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Chapter 1 
 

 

Introduction 
 

 

 

This chapter begins with a brief background about the internet of vehicles (IoV). IoV 

is a unique and customised aspect of the internet of things (IoT) that allows enables 

integrated management of intelligent transportation and additional applications within 

smart cities [1] (e.g., Figure 1.1). Moreover, this chapter presents the field of the 

doctoral thesis; enabling of electric vehicles (EVs) within the smart cities through the 

IoV communication. It explains the benefits of integrating EVs within cities, 

highlighting that EVs can significantly reduce air pollution and gas emissions as they 

are a sustainable transportation strategy, producing zero carbon emissions. 

Additionally, the IoV facilitates the monitoring and management of EV charging 

infrastructure, enabling real-time data exchange between EVs, charging stations, and 

other power grid operators like aggregators. 

 

 
Figure 1.1 Communication types of vehicles in smart cities through the IoV [2]. 

 

 

1.1 Scope of the Ph.D. thesis 
 

 

This thesis focuses on the EV charging problem and coordination requirements. Here 

are some research challenging issues that are addressed in this thesis with the focus on 

the EV charging problems:  

1 What is the concept of G2V/V2G technology, and how does it facilitate 

bidirectional energy flow between EVs and the grid? 
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2 What are the diverse applications of G2V/V2G technologies, and how can it 

contribute to the overall energy system? 

3 What are the different charging patterns observed in EV charging? 

4 Why is charging coordination necessary, and how can both EV users and 

service providers benefit from implementing it? 

5 How can a charging scheme be designed to effectively coordinate EV 

charging, taking into account various constraints and factors? 

6 What optimisation techniques can be employed to obtain an optimal charging 

scheme for EVs, considering multiple factors such as grid capacity and current 

status, user preferences, and energy costs? 

 

 

1.2 Content of the Ph.D. thesis 
 

 

The work ahead is organised as follows. 

Chapter 2 explores the crucial aspects of charging and discharging EVs within 

G2V/V2G networks and surveyed integration of software-defined networking (SDN) 

in vehicular networks for improved communication and coordination EVs among, 

charging stations, and the power grid. The chapter identifies open research issues 

highlighting the need for further exploration. 

Chapter 3 provides a review of EV technology and addresses the problems of 

optimising charging scheme. The charging systems are introduced and addressed their 

advantages and disadvantages, they are classified into: centralised, decentralised and 

hierarchal. The chapter covers recent research in optimisation techniques aiming to 

optimise EV charging and also identifies the limitations and gaps in the current 

solutions. Also, several challenges with their potential solutions are proposed. 

Chapter 4 explores the benefits of SDN and Cloud computing, to introduce a new 

flexible charging system model. A novel optimised charging method is proposed for 

solving the EVs charging scheduling and routing aims to minimise the time cost.  

Chapter 5 focuses on the multi-objectives optimisation problem. The study 

utilised the “bi-non-dominated genetic algorithm (NSGA-II)” to jointly optimise two 

factors, including charging cost and time. The work compared NSGA-II with genetic 

algorithms (GA) in minimising the total costs in terms of time and price. Additionally, 

the work has been extended, by comparing the ant colony optimisation (ACO) and 

simulated annealing (SA) to optimise the EVs charging in terms of time and costs. 

Chapter 6 proposes an adaptable charging strategy to mitigate the surges of peak 

load on the power grid, while considering the situation of urgent EVs charging 

demand. The work uses the algorithm of particle swarm optimisation (PSO) to 

adaptively select the charging mode for the EVs users. 

Finaly the contributions of this thesis are concluded in Chapter 7, and future 

works are proposed for further exploration. 

 



 

 

Chapter 2 
 

 

Intelligent Control Approaches: 

Enabling Efficient Charging and 

Discharging 
 

 

 

This chapter address various intelligent control strategies that facilitate efficient 

charging and discharging of EVs. It is discuss energy dispatch mechanisms in terms 

of G2V and V2G from the perspectives of benefits of both the power grid and EV 

users. Whereas a successful implementation of G2V/V2G requires the installation of 

three critical elements:  

• A wireline or wireless connection that allows bi-directional charging interface to 

transfer the electrical energy between the power grid and EV. 

• A communication sub-system with the grid operator through control and data 

connections to send and receive information from the grid, e.g., indicating and 

in which direction the power should be sent (i.e., charging or discharging 

demand) and others. 

• Controls and monitoring logic onboard vehicles.  

 

 

2.1 SDN integration in smart grid 
 

 

This section discusses the integration of software-defined networking (SDN) in smart 

grids, highlighting its potential to enhance system stability and management. For 

instance, in a SDN-based smart grid one may have load balancing and shifting, 

dynamically altering the routing paths for smart grid control commands, fast failure 

detection, security, self-healing, and monitoring and scheduling of crucial smart grid 

traffic flows [3]. This chapter presents numerous contributions that have addressed the 

integration of SDN into grid. For instance, the study in [4] proposed a two-tier SDN-

based framework used for the plug-in electric vehicles (PEVs)” to be integrated with 

smart grid. The study in [5] proposed a software defined vehicle to grid (SD-V2G) 

system, which integrate the SDN technology. The work [6] introduced a hybrid 

electric vehicle (HEV) charging system, namely, green-software-defined-charging-

network, that incorporates both wireless and wire methods for charging. Finaly, the 
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study in [7] proposed a battery status sensing software-defined multicast (BSS-SDM) 

system, enabling the smart grid to control and monitor distributed EVs energy. 

 

 

2.2 Open research issues 
 

 

This section identifies several open research issues in the EVs charging/discharging 

domains for further exploration: 

1. Intelligent EV charging/discharging management: The management of EV 

charging and discharging is a complex issue that involves balancing several 

factors such as optimise the experience for EV users, the electricity grid, and 

charging costs. So, the main focus is here on how to coordinate the 

charging/discharging behaviour of EVs and develop an optimal scheme that 

maximises the benefits for EV users with respect to the power grid conditions.  

2. Communication and notifications: EV users can receive notifications or use 

mobile applications that provide real-time information on electricity pricing 

and peak demand periods. This allows them to adjust their charging schedule 

accordingly and optimise their electricity consumption. Establishing a 

communication network between EVs, stations, and the grid enables real-time 

monitoring and control.  

3. Smart charging algorithms: Intelligent algorithms can optimise the charging 

schedules of EVs based on factors such as grid conditions, electricity prices, 

and user preferences. These algorithms can coordinate the charging of EVs to 

maximise the utilisation of renewable energy, minimise grid stress, and 

reduced costs.  

4. Wired and wireless charging: Various charging standards have been 

implemented in practise (in either a wireless or wired charging technology). 

To be researched and defined would be a single charging standard. Static and 

dynamic charging may both play an important role in wireless EV charging.  

5. Synchronising between tiers: The aggregators in primary-feeders receive and 

implement the instructions from the upper-tier. On the other hand, they receive 

requests from the lower-tier physical devices and respond appropriately. It is 

necessary to conduct more research on the issue of balancing and analysing 

the process between requests in the lower tier and directions in the top tier [4]. 

The work in the next chapters focuses on addressing the challenges of how to 

coordinate the EVs charging (i.e., issues 1 and 3), and the development of optimise 

charging schemes. 

 



 

 

Chapter 3 
 

 

Optimisation Schedule Schemes 

for Charging Electric Vehicles: 

Overview, Challenges, and 

Solutions 
 

 

 

It is important to implement smart charging schemes that manage and regulate the 

charging processes of EVs. However, various scientific survey papers on the 

optimisation of charging strategies have been published such in [8] [9] [10] [11]. 

However, the existing research primarily explored general EV charging methods and 

focused on standard EV charging scheduling under dynamic prices strategies, and 

energy flow management. Complementarily, this chapter provides a comprehensive 

overview of various optimisation scheduling schemes for EV charging. It categorizes 

EVs and their charging modes, including home, public, and mobile charging. The 

chapter reviews different charging strategies, such as uncoordinated and coordinated 

charging, and contrasts centralised and decentralised systems. Various optimisation 

techniques, including linear programming, dynamic programming, heuristic 

algorithms, and machine learning approaches, are analysed for their applicability in 

EV charging. The chapter contribute with a discussion on the limitations and gaps in 

current research and suggests potential directions for future studies. 

 

 

3.1 Types of electric vehicles 
 

 

There are four main types of EVs are categorised in the literature [12] (refer to Table 

3.1): battery electric vehicles (BEVs), plug-in hybrid electric vehicles (PHEVs), 

hybrid electric vehicles (HEVs), and fuel cell electric vehicles (FCEVs). 

 

Table 3.1 The types of EVs 

Type Cost Driving Design Charging 

Accessibility 

Models Ref. 

HEVs Low to All driving habits Not Toyota Prius, Honda [13] 
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moderate applicable; 

self-charging 

Accord Hybrid, Ford 

Fusion Hybrid 

[14] 

[15] 

PHEVs 
Moderate 

to high 

Short daily travels, 

occasional longer 

travels 

Public or 

home 

stations 

Ford Fusion Energy, 

Toyota Prius Prime, 

Chevrolet Volt,  

[12] 

[13] 

[14] 

BEVs High 

Short to medium 

daily travels, 

occasional longer 

travels 

Public or 

home 

stations 

BMW i3, 

Tesla Model S, Nissan 

Leaf,  

[12] 

[16] 

[17] 

FCEVs High All driving habits 
Hydrogen 

stations 

Honda Clarity, Toyota 

Mirai, 

Hyundai Nexo 

[14] 

[18] 

 

 

3.2 Charging Patterns and modes for EVs 
 

 

There are four main modes of charging based on the Deltrix Chargers classification 

[19]. Mode 1 is the slowest form of charging for an EV located at home stations.  

Mode 2 is also uses a home plug for charging EVs. It provides shock prevention 

against both AC and DC currents. Mode 3 is the most popular charging method 

among EV users. It can be implemented both at home and at public charging stations 

and the necessary connecting cables are provided at the stations. Mode 4, often 

referred to as fast charging mode, it involves the use of charging stations that convert 

AC power to DC, allowing direct charging for EVs.  

There are three primary charging patterns for EVs: home charging, public 

charging, and mobile charging. Home charging, also referred to as electric vehicle 

supply equipment (EVSE), can be installed in a garage or outdoors, offering a reliable 

and secure charging solution. Public charging are typically located in public areas 

such as parking lots, shopping centers, or along major roads [20]. Mobile charging, 

also referred to as on-the-go charging, emerges as a trend for EV transport, by 

offering a portable charging solution for EV owners at remote locations where the 

availability of home and public charging stations are limited.  

 

 

3.3 EV Charging strategies 
 

 

EV battery charging is typically performed through two charging strategies: 

uncoordinated and coordinated. Uncoordinated charging strategy refers to a random 

charging behaviour, where EV owners can charge their vehicles at any type of 

charging stations and at any time as they prefer. The problem with uncoordinated 

charging is that it can lead to overloaded transformers, power outages, and increased 

electricity costs. In contrary, coordinated charging strategy involves planned and 
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managed charging schemes that are applicable to optimise and manage EV charging 

operations, such as mitigating grid stress, enhancing energy efficiency, and 

minimising costs. Generally, coordinated schemes can be implemented using two 

types of charging systems: centralised, decentralised, or hieratical charging.  

 

 

3.4 Centralised, decentralised, and hieratical systems 
 

 

Following centralised schemes, a central entity coordinates the charging of EVs 

within a specific geographic area, such as a neighbourhood in a city [21].  The central 

entity in this charging system, known as an aggregator, communicate with both EV 

users and grid operators. It obtains and transmits demands as well as performs system 

configuration and coordinates other operations. To achieve this, the aggregator first 

collects charging information from EV owners, such as the identity (ID) number of an 

EV, battery capacity, SOC, etc. Then it executes an algorithm to optimise charging 

schedules based on the collected data, by taking into account the overall power 

demand and electricity prices in the market. Figure 3.1 presents a simplified high-

level architecture of a centralised charging system, showing the primary functional 

units responsible for implementing system management and control. 

 

 
Figure 3.1 Architecture of the centralised charging system for EVs. 

 

In the decentralised charging approach, an incentive-based strategy is introduced 

where the charging schedules of EVs are affected indirectly by electricity prices [22]. 

The EV owners play an active role in making their charging decisions, utilising 

information provided by the aggregator, such as current electricity prices and the 

availability of charging stations in the area managed by that aggregator. The primary 

objective of adjusting electricity prices is to motivate EV users to charge their 

vehicles during off-peak hours, thereby reducing the load on the grid during periods 

of high demand. Similar to a centralised approach, each aggregator collects user 
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information or even predicts the charging demand of EVs for the next period of time. 

This information is used to find an optimal charging scheme. Figure 3.2 presents a 

simplified high-level architecture of a decentralised charging system. 

 

 
Figure 3.2 Architecture of the decentralised charging system for EVs. 

 

Both centralised and decentralised charging systems discussed above have their 

advantages and disadvantages as summarised in Table 3.2.  

 

Table 3.2 The centralised and decentralised charging systems. 

System nature Centralised  Decentralised  

Control 

More control over EV 

charging, aligned with grid 

needs (the schedule decisions 

are fully taken by the system) 

Less control from the system 

part (users are involved in the 

decisions), but more flexibility, 

and better scalability 

Information 

The aggregator access to global 

information, potential for better 

schedules 

Incomplete vehicle data and 

user preferences can lead to 

suboptimal schedules (possible 

disparity between users’ and 

the system view on optimal 

schedule) 

Data Sharing 
Requires sharing private user 

data with an aggregator 

Less need for user data sharing 

with an aggregator 

Computational Complexity 
Increased as the number of 

EVs increased 

Distributed computational 

complexity 

Failure Impact 

Prone to failure problem 

affecting the entire system 

(centralisation - native 

drawback) 

Distributed nature offers more 

resiliency 

Infrastructure Investment 

required 

Significant investment (needed 

to build a large network 

interconnected charging 

station, managed from a central 

aggregator) 

Lower investment (The cost is 

often distributed locally among 

different stakeholders) 

 

Hierarchical charging systems combines features of both centralised and 

decentralised systems. The architecture of these systems are multi-layer, typically 

involving central, regional, or local aggregators. This feature divides the 
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responsibilities of management across several levels to optimise charging operations 

for EVs - the decision-making is distributed across different layers, reducing the load 

on a single aggregator and improving response times. These layers can be categorised 

as follows. 

Top layer: this layer includes a central controller that makes broad, strategic 

decisions based on grid conditions, energy prices, and overall demand forecasts. 

Middle layer: this layer composes multiple regional aggregators that gather local 

data from the charging stations and/or EVs in their region and make localised 

decisions to optimise charging schedules and manage resources effectively. 

Bottom layer: this layer includes the charging stations and EVs. In this level, 

specific operational decisions can be made, such as adjusting charging power rates 

(select the charging mode). 

 

 

3.5 Optimisation techniques for EV charging  
 

This section presents various optimisation techniques, including linear programming 

(LP), dynamic programming (DP), heuristic optimisation algorithms, and machine 

learning (ML), which can be utilised or develop (individually or in combination) for 

optimising EV charging. Table 3.3 provides a comprehensive analysis that 

summarises various algorithms for EV charging, and present their applications, 

advantages, limitations, as well as computational complexity. 

 

Table 3.3 Summary comparison of algorithms. 

Algorithm Advantages Limitations 
Computational 

Complexity 

LP 

Effective in multi-scenario 

optimisation, suitable for 

peak shaving and valley 

filling strategies 

Can be complex in 

scenarios with a large 

number of variables 

Variable; can be 

high in large-scale 

scenarios 

DP 

Effective for multi-stage 

decision problems, adaptable 

to changing conditions 

Computationally expensive 

(curse of dimensionality), 

requires substantial 

computational resources 

High due to 

recursive 

computations 

Heuristic 

Algorithms 

(e.g., PSO, 

GA, ACO) 

Good at finding near-optimal 

solutions for large or 

complex problems, adaptable 

to different scenarios 

Parameter tuning can be 

complex, may not always 

find the global optimum 

Variable: lower 

than exact 

methods but can 

increase with 

problem size 

Machine 

Learning 

Techniques 

Adaptive to new data, can 

improve accuracy over time, 

suitable for dynamic systems 

Requires large datasets for 

training, some models may 

be “black box” with low 

interpretability 

Depends on the 

model; deep 

learning models 

can be 

computationally 

intensive 
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Moreover, the current solutions in the sate-of-the-art that have been introduced to 

solve the EVs charging problems are critically analysed in this section and identifies 

their limitation and gaps (the details can be found in the thesis). For instance, LP has 

been utilised in many studies such in [23] [24], proved to be effective in optimising 

charging schedules that encompass multiple EVs, charging stations, and power grids. 

The studies in [25][26] utilised MILP to formulate the scheduling of EV charging and 

discharging. The study in [27] formulated the problem of online charging scheduling 

as a finite-horizon DP problem. While in [28] proposed an optimal scheduling method 

integrated with DP to minimise the costs of battery replacement during the entire 

service life of electric bus fleets (EBFs).  

Heuristic optimisation algorithms such as genetic algorithm (GA), ant colony 

optimisation (ACO), and particle swarm optimisation (PSO), have been proven 

beneficial in addressing charging scheduling problems such in 

[29][30][31][32][33][34].  

Machine learning (ML) algorithms can analyse and interpret large datasets, 

identify patterns, and make predictions or decisions based on the patterns discovered. 

For instance, the study in [35] developed four DL techniques to forecast EVs charging 

demand: gated recurrent units (GRUs), long short-term memory (LSTM), recurrent 

neural networks (RNNs), and artificial neural networks (ANNs). The study in [36] has 

been introduced an optimal charging scheme utilising deep reinforcement learning 

(DRL) to address the challenges of rapid charging station selection and route planning 

for EVs in the smart grid.  

Table 3.4 summarises multiple popular charging optimisation solutions 

highlighting their findings and contributions, address their integration feasibility, and 

point out their limitations and gaps. 

 

Table 3.4 Examples of charging optimisation solutions 

Ref. 
Key 

Findings/Contribution 
Alg. 

Charging 

System 

Integr

ation    
Limitations and Gaps 

[23] 

Developed an LP model 

to optimise power 

consumption at parking 

lots, demonstrating 

effective peak shaving 

and valley filling 

strategies (optimise the 

grid side) 

LP Decentralised None 

▪ The study is conducted in a 

small-scale area (a university) 

with a limited number of EVs 

and parking spots. 

▪ Lack of considering of EV user 

preferences such as required 

SOC and charging mode, or a 

specific time for charging. 

[24] 

Utilised LP to enhance 

self-consumption of PV 

in a microgrid, showing 

significant reduction in 

peak demand and 

increased efficiency 

(optimise the grid 

operators) 

LP Decentralised 

V2G 

and 

Renew

able 

energy 

▪ The study is limited to small-

scale areas, so it may need to 

for improvement to apply 

large-scale scales. 

▪ Uncertainty in various factors, 

such as PV power and load 

demand predictions, EV trip 

times, and energy use. 

▪ Lack of considering of the EV 

constraints (e.g., SOC, 

charging mode, EV location) 
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[25] 

Demonstrated cost-

effective EV charging 

management with PV 

and minimising  

charging costs of EVs 

and power load on the 

grid to enhance the grid 

stability (optimise both 

the grid and user sides) 

MILP Decentralised 

V2G, 

Renew

able 

energy 

(PV), 

and 

TOU 

 

▪ The study is limited to a small 

area and may face challenges 

in real-world implementation 

at a larger scale. 

▪ The model relies on prediction 

data of solar generation and 

energy prices. 

▪ Lack of considering of the EV 

constraints (e.g., SOC, 

charging mode, battery 

capacity) 

[26] 

Presented a novel 

approach for optimising 

EV charging, 

significantly 

maximising aggregator 

revenue and energy 

storage usage (optimise 

the grid operator) 

MILP 

+ LP-

based 

heuris

tic 

algori

thm 

Centralised None 

▪ The model is based on 

simulations and its 

effectiveness needs validation 

in the real-world application 

[27] 

Proposed effective 

algorithms for 

managing dynamic EV 

arrivals and charging, 

focused on minimising 

EV charging cost, 

power load, and 

computation time 

(optimise the grid side), 

suitable for fluctuating 

EV numbers and 

demands. 

DP + 

MPC 
Centralised None 

▪ The study is based on 

simulations and may need 

further validation with real-

world data. For instance, 

information such as arrival 

EVs is not known. This makes 

the potential to apply real-time 

scenarios integrated into a 

V2G system. 

[28] 

Suggested a DP-based 

method for reducing 

battery replacement 

costs in EBFs, 

enhancing 

sustainability and 

economic efficiency 

(optimise the user 

operator) 

DP Centralised None 

▪ The study was conducted in a 

public transit system for five 

EBFs with five routes a day. 

The applicability to different 

or larger-scale transit systems 

is not discussed. 

 

[30] 

Developed a PSO-

based method to 

minimise charging 

costs and time in  

parking-lots (optimise 

both the grid and user 

sides) 

PSO Centralised 

Renew

able 

energy 

(wind 

turbine 

and 

five 

PV) 

▪ The study considered a small 

number of EVs and did not 

account for varying user 

behaviour and preferences in 

charging. 

[31] 

Implemented PSO for 

efficient EV charging 

management to 

minimising charging 

costs of parking lots 

(optimise the grid 

operator) 

PSO Centralised V2G 

▪ The study did not use the 

aggregation technique 

[32] 

Introduced a GA-based 

scheme for load profile 

optimisation, by 

flattening the load 

GA Centralised None 

▪ Lack of consideration of the 

EV preferences or constraints 

(e.g., SOC, charging mode, 

battery capacity). 
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prevent aging of power 

system elements 

(optimise the grid  

operator)  

 

[33] 

Proposed a GA-based 

scheme to minimise 

waiting time and 

distance for emergency 

EV charging during 

peak times (optimise the 

user side) 

GA + 

NJF 

and 

EDF 

Centralised None 

▪ The study was conducted for 

urgent EV charging in high-

density regions and did not 

consider the charging costs 

aspect. 

[34] 

Optimise charging 

operation efficiency for 

the grid side by 

minimising the total 

delay in EV charging at 

stations with high 

traffic 

ACO Centralised None 

▪ The study did not address the 

variability in individual EV 

charging needs or preferences. 

[35] 

Developed DL models 

to accurately predict 

EV charging demand, 

particularly effective in 

the context of Morocco 

(optimise the grid 

operators) 

GRU 
Centralised or 

decentralised 
None 

▪ The study is specific to 

Morocco electricity market, 

and the applicability of the 

findings of the study to other 

regions or market structures 

may vary. 

▪ The study did not consider the 

variability of EV user 

behaviour and its impact on 

charging demand predictions. 

[36] 

Utilised DRL for 

efficient station 

selection and route 

planning, reducing EV 

charging costs and time 

for EV (optimise the 

user side) 

DRL Centralised 

SDN, 

VEC, 

and 

TOU 

▪ Inflexible to select the 

charging mode of the EV user, 

its adaptability to different 

urban environments with 

varying traffic needs to be 

further explored. 

 

 

3.6 Open research and future directions  
 

 

This section discusses the open research areas and future directions in optimizing EV 

charging schedules: 

1. Limited availability of public charging datasets: developing machine learning 

models for optimising EV charging is hindered by a lack of comprehensive 

public datasets. Effective training and validation of these models require 

extensive data. To address this challenge, it is essential to promote 

collaboration among industry, government, and academia to create 

standardised, anonymised datasets and develop business models that 

encourage data sharing. 

2. Maximising the utilisation of RESs: integrating RESs into the EV charging 

schedule is crucial for maximising green energy use, minimising 
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environmental impact, and reducing costs [37]. However, the limited 

variability in solar and wind output can be challenging, suggesting the need 

for more research into incorporating EVs as mobile storage units that can store 

and later supply this energy, helping to stabilize the grid during peak times. 

3. Time efficiency and user convenience: the development of an optimal EV 

charging method that adapts to real-time changes and manages large-scale 

demands efficiently is crucial. Such a system needs to minimise waiting times 

and ensure reliable access to charging stations, thereby enhancing user 

convenience. In scenarios like a large city event or peak workday hours, the 

demand for charging can spike unexpectedly, varying greatly due to factors 

like battery capacity and SOC. To address this, real-time data monitoring is 

essential to dynamically adjust charging plans based on current conditions.  

4. Grid stability and user accessibility: load balancing is a critical problem in EV 

charging, especially considering the grid's capacity and the fluctuating demand 

at charging stations. The challenge for grid operators is to manage the 

overload charging stations while accommodating high charging demands 

during peak hours. Future research would propose more dynamic and adaptive 

approach. Such approach should sets limitations, such as set a maximum SOC 

threshold for EVs during peak hours.  

5. User convenience: Focusing on the specific requirements of EV users, the 

service can ensure a convenient, efficient, and cost-effective charging 

experience. The service providers should allow EV owners to specify their 

charging preferences, such as preferred charging infrastructure (e.g., home, 

public, or mobile station), charging modes, desired price rate, and charging at 

specific time.  

6. Cost optimisation: the challenge with fast charging lies in its higher power 

rate, which has the potential to strain the grid and, in extreme cases, lead to 

power outages if the overall demand exceeds the grid capacity. To overcome 

this challenge, optimise charging schedules based on user needs and grid 

capacity using TOU pricing strategy to manage the charging demand during 

peak hours. 
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Chapter 4 
 

 

Routing and Scheduling Charging 

Scheme for Electric Vehicles in 

SDN-based Vehicular Network:  
 

 

 

This chapter tickles the problem of random EVs charging and introduces a novel 

routing and scheduling charging scheme for EVs within an SDN-based vehicular 

network. The methodology involves a system model and a mathematical framework 

that considered for optimising the charging process. The chapter utilised two 

algorithms, including fuzzy logic control and Dijkstra, to develop an advanced 

algorithm. The develop algorithm designed to achieve load balancing across multiple 

charging stations while ensuring efficient routing and scheduling for EVs. Several 

factors are considered in this study, including the SOC, EV battery capacity, charging 

mode (fast or slow), availability of charging stations. Additionally, this chapter 

proposes a new optimised scheme that prioritizes the fast charging demands of EVs 

over slow charging demands. The main objective of this propose is to minimise both 

service time (in terms of travel time, waiting time, and charging time) and charging 

costs. The TOU mechanism is applied to calculate the charging costs. This work 

evaluated in MATLAB tools. The develop algorithm applied in two schemes: first 

come first served (FCFS) and the proposed scheme (fast charging priority-base), both 

are compared with the random charging scheme. The simulation results demonstrate 

the effectiveness of the developed algorithm with the proposed scheme in reducing 

service time. 

 

 

4.1 Methodology 
 

 

This study proposed the architecture of SDN-based cloud computing for EVs 

charging (refer figure 4.1), this allows to have a real-time interaction between the EVs 

users and the grid operators. This architecture composes three layers: application 

layer, control layer, and physical layer. The mathematical model of the proposed 

schemes is summarised in this subsection. Firstly, the service time for each EV user is 

formulated.  
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Figure 4.1 SDN-based cloud computing architecture. 

 

The service time (𝑇𝑣,𝑐
𝑠𝑒𝑟𝑣𝑖𝑐𝑒) represents the total time for an EV need to be fully 

charged, including travel time, wating time, and charging time. It can be calculated as: 

𝑇𝑣,𝑐
𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 𝑇𝑣,𝑐

𝑡𝑟𝑎𝑣𝑒𝑙 + 𝑇𝑣,𝑐
𝑤𝑎𝑖𝑡𝑖𝑛𝑔

+ 𝑇𝑣,𝑐
𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

, (4.1) 

The 𝑇𝑣,𝑐
𝑡𝑟𝑎𝑣𝑒𝑙𝑖𝑛𝑔

 represents the travel time, which is amount of time needed for the EV 

to move between nods, which can be obtained by: 

𝑇𝑣,𝑐
𝑡𝑟𝑎𝑣𝑒𝑙𝑖𝑛𝑔

=
𝐷𝑣,𝑐
𝑉𝑣
, (4.2) 

Where 𝐷𝑣,𝑐 is the distance between two nodes (e.g., from current EV location 𝑣 to 

the charging station 𝑐). 𝑉𝑣 is the average driving speed of an EV. Hence, an EV may 

has very low of energy and cannot reach to all the charging stations in the city. 

Therefore, this study considered from [38] the maximum distance for the EV to travel, 

represented by 𝐷𝑚𝑎𝑥 and can be calculated as: 

𝐷𝑚𝑎𝑥,𝑣 =
𝐵𝑠𝑖𝑧𝑒𝐵𝑠𝑜𝑐

𝑒
, (4.3) 

Where the 𝑒 indicates how much energy an EV battery uses for a certain distance 

(0.15 kwh/km). 𝐵𝑠𝑖𝑧𝑒  donates the battery capacity size, and the 𝐵𝑆𝑂𝐶  represents the 

battery state of charge. However, an EV should wait at the queue if all the charging 

units at the station are busy. So this study uses the M/M/S model as in [39] to estimate 

the waiting time each EV. The wating time for an EV is represented by 𝑇𝑣,𝑐
𝑤𝑎𝑖𝑡𝑖𝑛𝑔

: 

𝑇𝑣,𝑐
𝑤𝑎𝑖𝑡𝑖𝑛𝑔

=
𝐿𝑞,𝑐

𝛾𝑐,𝜏
, (4.4) 

Where, 𝛾𝑐,𝑡 represents the arrival rate of EVs at time slot 𝜏. 𝐿𝑞,𝑐 represents the 

queue length at a charging station. However, as mentioned earlier, this study assumed 

that each EV user should select one of two charging modes i.e. slow or fast charging. 

The selection one of these modes is dependent on the user desire, where each mode 

has a specific power rate that effect the EV charging time. The charging time is 

represented by 𝑇𝑣,𝑐
𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

, it can be obtained by:  
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𝑇𝑣,𝑐
𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

=
𝐵𝑠𝑖𝑧𝑒(𝜎 − 𝐵𝑠𝑜𝑐)

𝜗𝑐
𝑜 , (4.8) 

Where, 𝜗𝑐
𝑜 denotes the charging rate of an EV mode. The charging mode indexed 

by 𝑜, (e.g., if  𝑜 = 1, is fast, else 𝑜 = 0, is slow). The percentage of an EV battery 

expected to be charged denoted by 𝜎 (i.e., 𝜎 = 95%). Moreover, this study utilised 

TOU charging price mechanism to calculate the charging cost for each EV. So the day 

can be divided into three periods including peak (𝑃𝑝𝑒𝑎𝑘), regular (𝑃𝑟𝑒𝑔𝑢𝑙𝑎𝑟), and 

valley (𝑃𝑣𝑎𝑙𝑙𝑒𝑦). The charging cost, represented by 𝐶𝑣,𝑐
𝑜 , can be calculated by:  

𝐶𝑣,𝑐
𝑜 = {

𝑃𝑟𝑒𝑔𝑢𝑙𝑎𝑟

𝑃𝑣𝑎𝑙𝑙𝑒𝑦

𝑃𝑝𝑒𝑎𝑘
∗ 𝐸𝑣,𝑐

𝑎𝑚𝑜𝑢𝑛𝑡 , (4.9) 

Where, 𝐸𝑣,𝑐
𝑎𝑚𝑜𝑢𝑛𝑡 represents the amount of energy demanded by an EV. Noting 

that, in random charging pattern particularly considers the classical electricity price 

𝑃𝑐𝑙𝑎𝑠𝑖𝑐𝑎𝑙, which is fixed. Furthermore, the proposed objective function is modelled to 

represent the total cost for EV charging. This total cost is denoted as 𝑇𝑣,𝑐
𝑡𝑜𝑡𝑎𝑙 and is 

defined as follows:  

𝑇𝑣,𝑐
𝑡𝑜𝑡𝑎𝑙 = 𝑚𝑖𝑛[𝑤1𝑇𝑣,𝑐

𝑡𝑟𝑎𝑣𝑒𝑙𝑖𝑛𝑔
+ 𝑤2𝑇𝑣,𝑐

𝑤𝑎𝑖𝑡𝑖𝑛𝑔
+ 𝑤3𝑇𝑣,𝑐

𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
] + 𝐶𝑣,𝑐

𝑜  (4.11) 

Where 𝑤1, 𝑤2, 𝑎𝑛𝑑 𝑤3 represent the weight coefficients of three metrics, 

respectively, traveling time, waiting time, and charging time. This is subject to the 

following conditions:  

𝐷𝑣,𝑐 ≤ 𝐷𝑚𝑎𝑥 (4.12) 

𝐵𝑠𝑖𝑧𝑒𝐵𝑠𝑜𝑐 + 𝐸𝑣,𝑐
𝑎𝑚𝑜𝑢𝑛𝑡 − 𝐷𝑣,𝑐 𝑒 = 𝐵

𝑠𝑖𝑧𝑒 (4.13) 

𝐸𝑡𝑜𝑡𝑎𝑙 < 𝐸𝑠𝑢𝑝𝑝𝑙𝑦 (4.14) 

The constraint in (4.12) is the travelling distance of an EV to a charging station is 

equal or less to the maximum distance. The constraint in (4.13) guaranties the EV is 

fully charged. The constraint in (4.14) maintains the grid stability. 

The proposed Algorithm for solving this problem and managing EVs charging is 

divided into two parts. The first part utilises the Dijkstra algorithm, which is widely 

utilised for solving the shortest distance routing problem. In the second part of the 

Algorithm utilises the fuzzy logic control to manage and distribute load of EVs over 

charging stations.  

Algorithm: Pseudocode of routing and scheduling EVs charging [Annex A.1.1] 

Input: information of EVs profile, graph of charging network, and information of charging 

stations. 

Initial: SDN controller receive charging demands from certain number of EVs at t = certain 

moment, the availability of charging stations, the queue length at each charging units at each 

available station 

1: Set 𝐸𝑉𝑝𝑟𝑜𝑓𝑖𝑙𝑒[𝑈𝑠𝑒𝑟𝑖𝑑 , 𝐵𝑠𝑖𝑧𝑒 , 𝐵𝑆𝑂𝐶 , charging mode 𝑜, current location]. 

2: For each EV do 

3: Determine the 𝑇𝑣,𝑐
𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

. 

4: Determine the 𝐷𝑚𝑎𝑥. 

5: Search for available charging stations within EV range using Dijkstra and considering 𝐷𝑚𝑎𝑥 . 
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6: Determine the 𝑇𝑣,𝑐
𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔

 for EV at each available charging station. 

7: Evaluate the wating time (𝑇𝑣,𝑐
𝑤𝑎𝑖𝑡𝑖𝑛𝑔

) at each available charging station. 

8: if the available charging stations satisfied the constraints of (4.12) (4.13) and (4.14) then 

         9: Make Fuzzy input as a MATRIX of travelling time and waiting time. 

         10: Determines the Max. Weight value from the Fuzzy output. 

         11: Scheduling the EV at a charging station with minimum time cost. 

12: else 

         13: The EV cannot reach any charging station. 

14: end if 

15: Determine the objective function 𝑇𝑣,𝑐
𝑡𝑜𝑡𝑎𝑙 using (4.11). 

16: Update the queue length at the selected charging station. 

17: end do 

18: Repeat steps 2-16 for all EVs 

19: end 

 

 

4.2 Results and discussion 
 

 

This study used the MATLAB tools to evaluate the performances of the proposed 

Algorithm, considering the graph of Bucharest city to mimic the real simulation [40]. 

Table II illustrates the parameters which are used as benchmarks in this study. 

 

Table 4.1 The simulation parameters. 
Rate of Charging Mode Slow = 22 kw Fast = 50 kw 

Charging 

Prices 

(TOU) 

Regular periods: 

12 - 6 a.m., and 

10 p.m. - 12 a.m.  

1.53 lei/kwh 2.29 lei/kwh 

Valley periods: 

6 - 8 a.m., 11 a.m. - 5 p.m., 

and 8 - 10 p.m. 

2.88 lei/kwh 4.30 lei/kwh 

Peak periods: 

8 -11 a.m., and 5 - 8 p.m. 
3.92 lei/kwh 5.86 lei/kwh 

Classical Charging Price 1.45 lei/kwh 1.95 lei/kw 

Charging Station 1 2 3 4 5 6 7 8 9 10 

Number of Charging Units 4 3 3 4 3 3 3 5 4 5 

 

Figure 4.6 illustrates the EVs wating time at the charging station and figure 4.7 

illustrates EVs service time, compared between three charging schemes: random, 

FCFS with proposed algorithm, and fast charging priority-based with proposed 

algorithm. The results show that the proposed algorithm with proposed scheme 

outperform other schemes as many EVs are distributed equally at the stations. Where 

lowest wating and service time is achieved. 
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Figure 4.6 Total waiting time for EVs at charging stations. 

 

 
Figure 4.7 Total service time for EVs at charging stations. 

 

Finally, in Figure 4.9 shows the charging cost for each EV with the proposed 

algorithm in the comparison between TOU and classical prices. The results show that 

applying the TOU can increase the total incomes for the service providers compared 

with the classical charging prices.  
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Figure 4.9 The charging cost for EVs. 

  



 

 

Chapter 5 
 

 

Non-Dominated Sorting Genetic 

Optimisation for Charging 

Scheduling of Electrical Vehicles 

with Time and Cost Awareness 
 

 

 

The exploration and exploitation balancing for EV charging is still an open issue and 

needs to be studied further. Therefore, this chapter formulate the problem of EVs 

charging schedule into multi-objectives in terms of time and cost. It introduces a bi-

objective optimisation model using the bi-non-dominated sorting genetic algorithm 

(NSGA-II) to address trade-off between charging time and costs by providing a 

diverse set of non-dominated solutions. The means of non-dominated solutions are set 

of solutions that no one is superior in all objectives, but each one is superior to some 

and inferior in others. The empirical evaluations demonstrate the superiority of 

NSGA-II over traditional genetic algorithms (GA). The results show that NSGA-II 

offers a balanced solution in terms of charging time and costs compared to the GA. 

Additionally, the work in this chapter extended by comparing the performance of ant 

colony optimisation (ACO) and simulated annealing (SA) algorithms. The best 

solutions obtained by ACO and SA represent scheduling a number of EVs over 

charging stations with the aim of minimising total cost in terms of service time and 

charging cost. The result show that ACO has superior capabilities in charging 

optimisation compared to SA. 

 

 

5.1 Methodology 
 

In this study assumes the implementation of the proposed optimisation algorithm 

(e.g., NSGA-II, ACO, and SA) in a centralised charging system. The charging 

schedule procedures begins by EVs send information such as SOC, battery capacity, 

charging mode, and location to the aggregator. Meantime, the charging stations share 

with the aggregator their locations, capacities, availability status, and pricing rates, 

continuously updating any changes. The information of travel time and distances 

between EVs and stations assumed to be available for simplification. The central 

aggregator analyses and processes information from EVs and charging stations and 
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runs the NSGA-II algorithm. The optimisation objective in this system is to minimises 

the total cost for EVs charging (in terms of time and price). This work utilises similar 

mathematical model used in chapter four, whereas the problem of EVs charging has 

two major objectives: service time and charging cost. Following to the equation (4.1), 

the first objective is the service time indexed by 𝑇𝑣,𝑐
𝑠𝑒𝑟𝑣𝑖𝑐𝑒. It composes three 

parameters: traveling time (indexed by. 𝑇𝑣,𝑐
𝑡𝑟𝑎𝑣𝑒𝑙𝑖𝑛𝑔

), waiting time (indexed by 

𝑇𝑣,𝑐
𝑤𝑎𝑖𝑡𝑖𝑛𝑔

), and charging time (indexed by 𝑇𝑣,𝑐
𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

), respectively, follow the 

equations (4.2), (4.4), and (4.8).  

The second objective is the charging cost, which is vary based on factors such as 

the energy prices, charging mode, and the total amount of energy required to charge 

the battery. In order to reduce the charging cost, this work uses the TOU tariffs. The 

charging cost with applying TOU can be expressed as follows: 

∁𝑣,𝑐= {
 𝑝𝑜𝑓𝑓−𝑝𝑒𝑎𝑘,𝑐𝑙𝑎𝑠𝑠(𝑖) 𝐸𝑣,𝑐

𝑎𝑚𝑜𝑢𝑛𝑡

𝑝𝑝𝑒𝑎𝑘,𝑐𝑙𝑎𝑠𝑠(𝑖) 𝐸𝑣,𝑐
𝑎𝑚𝑜𝑢𝑛𝑡        

 (5.1) 

Here, ∁𝑣,𝑐 denotes the charging cost and 𝐸𝑣,𝑐
𝑎𝑚𝑜𝑢𝑛𝑡 is the amount of energy of the 

EV requires to be charged. 𝑝𝑐𝑙𝑎𝑠𝑠(𝑖),𝑜𝑓𝑓−𝑝𝑒𝑎𝑘 and 𝑝𝑝𝑒𝑎𝑘,𝑐𝑙𝑎𝑠𝑠(𝑖) , respectively, denote 

the pricing rates of charging in off-peak period and peak period at a charging statin. 

Where 𝑐𝑙𝑎𝑠𝑠(𝑖) is the charging mode (i.e., fast, slow, regular). 

 

 

5.1.2 Optimise EVs charging using NSGA-II 

 

This study proposes the usages of NSGA-II to solve the problem of multi-objective 

EV charging. The NSGA-II begins by initialising a population of random solutions 

P(0) to find a solution for the problem of EV charging. The pseudocode below 

illustrates the process of NSGA-II algorithm.  

 

Algorithm – Pseudocode of optimisation EV charging using NSGA-II [Annex A.1.2] 

Input:  population size (N), number of generations (G), crossover probability  𝑃𝑐, and 

mutation probability (𝑃𝑚) 

Output: Pareto-optimal solutions 

1: Initialise population P(0) of size N with random solutions (initial random schedule of EVs 

at stations 

2: Evaluate the objective values (service time (4.1) and charging cost eq. (5.1)) of each 

solution in P(0) 

3: t ← 0 

4: While t < G do 

     5: Perform non-dominated sorting on P(t) to rank solutions based on dominance 

     6: Calculate the crowding distance for each solution in P(t) 

     7: Create an empty offspring population Q(t) 

     8: Apply crossover with probability 𝑃𝑐 to generate two offspring solutions 

     9: Apply mutation with probability 𝑃𝑚to each offspring solution 

     10: Evaluate the objective values of the offspring solutions 

     11: Add offspring solutions to Q(t) 
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     12: P(t+1) ← Q(t) 

     13: t ← t + 1 

14: End while 

15: Return Pareto-optimal solutions from the final population P(G) 

 

 

5.1.2 Ant colony optimisation 

 

In this work, the proposed ACO method initializes by setting a uniform pheromone 

matrix; representing the probability of assigning each EV to a charging station (see 

the annex A.1.2 part 2). For each iteration, each ant construct solutions by 

probabilistically assigning EVs to stations based on the pheromone levels. The 

objective function in this work is the total cost in terms of time and price, 

respectively, using the eq. (4.1) and eq. (5.1). It can be written by: 

𝑐𝑜𝑠𝑡𝑣,𝑐
𝑡𝑜𝑡𝑎𝑙 = 𝑤1𝑇𝑣,𝑐

𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒 + 𝑤2𝐶𝑣,𝑐
𝑜  (5.4) 

 Each solution is evaluated using the objective function (5.4), and the best solution 

of the iteration is identified. If this solution improves upon the overall best solution, it 

is saved as the current best. After all ants have completed their assignments, the 

pheromone matrix is updated. The pheromone levels are partially decayed and 

additional pheromone is deposited on successful assignments based on solution 

quality. This iterative process continues until a specified number of iterations is 

completed, resulting in an optimised assignment of EVs to charging stations; in terms 

of minimal time and cost, as it is the ACO output. 

 

 

5.1.3 Simulated Annealing 

 

In this work, the proposed SA algorithm begins by generating a random initial 

solution that assign each EV to the charging stations (see annexes A.1.2 part 2). 

Similar to the work of ACO, the objective function in eq. (5.4) is used to evaluate the 

initial solution, aiming to minimises the total cost in terms of time and price. The 

initial solution serves as both the current and best-solution. The algorithm iteratively 

generates neighbouring solutions by modifying the charging stations assignment for a 

randomly selected EVs. The objective value eq. (5.4) is computed in each 

neighbouring solution, and a decision is made on whether to accept it as the current 

solution or not. If the neighbour solution has a lower cost, it is accepted; if not, it may 

still be accepted with a probability influenced by the current temperature and the 

objective difference, encouraging exploration in early stages. The temperature is 

gradually reduced by a cooling rate, allowing the algorithm to refine solutions around. 

This process continues until the predefined iteration limit is reached, at which point 

the best solution found is saved as the SA result. 
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5.2 Results and discussion 
 

 

The experimental evaluation was conducted using MATLAB 2020b. Table 5.1 

outlines the parameters used for the experimental evaluation.  

 

Table 5.1 Parameters used for experimental evaluation. 

Parameter Name Value Parameter Name Value 

EVs 100 crossover fraction 0.7, 0.9 

EV battery sizes [40,100] EVs in the queue 10 

prices of off-peak period [0.10, 0.15, 0.20] ACO iterations no.  1000 

prices of peak period [0.20, 0.25, 0.30] ACO ants no 100 

population size [50, 100, 200] pheromone decay rate 0.5 

stations no. 20 SA iterations no. 1000 

generations 200 SA initial temperature 100 

mutation probability 0.08, 0.1 SA cooling rate 0.8 

crossover fraction 0.7, 0.9   

 

Firstly, generated six distinct Pareto fronts corresponding to sixth individual 

experiments. The findings showed NSGA-II provides diverse non-dominated 

solutions regarding the two optimisation goals: charging cost and service time. 

Conversely, the conventional GA typically produced a singular solution with reduced 

service time and charging cost (refer to Figure 5.2). The NSGA-II consistently offered 

more optimised solutions than GA, a limitation in the latter stemming from its 

predisposed objective weighting. The findings of the study revealed that increasing 

the population size from 50 to 200, with other parameters constant, yielded no 

significant alterations in average charging cost or service time.  

 
(a)                                                            (b)                                                              (c) 

 
(d)                                                             (e)                                                               (f) 

Figure 5.2 The Pareto front for the six experiments generated from NSGA-II and 

traditional GA with crossover fraction 0.7 and 0.9, mutation probability 0.08 and 0.1, 

and population size (a,d) 50 (b,e) 100 (c,f) 200. 

 



Chapter 5 – Non-Dominated Sorting Genetic Optimisation for Charging Scheduling of Electrical 

Vehicles with Time and Cost Awareness 

25 

Figure 5.3 showcases solution from the conventional GA show uneven 

distribution is symptomatic of GA inherent restrictions, revealing its inadequacy in 

optimising assignments evenly. In contrary, the solution generated from NSGA-II 

terms of service time (Figure 5.4 (a)) and charging cost (Figure 5.4 (b)), show a more 

balanced EV distribution across several charging stations.  

 
Figure 5.3 The assignment of 100 EVs over 20 stations generated by GA with 

crossover fraction 0.7, mutation probability 0.08, and population size 50 in terms of 

service time and cost 

 

 
                                             (a)                                                                     (b) 

Figure 5.4 The assignment of 100 EVs over 20 stations generated by NSGA-II with 

crossover fraction 0.7, mutation probability 0.08, and population size 50 in terms of 

(a) service time and (b) charging cost 

 

 
                                        (a)                                                             (b)                                                            (c) 

Figure 5.5 The assignment of 100 EVs over 20 stations with crossover fraction 0.9, 

mutation probability 0.1, and population size 200 in terms of (a) GA and (b) NSGA-II; 

charging cost (c) NSGA-II; service time 

For more analyses, the experiment repeated, and the number of crossover fraction 

changed up to 0.9, the number of mutation probability up to 0.1, population size up to 

200. The result in Figure 5.5 is almost the same as the previous one. This emphasises 
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that changing the parameters values of the GA or NSGA-II almost have no side 

effects. 

The number of EVs expanded to 200 to assess the efficacy of our proposed 

solution with a larger vehicle count. Figure 5.6 (a) showcases the solution produced 

by GA, indicating noticeable improvements with the increased EV assignments. In 

contrast, the NSGA-II solutions in (b) service time and (c) charging cost demonstrate 

more assigning of EVs than GA. 

 
                      (a)                                                                (b)                                                                 (c) 

Figure 5.6 The assignment of 100 EVs distributed over 20 stations during the off-peak 

period generated from GA and NSGA-II. 

 

In this evaluation, the best solutions obtained from the ACO and SA algorithms 

are compared in term of total cost: service time and charging cost (see Figure 5.7). 

 
Figure 5.7 The best objective values obtained by ACO and SA. 

 

Figure 5.8 shows the best solutions obtained from (a) SA  and (b) ACO . The 

results demonstrate that ACO an improvement by assigning more EVs to each CS 

than SA.  

 
                                                           (a)                                                                                 (b) 

Figure 5.8 Number of EVs scheduled at charging stations using (a) SA and (b) ACO. 

 



 

 

Chapter 6 
 

 

Smart and Adaptable Charging 

Method for Electric Vehicles, 

Considering Urgent Charging  
 

 

 

This chapter proposes a smart and adaptable charging scheme for EVs that considers 

urgent charging demands. The scheme dynamically adjusts charging rates based on 

the urgency of the demand, using the particle swarm optimization (PSO) method to 

prevent grid overload. The system's performance is evaluated under different numbers 

of EVs and two charging patterns (home and public). The proposed scheme is 

compared with two normal schemes: one that satisfies the minimum SOC and another 

that satisfies the maximum SOC. The results demonstrate that the proposed scheme 

effectively reduces EV load and shifts power demand from peak to off-peak hours, 

enhancing grid stability and efficiency. 

 

 

6.1 Methodology 
 

 

Similar to previous works, the proposes of smart and adaptable charging method is 

assumed to be performed in centralised system. However, each EV driver has a 

specific charging demand and should share the information of its charging demand 

with an aggregator. In this work, the EV information considered are SOC, size of 

battery capacity, and arriving time and leaving time (e.g., at home or public stations).  

This study adopted the formula as in [41], to generate the data of arriving time (𝑡1𝑎) 

and leaving time (𝑡1𝑙) of EVs, according to the probability distribution function (PDF) 

and Monte Carlo Simulation: 

𝑓(𝑡1𝑎 ) =

{
 
 

 
 

1

√2𝜋𝜎1𝑡𝑎
𝑒𝑥𝑝 (

−(𝑡1𝑎 + 24 − 𝜇1𝑡𝑎)
2

2𝜎1𝑡𝑎
2

)    0 <  𝑡1𝑎 ≤ 𝜇1𝑡𝑎 − 12

1

√2𝜋𝜎1𝑡𝑎
𝑒𝑥𝑝 (

−(𝑡1𝑎 − 𝜇1𝑡𝑎)
2

2𝜎1𝑡𝑎
2 )           𝜇1𝑡𝑎 − 12 < 𝑡1𝑎 ≤ 24

 (6.1) 

𝑓(𝑡1𝑙 ) =

{
 
 

 
 

1

√2𝜋𝜎1𝑡𝑙
𝑒𝑥𝑝 (

−(𝑡1𝑙 − 𝜇1𝑡𝑙)
2

2𝜎1𝑡𝑎
2

)            0 <  𝑡1𝑙 ≤ 𝜇1𝑡𝑙 + 12

1

√2𝜋𝜎1𝑡𝑙
𝑒𝑥𝑝 (

−(𝑡1𝑙 − 24 − 𝜇1𝑡𝑙)
2

2𝜎1𝑡𝑎
2 )   𝜇1𝑡𝑙 + 12 < 𝑡1𝑙 ≤ 24

 (6.2) 
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In public charging, the arriving time (𝑡2𝑎) and leaving time (𝑡2𝑙) of EVs follow the 

normal distribution and also are calculated similar to eq. (6.1 and 6.2). Moreover, this 

study considered the time period for EV charging scheduling in one day is allocated 

into time 96 slots, this allows a discrete treatment of the charging process control. 

Each slot represented by 𝑗 and conveniently equal to 15 minutes. Furthermore, in this 

scheme, the total load of the power grid consists of the basic load (𝑝𝑗
𝑏𝑎𝑠𝑖𝑐) and EVs 

charging load (∑ 𝑘𝑣,𝑗  𝑝𝑣
𝑁
𝑣=1 ), which is calculated by: 

𝒫𝑗
𝑡𝑜𝑡𝑎𝑙 =  𝒫𝑗

𝑏𝑎𝑠𝑖𝑐 + ∑  𝑘𝑣,𝑗 𝒫𝑣
𝑁
𝑣=1  (6.7) 

Where, 𝑘𝑣,𝑗 represent a binary variable for indicating the EV charging state (i.e., if 

𝑘𝑣,𝑗 = 0, the EV is not charging, if the 𝑘𝑣,𝑗 = 1, the EV is charging). As mentioned 

above, there are two charging modes (charging rates) are applied in this proposed 

method, including slow charging (𝒫𝑠𝑙𝑜𝑤) and fast charging (𝒫𝑓𝑎𝑠𝑡). The selection of 

the charging rate for each EV user considered to be applied by the aggregator 

(adaptably between 𝒫𝑠𝑙𝑜𝑤 and 𝒫𝑓𝑎𝑠𝑡) taking into account the urgency of EV charging 

demand (i.e., a higher charging rate assign for the EV that is an urgent and a lower 

charging rate assign for the EV that is non-urgent. This can be simplified by:  

𝒫𝑠𝑙𝑜𝑤 ≤ 𝒫𝑣  ≥ 𝒫
𝑓𝑎𝑠𝑡 (6.8) 

The main objective of this study is to minimise the power load variation on the 

grid. This can be achieved by shifting the EVs power demand from the peak to valley 

times, which can be expressed by: 

𝑚𝑖𝑛 [ 𝒫𝑚𝑎𝑥
𝑡𝑜𝑡𝑎𝑙 − 𝒫𝑚𝑖𝑛

𝑡𝑜𝑡𝑎𝑙], (6.9) 

Where, pmax
total and 𝑝𝑚𝑖𝑛

𝑡𝑜𝑡𝑎𝑙, respectively, are the maximum and minimum total power 

load demand from the grid.  A power threshold constraint is considered in this 

proposed scheme to maintain the SOC of all EVs within a specified range when they 

are disconnecting from the grid. So, the SOC of an EV should be between minimum 

and the maximum value, it can be expressed by: 

𝐵𝑣,𝑚𝑖𝑛
𝑆𝑂𝐶  ≥  𝐵𝑣,𝑑𝑖𝑠𝑐𝑜𝑛

𝑆𝑂𝐶  ≥  𝐵𝑣,𝑚𝑎𝑥
𝑆𝑂𝐶 , (6.10) 

Where, 𝐵𝑣,𝑚𝑎𝑥
𝑆𝑂𝐶  and 𝐵𝑣,𝑚𝑖𝑛

𝑆𝑂𝐶  are the minimum and the maximum value of SOC of an 

EV, respectively. The Bv,discon
SOC  represents the SOC of an EV when it is disconnected 

from the power grid. 𝐵𝑣,𝑐𝑜𝑛
𝑆𝑂𝐶  represents the SOC of an EV when is connected to the 

power grid. Moreover, to ensure that a new charging peak load of the power grid in 

the proposed method do not appear compared to the random charging scheme, so 

another constraint for the power grid is given as: 

𝒫𝑚𝑎𝑥
𝑡𝑜𝑡𝑎𝑙 ≤ 𝒫

𝑚𝑎𝑥,𝐵𝑁,𝑚𝑎𝑥
𝑆𝑂𝐶

𝑡𝑜𝑡𝑎𝑙−𝑟𝑎𝑛𝑑𝑜𝑚, (6.13) 

Where, the 𝒫
𝑚𝑎𝑥,𝐵𝑁,𝑚𝑎𝑥

𝑆𝑂𝐶
𝑡𝑜𝑡𝑎𝑙−𝑟𝑎𝑛𝑑𝑜𝑚 represents the maximum value of the total power load 

of the grid in the random charging scheme, while considering that all EVs should 

meets the maximum value of SOC.  
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 To solve the addressed problem of EVs charging, the PSO algorithm is utilised in 

this study. The fitness function represents the objective function, in this study, the 

peak power load of EVs that need to be shifted from peak-to-valley period. 

Additionally, the simple additive weighting (SAW) method is applied to formulate the 

fitness function. The SAW is responsible to set a priority weight for all EVs according 

to their urgency state. The fitness function can be formulated mathematically as: 

𝑚𝑎𝑥𝑖∑𝑤𝑏  𝑓𝑏 (𝑖) =  𝑤1 𝐵
𝑆𝑂𝐶(𝑖) + 𝑤2 𝑗

𝑐𝑜𝑛

𝐵

𝑏=1

(𝑖) + 𝑤3 𝑗
𝑑𝑖𝑠𝑐𝑜𝑛(𝑖) (6.14) 

Where, 𝑓𝑏 (𝑖) denotes the fitness function value for 𝑖 particle in the search space 

of PSO. The 𝑤𝑏 represents the corresponding weight value for each criterion. Since 

the three criteria are different and have varying units and scales, normalisation is 

essential in multicriteria decision-making. So, the fitness function can be written as. 

𝑚𝑎𝑥𝑖∑𝑤𝑏  𝑓𝑏 (𝑖) =  𝑤1 𝑁𝐵
𝑆𝑂𝐶(𝑖) + 𝑤2 𝑁𝑗

𝑐𝑜𝑛

𝐵

𝑏=1

(𝑖) + 𝑤3 𝑁𝑗
𝑑𝑖𝑠𝑐𝑜𝑛(𝑖) (6.19) 

Furthermore, the search space involves all the feasible solutions, which can be 

chosen between upper-bound and lower-bound values. In this proposed, the solution 

represents scheduling EVs for charging consider the urgent EVs demands. So, the 

search space for optimal solution between 𝒫𝑠𝑙𝑜𝑤 and 𝒫𝑠𝑙𝑜𝑤 values. The search space 

can be represented as: 

𝑆(𝑖) = (𝒫𝑠𝑙𝑜𝑤 , 𝒫𝑓𝑎𝑠𝑡 ) (6.20) 

 

 

6.2 Results and discussion 
 

This section provides the simulation model and the evaluation of the proposed 

charging method using the MATLAB tool. In this study, different number of EVs are 

considered (e.g., 100 and 500) in both home charging and public charging patterns. 

According to the [42], value of 𝐵𝑣,𝑑𝑖𝑠𝑐𝑜𝑛
𝑆𝑂𝐶  generated uniformly between (0.1-0.3), 

𝐵𝑣,𝑚𝑖𝑛
𝑆𝑂𝐶  between (0.4-0.6), and Bv,max

SOC  between (0.8-1.0). The parameters of charging 

rates are given as 𝑝𝑠𝑙𝑜𝑤 = 3.5 kW, and 𝑝𝑓𝑎𝑠𝑡 =10 kW. Figure 6.6 and figure 6.7 shows 

a plot of daily load as a function of time in one day comparing the proposed smart 

adaptable charging method with two methods of normal charging in the home 

charging. The results demonstrate that the power load required from EV is 

significantly reduced in the proposed method compared to other two normal charging 

methods, particularly when the number of EVs increases. The first normal method 

(blue line) satisfy the minimum SOC for EVs, while the second method satisfy the 

maximum SOC for EVs (red line). 
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Figure 6.6 and Figure 6.7 Plots of daily load compared between the proposed 

adaptive and two normal methods in home public charging for 100 and 500 EVs. 
 

Figure 6.8 and Figure 6.9 shows plots of daily load as a function of time 

comparing the proposed smart adaptable charging method with two normal charging 

methods in the public charging. The result shows that the EVs demand increased the 

peak load, where the basic load in public charging can only be filled by a few EVs.  

 
Figure 6.8 and Figure 6.9 Plots of daily load compared between the proposed 

adaptive and two normal methods in home and public charging for 100 and 500 EVs. 

Figure 6.11 shows the distribution of a large number of EVs over charging 

stations comparing the proposed charging method and normal. The results shows the 

effectiveness of the proposed charging method that prioritise the urgent charging 

demand in the load distribution, unlike the normal charging that distribute the EVs 

randomly over stations. 

 

 
Figure 6.11 Comparison of distribution the EVs at charging stations between normal 

charging and a proposed method. 

 



 

 

Chapter 7 
 

 

Conclusions and Future Work 
 

 

 

EV is a critical component in the smart cities and IoV network. This thesis explored 

and addressed the challenges associated with the optimisation of charging schedules 

for EVs. The scope of this thesis included examining charging systems approaches 

(e.g., centralised and decentralised), optimising schedule schemes, and several 

optimisation methods for EVs charging. The study also invested the integrating of 

SDN within smart grid environments to enable efficient energy management and 

communication between vehicles, charging infrastructure, and the power grid. 

However, there are several charging schemes have been proposed in the research to 

solve the problem of random charging patterns and also many optimisation techniques 

are invested or developed for this purpose. The complexity arises from the need to 

balance various factors such as charging speed, cost, energy source sustainability, grid 

stability, and user convenience. This nature of multi-criteria EV charging problem, 

where each of these criteria can have different levels of importance depending on the 

user side, grid side, or stakeholder priorities. Therefore, there is no such an optimal 

charging scheme that fits all requirements, and dynamic and adaptable scheme would 

be more efficient solution for EV charging problem. 

 

 

7.1 Original contributions 
 

 

This section presents the main contributions of this thesis, specifying the original 

work that has been published. Each contribution is identified in the format of (m,p), 

where ‘m’ represents the mentioned contribution and ‘p’ denotes the corresponding 

published paper (as numbered in section 7.3). 

(1,1) provided a survey of V2G/G2V technologies. It identifies several challenges 

facing V2G technology from the communication perspective, including managing 

wired and wireless charging standards, synchronizing data transmission between 

different tiers of network architecture, and integrating V2G with emerging concepts 

like Energy Internet and Fog and Cloud computing for 5G-enabled networks. 

(2,1) introduced the concept of using SDN as a control solution for managing the 

interaction between EVs and the smart grid. It discusses the potential advantages of 

SDN-based smart grids, such as increased system stability, efficiency, and reliability, 

by providing a centralised management system. The document includes case studies 
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that illustrate the application of the recent proposed SDN-based frameworks in real-

world scenarios, highlighting the practical implications and benefits of integrating 

EVs into the smart grid. 

(3,1) proposed some solutions to some of the identified challenges, including a 

general SDN-based V2G framework aimed at improving the efficiency, reliability, 

and stability of the system. It also discusses specific solutions like the use of multicast 

communication for battery status sensing and coordination among EVs for 

charging/discharging operations. 

(4.6) provided a comprehensive overview related to the optimised charging 

schemes for EVs within existing charging infrastructure, focusing on user demands. 

The study highlighted the impact of random charging behaviours on the power grid 

and pointed out the need of an optimal charging scheme.  

(4,6) discussed several aspects associated with EV charging demands, such as EV 

types, charging modes, charging patterns (e.g., home, public, and mobile), and 

centralised and decentralised systems.  

(5,6) presented a critical review on the optimisation techniques then analysed the 

recent solution in the state-of-the-art, and also identified their limitations and gaps. 

proposed several potential solutions for the problem of optimal charging scheme 

based on the identified limitations and gaps.  

(6,6) proposed some potential research directions relevant to EV charging 

scheduling, aimed to help other engineers and researchers to develop such sustainable, 

efficient, and user friendly schemes for EV charging.  

(7,2) developed a novel SDN-based charging system model, which optimises the 

energy dispatch from both the power grid and EVs perspective, enhancing grid 

reliability and EV user convenience. 

(8,2) proposed an advanced scheduling and routing algorithm to the problem of 

EV charging. The study conducted a simulation for three schemes, considering in 

Bucharest city map, demonstrate the effectiveness of the proposed algorithm with 

proposed scheme in minimising the service time for EVs while achieving load 

balancing across charging stations. 

(9,4) Proposed a smart and adaptable charging scheme that dynamically adjusts 

the charging rates for EVs users considering the state of urgent demands. This scheme 

can transfer the EV charging demand from rush hours to off-peak hours. The PSO 

algorithms have been used to find the optimum solution in this scheme. 

(10,5) proposed the usages NSGA-II to simultaneously optimise charging cost and 

service time for EVs charging. This approach provides a novel method to handle the 

conflicts of two objectives (e.g., charging cost and service time) that faced in EV 

charging. The NSGA-II was compared with the GA and the results showed its 

superiority in achieving a diverse set of non-dominated solution. 

(11,7) extended the work in (10,5) and investigated the ACO and SA algorithms 

to evaluate their performances in minimising the total charging cost for EVs in terms 

of time and price for EVs. 
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7.2 List of original publications 
 

 

All the mentioned works in this thesis, such in chapter two, chapter three, chapter 

four, chapter five, and chapter six have been published. They are listed as follows: 
1- H.M. Al-alwash, M.K. Hamadani, Vehicular to Grid Technologies – A Survey on 

Architectures and Solutions, The Eighteenth International Conference on 

Networks Vehicular - ICN 2019, pp. 25–30, March 24-28, Valencia, Spain, 2019. 

2- H. Al-Alwash, E. Borcoci, Optimal Charging Scheme for Electric Vehicles (EVs) 

in SDN-based Vehicular Network, Scheduling, and Routing, The 14th 

International Conference on Communications - COMM 2022, pp. 1–8, June 16-

18, Bucharest, Romania, 2022. 

3- M.K. Hamadani, H.M. Al-alwash, Centralised Multi-hop Routing for Device-to-

Device communication: simulation and results, The 11th International Conference 

on Electronics, Computers and Artificial Intelligence - ECAI, pp. 1–6, June 27-29, 

Pitesti, romania, 2019. 

4- H.M. Al-Alwash, E. Borcoci, a Smart Adaptable Charging Method for Electric 

Vehicles, Considering Urgent Charging Demand, UPB Scientific Bulletin, Series 

C: Electrical Engineering and Computer Science, 85(3), pp. 307–318, 2023. 

5- H.M. Al-alwash, E. Borcoci, I. The, Non-Dominated Sorting Genetic 

Optimisation For Charging Scheduling Of Electrical, UPB Scientific Bulletin, 

Series C: Electrical Engineering and Computer Science, 86(1), pp. 117–128, 2024. 

6- H.M. Al-Alwash, E. Borcoci, M.C. Vochin, I.A.M. Balapuwaduge, F.Y. Li, 

Optimization Schedule Schemes for Charging Electric Vehicles: Overview, 

Challenges, and Solutions, IEEE Access, 12(March), pp. 32801–32818, 2024. 

7- H.M. Al-alwash, E. Borcoci, Optimising Charging Scheduling for Electrical 

Vehicles, SD–ETTI 2023: 1st Doctoral Symposium on Electronics, 

Telecommunications, and Information Technology, pp. 2–5, June 27-29, 

Bucharest, Romania, 2023. 

 

 

7.3 Future work 
 

 

A suggestion for future work can be made as follows: 

1. Future studies could focus on investigate the methods of machine learning or 

artificial intelligence in predicting EV charging patterns, optimising energy 

consumption, or optimise EV charging scheme. 

2. The integration of RESs such as solar, wind, and other with EV charging stations 

still an open research issue. Future research could focus on optimising the use 

these resources in charging stations to reduce reliance on fossil fuels and reduce 

carbon emissions. 

3. Investigating the broader implications of V2X technologies and their integration 

with smart grids and IoV for enhanced vehicle communication, energy 

management, and urban mobility. 
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