
EAs used for analog circuit sizing. One early proposal is GPOF-SVM [33] combining
an NSGA-II based optimizer (GENOM-POF [26]) with Support Vector Machines.

While ML enhanced EAs are the most common approach for circuit sizing, alternative
methods have been developed. An example that is gaining a lot of traction in recent
years is Bayesian Optimization [34]. Instead of using the ML model to minimize the
number of simulations required by an EA, Bayesian Optimization uses the model as a
support for an optimizer. The optimizer searches for the model’s optima as described by
an acquisition function. Thus, the next evaluation points are the model’s optima, instead
of evolutions of the previous solutions.

3
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An early popular Bayesian Optimization method for automated circuit sizing is
WEIBO [12]. It is specially designed to handle constrained problems. However, it is not
a true multi-objective approach since it uses Tchebysheff scalarization to construct a
figure of merit function. A state-of-the-art Bayesian Optimization approach is MACE
[35]. It also constructs a model based on a figure of merit function. Nevertheless, instead
of a single acquisition function, it employs three of them, and their optimization is truly
multi-objective. Its advantage is finding the trade-offs between acquisition functions,
since none of them can outperform the others in all the problems [36].

Moving beyond the optimization algorithms, one commonly overlooked aspect in
automated circuit sizing literature is the handling of operating corners. These refer to
variations in process, voltage, and temperature (PVT) and are often called PVT corners.
Typically, designers select the most unfavorable PVT corner in advance, leveraging their
expertise. Going further, they perform circuit sizing for this condition and, in the end,
the design is verified in all PVT corners to demonstrate its robustness. This minimizes
the number of circuit simulations required for circuit sizing, but often leads to multiple
design-verification loops because the solution which was feasible for the PVT corner
chosen up-front turns out not to feasible in all other corners. Alternatively, the sizing
can be done while verifying all PVT corners for each sizing configuration proposed
by the algorithm. However, this is computationally expensive (ex. requires 27x more
simulations for a usual case of 3 operating conditions with 3 levels each) and leads to
exhausting the simulation budget without being able to find feasible solutions.

1.3 Content of the doctoral thesis

Given the current state of research in automated circuit sizing, there remains significant
room for improvement in several areas. The primary goal of this thesis is to reduce the
time required for circuit sizing compared to traditional methods. To accomplish this,
we focus on two key aspects of the algorithm: efficiency and robustness. Within this
context, we define the following specific objectives:

(a) Find the most promising evolutionary algorithm for circuit sizing tasks. While
evolutionary computation underpins many automated circuit sizing methods, the
algorithm selection in most studies appears arbitrary. Thus, a detailed analysis is
required to identify the most suitable algorithm for this application.

(b) Develop a circuit sizing method which reduces the simulation budget required to
find circuit configurations that meet the specifications by at least 50% compared
to classic evolutionary algorithms.

(c) Explore Bayesian Optimization and Machine Learning enhanced evolutionary
algorithms to build a robust algorithm with consistent performance across various
circuits.

4
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(d) Find alternative methods to reduce the simulation budget. Given the law of di-
minishing returns, continually developing more advanced optimization algorithms
may not be the most efficient approach. Instead, reframing the problem definition
could offer significant speedups in circuit sizing.

(e) Include more verification within the automated circuit sizing process to minimize
the need for repeated design-verification cycles.

To address these objectives, the rest of the thesis is structured as follows:
We begin by providing the technical background, literature review, and circuit de-

scriptions in Chapter 2. The technical background (Section 2.1) includes the formulation
of the problem, the description of the metrics used, and detailed descriptions regarding
key concepts like evolutionary algorithms, Gaussian Processes and Bayesian Optimiza-
tion. The literature review (Section 2.2) presents the current state-of-the-art in automated
circuit sizing.

We compare evolutionary algorithms (EAs) in Chapter 3 to identify the most promis-
ing one for circuit sizing tasks, as stated in objective (a). We start from five state-of-the
art EAs, and we use synthetic benchmarks to find the best hyperparameter configurations.
Then we apply the algorithms on two optimization tasks targeting real circuits, specifi-
cally voltage regulators. While the first circuit has more design variables (27, as opposed
to 8), the second one has more objectives to be optimized (6, instead of 3). Apart from
the performance assessment, we also analyze diversity of the solutions offered by the
various algorithms and draw conclusions regarding which of them brings more benefits
to the circuit designer.

In Chapter 4 we start to address the shortcomings of pure quantitative approaches
using hybrid methods. Specifically, we introduce a novel Machine Learning (ML)
enhanced EA to speed up the optimization process, in line with objective (b). It is a
true multi-objective optimization algorithm which combines the most promising EA
discovered in Chapter 3 with Gaussian Processes. It is designed to work well on problems
with many variables, objectives, and constraint specifications. As part of its development,
we propose innovative population survival policies and offspring selection algorithms
that reduce the number of real simulations required to complete the optimization process
and preserve the solution diversity. To the best of our knowledge, the proposed method
is the first to specifically address solution diversity by searching directly over the multi-
objective space using Pareto dominance.

Treating the problem of circuit sizing in a true multi-objective manner is one of the
main pillars of the methods proposed in this thesis. Also, as opposed to previous work,
the circuits on which we evaluate our methods have numerous design variables and
responses that should satisfy constraints. Most research in this area has performed tests
on circuits with fewer than 10 design variables, and even though very recent methods

5
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[37] considered problems with 24 and 20 design variables, they only had one target
objective and six or two constraints.

In Chapter 5 we go further into hybrid methods focusing on Bayesian optimization.
More precisely, we present an original framework for automatic circuit sizing which com-
bines ML-enhanced EAs with Bayesian optimization, in accordance with objective (c).
This novel strategy is called Evolutionary Bayesian Optimization (EBO). On one hand it
follows the ML enhanced EAs strategy of global search using evolutionary computation,
which was proven to be effective. On the other hand, as in Bayesian Optimization,
our technique fully takes advantage of the powerful ML model, by searching for its
optima instead of using it just as a preselector. Moreover, our method performs a truly
multi-objective optimization, and it uses population-based search that takes advantage of
parallel simulation infrastructure.

The concept of PVT corners management is presented in Chapter 6. We address
the shallow PVT verification — specific to the circuit sizing phase — in an intelligent
manner, by employing operating corners management strategies during the optimization
(objective (d)). We propose three different strategies, and we also combine two of them
in order to obtain maximum efficiency. First strategy is a two-steps approach (Section
6.1), where the algorithm identifies promising sizing candidates first by considering
solely the nominal corner. Then, as the second step, it begins to take into account extreme
operating conditions. This simple technique leads to fewer circuit simulations spent on
unpromising candidates during the early stages of optimization. The second strategy is a
periodic worst corners selection mechanism (Section 6.2). It allows obtaining similar
results as if optimizing in all corners while drastically reducing the simulation budget.
The two strategies can be combined in order to improve efficiency even further (Section
6.3).

The third corners management strategy employs a prioritized list of corners, ordered
by their difficulty level (Section 6.4). Depending on the use-case, the list might include
the nominal corner or not. Solutions undergo sequential evaluation across these corners,
with the assessment of each solution halting as soon as it fails to meet the specifications
for a given corner. Consequently, this approach minimizes the simulations expended on
lower-quality solutions, concentrating the optimization efforts on the more challenging
corners. Moreover, this approach enables the circuit sizing algorithm to consider many
PVT corners, which can lead to a reduction in the number of design-verification loops
needed to obtain a robust circuit, as outlined in objective (e). This is a critical point in
improving the adoption rate of automated circuit sizing methods since it assures a good
time to market for new semiconductors products.

Finally, in Chapter 7 we draw the conclusions and discuss the limitations of our
research. In addition, we go through some of the avenues that can be explored in the
future.

6



Chapter 2

Background

2.1 Technical Brief

2.1.1 Problem formulation

In circuit design, highly skilled engineers select a specific topology and then manually
tune design parameters to meet certain specifications and, ideally, enhance overall perfor-
mance. Typically, design parameters encompass resistor and capacitor values, along with
transistor parameters like multiplicity, channel length, and width. The specifications refer
to performance measures, known as circuit responses, that must meet certain thresholds.
For instance, the specifications of low-dropout voltage regulators might include phase
margin, power supply rejection ratio (PSRR), and settling time. Additionally, certain
circuit responses require optimization beyond meeting specifications, such as minimizing
chip area and reducing current consumption.

Therefore, circuit sizing can be formulated as a constrained multi-objective optimiza-
tion problem (Equation 2.1).

minimize fi(X), i ∈ Nob jectives

subject to

g j(X) < treshold j, j ∈ Nspeci f ications

(2.1)

where X is the input vector of design parameters, g j(X) are the constraints representing
the circuit specifications, and fi(X) are the objectives representing the circuit responses
which require further optimization. It is worth noting that Equation 2.1 presents the
case of a pure minimization problem. In practice, objectives and constraints that require
maximization can be converted into minimization problems by negating their values
(Equation 2.2).

maximize fi(x) ≡ minimize − fi(x)

g j(X) > treshold j ≡ −g j(X) <−treshold j
(2.2)
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Usually, the design parameters are integer or real numbers. However, sometimes enu-
merated types, stepped types, or even categorical variables are included. Also, it is worth
noting that an objective fi(X) can also have an associated constraint g j(X). For example,
the current consumption must be below a certain threshold, but it would be best to be as
low as possible.

Constraint handling is a crucial aspect of circuit sizing. It involves satisfying all
circuit specifications for a solution to be feasible. Constraint handling techniques are
categorized into three main types [38]: those that prioritize feasible solutions to survive
until the next generation, those that aim to balance the trade-off between feasibility and
convergence, and those used for repairing infeasible solutions. This thesis focuses on the
techniques in the first category because they are robust, well understood, and tested.

As a result, solving a constrained multi-objective optimization problem requires a
two-step approach. First, the algorithm must find solutions that meet the specifications,
termed as feasible solutions. Second, the algorithm must optimize the objectives. Thus,
we consider an optimization run has two phases, feasible solutions search and objectives’
optimization. This two-step strategy for constrained optimization is well established in
the literature [39].

As with any multi-objective optimization problem, the optimum is not represented
by a single point within the objectives’ high-dimensional space (often referred to as
hyperspace). Instead, it is represented by a Pareto front, which makes the optimization
process even more difficult. The quality of an algorithm is measured by how well it
depicts the Pareto front of the problem at the end of the optimization. On one hand, it
is important to generate solutions as close as possible to the Pareto front. On the other
hand, the solutions should be spread across the entire front, not just in a single region.
Having solutions across the entire Pareto front is important in circuit sizing, because it
gives the designer access to various trade-offs.

In practice, circuit sizing tasks deviate from classic multi-objective optimization
problems, since the circuits are subjects to the operating conditions. Operating conditions
are circuit inputs that remain outside the algorithm’s control. They represent environment
variables such as process corner, temperature, reference voltage etc. Similar to design
parameters, operating conditions can be of various data types. A particular combination
of operating conditions values represents an operating corner, often referred as process
voltage temperature (PVT) corner. Usually, the relevant operating corners are set by the
designers after performing Monte Carlo simulations. A design is considered robust if it
fulfills the specifications across all operating corners, or lies within a certain tolerance
range [40].

8
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2.2 Literature Brief

Evolutionary Algorithms Evolutionary Algorithms (EAs) are stochastic global search
methods that mimic the survival of the fittest natural processes. The generic flow
diagram of EAs for circuit sizing tasks is presented in Figure 2.1. EAs differentiate
themselves based on their survival policies and the strategies they employ for offspring
generation. Most of the relevant developments in the field of automated circuit sizing are
using genetic algorithms or Differential Evolution as their offspring generation engine.
Survival policies across different EAs are notably varied. However, they can broadly be
divided into two categories: those that adhere to elitism and those that promote diversity.

  Initial population  

Budget
available?

Offspring
generation  Evaluation New population

 Evaluation

NoYes

Survival
policy

  Final population
(Result)

Fig. 2.1 Flow diagram of evolutionary algorithms for circuit sizing

There are many examples of successfully employing EAs in circuit sizing tasks.
One of the most widely used algorithms is NSGA-II [30], which was used as-it-is for
automatic analog integrated circuit sizing in [26, 27] or by adding a clustering method
to reduce the number of simulations required [28]. Other popular algorithms employed
for circuit sizing are Particle Swarm Optimization and various variants of differential
evolution [41].

Surrogate Models Although EAs can produce good-quality designs, optimizing effi-
ciency with respect to runtime is crucial. Simulations can be extremely computationally
expensive; therefore, using default EAs can require an impractically long time to produce
the required results. Hence, surrogate models are used to replace a fraction of expensive
simulations. The construction and use of a surrogate model to predict the function
values typically requires considerably less effort than embedding the expensive function
evaluator within the optimizer as-is.

The most popular surrogate models used in the past several years are GPs and
artificial NNs; however, some other ones, such as response surface methods and support
vector machines [42] have also been used.

9



Chapter 3

Evolutionary Algorithms for Circuit
Sizing

This chapter is a study on classic Evolutionary Algorithms used in the context of auto-
mated circuit sizing. It is mainly based on [43] and [44].

In the simulation-based methods, the circuit is treated as a black box and its optimiza-
tion is based only on simulations. There are multiple metaheuristic algorithms suitable
for circuit sizing tasks, but by far the most popular are the Evolutionary Algorithms. In
this chapter we discuss the most promising state-of-the-art EAs in the context of circuit
sizing. First, we use synthetic benchmarks to find the best hyperparameter configurations,
and we apply the algorithms on a real low-dropout (LDO) voltage regulator. Our goal is
to find the most promising EAs and to assess the impact of randomness in the circuit
sizing task. Second, we extend the analysis to another LDO, changing the focus to
population diversity and the versatility of the EAs.

3.1 Calibration on Synthetic Benchmarks

In an ideal scenario, the five EAs would be calibrated on a real and generic circuit sizing
problem. Unfortunately, a single run representing a hyperparameter configuration of an
algorithm can take more than a full day. Thus, the hyperparameters configurations used
are the result of algorithms’ calibration on synthetic benchmarks.

The experimental results in this subsection are obtained on the 9 synthetic bench-
marks from the Walking Fish Group (WFG) toolkit [45]. This toolkit is scalable and
supports any number of objectives. Moreover, it incorporates a variety of important
characteristics that widely exist in real-world problems. To construct a test problem,
it only requires to specify a shape function, which determines the Pareto front, and a
transformation function, which describes the fitness landscape.

All optimizations on synthetic functions (each algorithm on each problem) were
done 10 times with different random starting populations and random seeds, and results
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averaged over these 10 runs. We have chosen 5 and 10 as the number of objectives, as
we can compare how the different optimization algorithms perform on problems with
fewer objectives (5) and with more objectives (10).

3.2 Evaluation on Real Circuits

In this subchapter, we evaluate the target algorithms on two voltage regulators. The focus
of the comparison is not only performance, but also robustness and population diversity.

3.3 The Most Promising Algorithm for Circuit Sizing

The focus of this chapter is to evaluate the state-of-the-art EAs in terms of performance,
versatility, and diversity of the population. In this context we understand versatility as
the capacity of the algorithm to have similar performance on different circuits. The
performance of GDE3 [46] is remarkable and steady across all the considered situations.
Thus, we can argue that it is the most versatile algorithm amongst the five. It is true that
the performance of IBEA [47] is also relatively good on the problems that we considered,
but the impossibility of using it on problems with a high number of objectives makes the
algorithm less versatile.

In terms of solution diversity, GDE3 has the best results, given its intrinsic capabilities
and the potential of performing well with a large population. Overall, we conclude that
GDE3 is the most promising EA for circuit sizing automation. Its performance is very
good, it proved to be versatile, and it preserves the most diverse population amongst
the state-of-the-art EAs. Sometimes its nature leads to a slower convergence, but in the
circuit sizing applications, where the level of complexity of the problem can fluctuate
heavily from a circuit to another, we consider a slower but more robust convergence
desirable.

Evolutionary algorithms are good for sampling the hyperspace of the design param-
eters, but using them alone will result in applications that require a high number of
simulations. The state-of-the-art solutions for circuit sizing use machine learning based
surrogate models to reduce the total number of simulations. Therefore, we aim to build
an efficient circuit sizing algorithm by combining GDE3 with such a surrogate model.

11



Chapter 4

A Machine-Learning enhanced
Evolutionary Algorithm

This chapter is based on the following articles: [48] and [49]
Evolutionary algorithms (EAs) are powerful stochastic searching methods. However,

in their original form, they require too many real circuit evaluations to discover optimal
solutions. In this chapter, we pair arguably the most promising EA for circuit sizing
tasks, GDE3 [46], with Gaussian Processes (GPs) to reduce the number of circuit
simulations. We call the resulting sizing algorithm "Multi-objective Optimization based
on Differential Evolution and Bayesian Inference" (MODEBI).

The main contributions of this chapter are as follows. First, we propose a multi-
objective optimization method based on the combination of a GDE3 inspired algorithm
with GPs that is designed to work well on problems with many variables, objectives, and
constraint specifications. Second, we propose innovative population survival policies
and offspring selection algorithms that reduce the number of real simulations required
to complete the optimization process and preserve the solution diversity. Finally, the
proposed method is evaluated, and its performance is compared with state-of-the-art
EAs and Bayesian Optimization algorithms on two real voltage regulators.

4.1 Surrogate Modelling

Optimizing runtime efficiency is essential. To achieve this, surrogate models are em-
ployed to replace the real circuit simulator for a portion of the costly evaluations.
Building and utilizing a surrogate model to predict function values generally requires
significantly less computational effort than directly integrating the expensive function
evaluator into the optimizer. Gaussian Processes and artificial neural networks have
been the most widely used surrogate models in the literature. Recent approaches, in-
cluding ours, utilize online training, where the model is incrementally updated during
optimization with each new simulation. While the use of surrogate models adds some
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computational overhead, they more effectively guide the selection of future candidate
points, leading to faster convergence.

4.1.1 Using Gaussian Processes

The GP regression is based on Bayesian inference, wherein a prior statistical model
can be combined with observed evidence to derive a more accurate statistical model. A
prior distribution can be specified using prior mean and kernel functions. In the absence
of prior knowledge, the mean is assumed to be zero. The kernel function represents
the similarity measure between the function values at two locations. Training the GP
over the available data points involves encoding the information in the mean and the
kernel. For each new point, the GP will predict the mean (µ), representing the estimated
function value, and the variance (σ2), representing the prediction uncertainty. These
predictions are refined incrementally when new data are observed.

An acquisition function is typically used to explore the state space using the GP
model. Various types of acquisition functions can be used to balance the exploration and
exploitation during the optimization. In the proposed algorithm, we employ the Lower
Confidence Bound (LCB) as follows (Equation 4.1):

LCB(x) = µ(x)−Kσ(x) (4.1)

In minimization problems, a larger K corresponds to a highly exploratory behavior.

4.2 Multi-Objective Optimization based on Differential
Evolution and Bayesian Inference (MODEBI)

In this chapter we describe the MODEBI algorithm starting from its GDE3 inspiration.
The chapter includes the different candidate selection (and survival) mechanisms and the
resulting versions of MODEBI.

4.2.1 Machine Learning Enhanced Generalized Differential Evolu-
tion 3

Population Diversity Population diversity is a critical aspect of multi-objective evolu-
tionary algorithms owing to the risk of ignoring certain areas of the input space and the
goal of finding multiple points in the Pareto Front. The original GDE3 algorithm has
a good mechanism of preserving the population diversity: it compares each offspring
only with its parent to determine the appropriate solution for inclusion in the next gen-
eration. However, integrating the GP surrogate model introduces some changes in the
original GDE3 approach, and additional incentive for diversity preservation is required.

13
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The original GDE3 algorithm uses Crowding Distance [30] in the pruning phase. We
instead applied the Distribution Metric [50] not only to monitor the diversity across the
optimization, but also to select suitable individuals.

Preselection We employed the Gaussian Process models as a preselection mechanism.
To maximize the potential benefit, the GDE3 offspring generator was used to generate ten
times more offspring (10N) than the population size (N). Simultaneously, we aimed to
reduce the number of simulations performed at each epoch to a quarter of the population
size (N/4 instead of N). Thus, we adopted the surrogate model to select the most
promising N/4 offspring from the 10N generated. By replacing at most a quarter of the
population at each step, MODEBI maintains a good balance between exploration and
exploitation. The exploratory behavior of the evolution is promoted by maintaining a
high number of individuals in the population. Simultaneously, only the offspring with
the best improvement rates are considered to join the next population.

One Gaussian Process is trained for each circuit response by using the design param-
eters and operating conditions as inputs. This approach incurs a lower computational
cost and allows parallel training and querying of Gaussian Processes. However, it has a
limitation in that it does not consider the correlations between responses, which can be
addressed in future work. We use a scaled radial basis function kernel as it is a popular
choice for ML, and its reduced complexity makes model training feasible on all available
data points (up to 20,000 in our test cases). Moreover, good accuracy can be achieved
with a reasonable computational cost.

The most promising N/4 offspring (as predicted by the Gaussian Processes and
selected through one of the selection functions introduced below) are evaluated using the
circuit simulator. Finally, the new population is created by selecting the best individuals
from the previous population and these offspring through one of the survival functions
described below. The updated method is presented in Algorithm 1.

Algorithm 1: MODEBI for circuit sizing
Input: A random population POP of size N

1 while simulation budget available do
2 GP = train(available simulations)
3 offspring = 10×generate(POP, GDE3Operator)
4 evaluate(offspring, GP)
5 bestOffs = select(offspring, N/4)
6 simulate(bestOffs)
7 POP = survival(POP, bestOffs, N)
8 end while

Although generating 10N offspring and replacing only N/4 individuals in the popu-
lation is beneficial, as explained above, it results in additional complexity. The original
GDE3 offspring selection and survival procedures cannot be used without alterations.

14
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Summary MODEBI can be regarded as an extension of GDE3 that incorporates
Gaussian Process surrogate models for preselecting offspring to accelerate convergence
without wasting time on real circuit simulations. The preselection must be performed
carefully to preserve the population diversity and promote the most promising offspring.

4.3 MODEBI Evaluation

In this section we evaluate the MODEBI algorithm. First, we evaluate the three variants
of the algorithm to decide which one is the most promising. Second, we compare the
best MODEBI variant with GDE3 and with the Bayesian Optimization method MACE
[35]. Finally, we analyze the impact of randomness over the MODEBI algorithm.

4.3.1 Results of MODEBI

We performed three independent experiments to evaluate the performance of the MODEBI
algorithm for optimizing two low-dropout voltage regulators. The experiments included
three variants of the proposed algorithm. Because using a Gaussian process model as a
surrogate for the circuit simulator should allow us to obtain feasible solutions faster, the
variants were aimed at determining the combination of offspring selection methods and
population survival approaches that produce better results.

4.4 Strengths and Limitations of MODEBI

4.4.1 Conclusions

In this chapter, we proposed an innovative multi-objective optimization algorithm for
automated circuit sizing, called MODEBI. It is designed to handle circuits with a high
number of design variables (order of tens), several PVT corners, and many (10+) con-
flicting responses that must meet the specifications. In this context, MODEBI is a design
optimization method that uses an Evolutionary Algorithm inspired from GDE3 to explore
the complex hyperspace of the design variables and the PVT corners. Additionally, it
employs Gaussian processes as a surrogate for expensive circuit simulations, effectively
boosting the convergence of the Evolutionary Algorithm.

Currently, most state-of-the-art algorithms solve multi-objective tasks by pruning
them to single-objective optimization tasks or including a priori bias. However, the
proposed method employs Pareto dominance, based on which it directly explores over
the multi-objective space. Thus, it can provide a population of various solutions to circuit
designers.
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Chapter 5

The Evolutionary Bayesian
Optimization (EBO)

In this chapter, we introduce a novel strategy for automated circuit sizing called Evolu-
tionary Bayesian Optimization (EBO). Our framework integrates the strengths of two
leading approaches from the literature. On one hand, it adopts the ML-enhanced EAs
approach to global search through evolutionary computation, which has been demon-
strated to be effective in both earlier studies [19] and recent advancements (Chapter
4). On the other hand, similar to Bayesian Optimization, our method fully leverages
the powerful ML model by actively searching for its optima rather than merely using
it as a preselection tool. Additionally, EBO performs true multi-objective optimization
and employs population-based search, enabling it to fully utilize parallel simulation
infrastructure.

The framework consists of two nested searching mechanisms. The inner one, called
virtual evolution, searches for the optima of the ML model. The outer one uses the real
circuit simulator to confirm the quality of the solutions produced by the inner search. In
addition, it updates the ML model using the new data points available. This process is
repeated until the simulation budget is spent.

To show the capabilities of EBO we introduce two particular algorithms developed
in our framework. They both use Differential Evolution offspring generation engines
and Gaussian Processes, but they differ in terms of survival policies.

The main contributions of this Chapter are the following: (I) We propose a novel
framework for automated circuit sizing; (II) We develop two algorithms following
the guidelines of this framework; (III) We analyze the performance of the algorithms
on two complex proprietary circuits to provide guidance for forthcoming algorithm
developments, to measure the impact of the hyperparameters and randomness, and to
show that our strategy achieves better results than the state-of-the-art methods. (IV) We
create two case studies targeting circuits from the literature to show the practicality of
the framework.
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5.1 Framework

EBO represents a combination between an evolutionary framework and Bayesian Opti-
mization. The key concept of this framework is the integration of the virtual evolution.
EBO algorithms are using two types of optimization steps, real ones and virtual ones.
In the virtual steps, the solutions are evaluated on the ML model, which is used as
a surrogate for the circuit simulator. When a certain condition is met, the algorithm
performs a real step of optimization. Specifically, it evaluates the last population of the
virtual evolution using the real circuit simulator. The real steps are performed to ensure
the ML model is still accurate, and to verify the quality of the solutions. Thanks to its
intrinsic philosophy of population-based evolution, EBO takes full advantage of parallel
simulation infrastructure.

The flow of a generic EBO algorithm is presented in Figure 5.1. First, the initial
population is randomly generated and evaluated. Second, the algorithm performs virtual
evolution until a certain condition is met. Then, the algorithms performs a step of real
evolution. Every time the real simulator is used, the surrogate ML model is retrained
using the newly available data points.

Initial population

Budget
available?

Generate
offspring

Evaluate virtual
population w/

simulator

Select solutions
for the virtual

population

Update surrogate
model

Evaluate the
offspring w/

surrogate model

Train surrogate
model
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condition?

No

Yes
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(Result)

Fig. 5.1 Flow diagram of a generic EBO algorithm

5.2 EBO Algorithms

We propose two particular EBO algorithms, which differ in terms of the survival poli-
cies employed. The algorithms use the most common Differential Evolution operator
DE/rand/1/bin [46] as the recombination engine. In terms of ML models, the algorithms
use separate GPs for each circuit response.
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5.3 EBO Evaluation

This section is structured as follows: We start by providing the premises for the evaluation.
Then we present a general comparison between the two proposed Evolutionary Bayesian
Optimization (EBO) algorithms. Next we go through the tuning process of the virtual
evolution’s steps number. Afterwards, we make a comparison between our method and
state-of-the-art algorithms and a timing assessment. Finally, we assess the robustness of
the proposed EBO algorithms.

5.4 Strengths and Limitations of EBO

In the scope of this chapter, we propose Evolutionary Bayesian Optimization (EBO), a
new strategy for automated circuit sizing. The framework is a synergy of the two most
promising approaches from existing literature, effectively harnessing the best aspects
of each. From one perspective it follows the ML enhanced evolutionary algorithms’
strategy of global search using evolutionary computation. From another perspective, our
technique fully takes advantage of the powerful ML model by searching for its optima,
just as Bayesian Optimization. In summary, the EBO framework employs a sequence of
real and virtual evolution steps in an alternating fashion to identify the problem’s optima.

The EBO framework has some intrinsic benefits. First, it is truly multi-objective,
eliminating the drawbacks associated with constructing figure of merit functions. Second,
it inherently uses large batches of simulations, taking full advantage of parallel simulation
infrastructure. Third, being a diversity driven population based method, it focuses not
only on finding a good solution, but on describing the entire Pareto front. Thus, it
gives the designers access to various trade-offs. Fourth, the algorithms developed in
the EBO framework do not use the uncertainty measures of the ML models. This not
only eliminates the risk associated with large variance, but also makes the framework
compatible with ML models that do not provide uncertainty measures.
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Chapter 6

Operating Corners’ Management

This chapter is based on the following articles: [51], [52], [53], [54]
Operating corners are obtained by combining the relevant values of the operating

conditions. Managing corners simulations wisely can lead to important budget reduction.
Furthermore, it can make the difference between meeting and not meeting the constraints.

One naive but common approach in the literature is to optimize for the nominal
corner and check the other corners at the end of the optimization. This minimizes the
number of circuit simulations but results in an algorithm that lacks robustness. With this
method, the circuit might fail to meet specifications across all corners. Another approach
is to identify the worst-case corner at the start and optimize for it. However, due to
varying interactions between circuit elements under different operating conditions, the
worst-case corner may shift during optimization. The safest approach, as demonstrated
in previous chapters, is to evaluate all corners continuously. However, this consumes
most of the simulation budget on corners that are often irrelevant.

In this chapter we present several corner management techniques: First, we discuss
the two-steps sizing approach in Section 6.1. Then, in Section 6.2 we introduce the
Periodic Worst-Corners Selection mechanism. In Section 6.3 we combine the two
methods to build an efficiency centric circuit sizer. Finally, we discuss a different
paradigm of corners management in 6.4.

6.1 Two-steps Circuit Sizing

An efficient ML model enhanced evolutionary algorithm based optimizer is MODEBI,
presented in Chapter 4. It uses different metrics for solutions that meet the specifications
(feasible) and those that do not, leading to a true multi-objective optimization approach
after feasible solutions are found. Furthermore, the MODEBI algorithm employs separate
models for each circuit response, resulting in more accurate predictions.

Optimizing for all corners, as done by the MODEBI algorithm, is safe. It guaranties
the optimization takes into account the real worst-case scenario. Nonetheless, optimizing
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for the worst corner is not the most efficient strategy. Even more important, it requires
numerous simulations.

Circuit designers take a different approach when sizing manually. They start by
optimizing for the nominal corner in order to identify promising sizing candidates. After
that, they begin to consider extreme operating conditions. We propose an automated
circuit sizing method that mimics this designer-like approach. As a result, fewer circuit
simulations are spent on unpromising candidates during the early stages of optimization,
which is especially important for highly unstable circuits.

6.1.1 The "designer-like" approach

The "designer-like" optimization is a simple technique inspired by the way analog
designers approach circuit dimensioning. The simplicity of this method lies in its two-
step process. In the first step, the circuit is optimized at the nominal operating corner,
allowing the algorithm to converge to a stable area with a low number of simulations.
Once a specific condition is met, the algorithm enters the second optimization phase and
begins to consider the extreme operating corners.

6.2 Periodic Worst-Corner Selection (PWCS) Mecha-
nism

Reducing the number of design-verification loops is crucial to assuring a good time to
market for new circuits. Typically, designers select the most unfavorable PVT corner in
advance, leveraging their expertise. Going further, they perform circuit sizing for this
condition and, in the end, the design is verified in all PVT corners to demonstrate its
robustness. This minimizes the number of circuit simulations required for circuit sizing,
but often leads to multiple design-verification loops because the solution which was
feasible for the PVT corner chosen up-front turns out not to feasible in all other corners.

In a designer-like approach adapted for automated circuit sizing requires a second step
of PVT aware optimization, as presented in Section 6.1. However, this is computationally
expensive. In this context, we propose integrating PVT verification in the circuit sizing
phase in a more intelligent manner by periodically selecting the worst PVT corners and
performing the sizing only in those. This allows obtaining similar results as if optimizing
in all corners while respecting the simulation budget.

6.2.1 Method

In MODEBI we proposed evaluating all the corners of all solutions at each iteration in
an effort to minimize the number of design-verification loops that take place before an
adequate solution is found. Usually in circuit sizing tasks, finding feasible solutions in
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some corners can take significantly more simulations than in other corners. In essence,
the optimization process comes to a point where most solutions in the population are
already feasible in one or more PVT corners, but it is struggling to find feasible solutions
in other, more difficult ones.

We propose the MODEBI-CM algorithm, an improvement over the MODEBI algo-
rithm which uses a worst corner selection mechanism so that simulations are not wasted
on easy corners which are likely within specifications already if the worst corners meet
them.

6.3 Efficiency Centric Sizer

While the aforementioned techniques (Sections 6.1 and 6.2) have each demonstrated
effectiveness on their own, to our knowledge, no attempts have been made to combine
various speed-up strategies into a singular, comprehensive sizer. In this section, we intro-
duce an efficiency-centric automatic circuit sizer that consolidates multiple approaches
within a single algorithm.

6.3.1 Method

The efficiency-centric automatic circuit sizer is a versatile framework applicable to
various evolutionary methods. It extends beyond traditional evolutionary algorithms
(EAs) to include ML-enhanced EAs. This method streamlines the sizing process across
three levels: initially, employing Latin Hypercube Sampling (LHS) [55] for initial
population selection to mitigate randomness and decrease the average budget required
for the optimization [56]; beginning the optimization with the nominal operating corner
to obtain a "warm start" (Section 6.1) at minimal simulation cost; and then optimizing
the circuit on a periodically updated subset of the most challenging operating corners
(Section 6.2), validating the most promising solutions against the full corner set.

Algorithm 2 outlines the workflow of the efficiency-centric automatic circuit sizer.
While many steps are straightforward, some require further explanation. The "archive"
functions as a repository that automatically filters out dominated solutions, where a
solution is considered dominated if another exists with superior performance across all
objectives. The pruning process is performed according to the same domination criterion.
To differentiate among multiple nondominated solutions, Crowding Distance [30] is
employed to identify the most diverse solution set. The optimization step can proceed
for a predetermined number of epochs or until reaching a specified number of feasible
solutions. For the worst corner selection step, users have the flexibility to specify the
number of challenging corners they wish to focus on.
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Algorithm 2: Efficiency-centric automatic circuit sizer
1 solutions = LHS.generate(pop_size);
2 solutions = EA.optimize(solutions, nominal_corner);
3 archive.initialize();
4 while True do
5 elite_pop = prune(solutions, elite_size);
6 evaluate(elite_pop, all_corners);
7 archive.add(elite_pop);
8 if maximum budget reached then
9 break;

10 end if
11 worst_corners = select(all_corners, elite_pop);
12 solutions = prune(solutions+archive, pop_size);
13 solutions = EA.optimize(solutions, worst_corners);
14 end while
15 return archive

6.4 Simulation Scheduler

While the techniques previously presented in this chapter have each demonstrated effec-
tiveness, they share a significant drawback. They treat all the solutions in a population
equally, regardless of their quality. Ideally, we want to spend circuit simulations on
promising solutions, to validate their quality, while swiftly discarding low-quality solu-
tions to save simulations.

In this context, we introduce an alternative mechanism for managing corners, capable
of reducing the total number of simulations required by sizing algorithms by more than
70%. This method employs a prioritized list of corners, ordered by their difficulty level.
Depending on the use-case, the list might include the nominal corner or not. Solutions
undergo sequential evaluation across these corners, with the assessment of each solution
halting as soon as it fails to meet the specifications for a given corner. Consequently, this
approach minimizes the simulations expended on lower-quality solutions, concentrating
the optimization efforts on the more challenging corners.

6.4.1 Method

The foundation of our corner management technique is a simulation scheduler. For
optimal operation, it is essential to arrange the list of corners in descending order based
on their difficulty level. The proposed method uses the Constraint Violation (CV) [57]
metric to rank the operating corners based on their difficulty. CV represents the average
of the normalized deviations from the specification of a particular solution in a certain
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operating corner (Eq. 6.1).

CV(x) =
1

Nconstr

Nconstr

∑
i=1

deviationi(x)
referencei

(6.1)

For a given set of solutions, the average CV for each corner is computed. The corners
with the highest CV values are then considered the worst-case corners and ranked
first. As opposed to the Periodic Worst-Corner Selection mechanism (Section 6.2) the
proposed method performs this ranking just once, at the start of the optimization process,
using the randomly generated initial set of proposed solutions.

The fundamental operation of our scheduling method is structured in the following
manner: Once the designated evolutionary algorithm produces a fresh batch (population)
of potential solutions, these are first assessed in the toughest corner as ranked on our
difficulty list. Any solution that fails to meet the specifications for this corner is allocated
a specific metric value. Only those solutions that satisfy the requirements in the most
challenging corner proceed to be evaluated in the next corner from the difficulty list. The
process continues until each solution has either been assigned a metric value or has been
evaluated across all corners on the list. If a solution meets the specifications for every
corner, it receives a metric value of zero.

The metric implemented in the proposed scheduling method is computed based on
the number of corners evaluated for a specific solution (Equation 6.2).

Metric(x) = Ncorners −Npassed(x)+CV(x,Npassed +1) (6.2)

In particular, this metric is obtained by subtracting the number of corners successfully
passed by the solution from the overall number of corners. Following this, the CV
(Equation 6.1) is computed for the corner that was evaluated but not passed by the
solution. This CV is then incorporated into the metric to distinguish between solutions
that manage to pass an identical number of corners.
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Chapter 7

Conclusions

Automated circuit sizing is a trending topic due to its potential to reduce semiconductor
product time-to-market while improving employee satisfaction. It seeks to replace the
experience-driven iterative process of manual design with multi-objective optimization
algorithms. The most popular techniques for automated circuit sizing are hybrid methods
combining ML models with metaheuristic search engines like evolutionary algorithms.
Specifically, the most advanced methods rely on ML-enhanced evolutionary algorithms
and Bayesian optimization. Recent efforts have focused on improving these methods
by introducing novel techniques that reduce the simulation budget, such as corner
management strategies.

In this thesis, we aim to advance the state-of-the-art by presenting four key studies.
First, in Chapter 3, we analyze five state-of-the-art evolutionary algorithms to identify
the most effective one for circuit sizing tasks. Second, in Chapter 4, we propose a new
ML-enhanced evolutionary algorithm that employs Gaussian Processes to preselect the
most promising offspring generated by a Differential Evolution-based engine. Third, in
Chapter 5, we introduce a novel framework for automated circuit sizing, combining the
strengths of ML-enhanced evolutionary algorithms and Bayesian optimization. Finally,
in Chapter 6, we address the challenge of managing operating corners to improve the
efficiency of circuit sizing methods. To demonstrate the performance of our proposed
solutions, we compare them against state-of-the-art algorithms using five circuits, in-
cluding three proprietary designs and two open-source ones. Throughout the research,
our focus was not only on performance but also on the practicality and robustness of our
methods.

The results presented in Chapter 3 demonstrate that evolutionary algorithms (EAs) are
an effective and reliable foundation for circuit sizing tasks. We evaluated five state-of-the-
art, biology-inspired [58] EAs: Non-dominated Sorting Genetic Algorithm II (NSGAII)
[30], Non-dominated Sorting Genetic Algorithm III (NSGAIII) [59], General Differential
Evolution 3 (GDE3) [46], Indicator Based Evolutionary Algorithm (IBEA) [47], and
Strength Pareto Evolutionary Algorithm 2 (SPEA2) [60]. Our assessment considered
their performance, diversity preservation, and versatility. The findings highlight that



GDE3 consistently performs well across all scenarios and excels in preserving solution
diversity, particularly due to its potential of performing well with a large population. As
a result, we conclude that GDE3 is the most promising EA for automated circuit sizing.
While EAs are highly effective for sampling the design parameter space, relying solely
on them leads to a high number of simulations. Thus, our goal is to develop a more
efficient circuit sizing algorithm by integrating GDE3 with a surrogate model.

In Chapter 4, we introduced a novel multi-objective optimization algorithm for
automated circuit sizing, called Multi-objective Optimization based on Differential
Evolution and Bayesian Inference (MODEBI). This method uses an EA inspired by
GDE3 to explore the complex hyperspace of design variables and operating corners.
Additionally, it employs Gaussian processes as a surrogate model to reduce the need for
costly circuit simulations, thereby significantly enhancing convergence. MODEBI is
specifically designed to handle circuits with many design variables, multiple operating
corners, and numerous conflicting responses that must meet specifications. Unlike most
state-of-the-art algorithms, which convert multi-objective tasks into single-objective
ones or introduce a priori bias, MODEBI utilizes Pareto dominance to directly explore
the multi-objective space. The results demonstrate its superior performance compared
to both GDE3 and the state-of-the-art Bayesian optimization method, MACE [35].
Although MODEBI is a powerful algorithm, it has certain limitations. First, it tends to
be elitist, making it less versatile and robust. Second, its performance is quite sensitive
to hyperparameter tuning, which impacts its practicality.

To overcome the limitations of MODEBI and create an algorithm that is both effi-
cient and highly robust, we developed the Evolutionary Bayesian Optimization (EBO)
framework in Chapter 5. This framework synergizes the two most promising approaches
from the literature, effectively combining their strengths. From one perspective, it adopts
the global search strategy of ML-enhanced evolutionary algorithms by using evolution-
ary computation. From another, it leverages the power of ML models by searching
for their optima, similar to Bayesian Optimization. The EBO framework is based on
the key concept of "virtual evolution". It alternates between real and virtual evolution
steps to identify optimal solutions. Like MODEBI, it employs Pareto dominance for
multi-objective optimization and utilizes large batches of simulations. On the other hand,
unlike MODEBI, EBO stays true to the intrinsic philosophy of the EA, without altering
its workflow. This approach minimizes the number of hyperparameters, while ensuring
diversity preservation and robustness if paired with the appropriate EA. Results from
four circuits demonstrate EBO’s superiority over MODEBI, GDE3, and MACE. While
developing new optimization algorithms for circuit sizing is exciting, we acknowledge
the law of diminishing returns and shift our focus to enhancing performance through
strategies like operating corners management.

In Chapter 6, we propose several performance enhancement methods under the um-
brella of ’operating corners management.’ Operating corners are derived by combining
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relevant operating condition values. For robust optimization, each circuit configuration
must be validated across multiple operating corners. Efficient management of these
simulations can significantly reduce the simulation budget. The safe approach used
in MODEBI and EBO validates all circuit configurations in every operating corner.
However, this approach quickly consumes the simulation budget.

One basic corner management technique (Section 6.1) optimizes for the nominal
corner until the feasibility region is found, then start checking all the corners for the rest
of the optimization. This approach provides a ’warm-start’ for corner-aware optimization
with minimal simulation cost. An alternative method is the periodic worst-corner selec-
tion mechanism (Section 6.2), which maintains algorithm robustness while significantly
reducing the simulation budget. Additionally, combining these two methods, as shown
in Section 6.3, maximizes efficiency.

Although these methods are effective, they have a key drawback: they treat all circuit
configurations equally, regardless of quality. Ideally, simulations should be spent on
validating promising solutions, while quickly discarding low-quality ones to conserve
resources. The simulation scheduler described in Section 6.4 sequentially evaluates
circuit configurations across corners, halting the evaluation of a particular configuration
as soon as it doesn’t meet the specifications in one of the operating corners.

The key advantage of the proposed corner management techniques is their flexi-
bility—they are not tied to any specific sizing algorithm. They function as general
performance enhancement methods for any evolutionary computation-based circuit
sizing approach.

In summary, this research advances the state-of-the-art on multiple levels. We
evaluate the performance of evolutionary algorithms in circuit sizing tasks to identify the
most promising approach. Building on this, we propose two novel circuit sizing methods
that address limitations in existing techniques. Finally, we develop several performance
enhancement strategies to further boost the efficiency of our proposed methods.

7.1 Original contributions

The contributions related to the analysis of state-of-the-art evolutionary algorithms
presented in Chapter 3 are as follows:

• Hyperparameter tuning on synthetic benchmarks [43, 44]. This task aims to
determine the best configurations for state-of-the-art evolutionary algorithms using
computationally inexpensive problems that resemble circuit sizing tasks. The
results provide a valuable resource for any research focused on automated circuit
sizing with evolutionary computation.

• In-depth analysis of state-of-the-art evolutionary algorithms on proprietary cutting-
edge analog circuits [43, 44]. This work offers insight into how specific character-
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istics of evolutionary algorithms influence their suitability for circuit sizing. The
analysis considers not only performance but also the versatility and robustness of
the algorithms.

The main contributions related to Machine Learning-enhanced evolutionary algo-
rithms presented in Chapter 4 are the following:

• A novel multi-objective optimization method combining a Differential Evolution-
based algorithm with Gaussian Processes, designed to excel in problems with
numerous variables, objectives, and constraints [48]. The algorithm achieves
a speedup of over three times compared to classic evolutionary algorithms and
performs better than state-of-the-art circuit sizing methods.

• Several innovative population survival policies and offspring selection algorithms
that minimize the number of real simulations required to complete the optimization
process while preserving solution diversity [48, 49].

The contributions regarding the application of Bayesian optimization in circuit sizing
presented in Chapter 5 are as follows:

• A novel framework for automated circuit sizing that combines ML-enhanced evo-
lutionary algorithms with Bayesian optimization. The proposed method integrates
the two approaches, leveraging the strengths of both.

• Two circuit sizing algorithms developed according to this novel framework. The
results demonstrate significant improvements in performance and robustness com-
pared to state-of-the-art methods.

• Two case studies involving circuits from the literature to demonstrate the practi-
cality of the framework. While the results on proprietary circuits show that the
algorithms are capable of handling cutting-edge sizing problems, some details
cannot be disclosed due to proprietary constraints. To offer broader insights, the
proposed algorithms are also tested on popular circuits from the literature.

The contributions regarding performance enhancement through operating corners
management presented in Chapter 6 are as follows:

• A periodic worst-corner selection mechanism that ensures the robustness of the al-
gorithm while reducing the simulation budget required to achieve optimal solutions
[51].

• An efficiency-centric circuit sizer [54] that combines the periodic worst-corner
selection mechanism with a two-step sizing technique [52]. This technique, in-
spired by manual circuit sizing, begins with nominal corner sizing followed by
operating-corner-aware optimization.
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• A novel simulation scheduler [53] that sequentially evaluates circuit configurations
across operating corners, reducing the number of simulations allocated to low-
quality solutions.
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7.3 Perspectives for further developments

The methods proposed in this thesis are well-defined. Only a few specific aspects
require further development. The most significant is finding an adaptive mechanism
for selecting the appropriate number of virtual steps in the Evolutionary Bayesian
Optimization (Chapter 5). Currently, we empirically set the number of virtual steps per
real step between 30 and 80, depending on the problem. To prevent potential issues, the
mechanism could be designed to select within this range. One early idea is to halt virtual
evolution if the offspring deviate too far from any solution evaluated by the real circuit
simulator. This prevents reliance on the ML model in regions where it may be unreliable.

Another method requiring further development is the simulation scheduler described
in Section 6.4. Since it evaluates circuit configurations sequentially across operating
corners, it cannot fully exploit highly parallel infrastructure. We aim to develop a system
for organizing simulation batches that maximizes parallelism. A straightforward solution
is to fill incomplete batches with simulations from future corners, as these are likely to
be needed. Additionally, the simulation scheduler has been applied only in the context
of classic evolutionary algorithms. It would be valuable to explore this mechanism with
more advanced circuit sizing methods, such as ML-enhanced evolutionary algorithms
(Chapter 4) and Bayesian Optimization techniques (Chapter 5).

Initial population sampling is an important aspect worth discussing, as it influences
all the methods introduced in this thesis. So far, we have primarily relied on random
sampling, a standard approach in evolutionary algorithms. However, more sophisticated
techniques, such as Latin Hypercube Sampling [55] or Sobol sampling [62], could
provide more relevant data, as suggested in [56]. We employed Latin Hypercube
Sampling in Section 6.3, but did not specifically analyze its performance compared to
random sampling.
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Shifting from specific improvements to broader avenues of exploration, we begin
with online circuit modeling. Gaussian Processes are powerful models that achieve
impressive accuracy with small datasets. However, they do not scale well for large
datasets, with a time complexity of O(N3) for training and O(N2) for prediction. In
circuit sizing, the simulation budget often reaches tens of thousands, while Gaussian
Processes effectively handle around five to ten thousand. One area to explore is the
development of training point selection mechanisms for datasets larger than ten thousand
simulations. For instance, clustering techniques could be used to either discard some
of densely packed training points or to focus model training on relevant areas of the
hyperspace.

Alternatively, other Machine Learning models can be integrated into circuit sizing
algorithms. For instance, we experimented with Random Forests [63], and early results
indicate a substantial reduction in the algorithms’ internal delay. However, Random
Forest models are less accurate than Gaussian Processes, which can sometimes impact
convergence. Another avenue worth exploring is artificial Neural Networks. We empiri-
cally found that Neural Networks are not sufficiently accurate with training sets smaller
than ten thousand simulations. However, given the advances in Neural Network models,
further investigation is required. A compromise could be to switch between surrogate
models during optimization. The algorithm could use Gaussian Processes for the first
ten thousand simulations, then transition to Neural Networks.

Another application of Neural Networks in circuit sizing is encoding the real input
space into a latent space. Specifically, the original input data can be mapped to a
continuous, lower-dimensional feature space where Gaussian Processes can be applied.
This is achievable through the use of Variational Autoencoders [64].

An alternative to the MODEBI and EBO algorithms could incorporate local refine-
ments using gradient search. Similar to memetic algorithms, this approach leverages the
differentiable surrogate model to solve the sizing problem. Replacing some evolutionary
computation-based virtual steps with gradient steps may result in faster convergence
toward the model’s optima.

Recently, Reinforcement Learning and Transfer Learning have gained popularity
in the automated circuit design community. One notable method combines Graph
Convolutional Neural Networks with Reinforcement Learning, first introduced in [65]
and further developed in [66]. At first glance, this approach offers a structural advantage
over evolutionary computation and Bayesian optimization methods. By modeling the
circuit as a graph, a deep reinforcement learning agent trained on one circuit can be
applied to other topologies. With sufficient training, a Reinforcement Learning agent
could outperform human designers and automated circuit sizing methods that do not
leverage Transfer Learning.
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