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Chapter 1

Introduction

1.1 Presentation of the field of the doctoral thesis

The present paper "Patterns of virtualization and container management in microservices-
based architecture models" addresses a current topic - the integration of native cloud
technologies in the current generation of 5G mobile core as well as in future gener-
ations to improve network scalability, reducing operational costs as well as bringing

programmability to the network level.

1.2 Scope of the doctoral thesis

Following the ever-growing market expansion for various industries, the 5G Next Gen
Core design is on the verge of evolving into a service-based architecture. Therefore,
this paper presents a novel approach to deploy next-generation 5G network functions as
cloud-native applications that are easily scaled on demand to align with the constraints

of different sectors.

1.3 Content of the doctoral thesis

In Chapter 1 the context of cloud computing and native cloud technologies such as
containers, orchestrators, etc. are presented compared to the notions of virtualization.
Moreover, to meet the requirements of the current generation of 5G mobile core in terms
of infrastructure that must be scaled to aggregate and process massive amounts of data
coming from different industries, cloud-native technologies offer multiple benefits in
terms of cost, cross-site scalability and network-level abstraction capabilities.

Chapter 2 gives an introduction to the new 5G architecture and describes the concepts
of NFV and SDN as well as the MANO architecture. A taxonomy of 4G and 5G mobile
core virtualization open-source projects that use virtualization is presented. In addition,
an analysis of the main container orchestration solutions and an introduction to the 5G



architecture are made, highlighting the main differences between the non-standalone
5G NSA architecture and the standalone (SA) type autonomous architecture. Next, the
architecture of the Kubernetes orchestrator that is the subject of these works is presented,
as well as the provisioning capabilities in multi-cloud and multi-cluster environments.

Chapter 3 addresses the implementation of the 5G SA functionality in a virtualized
environment running in a public cloud with programmable interfaces based on services
and orchestrated by Kubernetes. Furthermore, to validate the communication between
the microservices, a service-mesh solution was used. The proposed configuration aims
to validate the 5G SA functionality by integrating two of the open-source simulators:
Open5GS and UERANSIM used as a RAN emulator. In addition, the behavior of
multiple concurrent PDU session establishment requests was analyzed.

In Chapter 4 the security risks on the main AMF and SMF interfaces by injecting
traffic with a tool called 5Greplay are presented. Next, two attack scenarios are addressed
for which the response throughput of the AMF function is measured.

Chapter 5 presents a declarative model based on APIs that enables multi-cloud
deployment while delegating control logic to the network edge. The model based on the
ClusterAPI implementation allows the use of lighter Kubernetes distributions, therefore
the two K3s and Kind integrations with ClusterAPI are analyzed. Various container
orchestration models designed for edge computing were also evaluated. Through a
service mesh solution, called Linkerd, the latency generated by the two tools is compared
in the response throughput of the Open5GS functions.

Chapter 6 addresses the cloud-native 5G multi-site capabilities by requesting network
capacity on demand, as well as network programmability and mobile core configuration
by leveraging the benefits of APIs. Further, two cross-site communication scenarios
are presented, hereafter referred to as in-band peering and out-of-band peering, which
are analyzed for the offloading of the user and control plane in the peered cluster.
A comparison is also made between the MANO framework and the new proposed
containerized function management model based on Kubernetes orchestration. Moreover,
three network slicing scenarios are validated and the end-to-end traffic measured for
simultaneous sessions of users accessing the three slices.

Chapter 7 looks at a hybrid Kubernetes-based scheduling framework model with
shared states that delegates most of the tasks to distributed schedulers and has a schedul-
ing correction function that mainly handles unscheduled and non-priority tasks. Also, the
main types of schedulers existing in the literature based on Kubernetes implementation
are presented, and the capabilities of the proposed new scheduler are analyzed compared
to three Kubernetes scheduling frameworks.

Chapter 8 summarizes the experimental results obtained in the research together with
the original contributions and traces the future development directions in order to deepen

this field of cloud computing and possible applications in new mobile architectures.



Chapter 2

Technologies and systems used in the
architecture of the new generation of
SG mobile core

This chapter aims to introduce the main technologies used in the new generation 5SG mo-
bile core architecture as well as the differences between the non-autonomous architecture
(NSA) and the standalone architecture (SA).

2.1 Standalone Architecture

The non-standalone architecture (NSA) allows compatibility between the old 4G core and
the new 5G mobile core, since the standalone architecture (SA) aims to accommodate new
services coming from different sectors and industries (self-driving vehicles, precision
robotics , IoT, etc.) and provide ultra-reliable low-latency communications (URLCC).
Moreover, this chapter explains the functionality of the main network functions: AMF
(Access and Mobility Management Function) ensures authentication, authorization and
mobility between the user and the network, the SMF function (Session Management
Function) ensures authentication, authorization and mobility between user and network.
Function AF (Application Function) - provides information about resources, and function
UPF (User Plane Function) has the role of routing and transfer of packets, maintains the
transfer session PDU (Protocol Data Unit) between the user and the network.

The network function AUSF (Authentication Server Function) - provides the capa-
bility of the AMF function to authenticate the user. The function UDM (Unified Data
Management) - is responsible for storing user subscription data. UDR (Unified Data
Repository) - mainly stores subscription data and customer profiles, NSSF (Network
Slice Selection Function) maintains a list of carrier-defined network instance slicing.
NEF function (Network Exposure Function) - exposes services and resources via internal
or external API to the 5G network. The NRF (Network Repository Function) maintains a



list of available network functions and their associated profiles. PCF (Control Function)
- is responsible for policy enforcement and quality of service (QoS) fulfillment based on
subscription.

Another component introduced in the SA architecture is the MEC (Multi-access Edge
Computing) component, which is located close the base stations and aims to minimize
the response time. The main idea in MEC architecture is to provide low latency, higher
bandwidth as well as massive processing power at the edge of mobile networks close to

terminals.

2.2 Introducing the concepts of NFV and SDN

The ETSI NFV group is in the process of standardizing the orchestration interface with
NFV management and orchestration functions, also called MANO (Management and
Orchestration).

The ETSI NFV Management and Orchestration (MANO) framework consists of
three functional blocks: Virtualized Infrastructure Manager (VIM), NFV Orchestrator
(NFVO) and VNF Manager (VNFM). The vCloud NFV platform includes an integrated
VIM, which exposes northbound interfaces to VNFM and NFVO.

2.3 Brief taxonomy of existing solutions using SDN and
NFV

The literature is mainly divided between different solutions to orchestrate NFVs in
a cloud architecture presented in the papers [1], [2] and virtualization of functions
developed for 4G and 5G mobile core. Table 2.1 summarizes the existing OSS projects
mainly dedicated to the virtualization of the mobile packet core according to the 4G
specifications and presents few initiatives for the development of NFs for the 5G SBA
architecture.

Among the projects that support both 4G and 5G VNFs as well as CNF are OpeNess
[11] and Open5GS [7] which we will consider next in our configuration. The Open
Network Edge Services (OpenNESS) software is a tool to simulate the MEC architecture
in order to provide CNFs. This project was developed in collaboration with Intel and
runs entirely on a microservices architecture that provides APIs to the open-source
community.

Open5GS [7] is an open-source project developed in C language that implements
network functions according to the 3GPP Release 16 standard (ie AMF, SMF, PCF,
UDM, AUSEF, NRF, NSSF, UDR) and UPF) [12]. It also offers a graphical WebUI
interface developed in Node.JS and React. Some of these functions have their equivalent
in 4G Evolved Packet Core (EPC): AMF, SMF, PCF, UDM and AUSF. The Basic Access



Tabel 2.1 Open-source projects for the virtualization of the 4G and 5G mobile core

OSS Project Langiage | Licence 4G 5G CNF | Contributors
OpenAir
. Software
OpenAirInterface Apache - .
3] C V2.0 yes yes wip Alliance
) EURO-
COM
GNU AG- - .
NextEPC [4] C PLV3 yes wip wip NextEPC
corenet [5] Python GPL-2.0 Li- yes no no Corenet
cense
GNU AG-
openLTE [6] C++ PLV3 yes no no openL.TE
GNU AG-
openSGS [7] C PLV3 yes yes yes Open5GS
ONEF,
Intel,
Apache Deutsche
OMEC [8] C++ V2.0 yes yes no Telekom.
Sprint,
AT&T
Apache .
free5GC [9] Go, C V2.0 no yes wip Free5C
GNU AG-
srsLTE [10] C++ PLV3 yes no no srsLTE
OpenNESS [11] Go Apache-2.0 | yes yes yes Intel

* inci 1n lucru.

and Mobility Management Function (AMF) is responsible for user access and network
authorization, interacts with other NFs (ie SMF, AUSF) to manage UE mobility and

corresponds to the Mobility Management Entity (MME) in 4G.

2.4 The cloud native perspective

Nowadays, Kubernetes has become a popular container orchestrator to help mobile

operators as well as customers manage 5G services in a containerized framework,

regardless of their infrastructure.

A successful migration path from a legacy monolithic architecture to a cloud-native

one addresses not only the hardware decoupling of VNFs, but also a modular de-

sign through APIs and a new distributed architecture based on automation and self-

management. Since the aforementioned MANO framework does not address the manage-

ment of CNFs, a legitimate candidate for container orchestration is Kubernetes [13] to

help MNOs modernize their expensive infrastructure and turn it into a modular platform




designed for multiple integrations with Operational Support Systems (OSS) for better
performance and resilience.

A service (or micro-service) is composed of one or more pods and policies. A job
can run multiple operations to create one or more bridges. At the level of the control
plane there is an API server responsible for updating the state of the pods, a manager
controller that monitors the state of the cluster, a scheduler that dictates which nodes
(virtual machines) the pods are assigned to, an agent that runs on each node and a proxy
responsible for policies of traffic.

The main advantages for running next-generation mobile containerized kernel in
multiple Kubernetes clusters deployed in different cloud platforms are complete isolation
and scalability. For example, a URLLC application can run in "slice 1", the eMBB
application in "slice 2", and the mMTC application in "slice 3". In order for the software
to follow development (ie, DevOps) compliance rules, it is possible to separate the
development and staging environments by running these slices in different isolated
production clusters.

The concepts of multi-cloud and multi-region are also explained. Multi-region
hosting covers availability and failover issues, as well as latency or geographic location
in case of data protection and GDPR compliance, while multi-cloud hosting ensures

disaster recovery capabilities and avoids lock-in with a particular cloud provider .



Chapter 3

A cloud-native approach to design
network functions in future generations
of 5G mobile cores

In this chapter, a cloud-native architecture is proposed along with implementing the
Open5GS solution in containers running in a public cloud by using a package manager
dedicated to the Kubernetes orchestrator, the results being published in the work [14].
Migrating to cloud-native network functions (CNF) provides a solution for orchestrat-
ing VNFs because microservices can run in containers and accommodate requirements

such as autoscaling, resiliency, and network monitoring.

3.1 Description of the proposed solution

The proposed configuration uses the containerized version of the open-source tool
Open5GS [7], version 15 which introduces the concept of "standalone" for the 5G
core consisting of a fully virtualized core network to leverage the implementation and
management of network functions virtualized (NFV) along with network segregation
and segmentation capabilities. Mobile terminals and base stations in 5G are simulated in
the proposed configuration using UERANSIM which is an open-source simulator for
UE and 5G gNB deployment. UERANSIM is compatible with Open5GS and has two
main components: the gNodeB (gNB) which connects to the AMF and handles data
traffic in the Internet through the simulated radio link, and the users (UEs) represent
mobile phone subscribers that generate Internet traffic. Both Open5GS and UERANSIM
simulators are hosted in a public cloud.

For both UE and gNB configurations, the number of network segments called network
slices are defined. The purpose of using Network Slices in 5G is to provide isolation and
QoS for different end-to-end network requirements sharing the same physical resources.

For example, two network segments can share the same SMF.



Furthermore, the functionality is validated on three main interfaces: radio interface -
between UE and RAN, control interface - between RAN and AMF and user interface -
between RAN and UPFE. Due to the limitation imposed by the UERANSIM simulator to
only allow the configuration of a maximum of 15 sessions simultaneously, the UE script
was run three times to test the connection of 45 users, respectively the establishment of
45 PDU sessions within an hour.

A "service-mesh" solution is also implemented that shows us inter-service communi-
cation in real-time in terms of traffic distribution, request duration and throughput for
all network services of the 5G mobile core. To visualize the service mesh graph with
the traffic distribution and percentages, the Istio tool [15] was used, on top of which a
plugin called "kiali" [16] was added.

The experimental analysis shows that the throughput of the request when querying the
SMF is higher than the other service requests. The AMF is responsible for Network Slice
selection and determining the most appropriate SMF function to handle the connection
request by querying the NRF (see Figure 3.2).
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Fig. 3.1 The "service mesh" graph with the distribution and percentages of traffic
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Fig. 3.2 AMF response and request throughput on the outbound interface



Chapter 4

Analysis of potential vulnerabilities in
the implementation of the new
generation of mobile core SG

This chapter presents two attack scenarios on the main control plane and user interfaces.
The results were published in the work [17].

The interfaces connecting the 5G RAN with AMF and UPF (User Plane Function)
respectively are targets for attackers because they carry sensitive user plane data between
the access network and the core network.

4.1 The objective of the proposed solution

The open-source tool 5Greplay was used to simulate the two attack scenarios, which is a
solution that can be configured to replay traffic and forward modified network packets to
the network interface card (NIC) on predefined ports. The traffic generated by the tool
conforms to the standardization protocols in 3GPP Release 16 and is compatible with
existing open-source 5G frameworks such as Open5GS.

In the first scenario after the 15 PDU sessions have been successfully established,
i.e. the 15 user connections, the target protocol is specified, i.e. SCTP and the address
of the host where AMF is running. It was found that the TUN interface (the user plane
between the UE and the UPF) is not affected, the UE’s connection to the Internet remains
available. However, a warning "Unhandled SCTP connection received" is displayed and
when starting a new PDU session, the user plan is no longer established. Therefore, if
the AMF does not implement a protection mechanism against this type of attack, the
network will not drop the packet. Additionally, this vulnerability could be exploited by a
malicious actor who can impersonate the user.

In the second scenario, an attack on the N3 interface between gNB and UPF is

simulated. For this simulation the 5Greplay script was run where the target host which is
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Fig. 4.1 AMF response throughput in the both attack scenarios with 5Greplay

UERANSIM and the target port for UDP was changed. PCAP traffic from the gNB is
injected into the 5G core, which interrupts the PDU session. Next, the gNB script is run
to restore data plan connectivity.

Monitoring within the Kubernetes cluster was also achieved by implementing a
service mesh solution from Istio that serves as a proxy for each of the core 5G functions.

It is observed that when the 5Greplay attack is injected, the user’s plane is interrupted,
so we see the AMF to SMF response which is almost half of the initial values (see Figure
4.1 -b)). To request a new session, the UE and gNB use the NGAP protocol to carry NAS
messages. The AMF function receives these requests and is responsible for handling
mobility management while forwarding network session requirements to the SMF. In
this manner, the AMF determines which SMF is best suited to handle the connection
request by querying the NRF.
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Chapter 5

Cloud-Edge Communication: A
Declarative API-Based Orchestration
Model for the New Generation 5G Core

This chapter presents the benefits of deploying services and network functions in dif-
ferent clusters hosted in multiple cloud providers to ensure full isolation between ten-
ants/tenants. Different container orchestration models designed for edge computing were
also evaluated.

One of the main objectives was the comparison of two deployment models from
the perspective of latency for 5G functions run in containers and memory resource

consumption for the control plane. The results were published in the paper [18].

5.1 Description of cloud-edge context

The concept of network segmentation or slicing has recently introduced a new compo-
nent in the 5G architecture called Multi-Access Edge Computing (MEC) and can be
implemented at the edge network closer to the end users.

5.2 Container orchestrators for edge computing

In this section, three orchestration models are presented: kind [19], K3s [20] and
KubeEdge [21]. The open-source Kind tool was developed by the Kubernetes Special
Interest Groups (SIGs) and supports multi-node and multi-cluster deployments, plus it
can be easily integrated with other Kubernetes APIs , for example ClusterAPI (CAPI)
[22].

Kubedge is another open-source project developed under CNCF (Cloud Native
Computing Foundation) built on Kubernetes with the aim of orchestrating IoT Appli-



cations. The KubeEdge architecture has two main components: cloud and edge with
corresponding "hub" and "edge" modules.

Another tool dedicated to running Kubernetes clusters at the network edge is K3s
which comes with a lightweight version of Kubernetes. This project was developed by
Rancher Labs and is mainly suitable for IoT use cases and cutting edge technologies.
The deployment is split into K3s servers and multiple agents that can run at the network

edge and, unlike KubeEdge, do not require cloud-side communication.

5.3 The ClusterAPI model

The CAPI framework consists of three concepts: the management cluster that stores
the information from all cloud providers, the bootstrap providers used to install the
nodes dedicated to the Kubernetes control plane, and the "workload" or "tenant" clusters
created as cluster object resources associated with [23] cloud providers.

The core of the mobile packet network can run in different cloud tenants but in a
different framework called a virtual private cloud (VPC) corresponding to a "slice" of
the network. The primary role of a VPC is to provide network segmentation and security
throughout the policy configuration.

Each cloud and on-premises environment has its own dedicated ClusterAPI provider
that provides cluster provisioning, the CAPI provider for AWS (CAPA), while CAPI
for vSphere (CAPV) is dedicated to the VMware provider. The CAPI provider for
AWS (CAPA) covers both Elastic Compute (EC2) and Elastic Kubernetes Service (EKS)
deployments, i.e. CAPA EKS. A user can define different types of resources in a
declarative manner using resource templates, Custom Resource Definition (CRD) that
differ slightly depending on the cloud provider’s infrastructure.

5.4 Experimental Setup - Deploying SG NextGen Core

in Kubernetes Clusters

In the first test scenario there are two Kubernetes clusters with different configurations:
the SIG kubeconfig generated with Kind corresponding to the management cluster and a
second configuration of kubeconfig for the EKS cluster where the workload cluster is
running.

In the second test setup (see Figure 5.1 (b)) runs in a local VMware (on-premises)
which consists of a K3s cluster composed of a K3s server that acts as a master node and
an agent K3s as a worker node.

Both scenarios share a component called linkerd-injector. This is part of Linkerd
[24], a popular service mesh tool deployed on Kubernetes cluster that enables and

monitors communication between services and routes traffic and API calls between

13
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Fig. 5.1 The setup used for 5G Core SBA deployed with Kubernetes orchestrator at the
edge of the network (Figure 5.4 from the thesis)
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services/endpoints. The "service mesh" layer implemented on top of the Kubernetes
infrastructure role is to provide the abstraction of the application logic and mainly
provides service monitoring and observability.

The main objective of this research was to evaluate the performance obtained from
communication between OpenSGS containerized application processes using application
programming interfaces (APIs) for both proposed implementation solutions, CAPI and
K3s. The obtained results show better response time values for the CAPI configuration
compared to K3s (Figure 5.2) which validates our hypothesis regarding the benefit of
running OpenSGS in a public cloud because when we used the resources on demand we

not only increased the scalability, but also led to faster communication between services.

15
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Fig. 5.2 Latency comparison of Open5GS implementation using CAPI vs K3s (Figure
5.5 from the thesis)
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Chapter 6

An innovative approach to scaling 5G
Core network slicing deployed in a
cloud-native framework across multiple
sites

In this chapter, a new approach based on the "liquid computing" paradigm is presented,
which has the advantage of adapting to the changing environment. In this manner, the
5G mobile core can be managed as a single cluster entity running in a public cloud
following cloud-native models for declarative configuration based on Kubernetes APIs
and on-demand resource allocation. Moreover, two scenarios of offloading the Open5GS
user functions and the control plane are analyzed.

Three end-to-end network use cases are also validated, showcasing full 5G core
automation and leveraging the capabilities of Kubernetes multi-cluster deployments and

inter-service monitoring through the applied service network solution.

6.1 Comparison between ETSI MANO framework and

Kubernetes orchestrator

Figure 6.1 presents the proposed solution for the containerization of the 5G mobile core
compared to the ETSI MANO framework where the network functions are virtualized.

The ETSI MANO framework differs from the Kubernetes Model because the VNFM
(VNF Manager) has a detailed view of the associated deployed VNFs and a northward
exposure to the NFVO. In Kubernetes, this information is not exported to the upper
layers, because Kubernetes provides a better way to control it by defining the intent
through object definitions (such as labels, tags, selectors, etc.). In Kubernetes, the

concept of Pods exists to define where application containerization resides.
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Fig. 6.1 Proposed framework for network slicing in cloud-native 5G mobile core

6.2 Horizontal scaling vs. vertical in the cloud

In Kubernetes, horizontal scaling means expanding the number of pods in response to
increased workload. The HorizontalPodAutoscaler (HPA) feature automatically updates
a workload resource (such as a Deployment or StatefulSet) in order to automatically
scale the workload to match [25] capacity demands.

In terms of vertical scaling, the Kubernetes scheduler points more resources (for
example, memory or CPU) to already running pods as part of the workload. The key
role of the Vertical Pod Autoscaler (VPA) [26] is to automatically set container requests
based on pod usage through an optimal scheduling mechanism to allocate the compute

resources required to run each pod on demand.

6.3 Scaling in multi-cluster and multi-cloud Kubernetes

deployments

The open-source tool Liqo [27] uses the virtual node abstraction as an extension of
the Virtual Kubelet [28] project. In Kubernetes, the kubelet is the master node agent,
responsible for registering the node with the control plane and handling bridge scheduling.
Virtual Kubelet replaces a traditional kubelet for a physical node through standard
Kubernetes APIs for both local and remote [29] clusters.

It also automatically pushes the negotiated configuration (Services, ConfigMaps,
Secrets, Storage) into the capacity needed to properly execute offloaded/offloaded work-
loads, through a mechanism called resource reflection. All available resources that exist
in a given namespace and are selected for offload are automatically propagated to the
corresponding replicated namespaces created in the selected cluster.
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6.4 Description of the test setup and the two peering

scenarios

Ligo extends Kubernetes namespaces across cluster boundaries by creating replicated
namespaces in the selected subset of remote clusters whenever a namespace is selected
for offloading. The namespaces host the actual pods downloaded to the corresponding
cluster as well as the additional resources propagated by the resource mirroring process.

In the first "out-of-band peering" scenario, we initiate peering between two K3S
clusters that are isolated from each other because they are hosted in different tenants in
different hyperscaler data centers from the public cloud. The Liqo Network Manager is

the control plane of the Liqo network.
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Fig. 6.2 AMF Request throughput measured at the source for the control plane down-
loaded to the remote cluster (Figure 6.13 in Thesis)
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Fig. 6.3 AMF response throughput measured at the destination for the control plane
downloaded to the remote cluster (Figure 6.14 in the thesis)

It is observed that we measure a higher throughput for the AMF request throughput

in the offloaded user plane compared to the OpenSGS control plane shown in Figure
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6.2, while the AMF response throughput measured at the destination for the control
plane offloaded to the remote cluster is approximately half of the AMF query thoughput
measured at the source for the control plane offloaded to the remote cluster (Figure 6.3).

The reason is mainly due to the session establishment PDU traffic generated along
with the creation of interfaces in the user plane that is done between tenants for out-of-
band peering.

On the other hand, the request throughput for the SMF service on the egress
destination for the offloaded Open5GS control plane was observed to be three times
higher than for the offloaded user plane. On the other hand, for the response throughput
at the source in the case of a user plan downloaded to the remote cluster, we record half
of the value of the request throughput measured at the destination for the same scenario
(see Figure 6.4) and (Figure 6.5) .

Request Throughput

[kbit/s]

5
4
3
2
1

6 11 16 21 26 31 36 a1 56 61 66 71

Time [minutes]
open5gs-amf- open5gs-nrf- openbgs-pcf- open5gs-udm-
deployment deployment deployment deployment

Fig. 6.4 SMF response throughput measured at the destination for the user plane down-
loaded to the remote cluster (Figure 6.15 from the thesis)
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Fig. 6.5 SMF request throughput measured at the destination for the control plane
downloaded to the remote cluster (Figure 6.16 in the thesis)
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In the second "inband peering" scenario, we analyze the Open5GS control plane
services downloaded to the remote cluster. The remote cluster resides in a different
tenant and region.

The particularity of in-band peering for the two clusters is that all traffic in the control
plane (including authentication services) goes through the VPN tunnel. In this scenario,
the Kubernetes API service is not exposed outside the cluster. In-band peering involves
several steps to authenticate and establish the VPN tunnel using the WireGuard [30]
client.

In the case of the in-band peering, the latency values for the three UPF functions are
similar because the user plane traffic between the two clusters communicates through
the VPN tunnel (see Figure 6.6).
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Fig. 6.6 Latency in the user plane for the in-band peering scenario (Figure 6.19 in the
thesis)
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Chapter 7

Optimizing Kubernetes Clusters Using
Hybrid Shared State Scheduling

This chapter presents a new Kubernetes-based scheduler model that uses a hybrid
scheduling method with a shared state correction feature. Also, the comparison between
this type of planner and the main types of planners existing in the specialized literature

are presented.

7.1 Related works and a brief taxonomy of existing plan-

ning mechanisms

The Kubernetes orchestrator is a widely used centralized scheduling mechanism and
implements a shared persistent storage mechanism exposed through APIs. Building
management APIs around containers is considered more developer-oriented and shifts
the primary concern of distributing data from the machine layer to the application layer.
Table 7.1 provides a classification of the various scheduler models existing in the current

literature.

7.2 Issues Identified in the Kubernetes Scheduler

The main issues that can cause the need to move already running pods to other nodes for
various reasons have been identified: Nodes under or overused, tags added or removed
from nodes, or pod/node affinity requirements are no longer met. Nodes may also display
errors and their bridges have been moved to other nodes or when new nodes are added to
clusters.

Following the proposed test scenario, it was found that in a long-running Kubernetes

cluster, after a node fails, the workload is not evenly balanced between nodes.



Tabel 7.1 Taxonomy of the different planning frameworks existing in the current literature

Scheduler Centralized Two- Shared- Hibrid | Distributed
level state

Borg v

Omega v

Apache Hadoop YARN | v/

Apollo v

Kubernetes v

Hadoop-on-Demand v

Apache Mesos v

Docker Swarm v

Firmament-Poseidon | v/

Nomad v

Sparrow v

Tarcil v v

7.3 Description of the proposed scheduling method: hybrid-

shared state scheduler

The proposed method uses a similar shared-state hybrid architecture, where the interfer-
ence of collocated tasks is handled by a scheduling correction function. This scheduling
correction function compares the waiting time burden reported by the resource nodes
with its estimate, calculated based on the number of concurrent transactions performed
by each of the schedulers over time.

The architecture presented in Figure 7.1 consists of several Scheduling Agents (SA)
configured as slaves, a master that has an overview of the cluster state, Master-State Agent
(MSA) and a Scheduling Correction (SC) function that estimates the waiting time for
remaining unscheduled and unprioritized jobs. Resource Node (RN) stores information
regarding resource usage (eg memory usage, CPU, throughput, and execution time)
and shares this information with the SA. RNs manage the lifetime of each task, while
SAs run the life cycle of a job. Each SA processes this information together with job
priorities and Node Feasibility (NF), thus, after making a decision to place a job, it sends
the updated status to the MSA which further sends it to the SC and all SAs.

7.4 Correction Function (SC) Logic

We consider the total execution time of a job queued in the Correction Function (SC)
queue S = [S1,S2,...,5,]. We define the total execution time of a task (S;) as the sum of
the estimated waiting time of the task (7;,,) plus the estimated execution time of the task

(R;), where i € {1,...,n}. The interference time for a received job is I = [I}, b, ..., 1,].
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Fig. 7.1 Proposed shared-state hybrid scheduling architecture

To calculate the total execution time for an unscheduled task, Sf, the SC function

assigns a weight to the time derived from the interference latency (see equation 7.1)

wizl—ﬁ (7.1)

wi
Where T, represents the average estimated task runtime (7;) normalized to the

average total execution time for an unscheduled job (S] = Ta_y

exec

Afterwards, the prioritized SC queue contains the new values for the total execution

time of an unscheduled job §' = [§},S%,...,S,] to which the minimum collocation

interference time is added (see equation 7.2). Prioritization is then done based on the
task with the highest total execution time so that it can be executed on the chosen RN.

St =S;+w; x I (7.2)

In this manner we determine the collocation cases: if P~ =1, the resource allocation
is optimal and the result is sent to the SA, if P, < S_; we have a suboptimal schedule,

otherwise the SC function determines the entire queue rescheduling (Equation 7.3):

1—F, ifF,>§.
Pc= " o (7.3)
F, F, <5,
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Tabel 7.2 Comparison of features between Kubernetes integrated schedulers

C Planificator Poseidon- | Planificator

Caracteristica Descheduler | _.
Default Firmament | propus

Node
Affinity/Anti-Affinity | yes yes yes
Inter-pod Affinity .
/Anti-Affinity yes partially yes yes
Taints/Tolerations yes no yes yes
Basic
Scheduling/Optimal no yes partially yes
Scheduling
Colocation interference o o partially -
avoidance
High-availability yes no no yes
Priority Preemption yes no partially yes
Inherent Rescheduling no no yes yes

7.5 Analysis of the hybrid-shared state scheduler method

compared to other existing scheduling solutions

Table 7.2 shows a comparison of common features as well as differences between
the three scheduling candidates integrated with the Kubernetes scheduling framework
(Descheduler, Firmament-Poseidon and the proposed solution, the scheduler Hybrid-
state).

The Node Affinity/Anti-Affinity rule defines how nodes are selected by the scheduler
using custom labels on nodes and selectors on bridges, while the Inter-pod Affinity
/Anti-Affinity rule represents a constrain against bridge labels rather than node labels.

Taints and Tolerations are the opposite of node affinity, as they allow a node to reject
a set of bridges. Colocation interference avoidance occurs between bridges competing
for the same node resources.

Basic Scheduling/Optimal Scheduling - To make scheduling decisions according to
resource requirements, the scheduler uses predicates and priorities.

High availability the scenario of high service availability where multiple pod replicas
can be scheduled on the same node without considering service availability shows that
the default Kubernetes scheduler does not have a mechanism adapted to cluster dynamics.

Priority Preemption - If a bridge cannot be scheduled, the scheduler tries to remove
lower-priority bridges to reschedule available bridges.

Inherent Rescheduling — When a node is terminated, pods that were previously
running on that node will be rescheduled on available nodes.
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Chapter 8

Conclusions

8.1 Obtained results

In Chapter 1, the terminology and technologies of the 5G spectrum are introduced, as
well as the presentation of the cloud ecosystem with related technologies, and Chapter 2
presents the new 5G architecture and the description of the concepts of NFV and SDN,
as well as the MANO architecture.

In Chapter 3 the 5G SA functionality was tested in a public cloud running Open5GS
adapted to a Kubernetes orchestrated environment. In order to validate the commu-
nication between the microservices, a service mesh solution from Istio was used that
monitors the throughput in case of session stabilization of 45 of registered users. Further,
in Chapter 4 two attack scenarios on the main 5G SA interfaces were addressed to
analyze the behavior in the control and user planes.

Chapter 5 presented a declarative model based on APIs that allows multi-cloud
implementation, the model based on the ClusterAPI implementation. Furthermore, the
two K3s and Kind integrations with ClusterAPI are analyzed. Through a new service
mesh solution called Linkerd, the latency generated by the two tools is compared in the
response throughput of the Open5GS functions.

In Chapter 6 a new scaling model of network slices based on Liqo that respects the
"liquid computing" paradigm was addressed. In addition, this tool meets the scaling
criteria in multi-cluster Kubernetes deployments. Also, three network segmentation
scenarios were validated and end-to-end traffic measured for concurrent user sessions.

Chapter 7 aimed to propose a new scheduler model based on Kubernetes that uses a
hybrid scheduling method with a shared state correction function, being compared with

the main types of schedulers based on the Kubernetes implementation.



8.2 Original contributions

This section presents the main original contributions that have achieved the objective of
this paper together with the published articles listed in Section 8.3.

(1) Proposing a scheduler model with shared states and a correction function for the
efficient use of resources in a Kuberenetes cluster. Analysis of functionality compared to
other types of planners.

(2) Orchestrating the 5G mobile core running in a multi-cloud infrastructure and
bringing resource allocation logic to the edge of the network through a declarative
cloud-to-edge communication model.

(3) Implementing a 5G SBA architecture running in microservices in a public cloud
as well as validating the user connection by using an emulator for the access radio
network.

(4) Analysis of the main vulnerabilities that can be exploited in a 5G architecture
running in the cloud and validation of some attack scenarios on the main control plane
and user interfaces.

(5) Multi-cloud and multi-region scaling of the new generation of 5G core through a
new model called "liquid computing". Analysis of communication scenarios between
different Kubernetes clusters and end-to-end connection testing of users accessing

multiple slices concurrently.

8.3 List of original publications

1. O.-M. Ungureanu, C. Vlideanu, and R. Kooij, “Kubernetes cluster optimization
using hybrid shared-state scheduling framework™, pp. 1-12,
doi 10.1145/3341325.3341992,
Proceedings of the 3rd International Conference on Future Networks and Dis-
tributed Systems, ICFNDS, Paris, France, Best Paper Award, July 2019

2. O.-M. Ungureanu, C. Vladeanu, and R. Kooij, “Collaborative cloud - edge: A
declarative API orchestration model for the NextGen 5G core,” pp. 124— 133,
doi 10.1109/SOSES52839.2021.00019,

IEEE International Conference on Service-Oriented System Engineering, SOSE,
Oxford, United Kingdom, August 2021

3. O.-M. Ungureanu and C. Vladeanu, “Leveraging the cloud-native approach for
the design of 5G NextGen core functions,” IEEE Press, p. 1-7,
doi 10.1109/COMM54429.2022.9817268,
14th International Conference on Communications, COMM, Bucharest, Roma-
nia, June 2022
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4. O.-M. Dumitru-Guzu and C. Vlddeanu, “Analysis of potential threats in NextGen
5G core,”, pp. 14,
doi 10.1109/ISETC56213.2022.10010163,
International Symposium on Electronics and Telecommunications, ISETC, Timisoara,

Romania, November 2022

5. O.-M. Dumitru-Guzu and C. Vlideanu and R. Kooij, “A novel framework for
cross-cluster scaling in cloud-native 5G NextGenCore”, pp. 1-22
doi.org/10.3390/fi16090325,

MDPI Journal, Future Internet, MDPI, Switzerland, selected as cover photo for
Vol. 16, Iss. 9, September 2024

8.4 Perspectives for further developments

A further development may be to replicate the implementation of multi-cloud scenarios
for different public cloud providers addressing the proposed test scenarios in a different
configuration using physical devices for the radio access solution. Another direction
could be the integration of the MANO framework or other open-source virtualization
solutions such as Open5GS in an environment orchestrated by Kubernetes.

As a further perspective, the scheduler proposed in Chapter 7 could be integrated
with the tested and validated solution in Chapter 6 to improve how services are deployed
on multiple Kubernetes clusters.

Moreover, we could also address and test new network slicing scenarios such as
streaming, IoT and vehicle communication, or address new use cases for 6G to test

network performance and validate different QoS requirements.
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