
National University of Science and Technology

POLITEHNICA Bucharest

HBFX

Computer Science - Logo

Computer Science

Computer Science

& Engineering

& Engineering

Depar tment

Depar tment

PhD Thesis

in Computer Science, Information Technology and System
Engineering

Architecture of Distributed
Reputation System for Internet

Domains

Arhitectură unui sistem distribuit de
reputat, ie pentru domeniile Internet

presented by

Drd.Inf. Cristian Alexandru GHEORGHIT, Ă

supervised by

Prof.dr.ing. Florin POP

2024

Bucharest, Romania

Contents

1 Introduction 2

1.1 Main Features of the Proposed System 3

1.2 Structure of Research . 3

1.3 Methodology and Objectives . 3

1.4 Thesis Outline . 4

2 Critical Analysis of Previous Work 7

3 Domain Related Cybersecurity Threats 8

3.1 Threat Model . 9

3.1.1 Assets . 9

3.1.2 Potential Adversaries . 10

3.2 Attack Vectors . 10

3.3 Conclusions . 10

4 Proposed Algorithms for Establishing Domain Reputation 11

4.1 Data Collection and Verification . 11

4.2 Reputation Algorithm . 13

4.2.1 Machine Learning Algorithms . 13

4.2.2 Training Data Structure . 15

4.2.3 Model training . 15

4.2.4 Model evaluation . 16

4.3 Domain Reevaluation and its Effect on Current Score 18

4.4 Conclusions . 19

i

5 Architecture for a Distributed Reputation System for Internet Domains 20

5.1 Key Principles and Assumptions . 21

5.2 Proposed Architecture Components and their Interactions 21

5.3 The Command & Control System - Nexus 22

5.3.1 Web Service . 23

5.3.2 Domain Evaluation Scheduler . 23

5.3.3 Domain Evaluation Distributor 24

5.3.4 Evaluation Results Consensus . 25

5.3.5 Domain Score Decay Applicator 25

5.4 Storage System . 26

5.5 Distributed Computing Network . 26

5.6 Conclusions . 27

6 Evaluation of Proposed Architecture 28

6.1 Design Objectives . 28

6.2 Technological Stack . 28

6.2.1 Proof of Concept Foundation . 29

6.3 Implementation Workflow . 30

6.3.1 Developing the ADDReS Nexus Web Service 30

6.3.2 Setting up Nexus and BOINC Environments with Docker 30

6.3.3 Worker Application Development 31

6.3.4 BOINC Application Wrapper . 32

6.3.5 Remote Job Submission . 32

6.3.6 Job Processing on Android Devices 33

6.3.7 Results Validation . 34

6.3.8 Assimilation . 34

6.4 System Evaluation . 36

6.4.1 CPU and Memory Impact . 36

6.4.2 Network Impact . 36

7 Case Study on .ro Internet Domains 38

7.1 TLD Level Information Gathering . 38

7.2 Conclusions . 40

8 Conclusions 41

8.1 Contributions . 41

8.2 List of Publications . 42

8.3 List of Projects . 43

8.4 Future Work . 44

8.5 Lessons Learned . 44

Bibliography 46

1 | Introduction

In the contemporary digital era, the internet has become an integral part of daily

life, facilitating communication, commerce, and access to information on a global scale.

However, this widespread connectivity also presents significant challenges, particularly

in the realm of cybersecurity. One of the pressing issues is the hijacking and misuse of

domain names, which can lead to severe social and financial repercussions for both orga-

nizations and individuals. Malicious actors exploit compromised domains to distribute

malware, conduct phishing attacks, and steal sensitive information such as social security

numbers, bank account details, credit card information, and personal data. Such activi-

ties not only jeopardize the security and privacy of users but also tarnish the reputation

of legitimate domains involved in these incidents 1.

Existing domain reputation systems, including Notos [1], Exposure [2], Kopis, [3]

and publicly accessible blacklists and whitelists like Black Mirror 2 and Pi-hole BL 3,

have been developed to identify and manage the credibility of domains. These systems

utilize various techniques such as real-time monitoring, analysis of domain features, and

evaluation of IP reputations to detect and block malicious domains. While these solutions

have contributed significantly to enhancing internet security, they often face limitations

related to resource constraints, scalability, and the ability to process large volumes of data

efficiently. Centralized architectures struggle with the computational demands required

for comprehensive real-time analysis, leading to delays in threat detection and increased

vulnerability to evolving cyber attacks.

To address these challenges, this thesis proposes an innovative distributed domain

reputation system that leverages the idle computational resources of voluntary nodes,

specifically mobile phones that are idle while charging overnight. Inspired by projects like

Folding@Home [4], which utilize distributed computing for complex scientific research,

this approach aims to harness the collective processing power of a global network of

devices. By distributing the workload across numerous volunteer nodes, the system seeks

to overcome the limitations of centralized processing, enhancing scalability, efficiency,

and the timeliness of domain reputation assessments.

1https://owasp.org/, [Accessed on 11 October 2023]
2https://github.com/T145/black-mirror, [Accessed on 11 March 2023]
3https://github.com/Pyenb/Pi-hole-blocklist, [Accessed on 25 November 2023]

2

https://owasp.org/
https://github.com/T145/black-mirror
https://github.com/Pyenb/Pi-hole-blocklist

1.1 Main Features of the Proposed System

The key features of the proposed distributed domain reputation system include:

• Distributed Computing Architecture: Utilizing a network of voluntary mobile

devices to perform large-scale data processing tasks, thereby increasing computa-

tional capacity and reducing the burden on centralized servers.

• Leveraging Mobile Cloud Computing (MCC): Incorporating advanced web

technologies and MCC [5] principles to facilitate efficient communication and pro-

cessing across the distributed network.

• Real-Time Monitoring and Analysis: Implementing algorithms capable of an-

alyzing domain reputations in real-time, allowing for prompt detection of malicious

activities.

• Data Anonymization and Privacy Protection: Ensuring user privacy through

data anonymization techniques and secure protocols, addressing concerns related

to data security and participant trust.

• Scalability and Resource Optimization: Designing the system to scale hori-

zontally with the addition of more volunteer nodes, optimizing resource utilization

without significant additional costs.

1.2 Structure of Research

The research is structured to systematically explore and address the various as-

pects of developing the proposed system. It begins with a comprehensive review of

existing domain reputation systems and cybersecurity threats, followed by the develop-

ment of advanced algorithms for domain reputation assessment. The architecture of the

distributed system is then designed, incorporating key principles and leveraging modern

technologies. A proof-of-concept implementation is developed and evaluated using real-

world data, specifically focusing on the .ro domains database. The thesis concludes with

an analysis of the results, discussion of challenges and limitations, and recommendations

for future research.

1.3 Methodology and Objectives

The methodology employed in this research includes a combination of literature review,

algorithm development, system design, implementation, and empirical evaluation. The

primary objectives oh this thesis are:

• Analyze Existing Domain Reputation Systems and Cybersecurity Threats:

3

To understand the current landscape, identify limitations, and establish the need

for an improved solution.

• Develop Advanced Algorithms for Establishing Domain Reputation: To

create effective methods for evaluating domain credibility based on various features

and behaviors.

• Design an Innovative Architecture for a Distributed Domain Reputation

System: To conceptualize a scalable and efficient system leveraging voluntary

mobile devices.

• Develop and Demonstrate a Proof-of-Concept Implementation: To vali-

date the proposed system through practical implementation and testing with real-

world data.

• Evaluate the System’s Performance and Impact: To assess the effective-

ness of the solution compared to existing systems and its potential contribution to

cybersecurity.

1.4 Thesis Outline

The thesis is organized into the following chapters:

• Introduction: Presents the background, significance of the research, and outlines

the objectives and structure of the thesis.

• Critical Analysis of Previous Work: This section critically examines existing

domain reputation systems, including Notos, Exposure, and Kopis, alongside com-

monly used open blacklists and whitelists. Each of these solutions employs distinct

methodologies to assess the trustworthiness of domains. This analysis highlights

the need for a more adaptive and comprehensive solution to domain reputation.

The proposed architecture integrates machine learning, real-time analytics, and

adaptive algorithms to overcome these limitations. By combining the strengths of

existing systems and addressing their constraints, the proposed framework aims to

deliver a scalable, robust, and proactive approach to domain reputation assessment,

equipping stakeholders with better tools to mitigate cyberthreats effectively.

• Domain Related Cybersecurity Threats: This section explores key threats

impacting domain reputation, including ransomware, which leverages compromised

domains for malicious payload delivery [6]; Fast Flux DNS, used to obscure mali-

cious infrastructure through rapid IP address changes [7]; and SSL certificate abuse,

where attackers exploit legitimate certificates to establish trust while engaging in

fraudulent activities [8]. Based on these threats, a comprehensive threat model

is developed, outlining key attack vectors such as phishing, botnet command-and-

control, and credential theft. This model identifies critical vulnerabilities and in-

forms strategies for strengthening domain reputation systems to mitigate evolving

cyber-risks effectively.

4

• Proposed Algorithms for Establishing Domain Reputation: This chapter

provides a comprehensive exploration of domain evaluable features in Section ??,

the development of reputation algorithms in Section 4.2, and the implementation

of domain reevaluation mechanisms in Section 4.3. These components collectively

establish the foundational framework for the proposed architecture, enabling a

systematic approach to assessing domain reputation and ensuring the integrity of

reevaluated scores over time.

• Architecture for a Distributed Reputation System for Internet Domains:

This section provides a comprehensive overview of the proposed architecture, detail-

ing the foundational design principles in Section 5.1 and the key components that

constitute the system in Section 5.2. It thoroughly examines the methodologies

employed for data collection, emphasizing the selection and processing of domain

features to ensure robust analysis. Additionally, in Section 5.5 it explores the in-

tegration of Mobile Cloud Computing (MCC) to enhance scalability and efficiency,

leveraging distributed nodes for computational tasks. The discussion highlights how

these elements synergize to create a resilient and adaptive system for accurately as-

sessing the reputation of Internet domains.

• Evaluation of the Proposed Architecture: This section presents a detailed

analysis of the architecture’s performance, beginning with the design objectives

and system requirements in Section 6.1 that guided its development. It outlines

the technological stack in Section 6.2 and implementation workflow in Section 6.3,

providing insights into the steps taken to achieve the desired functionality. The

discussion also addresses the challenges encountered during the proof-of-concept

implementation and the strategies employed to overcome them. Additionally, it

highlights the key features demonstrated, showcasing the system’s ability to meet

its objectives and validate its effectiveness in the context of the proposed domain

reputation framework.

• Case Study on .ro Internet Domains: Applies the system to the .ro domains

database, presents the encountered particularities of the implementation regarding

the access to more granular domain data, and discusses challenges and limitations.

• Conclusions: Summarizes the research findings, evaluates the impact of the dis-

tributed architecture, and provides recommendations for future work.

This research aims to contribute to the field of cybersecurity by introducing a novel

solution to enhance domain reputation systems. By leveraging idle mobile devices in a

distributed computing framework, the proposed system addresses critical limitations of

existing solutions related to scalability and resource constraints. The approach promotes

efficient utilization of existing resources, reduces reliance on centralized infrastructure,

and fosters community engagement in cybersecurity efforts.

The potential benefits include:

• Improved Detection of Malicious Domains: Enhanced computational capac-

5

ity allows for more comprehensive and timely analysis, leading to earlier detection

of threats.

• Scalability and Flexibility: The system can adapt to increasing data volumes

and evolving cyber threats without significant additional costs.

• Community Empowerment and Awareness: Involving volunteers raises aware-

ness about cybersecurity issues and empowers individuals to contribute to collective

defense mechanisms.

• Sustainable and Cost-Effective Solution: Maximizing the use of existing de-

vices during idle periods promotes sustainable computing practices.

6

2 | Critical Analysis of Previous

Work

For organizations and individuals alike, the hijacking of domain names poses significant

social 1 and financial [9] threats. This malicious activity can lead to unauthorized access to

sensitive information by redirecting users to fraudulent websites or distributing malware.

Attackers exploit hijacked domains to disseminate malicious software that infects devices,

granting them access to valuable and private data such as social security numbers, bank

account details, credit card information, personal photos, and other confidential assets.

The compromised domain’s reputation suffers as a result, leading to a loss of trust among

users and potential legal and financial repercussions for the affected parties 2.

Given these substantial risks, it is crucial to have effective mechanisms in place to iden-

tify domains with poor reputations to prevent system infections and safeguard sensitive

information. Over the years, specialized systems have been developed to provide com-

prehensive information about a domain’s reputation based on various factors. These

systems utilize different methodologies, including: Real-time monitoring, Whitelists and

Blacklists and IP Reputation. These include, but are not limited to:

• Publicly Accessible Whitelists and Blacklists;

• Notos;

• Exposure;

• Kopis.

In this chapter, we have conducted a comprehensive review of existing domain reputation

systems and resources, namely Open Blacklists and Whitelists, Notos, Exposure, and

Kopis. These systems represent significant efforts in the ongoing battle against malicious

domains and cyber threats. By analyzing their methodologies, strengths, and limitations,

we gain valuable insights into the current state of domain reputation analysis and identify

areas where improvements are necessary.

1https://itp.cdn.icann.org/en/files/security-and-stability-advisory-committee-ssac-reports/

hijacking-report-12-07-2005-en.pdf, [Accessed on 25 March 2023]
2https://owasp.org/, [Accessed on 11 October 2023]

7

https://itp.cdn.icann.org/en/files/security-and-stability-advisory-committee-ssac-reports/hijacking-report-12-07-2005-en.pdf
https://itp.cdn.icann.org/en/files/security-and-stability-advisory-committee-ssac-reports/hijacking-report-12-07-2005-en.pdf
https://owasp.org/

3 | Domain Related Cybersecurity

Threats

In the modern digital landscape, domain names are not merely internet addresses; they are

fundamental components of the global online infrastructure that enable communication,

commerce, and information exchange. The Domain Name System (DNS) serves as the

internet’s phonebook, translating human-readable domain names into IP addresses that

computers use to identify each other on the network [10]. However, this critical role also

makes domain names and the DNS infrastructure attractive targets for cybercriminals

seeking to exploit vulnerabilities for malicious purposes. Domain-related cybersecurity

threats have become increasingly sophisticated and pervasive, posing significant risks to

individuals, organizations, and even national security.

Cyberattackers leverage domain names and DNS mechanisms to conduct a wide array of

harmful activities, including phishing, malware distribution, command and control (C2)

of botnets, data exfiltration, and denial-of-service attacks [11]. Among these threats, the

use of Domain Generation Algorithms (DGAs) has emerged as a particularly challenging

tactic. DGAs enable malware to algorithmically generate large numbers of domain names

that can be used for establishing communication with C2 servers [12]. This technique

allows attackers to maintain control over infected systems while evading detection and

takedown efforts, as security measures struggle to block or monitor the ever-changing list

of domains.

This chapter provides a comprehensive exploration of domain-related cybersecurity threats,

with a focus on understanding how attackers exploit domain name vulnerabilities and

DNS infrastructure. We begin by establishing a threat model [13] that identifies the

assets at risk, potential adversaries, and the methods they employ to carry out attacks.

By examining the attack vectors used by malicious actors, we gain insights into how

domain hijacking [14], DNS spoofing [15], phishing [16], Fast Flux DNS techniques [17],

SSL certificate abuse [18], and DGAs are utilized to compromise security.

The discussion on Domain Generation Algorithms (DGAs) [19] delves into how malware

uses these algorithms to generate and switch between domains dynamically, complicat-

ing efforts to block malicious domains and disrupting traditional security defenses. We

explore how DGAs contribute to the resilience of botnets and malware campaigns by

enabling robust and flexible C2 infrastructures [20]. Understanding DGAs is crucial for

8

developing effective detection and mitigation strategies, as they represent a significant

evolution in the tactics used by cybercriminals to avoid detection and sustain their op-

erations.

By analyzing these threats, we aim to highlight the weaknesses that attackers exploit

and underscore the importance of advanced domain reputation systems capable of real-

time detection of malicious domains. The knowledge gained from this exploration serves

as a foundation for subsequent chapters, where we propose innovative algorithms and

a distributed architecture designed to enhance the detection and prevention of these

threats.

This chapter emphasizes the critical need for a comprehensive understanding of domain-

related cybersecurity threats to develop effective countermeasures. Through this exam-

ination, we aim to contribute to the broader effort of securing the internet’s domain

infrastructure and protecting users from the ever-evolving tactics of cyberadversaries.

3.1 Threat Model

A threat model is a structured representation of the potential security threats to a sys-

tem, which helps in understanding the attacker’s objectives, the vulnerabilities they might

exploit, and the impact of their actions. In the context of domain name related cyberse-

curity, the threat model focuses on how malicious actors can exploit the Domain Name

System (DNS) and domain names to conduct harmful activities. This includes manipu-

lating domain registrations, DNS records, and leveraging domain-related vulnerabilities

to compromise systems, steal data, or disrupt services. This section outlines the threat

model by identifying the assets at risk, potential adversaries, attack vectors, and the

possible impacts of these threats.

3.1.1 Assets

In the context of domain name-related cybersecurity, several critical assets are vulnerable

to exploitation by malicious actors. These are the following:

• Domain Names and DNS Infrastructure;

• User Trust and Reputation;

• Sensitive Information;

• Network Resources;

• Business Operations.

9

3.1.2 Potential Adversaries

The threat landscape for domain name-related cybersecurity involves a diverse array of

adversaries, each with distinct motivations and methods. Cybercriminals are among the

most prevalent adversaries. These individuals or organized groups are primarily driven by

financial gain. They engage in activities such as stealing sensitive data, conducting fraud,

distributing malware, and orchestrating ransomware attacks [21]. Cybercriminals often

operate trans-nationally, leveraging sophisticated techniques to exploit vulnerabilities in

domain names and DNS infrastructure, and they may sell stolen data or access on the

darkweb [22].

The principal potential adversaries are the following:

• Hacktivists;

• State-Sponsored Entities;

• Insiders;

• Script Kiddies;

• Competitors.

3.2 Attack Vectors

This section reviews significant attack vectors threatening domain security, focusing on

strategies that exploit domain features rather than DNS-specific vulnerabilities. These

methods underscore the need for sophisticated reputation algorithms to mitigate domain-

related risks. The discuessed methods are the following:

• Domain Hijacking;

• Phishing and Typosquating;

• Fast Flux DNS;

• Malware Distribution via Compromised Domains;

• Domain Generation Algorithms;

• Command and Control (C2) via DNS.

3.3 Conclusions

In this section, we have outlined the primary methods by which a domain may become

compromised. By synthesizing and analyzing these techniques, we can construct a more

comprehensive understanding of the characteristics and behaviors exhibited by compro-

mised domains. This enhanced understanding serves as a foundation for refining and

optimizing the algorithm to improve the accuracy and reliability of domain compromise

detection.

10

4 | Proposed Algorithms for Estab-

lishing Domain Reputation

In this chapter we will create a model for a domain reputation algorithm by identifying

domain names evaluable features by using classifications as: syntactical features, network

features and zone configurations and we will establish a scoring methodology in order to

achieve a high true positive rate and also to obtain an as small as possible false positives

rate. Finally we will tackle the novelty part of our algorithm represented by the ability

to reevaluate an already processed domain to make sure that the reputation is upheld

or in some cases, the reputation has been cleaned by repurposing the domain name by a

legitimate actor.

4.1 Data Collection and Verification

In building a robust domain reputation system, the foundation lies in the comprehensive

collection and meticulous verification of data pertaining to domain names. This data

serves as the critical input for our reputation algorithm, influencing its ability to accu-

rately assess the trustworthiness of domains. Given the vast number of domains and

the dynamic nature of the internet, collecting relevant, high-quality data presents both a

significant challenge and a vital necessity.

For a more efficient gathering of the data, in a similar fashion to Antonakis et al [1], we

have split the domain features in three categories: Domain features, DNS features and

Network features.

• Domain Features:

This category includes:

– Domain age,

– Registration length,

– Registrant details,

– Domain expiration,

– Lexical analysis,

– Typosquatting,

– Domain name length,

11

– Blacklist inclusion,

– Previous ownership,

– Assessments from third-party reputation services,

– Content relevance and quality,

– Email spam reports,

– Algorithmically generated domains,

– Domain names containing high entropy.

• DNS Features:

This category includes DNS configuration-related issues, such as:

– Fast Flux techniques,

– Unusual subdomain usage,

– DNSSEC adoption,

– Email authentication records,

– Email open relays.

• Network Features:

This category includes network configuration-related issues and associations with

malicious IPs or networks, such as:

– IP address,

– SSL configuration,

– Domain infrastructure security (obsolete technologies, vulnerable security pro-

tocols),

– Redirections to known malicious domains.

The domain features from the first category are obtained using a combination of data

sources and analytical techniques. This section outlines the methods employed to collect

and analyze these features, ensuring that the data gathered is accurate, up-to-date, and

relevant for the reputation algorithm.

The main data sources are the following:

• WHOIS:

A query response protocol widely used for obtaining information about Internet

resources, including domain names, IP address blocks, and autonomous system

numbers (ASNs);

• DGA Detection Tool:

A tool based on the DGA identifying algorithm provided by the Safing Portmaster

project1;

1https://github.com/safing/portmaster/tree/v0.6.4/detection/dga, [Accessed on 13 June

2023]

12

https://github.com/safing/portmaster/tree/v0.6.4/detection/dga

• Typosquatting tool:

A developed tool that combines the ability of URLInsane2 to identify typosquatting

domain names, based on a legitimate domain, but implemented to work recursively

to identify if a given domain name is a typosquatted domain;

• Inspecting DNS Features:

By inspecting the DNS features, we can extract information about the configuration

of the domain name and it’s potential vulnerabilities.

As a summarization of the domain features that will be included in our algorithm, we

have created Table 1.

4.2 Reputation Algorithm

We chose to implement the reputation score algorithm using machine learning, and more

specifically, with the help of the XGBoost [23] algorithm, more specifically the regression

variant. This allows the system to adapt over time with more domains being validated.

The results of the newly validated domains will be feedback to a trainer algorithm that

will generate a new and more accurate model.

4.2.1 Machine Learning Algorithms

XGBoost, or eXtreme Gradient Boosting, is an advanced variant of Gradient Boosting

Machines originally introduced by J.H. Friedman [24]. Gradient Boosting builds models

sequentially, with each model correcting errors from its predecessors by minimizing a

loss function through models aligned with the negative gradient of the loss. XGBoost

enhances this framework with optimizations tailored for high efficiency, scalability, and

performance, particularly on large-scale, high-dimensional data.

A distinguishing feature of XGBoost is its regularized objective function, which combines

a loss function with a regularization term to penalize overly complex models, such as

large decision trees. This explicit regularization mitigates overfitting, balancing accuracy

and model simplicity. Additionally, XGBoost introduces a histogram-based algorithm for

feature splitting, which discretizes continuous features into bins. This approach reduces

computational costs while maintaining high accuracy, enabling the rapid construction of

decision trees.

Another critical advantage is XGBoost’s native handling of missing values. During train-

ing, it automatically learns optimal splits for missing data without requiring preprocessing

or imputation. This capability is particularly valuable in our domain feature collection

process, where data gaps could compromise model integrity. By addressing missing values

2https://github.com/ziazon/urlinsane, [Accessed on 13 June 2023]

13

https://github.com/ziazon/urlinsane

Feature Data Type Description

Domain Age Categorical Age of the domain in years (<1 year, 1 - 5,

5 - 10, 10 - 20, >20)

Domain Expiration (years) Numeric Days until domain expiration

Domain Length Numeric Number of characters in the domain name

DGA Suspect Boolean 1 if suspected to use Domain Generation Al-

gorithm, else 0

Typosquatting Suspect Binary 1 if suspected typosquatting, else 0

DNS TTL (Time To Live) Categorical One of (<300, 300 - 1800, 1800 - 86400, 86400

- 604800, >604800)

DNSSEC Boolean 1 if DNSSEC is enabled, else 0

Fast Flux Suspect Boolean 1 if suspected of fast flux DNS technique, else

0

SSL Boolean 1 if SSL is configured, else 0

SSL Certificate Issuer Categorical Categorical encoding of the SSL issuer

SSL Certificate Valid From Numeric Days since SSL certificate was issued

SSL Certificate Validity Numeric Duration in days that the SSL certificate is

valid

Registrar Categorical Categorical encoding of the domain registrar

IP Address Numeric Numerical representation of the IP address

AS Number Numeric Autonomous System Number

Is Blacklisted Boolean 1 if the domain is blacklisted, else 0

Is IP Blacklisted Boolean 1 if associated IP is blacklisted, else 0

TLS Version Categorical Categorical encoding of the TLS version

Strict-Transport-Security Boolean 1 if HSTS is enabled, else 0

Content-Security-Policy Boolean 1 if CSP is implemented, else 0

Has Email Server Boolean 1 if the domain has an email server config-

ured, else 0

Is Email Server Blacklisted Boolean 1 if the email server is blacklisted, else 0

Email Has DMARC Boolean 1 if DMARC is configured, else 0

Email Has SPF Boolean 1 if SPF is configured, else 0

Email Has DKIM Boolean 1 if DKIM is configured, else 0

Email Server Is Open Relay Boolean 1 if the email server is an open relay, else 0

Table 1: Features Used for Domain Reputation Assessment.

directly during tree construction, XGBoost ensures robustness and reliability, minimizing

the adverse effects of incomplete datasets and enhancing the predictive model’s overall

performance.

14

4.2.2 Training Data Structure

As shown in Table 1, the domain features used in this process consist of a combination of

numeric, boolean, and categorical values. Categorical values are inherently more complex

to process, as they represent discrete, non-numeric information, such as Registrar Name

or domain classifications. These values require encoding techniques to convert them into

formats that can be interpreted by the algorithm. A common approach is One-Hot encod-

ing [25], where each category is represented as a separate binary feature. Alternatively,

label encoding can be used, assigning a unique numerical value to each category, though

this may introduce unintended ordinal relationships.

Registrar Name Encoded Representation (One-Hot)

GoDaddy [1, 0, 0, 0]

Namecheap [0, 1, 0, 0]

Google Domains [0, 0, 1, 0]

Romarg [0, 0, 0, 1]

Table 2: One-Hot Encoded Representation of Registrars.

According to XGBoost documentation, One-Hot is the recommended encoding because

it ensures the absence of implicit ordinal relationships, which is critical when no inherent

order exists between categories. Proper handling of such features ensures that the algo-

rithm can process diverse data types effectively, thereby enhancing its ability to produce

accurate and unbiased reputation scores.

4.2.3 Model training

To train the domain reputation model, a dataset in CSV format was prepared, comprising

both benign and malicious domains to ensure diversity and robust generalization capa-

bilities. For benign domains, a subset of Alexa’s Top 1 Million Domains dataset 3 was

used, selecting the top 100,000 domains for efficient processing. For malicious domains,

the Black Mirror Blacklist 4, a dynamic and frequently updated repository, was utilized.

The custom-built domain features extractor application, implemented in Go, facilitated

the extraction of features for 100,000 benign and 100,000 potentially malicious domains.

This balanced dataset provided a strong foundation for training, minimizing overfitting

risks.

The dataset was structured to include an additional column indicating domain ori-

gin—either benign or from the blacklist. It was then divided into training and testing

subsets, enabling performance evaluation and generalization testing. Cross-validation,

3https://www.kaggle.com/datasets/cheedcheed/top1m, [Accessed on 20 June 2023]
4https://github.com/T145/black-mirror, [Accessed on 11 March 2023]

15

https://www.kaggle.com/datasets/cheedcheed/top1m
https://github.com/T145/black-mirror

specifically the k-fold methodology [26], was employed to enhance evaluation rigor. By

partitioning the data into k subsets and iteratively designating one subset for testing while

the rest were used for training, a comprehensive performance assessment was achieved,

mitigating overfitting risks. Results from these iterations were aggregated for robust

model evaluation.

The finalized model was serialized into a portable file format for distribution across mobile

worker nodes in the distributed system. This ensured uniformity and compatibility across

various environments, enabling worker nodes to perform effective predictions or classifica-

tions. By decentralizing the trained model, the system leveraged the distributed resources

of the network for scalable and efficient domain analysis, ensuring high redundancy and

resilience. This approach underscored the system’s adaptability and scalability, support-

ing diverse hardware configurations and optimizing computational capacity within the

distributed computing network.

4.2.4 Model evaluation

To evaluate the performance of the initial model, a subset of domains, comprising both

legitimate and malicious examples, was excluded from the training process and reserved

for testing purposes. These domains, referred to as L1 and L2 for legitimate domains

and M1 and M2 for malicious domains, were carefully selected to ensure a balanced

representation of the data’s diversity.

The evaluation was conducted using the worker application specifically developed for

deployment on the distributed computing nodes. This application processed the reserved

sample domains, allowing us to assess the model’s ability to classify previously unseen

data.

The analysis of extracted domain features highlights key indicators of suspicious domains,

with domain age being a significant factor, as younger domains are frequently linked

to malicious activities due to their transient nature. Time-to-Live (TTL) settings also

serve as a reliable metric, with unusually low values often signaling malicious behavior.

Additionally, blacklisting status—whether for IP addresses, mail servers, or the domain

itself—provides substantial evidence of potential threats. While SSL certificates were

once a trust indicator, their reliability has waned due to the ease of obtaining short-lived

certificates, often used by malicious actors. These findings underscore the importance

of a multifaceted approach, integrating multiple domain features to enhance detection

accuracy and ensure a comprehensive evaluation of domain trustworthiness.

The evaluation results, summarized in Table 4, demonstrate the prediction algorithm’s

ability to classify domains based on reputation scores and associated accuracy. High

reputation scores (0.93 and 0.89) for legitimate domains, with accuracy values of 0.87 and

0.91, indicate strong model performance, albeit with some variability suggesting potential

16

Feature L1 L2 M1 M2

Domain Age >20 >20 <1 year <1 year

Domain Expiration 917 1282 194 256

Domain Length 5 4 7 29

DGA Suspect 0 0 0 1

Typosquatting Suspect 0 0 0 0

DNS TTL 1800 - 86400 1800 - 86400 <= 300 <= 300

DNSSEC 1 0 0 0

Fast Flux Suspect 0 0 0 0

SSL 1 1 1 1

SSL Issuer ISSUER1 ISSUER2 ISSUER3 ISSUER4

SSL Certificate Valid From 304 116 29 53

SSL Certificate Valid To 92 255 61 392

Registrar REG1 REG2 REG3 REG3

IP Address 3231846509 783192862 3259220266 2890123802

AS Number AS3233 AS47388 AS214231 AS13335

Is Blacklisted 0 0 1 1

Is IP Blacklisted 0 0 1 0

TLS Version TLSv1.2 TLSv1.3 TLSv1.3 TLSv1.3

Strict-Transport-Security 0 0 0 0

Content-Security-Policy 0 0 0 0

Has Email Server 1 1 0 0

Is Email Server Blacklisted 0 0 0 0

Email has DMARC 0 1 0 0

Email has SPF 1 1 0 0

Email has DKIM 0 1 0 0

Email Server is Open Relay 0 0 0 0

Table 3: Feature Comparison Across Domains.

Domain Reputation Score Accuracy

L1 0.93 0.87

L2 0.89 0.91

M1 0.21 0.82

M2 0.15 0.84

Table 4: Domain Reputation Score and Accuracy.

improvements in feature weighting or dataset diversity. Conversely, low reputation scores

(0.21 and 0.15) for malicious domains, accompanied by accuracy values of 0.82 and 0.84,

highlight the model’s effectiveness in identifying threats while exposing challenges in

distinguishing edge cases where malicious and benign domain features overlap.

17

Key features such as domain age, DNS TTL, blacklisting status, and email configurations

strongly influence the model’s predictions, underscoring their relevance in domain repu-

tation assessment. However, features like SSL attributes and security policies exhibit lim-

ited variability, suggesting opportunities for refinement to enhance discriminative power.

The balanced dataset of 100,000 benign and 100,000 malicious domains contributes to

generalizability, though the inclusion of additional domain types, real-time DNS data,

and behavioral analytics could further optimize performance. Overall, the model demon-

strates robust classification capabilities while revealing avenues for future enhancements

to address remaining limitations and improve reliability.

4.3 Domain Reevaluation and its Effect on Current Score

The system has been designed to incorporate a domain reputation score decay mecha-

nism for domains previously evaluated. This feature addresses two critical challenges:

maintaining the validity of the reputation score over time and prioritizing domains for

reevaluation.

Once a domain has been evaluated, it is reasonable to assume that its status will re-

main relatively stable in the immediate aftermath, thereby maintaining its reputation

score. This assumption is particularly valid for domains with a long history and minimal

updates, as their stability weighs more heavily in comparison to younger domains with

frequent changes. These factors are considered to optimize the scheduling process and

improve the accuracy of reputation metrics.

In light of these considerations, a formula has been developed to introduce a controlled

“decay” in the reputation score of a domain after its evaluation. This decay mechanism

ensures that as time passes, domains with older evaluations are naturally prioritized for

reevaluation, maintaining the reliability and timeliness of the system’s metrics.

new score = old score ·
(
1− λ

domain age days + revalidation days

)days

This version of the formula balances the decay dynamics, ensuring fairness across domains

of varying ages and validation histories while maintaining the integrity and reliability of

the reputation scoring system.

Having implemented this reputation score decaying formula, ensures that younger, more

vulnerable domains are reevaluated more often than older and more established domains.

The rate at which new domains are being registered [Monitoring the Initial DNS Behavior

of Malicious Domains. Shuang Hao] it makes it hard to evaluate and monitor all of them.

We think that our approach improves on this issue by offering more validation bandwidth

to these domains in favor of already reputable domains.

18

Figure 1: Decay Effects with Final Formula.

4.4 Conclusions

This chapter has introduced a comprehensive model for assessing domain reputation by

identifying evaluable domain features, establishing scoring methodologies, and integrating

a novel reevaluation mechanism. By categorizing features into syntactical, network, and

zone configuration groups, the model captures the complex nature of domain behavior

and security. Validated through rigorous analysis of feature extraction, data encoding,

and machine learning evaluation, the approach demonstrated high accuracy and relia-

bility in distinguishing legitimate from malicious domains. Addressing challenges like

rapid domain registration, dynamic DNS configurations, and inconsistent security prac-

tices, the model provides a scalable, adaptive framework with real-time revalidation to

ensure up-to-date and fair assessments. This foundational chapter paves the way for

practical implementation and refinement, setting the stage for the system’s architecture,

evaluation, and applications in enhancing cybersecurity and trust.

19

5 | Architecture for a Distributed Rep-

utation System for Internet Do-

mains

In the ever-changing landscape of cybersecurity, accurately and efficiently assessing do-

main reputation is critical. Centralized systems often face limitations in scalability, la-

tency, and resource availability when analyzing the vast and dynamic nature of the in-

ternet. This chapter introduces an innovative distributed domain reputation architecture

leveraging distributed computing and mobile cloud computing (MCC) [5] to enhance

scalability, reduce latency, and improve accuracy. By decentralizing processing tasks

across a network of volunteer nodes, including mobile devices, the system addresses core

challenges in domain reputation assessment.

The proposed architecture functions by partitioning large datasets and distributing com-

putational tasks, such as feature extraction or preliminary analysis, to volunteer nodes.

Results are aggregated by a central server, which refines reputation scores and redis-

tributes tasks. This design emphasizes scalability, fault tolerance, and efficient resource

utilization, drawing inspiration from successful distributed computing frameworks like

Folding@home. Key benefits include:

• Scalability: The system can handle increasing data volumes by enlisting more

volunteer nodes, avoiding bottlenecks of centralized processing;

• Latency Reduction: Distributing tasks across multiple nodes or processing data

closer to its source decreases the time required for reputation scoring;

• Resource Optimization: Utilizing underutilized devices maximizes resource use

without significant additional investment;

• Community Engagement: Involving volunteers fosters a sense of collective effort,

promoting cybersecurity as a shared responsibility akin to Folding@home.

By addressing the inherent scalability challenges of centralized systems, this distributed

approach enables the efficient processing of vast datasets, fostering a collaborative and

scalable solution for real-world cybersecurity needs.

20

5.1 Key Principles and Assumptions

In designing the architecture for a distributed domain reputation system, several key prin-

ciples and foundational assumptions guide the development and implementation. These

principles ensure that the system is robust, scalable, efficient, and secure, while the as-

sumptions establish the operational context within which the system functions. This

section delves into these guiding principles and the assumptions that underpin the sys-

tem’s architecture.

The following are the key principles that guided us in desiging the proposed architecture:

• Scalability;

• Reliability;

• Efficiency;

• Security.

The design of a distributed domain reputation system is guided by several key assump-

tions, which establish the foundational context for its implementation and operation.

These assumptions address the technical, operational, and regulatory considerations that

are critical to the system’s functionality and success. The following are the main assump-

tions taken while designing the proposed architecture:

• Node Participation;

• Network Connectivity;

• Resource Availability;

• Data Privacy Compliance.

By explicitly defining and addressing these assumptions, the system design ensures that

potential risks are mitigated, operational parameters are realistic, and the architecture

aligns with technical and regulatory standards. These foundational assumptions not only

guide the development process but also serve as a benchmark for evaluating the system’s

feasibility and scalability in real-world deployments.

5.2 Proposed Architecture Components and their Interactions

The proposed architecture is composed from two main components:

• Nexus: The main control and command server responsible for:

– Scheduling domains for validation.

– Validating the responses from the mobile workers.

21

– Versioning and storing the results in the database.

– Providing statistics and reports for analyzed domains.

– Handling queries for specific domains.

• BOINC: [refference here] A volunteer work processing scheduler tasked with:

– Managing the connected volunteer devices.

– Allocating the work they are supposed to carry out.

– Collecting and managing the results obtained from the workers.

Figure 2: ADDReS architecture components.

5.3 The Command & Control System - Nexus

Although the majority of the moving parts of the system are decentralized, in order to

preserve the privacy and security of the system, we preferred to keep the decisional factor

as a closed service. This way we mitigate possible attempts of tampering the results of

the domain evaluations by employing random distribution of work and consensus for the

discovered results.

22

5.3.1 Web Service

The web service acts as a gateway to the system by providing tools that enable the man-

agement of the system. It employs an User Management system that supports different

roles based on the level of access for the operators. It allows operators to schedule spe-

cific domains for validation and also to interact with the results obtained from domain

evaluations.

5.3.2 Domain Evaluation Scheduler

The domain scheduler is in charge of scheduling new and old domains for evaluation.

We say new and old because the system is designed to reevaluate domains that were

prior evaluated based on the level of score decay. The more decay a score presents, the

more likely it is that the domain will be reevaluated. This method allows the system to

revisit domains that are more prone to become suspicious and to achieve near real-time

monitoring of the domains.

The scheduler starts by checking the available resources of the system and allocates them

equally between the new domains and old domains. If there are now old domains to

revalidate, the resources are reallocated towards the new domains queue. At first the

balance will tip towards new domains because of lesser to none revalidations, but as the

time passes and more domains get validated, the balance will get restored and new and

old domains will get bandwidth allocated.

1 for domain in existing_old_domains:

2 domain_obj = new Domain(

3 domain_name=domain.name ,

4 decay_value=domain.decay_value , # decay_value > 0

5 last_evaluated=domain.last_evaluated

6)

7 old_pq.insert(domain_obj , priority=domain_obj.decay_value)

8

9 while True:

10 R = get_total_resources ()

11 R_new = R * 0.5

12 R_old = R - R_new # Handle odd R

13

14 for i from 1 to R_new:

15 if new_queue is not empty:

16 domain = new_queue.dequeue ()

17 schedule_evaluation(domain)

18 else:

19 R_old += (R_new - i + 1)

20 break

21

22 for i from 1 to R_old:

23

23 if old_pq is not empty:

24 domain = old_pq.extract_max ()

25 schedule_evaluation(domain)

26 else:

27 R_new += (R_old - i + 1)

28 break

29

30 new_domains = get_new_domains ()

31 for domain in new_domains:

32 domain_obj = new Domain(

33 domain_name=domain.name ,

34 decay_value =0,

35 last_evaluated=null

36)

37 new_queue.enqueue(domain_obj)

38 wait_until_next_cycle ()

Listing 5.1: Scheduling Algorithm for Domain Evaluation.

5.3.3 Domain Evaluation Distributor

The domain evaluation distributor is in charge of distributing the work to the volunteer

worker nodes in such a way that it ensures the security of the results. Being an open

service and allowing anyone to participate in the process of evaluating a domain’s rep-

utation, this allows for bad actors to try to influence the results for domains they wish

to whitelist. To mitigate this issue, we have devised a formula with which the system

determines the number of redundant nodes to choose for a particular task. Only after

the system reaches consensus, the results are being validated and stored.

Since the number of nodes participating in the system is variable, we have designed a

formula that will output the recommended number of nodes for the work to be distributed

to.

We have devised the following formula:

n∑
k=⌈n

2 ⌉
Cn

k (1− p)kpn−k ≥ c

allows for the calculation of the minimum number of redundant nodes n needed to achieve

a desired confidence level C that the majority of nodes evaluating a domain are honest,

given a node compromise probability p. Thus, for a probability of node compromise of

0.1 (10%) and a desired confidence level of 0.95 (95%) we will need a number of at least

3 nodes.

24

5.3.4 Evaluation Results Consensus

When the finished results of the working nodes are being retrieved, it is important to

establish consensus among the results to:

• Account for the usual variances in score due to:

– Data timing differences: Nodes may have slightly different views of the data

due to updates occurring between evaluations.

– Local data variations: Nodes may have access to different subsets of data, such

as cache states.

– Network latency: Delays in data retrieval can affect the freshness of the data

used in evaluation.

• Account for the possibility of malformed results from malicious devices.

To counter these differences, we have established a consensus mechanism that is based

on the application of Interquartile Range (IQR)[27] over the list of scores generated by

the nodes. We have chosen this method for its ability to effectively reduce the influence

of extreme values (outliers), leaving only the legitimate scores to be registered.

5.3.5 Domain Score Decay Applicator

An important component of the reevaluation process is represented by the domain score

decay applicator (DSDA) which is scheduled to run each day to properly adjust the decay

factor for evaluated domains. The decayed scores produced by the Domain Score Decay

Applicator are utilized by the Domain Evaluation Scheduler to prioritize domains for re-

evaluation. Domains with lower scores (indicating higher decay) are given higher priority,

ensuring that resources are allocated to domains with the most uncertainty.

1 DECAY_CONSTANT = 0.5

2 MIN_SCORE = 0.0

3 MAX_SCORE = 1.0

4

5 for domain in domain_repository.get_all_domains ():

6 # Calculate effective domain age

7 effective_domain_age = max(domain.domain_age , 1)

8

9 # Calculate decay denominator and decay factor

10 decay_denominator = effective_domain_age + domain.

revalidation_count

11 decay_factor = 1 - (DECAY_CONSTANT / decay_denominator)

12

13 # Ensure decay factor is between 0 and 1

14 decay_factor = max(min(decay_factor , 1), 0)

15

25

16 # Update domain score with decay factor

17 decayed_score = domain.score * (decay_factor ** domain.

days_since_validation)

18 decayed_score = max(min(decayed_score , MAX_SCORE), MIN_SCORE)

19

20 # Update the domain score and save changes

21 domain.score = decayed_score

22 domain_repository.update(domain)

Listing 5.2: Domain Score Decay Algorithm.

5.4 Storage System

For the storage aspect of the system we needed to find a solution that allows for fast

insertion of data and also permits a flexible structure of the ingested data. Among

multiple available solutions, we choose MongoDB1 for its performances and also for its

ability to scale.

5.5 Distributed Computing Network

We propose a novel domain reputation evaluation system grounded in a distributed com-

puting architecture. Specifically, our approach leverages the computational resources of

mobile devices within a distributed network. This architecture mitigates the dependency

on centralized high-performance computing resources by distributing the workload across

a broad network of volunteer devices. By harnessing the collective computational capac-

ity of mobile devices, the proposed system aims to provide a scalable, cost-effective, and

efficient solution for real-time domain reputation evaluation.

The management of such a distributed architecture also demands scalable infrastructure

to handle device registration, task assignment, and result collection, as well as secure

methods to protect data privacy and prevent unauthorized access. Despite these chal-

lenges, the potential benefits of a distributed system, including cost-efficiency, scalability,

and resilience, make it a promising approach for large-scale computational tasks such as

domain reputation evaluation.

The main components of the system are:

• Core Server;

• Worker Nodes;

• Task Distribution;

• Consensus Mechanisms;

1https://www.mongodb.com/, [Accessed on 02 October 2023]

26

https://www.mongodb.com/

• Work Assimilation.

5.6 Conclusions

The proposed distributed computing network effectively addresses the limitations of cen-

tralized systems in domain reputation evaluation by leveraging decentralized worker nodes

to enhance scalability, efficiency, and cost-effectiveness while reducing dependency on

high-performance infrastructure.

27

6 | Evaluation of Proposed Architec-

ture

This chapter outlines the objectives, requirements, technological choices, implementation

workflow, challenges faced, and the features successfully demonstrated through a Proof

of Concept (PoC). It provides a concrete foundation for validating the system’s design

and paves the way for further development and deployment.

6.1 Design Objectives

By implementing the proof of concept system we aimed to validate several critical aspects

of the proposed distributed domain reputation system. The specific design objectives

were:

• Deploy the infrastructure to assess system requirements and document the process.

• Enable domain feature extraction and machine learning prediction on Android de-

vices without modifying the underlying platform.

• Compile and deploy the BOINC wrapper and Worker Application on the Android

devices.

• Implement a robust validation mechanism for task replication across multiple nodes

to ensure the security of the results.

• Integrate validated results into the ADDReS Nexus management system.

• Demonstrate end-to-end functionality of the distributed system.

• Address technical challenges and document solutions.

• Evaluate system performance and resource utilization.

6.2 Technological Stack

In this section, we provide an in-depth examination of the selected technological stack

employed for the proof-of-concept implementation. Furthermore, we elucidate the ratio-

nale underpinning each decision, highlighting how these choices align with the system’s

design objectives and operational requirements.

28

• ADDReS Nexus:

– Web Component: Provides a visual interface for interacting with the system.

It incorporates multiple access levels, enabling users to engage with the stored

domain data according to their permissions.

– Scripts: Includes the following key scripts used by the system:

∗ Domain Scheduler : Manages the scheduling of domain evaluations.

∗ Score Decay Applicator : Implements the decay mechanism for domain

reputation scores.

∗ Work Validator : Ensures the integrity and accuracy of results from dis-

tributed nodes.

∗ Work Assimilator : Integrates validated results into the system’s database.

– Storage: Responsible for storing essential system data, including:

∗ User credentials and access tokens.

∗ Extracted domain features.

∗ Evaluation scores for domain reputation.

• Distributed Computing Infrastructure:

– BOINC Client: The software installed on volunteer devices to receive and

execute work units.

– BOINC Server: The central server that manages the distribution of work

units and collection of results.

– BOINC Project Applications: Specific applications that define the tasks

performed by the BOINC clients.

– Work Units and Result Files: Units of work sent to clients and the corre-

sponding result files returned after execution.

– Scheduler: A component that assigns work units to available clients and

ensures efficient task distribution.

– BOINC Manager (User Interface): A user-facing application that allows

participants to monitor and manage their contributions to the distributed

system.

– Web-Based Administration and Community Tools: Online tools for

managing the BOINC project, engaging with the community, and providing

project statistics.

6.2.1 Proof of Concept Foundation

To develop a reproducible and distributable proof of concept, Docker1 has been selected

as a lightweight containerization platform. This choice allows us to ensure the system

1https://docs.docker.com, [Accessed on 29 March 2024]

29

https://docs.docker.com

can be reproduced and distributed reliably. Docker works by bundling everything an

application needs—like its code, runtime, libraries, and settings—into containers that

behave consistently across any environment. This makes Docker an ideal foundation for

building proof-of-concept (PoC) systems composed of multiple services.

6.3 Implementation Workflow

The implementation of the proof of concept (PoC) involved a series of methodical steps

to overcome technical challenges and achieve the design objectives outlined earlier. This

section provides a detailed account of the development process, highlighting key activities

and milestones that led to the successful execution of the distributed domain reputation

system using BOINC and Android devices.

6.3.1 Developing the ADDReS Nexus Web Service

To manage the system’s domain scheduling and validation results, MongoDB was inte-

grated using PyMongo2, while user administration continued to rely on Django’s default

SQLite database. This hybrid approach allowed us to leverage MongoDB’s flexibility

and performance for handling domain-related data while maintaining the simplicity and

robustness of Django’s built-in user authentication and administration features.

This configuration allowed the system to achieve the best of both worlds. MongoDB

provided the scalability and flexibility needed for managing domain scheduling and val-

idation at scale, while Django’s Admin interface and SQLite ensured a seamless and

secure experience for user management. This approach also positioned the system for

future scalability, as the MongoDB-backed components could evolve independently, sup-

porting more complex data operations or integrations without disrupting the core Django

application.

Finally we have created a Dockerfile describing all the necessary environment specifica-

tions, dependencies versions and bundled the application into a Docker image along with

its dependencies and configuration files. This allows us to easily integrate the Nexus web

service alongside the rest of the infrastructure components.

6.3.2 Setting up Nexus and BOINC Environments with Docker

The foundational environment for the system is established by deploying the Docker ser-

vice on a Linux-based virtual machine. The specific Linux distribution is inconsequential,

as Docker operates directly with the kernel, which provides the necessary system-level

2https://pymongo.readthedocs.io/en/stable/, [Accessed on 29 March 2024]

30

https://pymongo.readthedocs.io/en/stable/

abstractions for containerization. We then proceed to download the BOINC docker infras-

tructure 3 and modify its docker-compose.yml configuration file to incorporate our Nexus

platform. This allows the services to reside on the same network and also consolidates

the project under the same configuration.

After executing the docker compose up command from the Docker Compose utility, we

end up with the deployed infrastructure. If the process was successful we are now able to

interact with the Nexus web server on port 80 and with the BOINC management console

on port 8081.

Using Docker provided an isolated environment that simplified the setup process and

ensured consistency across different systems. Docker containers can be easily started,

stopped, and scaled, offering flexibility during development and testing.

6.3.3 Worker Application Development

In this section we will explore the development process of the worker application, the

challenges encountered when trying to deploy the first version on the Android mobile

device and the solutions found to overcome the limitations.

The initial version of the worker application was implemented in Python, leveraging its

robust library ecosystem for tasks like WHOIS queries, DNS retrieval, network analysis,

and domain data collection, which are essential for feature extraction. It also integrates

a pre-trained XGBoost machine learning model, managed with Scikit-learn, to predict

domain reputation scores. While Python’s flexibility and tool support are ideal for de-

velopment, its reliance on an interpreter presents a challenge on Android devices, which

lack a default Python environment. Building a Python interpreter for Android would con-

flict with the project’s design principle of ensuring system accessibility without requiring

modifications to user devices.

The Go programming language was selected for this project due to its simplicity, ef-

ficiency, and ability to meet the unique requirements of the system. One of Go’s most

compelling features is its capacity to compile all necessary libraries and code into a single,

portable binary. This characteristic eliminates the need for external dependencies or com-

plex runtime environments, significantly simplifying deployment across diverse platforms.

Furthermore, Go supports cross-compilation, allowing applications to be built for various

architectures and operating systems, including Android. This cross-platform compatibil-

ity is particularly advantageous for projects that target heterogeneous environments or

mobile platforms.

To successfully build the application, first, it is imperative to download the Android NDK
4 which is a toolset that lets you implement parts of your app with native code. In our

3https://github.com/marius311/boinc-server-docker, [Accessed on 12 April 2024]
4https://developer.android.com/ndk, [Accessed on 22 April 2024]

31

https://github.com/marius311/boinc-server-docker
https://developer.android.com/ndk

case it will allow us to build a binary compatible with the Android’s aarch64 architecture.

Running the following bash script will produce a compatible binary:

1 #!/bin/bash

2

3 export NDK=/ Users/dev/Library/Android/sdk/ndk /23.1.7779620

4 export CC=$NDK/toolchains/llvm/prebuilt/darwin -x86_64/bin/aarch64 -linux
-android21 -clang

5 env GOOS=android GOARCH=arm64 CGO_ENABLED =1 CC=$CC go build -o

worker_arm64

Listing 6.1: Bash script for building Android worker application.

After uploading to an Android emulator and running our program we can confirm that

our worker application is able to execute successfully.

6.3.4 BOINC Application Wrapper

BOINC provides a C++ API for workunits to interact with its infrastructure, handling

tasks such as starting/stopping processes, reporting progress, accessing files, and error

reporting. However, integrating this API directly into a worker application tightly cou-

ples it with the BOINC platform, complicating future migration to alternative systems.

To maintain flexibility, the “gridification” model, as proposed by Mateos et al.[28], was

adopted, utilizing a wrapper application that incorporates the BOINC API and acts as

a communication intermediary between the worker application and the BOINC server.

Since BOINC does not supply binaries for the aarch64 architecture or Android, the wrap-

per was cross-compiled using the Android NDK’s Clang toolchain. To prepare the worker

application and its wrapper for secure distribution, they were uploaded to a structured di-

rectory on the BOINC server and signed using cryptographic keys. This process involved

generating keys, signing the binaries, and updating the server configuration to make

the application accessible to volunteer nodes. These measures ensured compliance with

BOINC’s security requirements, preserving the system’s integrity and enabling efficient

deployment.

6.3.5 Remote Job Submission

“Remote job submission” refers to the process where jobs are submitted to a BOINC

server by scripts or programs operating externally, without requiring login access to the

server. This is facilitated through the use of Web RPCs (Remote Procedure Calls), which

allow for the creation of batches and jobs, as well as the management of input and output

files. This method of submission is distinct from local submission, which involves direct

interaction with the server.

Remote job submission introduces several key differences compared to local submission.

32

First, job submitters must possess a user account on the BOINC project. Submissions

are linked to this account, and submitters must provide their credentials. Additionally,

users need to be granted appropriate access rights and quotas to create jobs.

Jobs are organized and submitted in “batches,” even when only a single job is required;

in such cases, a batch with one element must be created. Unlike local jobs, remote

submissions do not utilize an assimilator to process output files. Instead, the “retire

batch” operation is employed to indicate that the batch’s files and database records can

be safely cleaned up.

The process of submitting jobs to the BOINC server is managed by the Nexus Domain

Scheduler script. This script is responsible for determining the next set of domains that

require validation or revalidation, based on the scheduling algorithm introduced earlier.

Once the domains are identified, the script organizes them into a batch, which serves

as the input for subsequent processing. By automating this task, the Nexus Domain

Scheduler ensures efficient and systematic management of domain validation workflows

within the BOINC framework.

6.3.6 Job Processing on Android Devices

The jobs are submitted to the Android devices with a replication factor of three, ensuring

that each work unit is processed by at least three devices. This setup aligns with our

statistical calculation indicating that, with a node compromise probability of 10%, as-

signing tasks to three devices achieves a 95% confidence level that the majority of devices

processing any given task are honest.

To implement this, we configured the BOINC project settings to require a minimum

quorum of three valid results (min quorum=3) before considering a work unit complete.

We also set the maximum number of error results and total results appropriately to handle

any potential failures or discrepancies.

We instantiated three emulated Android devices using [Emulator Name], each configured

with unique hardware profiles and connected to the BOINC project using individual user

accounts. This ensured that each emulator acted as a distinct participant in the network.

The BOINC client was installed on each emulator, and network settings were adjusted

to enable communication with the BOINC server.

Upon deployment, the devices successfully registered with the project infrastructure and

began receiving work units. The BOINC server distributed tasks in such a way that each

work unit was sent to at least three devices. The devices processed the tasks using the

Go-based worker application executed via the BOINC wrapper and returned the results

to the server.

33

6.3.7 Results Validation

When processing workloads, discrepancies may arise due to differences in machine ar-

chitecture, operating systems, network topology, or even malicious interference. To

address this, a replication factor is employed, ensuring the aggregation of results that

are statistically closer together. Worker applications return reputation scores along with

JSON-formatted domain features, which are validated using an Interquartile Range (IQR)

method to filter outliers. The mean of the validated scores is recorded as the definitive

reputation score in the Nexus database, ensuring reliability and representativeness. Do-

main feature extraction similarly applies a consensus-based approach, retaining consistent

data while discarding conflicting information, ensuring accuracy in the extracted features.

Variations in domain features may also arise due to differences in node locations, ISPs,

proxy configurations, or blacklists in communication hardware. A consensus-based filter-

ing mechanism mitigates these discrepancies, preserving only validated data for training

and refining the machine learning model, which is subsequently updated for future work-

loads. All processes, including data validation, aggregation, and consensus establishment,

are managed by a Python script integrated into the BOINC project’s configuration. This

script ensures robust and consistent validation during the consensus phase, enhancing

the reliability of the distributed computing system.

6.3.8 Assimilation

The assimilation task is covered by the job submitter script using the BOINC API method

get output files url to retrieve the URLs of the output files that are being stored on the

BOINC server and file get contents to obtain the results stored inside the files. The

structure of the result is outlined as follows:

34

1 {

2 "domain_age": 5,

3 "domain_expiration_days": 365,

4 "domain_length": 12,

5 "dga_suspect": 0,

6 "typosquatting_suspect": 0,

7 "dns_ttl": "1800 -86400",

8 "dnssec": 1,

9 "fast_flux_suspect": 0,

10 "ssl": 1,

11 "ssl_certificate_issuer": "Let’s Encrypt",

12 "ssl_certificate_valid_from": 120,

13 "ssl_certificate_validity": 365,

14 "registrar": "Namecheap",

15 "ip_address": "192.0.2.1",

16 "as_number": "AS12345",

17 "is_blacklisted": 0,

18 "is_ip_blacklisted": 0,

19 "tls_version": "TLSv1 .3",

20 "strict_transport_security": 1,

21 "content_security_policy": 1,

22 "has_email_server": 1,

23 "is_email_server_blacklisted": 0,

24 "email_has_dmarc": 1,

25 "email_has_spf": 1,

26 "email_has_dkim": 1,

27 "email_server_is_open_relay": 0

28 }

Listing 6.2: Sample worker response strcuture.

The contents of the file are stored in the Nexus database, ensuring they are available

for future reference and for retraining the XGBoost model with an expanded dataset,

thereby enhancing its predictive accuracy over time.

With the assimilation process successfully integrating the validated results into the Nexus

database, we have completed the implementation of the distributed domain reputation

system’s proof of concept. This comprehensive implementation encompassed developing

the worker application, setting up the BOINC infrastructure, processing jobs on Android

devices, and ensuring data integrity through validation and assimilation.

Having established the system’s foundational components, the next critical step is to

evaluate its performance and effectiveness. In the following section, we will delve into the

system evaluation, presenting the methodology employed, detailing the simulation setup,

and analyzing the results obtained. This evaluation aims to assess the system’s ability

to meet the design objectives outlined earlier, examine its scalability and efficiency, and

identify any areas for improvement.

35

6.4 System Evaluation

Evaluating the distributed domain reputation system is critical to validating its design

and functionality. Due to the challenges of deploying the system with a large number of

real-world participants, simulations were conducted to model its behavior under varying

conditions. This evaluation involved analyzing performance, scalability, and effectiveness

in achieving design objectives. Specifically, the simulation assessed the evaluation of

10,000 domains across a distributed network comprising 100 nodes, split evenly between

desktop and Android devices. Desktop nodes, with their higher processing power and

stable network connections, served as a performance benchmark, while Android nodes

provided insights into mobile device participation, reflecting heterogeneous real-world

conditions.

The simulation configuration allowed for a comparative analysis of resource utilization

and task completion efficiency across node types, demonstrating the system’s adaptability

in diverse environments. Alongside evaluating worker nodes, the central server’s load

was monitored due to its pivotal role in job distribution, result validation, and database

assimilation. These processes ensure data integrity and consistency while maintaining

responsiveness to incoming queries. By identifying potential bottlenecks in the server’s

operations, the evaluation informed optimizations to enhance scalability and reliability,

supporting the system’s ability to manage real-world distributed computing workloads

effectively.

6.4.1 CPU and Memory Impact

The evaluation of CPU and memory usage on desktop and Android devices demon-

strated minimal resource consumption during job execution, with average completion

times of 100 milliseconds for desktops and 200 milliseconds for Android devices, reflect-

ing platform-specific processing capabilities. Profiling tools integrated into the worker

application revealed negligible CPU usage differences between the two device categories

and low memory allocation averaging 0.4 MB, confirming the application’s lightweight

and efficient design. While extended domain response times may occasionally lead to

prolonged runtimes near the timeout limit, the application remains idle during these pe-

riods, consuming minimal resources. Optimizing domain response times or enhancing

timeout management could further improve overall efficiency.

6.4.2 Network Impact

The network impact on nodes during the evaluation process is minimal due to the

lightweight protocols used, such as WHOIS, DIG, and HTTP, which require only low

bandwidth for routine operations. The most significant network usage occurs during

36

the initial setup when the BOINC client downloads essential files, including the worker

binary, wrapper application, and configuration XML. This setup is a one-time process;

subsequent tasks involve negligible network usage as the BOINC client reuses locally

stored files if no updates are required, thereby reducing redundant data transfers and

optimizing overall system efficiency.

For the BOINC server, network activity primarily revolves around job file downloads by

worker nodes and the upload of results. While experimental simulations showed syn-

chronized network activity due to concurrent operations, real-world deployments are ex-

pected to have more distributed traffic patterns as devices register and request tasks

asynchronously. This analysis highlights the need for server readiness to manage poten-

tial spikes in network activity, such as during high registration periods or simultaneous

job completions. Anticipating these fluctuations is critical to maintaining server stability

and ensuring the seamless operation of the distributed computing system. The proof

of concept further validates the feasibility of the distributed architecture, showcasing its

scalability, efficiency, and capacity to handle real-time domain reputation evaluation by

leveraging decentralized computational power across diverse devices.

Figure 3: Simulated Network Traffic Over Time.

37

7 | Case Study on .ro Internet Do-

mains

To date, our experiments have been conducted from an external vantage point, utilizing

only publicly available datasets. While this approach enabled the collection of a subset

of domain features, it inherently restricted the scope of our analysis to openly accessible

information. However, through access to a privileged entity such as a Top-Level Domain

(TLD) registry, we significantly expanded the depth and breadth of our research. This

access unveiled insights into privately held domain features, including contact validation

and historical domain records, which were previously beyond reach. By integrating these

additional data points, we achieved a more comprehensive understanding of domain be-

havior and dynamics, enhancing both the accuracy and the robustness of our analyses.

This allowed us to further expand our machine learning algorithm model achieving even

more accuracy when predicting a domain’s reputation score.

7.1 TLD Level Information Gathering

The WHOIS protocol for .ro domains is mandated by Romanian law1 to redact any

personal information pertaining to domains owned by natural persons. The regulation

ensures compliance with data protection standards, allowing only the following informa-

tion to be displayed:

• Person Type

• Registration Date

• Expiry Date

• Domain Status

• Registrar Name

• Nameservers

This restriction significantly limits the amount of information accessible for validating

a .ro domain from a public perspective, posing challenges for comprehensive domain

analysis and verification efforts.

1https://eur-lex.europa.eu/legal-content/RO/TXT/PDF/?uri=CELEX:32016R0679, [Accessed

on 12 May 2024]

38

https://eur-lex.europa.eu/legal-content/RO/TXT/PDF/?uri=CELEX:32016R0679

The contact validation flag, a component of privately held information, is established

following a procedure designed to verify the identity of the domain’s owner. For natural

persons, this process typically involves submitting a personal identification document to

confirm that the provided contact details are accurate and legitimate. In the case of com-

panies, the risks are comparatively lower, as the domain registration process incorporates

cross-referencing the company’s identification details with data from authorized institu-

tions. However, companies are still required to undergo the same verification procedure

to ensure compliance.

The historical records maintained by the registry serve as a critical resource for under-

standing a domain’s lifecycle, encompassing its initial registration, renewals, ownership

transfers, and eventual deletion. These records provide comprehensive insights into the

domain’s past, enabling more accurate assessments of its behavior and reputation. From

a public perspective, however, access to such information is limited. When a domain

becomes available for registration, the primary indication of its prior registration is its

presence on public blacklists. This lack of transparency often results in challenges during

the validation of deleted domains.

By examining the historical records provided by the registry, it becomes possible to

identify domains exhibiting Fast Flux behavior. These records offer detailed logs of do-

main reset operations, enabling the detection of patterns indicative of malicious activity.

Additionally, the logs reveal the associated hosts and highlight whether the domain uses

sub-domains as nameservers for other domains—a characteristic commonly linked to Fast

Flux networks. This comprehensive visibility facilitates the identification of such domains

with greater accuracy and efficiency, contributing to enhanced monitoring and mitigation

efforts.

A streamlined version of the proposed architecture was implemented, primarily con-

strained by privacy considerations associated with involving volunteer participants. The

deployment was carried out using a lightweight Kubernetes environment, Minikube2,

which served as the infrastructure for hosting both the Nexus and BOINC servers. Ad-

ditionally, it facilitated the operation of worker nodes responsible for computing domain

reputation scores based on the extracted domain features. This approach allowed for a

controlled and efficient evaluation of the architecture while adhering to privacy and data

protection standards.

The objective was to demonstrate the effectiveness of the machine learning model by

enhancing its performance through the incorporation of additional information provided

by the top-level domain (TLD). The newly included domain features, extracted as part

of this refinement process, are detailed in Table 5.

Integrating the newly extracted features into the XGBoost model significantly enhanced

its predictive capability, resulting in a 5% improvement in distinguishing between ma-

2https://minikube.sigs.k8s.io/docs/start/, [Accessed on 23 June 2024]

39

https://minikube.sigs.k8s.io/docs/start/

Feature Data type Description

Is contact valid? Boolean This flag

Nameserver changes Numeric Nameserver changes in the past year or since

registration

Registrar transfer Numeric Number of times a domain had been trans-

fered from a registrar to another

Ownership transfer Numeric Number of times a domain had it’s ownership

changed

Resolved domains Numeric The number of domains that the are being

resolved by a nameserver hosted

Table 5: TLD advanced domain features.

licious and legitimate domains. Among the added features, the registrant validation

flag had the most substantial impact, serving as a highly effective discriminator between

legitimate and potentially malicious domains.

7.2 Conclusions

The implementation of this streamlined version of the architecture within the Romanian

TLD facilitated the collection of valuable insights into domain features that are not

publicly accessible. This demonstrates a significant opportunity for TLD operators to

adopt a more proactive role in combating cybercrime by leveraging the advantage of

possessing more granular and detailed information. This enhanced capability positions

TLDs as critical players in the development of robust domain reputation systems.

40

8 | Conclusions

As we conclude this work, it is an opportune moment to synthesize the key findings, assess

the contributions made to the field, and envision the pathways for future exploration and

innovation.

8.1 Contributions

The proposed architecture introduces a novel approach to harnessing the computational

potential of idle mobile devices for the purpose of establishing domain name reputations.

By leveraging distributed computing principles, the system demonstrates the feasibility of

transforming decentralized, underutilized resources into a cohesive and scalable solution

for addressing computationally intensive tasks. While this work primarily focuses on

presenting the architecture and validating its core principles, the results achieved during

the course of this thesis provide compelling evidence of its practicality and effectiveness.

It is our hope that this work will inspire further research and development in this area,

encouraging both academic and industrial efforts to refine, implement, and expand upon

the architecture to realize its full potential in real-world applications.

An additional significant contribution is the development of the reputation score decay

function, which introduces a novel approach to the evaluation and periodic reevaluation

of domain names. This methodology underscores the importance of providing a second

opportunity for domain names to be registered by legitimate users, facilitating the even-

tual removal of such domains from blacklists. This approach aims to balance the need for

cybersecurity with the potential for legitimate use of previously compromised or flagged

domains.

Furthermore, this work has demonstrated that a modern and secure programming lan-

guage, such as Go, can be effectively utilized to develop complex workunits compati-

ble with resource-constrained platforms, such as the Android operating system. This

highlights Go’s versatility and suitability for addressing the challenges of cross-platform

compatibility and efficient resource utilization, particularly in distributed computing en-

vironments.

41

8.2 List of Publications

1. Dragos, Smada, Mihail Dumitrache, Carmen-Ionela Rotună, Cristian-Alexandru

Gheorghit, ă - The impact of internet domain name status on their reputation (Ar-

ticle, RRIA);

2. Mihail Dumitrache, Carmen Ionela Rotună, Alexandru Gheorghit, ă, Adrian Victor

Vevera, Ionut, Sandu, Dragos, Smada - A Domain Reputation System Architecture

Description Using TOGAF (Article, SIC, ISI);

3. Cristian-Alexandru Gheorghit, ă, Dragos, Smada, Adrian-Victor Vevera, Mihail Du-

mitrache, Ionut, -Eugen Sandu, Carmen-Ionela Rotună - Blacklists and whitelists in

the framework of a domain reputation system (Article, RRIA);

4. Blockchain-based Decision Support System for Water Management - Bogdan-Ionut,

Pahont,u, Diana-Andreea Arsene, Alexandru Predescu,Mariana Mocanu, Alexandru

Gheorghit, ă (Article, SIC, ISI);

5. Carmen Ionela Rotună, Alexandru Gheorghit, ă, Ionut Sandu, Mihail Dumitrache,

Meda Udroiu, Dragos, Smada - A Generic Architecture for Building a Domain Name

Reputation System (Article, SIC, ISI);

6. Mihail Dumitrache, Ionut, -Eugen Sandu, Adriana-Meda Udroiu, Cristian-Alexandru

Gheorghit, ă - Theoretical considerations about establishing the Internet domain rep-

utation (Article, RRIA);

7. Alexandru Gheorghit, ă, Ionut, Petre - Securely Driving IoT by Integrating AIOps

and Blockchain (Article, ROCYS);

8. Carmen Rotună, Alexandru Gheorghit, ă, Alin Zamfiroiu, Dragos, Smada - Smart

City Ecosystem Using Blockchain Technology (Article, Informatică Economică);

9. Radu Boncea, Ionut, Petre, Victor Vevera, Alexandru Gheorghit, ă - Machine Learn-

ing Based Methods Used for Improving Scholar Performance (Article, eLearning &

Software for Education);

10. Carmen Rotună, Carmen Ĉırnu, Alexandru Gheorghit, ă - Implementing smart city

solutions: Smart city map and city drop (Article, Calitatea Viet, ii);

11. Carmen Rotuna, Dragos, Smada, A Gheorghit, ă - Smart city applications built on

big data technologies and secure IoT (Article, Ecoforum Journal);

42

12. Alexandru Gheorghita, Monica Anghel - Serious Games: An Oxymoron? (Proceed-

ings, ICVL, ISI);

8.3 List of Projects

1. Core Program ”Advanced Research Based on Emerging and Disruptive Technolo-

gies - Support for the Society of the Future,” Objective: The Internet of the Future,

Communications, Mobile Technologies; PN 2338 02 01 - ”Architecture – Intelligent

Monitoring Platform for Internet Domains through the Development of a Dynamic

Reputation Assessment System (TLDRep)” - Project Team Member; Deliverable

Contribution;

2. Core Program ”Advanced Technologies and Services for the Development of the

Information Society – TEHSIN,” Objective: 01 – Advanced Technologies for e-

Services; PN 09 23 01 10 – ”Electronic Services Based on Cloud Computing Infras-

tructure” - Project Team Member; Deliverable Contribution;

3. Core Program ”Methods for Analyzing the Impact of Social Media on Governance

Processes”; PN 09 23 06 01 – ”Electronic Services Based on Cloud Computing In-

frastructure” – Project Team Member; Deliverable Contribution;

4. Sectoral Program ”Methods for Analyzing the Impact of Social Media on Gover-

nance Processes”; 145/2015 – ”Proposals for Solutions in Implementing the Euro-

pean Interoperability Framework at the National Level – Examples of Good Prac-

tices from EU Member States” – Project Team Member; Deliverable Contribution;

5. PN.802 - Expansion of Services Provided by the Online Platform for Evaluating

Technical-Scientific Literature;

6. Online e-Participation System for Smart City Project Initiatives, PN 603;

7. Study on Adaptive Systems for Early Recognition of Cyber Attacks on State Re-

sources - CS 76/19.06.2018;

8. New Research in Modeling and Optimizing Complex Systems with Applications in

Industry, Business Environment, and Cloud Computing - PN101/2018;

9. PN101/2019 - Research on Advanced Policies and Solutions for Securing Critical

Infrastructures Against Cyber Attacks;

43

10. PN 301/2019 - Non-Invasive Monitoring and Evaluation System for the Health of

Elderly People in an Intelligent Environment Ro - SmartAgeing;

8.4 Future Work

For future work, we plan to extend the scope of the system by exploring the inclusion of

additional device categories, such as Internet of Things (IoT) devices, into the computa-

tional pool. This expansion aims to further leverage the growing ecosystem of connected

devices, enhancing the system’s scalability, diversity, and overall computational capacity.

Additionally, future efforts will focus on addressing the challenge of machine learning

model size by implementing a more lightweight alternative, namely LightGBM 1. Light-

GBM is specifically designed to reduce memory usage while maintaining high perfor-

mance, offering faster and more efficient model training. This adaptation is expected to

improve the system’s compatibility with resource-constrained devices and enhance overall

operational efficiency without compromising predictive accuracy.

Finally, we aim to explore the possibility of decentralizing the storage system by imple-

menting a blockchain-based solution across the participating nodes. Such an approach

would not only eliminate the reliance on a centralized server managing a traditional

database but also provide an immutable and inherently more secure framework for data

storage. By leveraging blockchain technology, the system would benefit from enhanced

transparency, tamper resistance, and decentralized consensus, addressing potential vul-

nerabilities associated with centralization and further strengthening the overall robustness

and trustworthiness of the architecture.

8.5 Lessons Learned

One of the most profound lessons I have learned during the course of this work is encap-

sulated in a quote from Bjarne Stroustrup, shared with me by a colleague: “If you think

it’s simple, then you have misunderstood the problem.” This single sentence resonates

deeply and succinctly captures the essence of the challenges encountered throughout the

documentation and implementation phases of this project.

Tasks that initially appeared straightforward, such as compiling a binary for a Linux-

derived operating system like Android, revealed themselves to be far more complex than

anticipated. These underestimated challenges served not only as obstacles but also as

valuable opportunities for growth, fostering a deeper understanding of the intricacies

1https://lightgbm.readthedocs.io/en/stable/, [Accessed on 12 May 2024]

44

https://lightgbm.readthedocs.io/en/stable/

involved in system development. Such hurdles, while demanding, enrich the journey and

inspire a continued pursuit of knowledge and exploration in this ever-evolving field.

45

Bibliography

[1] Landers, Joerg Weissmann, L Steinbrinker, Uwe Kraemer, Stefan Weinert, and H.-J

Lüddeke. Notos: an electronic questionnaire structures individualised diabetes man-

agement. In NOTOS: an electronic questionnaire structures individualised diabetes

management, 09 2013.

[2] Leyla Bilge, Sevil Sen, Davide Balzarotti, Engin Kirda, and Christopher Kruegel.

Exposure: A passive dns analysis service to detect and report malicious domains.

ACM Transactions on Information and System Securi, 16, 04 2014. doi: 10.1145/

2584679.

[3] Manos Antonakakis, Roberto Perdisci, Wenke Lee, Nikolaos Vasiloglou, and David

Dagon. Detecting malware domains at the upper dns hierarchy. In Detecting malware

domains at the upper DNS hierarchy, pages 27–27, 08 2011.

[4] Michael Shirts and Vijay Pande. Screen savers of the world unite. Science (New

York, N.Y.), 290:1903–4, 01 2001. doi: 10.1126/science.290.5498.1903.

[5] Hitesh Bheda. Application processing approach for smart mobile devices in mobile

cloud computing. International Journal of Software Engineering and Knowledge

Engineering, 3:1046–1054, 08 2013.

[6] Joshua Jaffe and Luciano Floridi. Ransomware: Why it’s growing and how to curb

its growth. Applied Cybersecurity & Internet Governance, 11 2024. doi: 10.60097/

ACIG/192959.

[7] Elahe Soltanaghaei and Mehdi Kharrazi. Detection of fast-flux botnets through dns

traffic analysis. Scientia Iranica, 22, 01 2016.

[8] Valentin Manescu, Neghina Alexandra, Andreea Barbu, Ganciu Rodica, and Gheo-

rghe Militaru. Analysis of ssl certificates trends and extended validation ssl usage

for e-commerce websites and internet of things. UPB Scientific Bulletin, Series C:

Electrical Engineering, 83, 12 2021.

[9] HuffPost. Domain theft: Who owns your website?, 2014. URL https://www.

huffpost.com/entry/domain-theft_n_5877510. Accessed: 2023-01-25.

46

https://www.huffpost.com/entry/domain-theft_n_5877510
https://www.huffpost.com/entry/domain-theft_n_5877510

[10] Paul Mockapetris and Kevin J Dunlap. Development of the domain name system.

In Symposium proceedings on Communications architectures and protocols, pages

123–133, 1988.

[11] Aminollah Khormali, Jeman Park, Hisham Alasmary, Afsah Anwar, Muhammad

Saad, and David Mohaisen. Domain name system security and privacy: A contem-

porary survey. Computer Networks, 185:107699, 2021.

[12] Deepak Kumar Vishwakarma. Domain name generation algorithms. Masaryk Uni-

versity, 2017.

[13] Frank Swiderski and Window Snyder. Threat modeling. Microsoft Press, 2004.

[14] Yunyi Zhang, Mingming Zhang, Baojun Liu, Zhan Liu, Jia Zhang, Haixin Duan,

Min Zhang, Fan Shi, and Chengxi Xu. Cross the zone: Toward a covert domain

hijacking via shared {DNS} infrastructure. In 33rd USENIX Security Symposium

(USENIX Security 24), pages 5751–5768, 2024.

[15] U Steinhoff, A Wiesmaier, and R Araújo. The state of the art in dns spoofing. In

Proc. 4th Intl. Conf. Applied Cryptography and Network Security (ACNS). Citeseer,

2006.

[16] K Jansson and Rossouw von Solms. Phishing for phishing awareness. Behaviour &

information technology, 32(6):584–593, 2013.

[17] Andi Fitriah Abdul Kadir, Raja Azrina Raja Othman, and Normaziah Abdul Aziz.

Behavioral analysis and visualization of fast-flux dns. In 2012 European Intelligence

and Security Informatics Conference, pages 250–253. IEEE, 2012.

[18] Zubair Jeelani. An insight of ssl security attacks. International Journal of Research

in Engineering and Applied Sciences, 3:52–61, 2013.

[19] Huiju Lee, Jeong Do Yoo, Seonghoon Jeong, and Huy Kang Kim. Detecting domain

names generated by dgas with low false positives in chinese domain names. IEEE

Access, 2024.

[20] Tong Anh Tuan, Hoang Viet Long, and David Taniar. On detecting and classifying

dga botnets and their families. Computers & Security, 113:102549, 2022.

[21] Craig Beaman, Ashley Barkworth, Toluwalope David Akande, Saqib Hakak, and

Muhammad Khurram Khan. Ransomware: Recent advances, analysis, challenges

and future research directions. Computers & security, 111:102490, 2021.

[22] Dimitrios Georgoulias, Jens Myrup Pedersen, Morten Falch, and Emmanouil Vasilo-

manolakis. A qualitative mapping of darkweb marketplaces. In 2021 APWG Sym-

posium on Electronic Crime Research (eCrime), pages 1–15. IEEE, 2021.

47

[23] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’16, page 785–794. ACM, August 2016. doi:

10.1145/2939672.2939785. URL http://dx.doi.org/10.1145/2939672.2939785.

[24] Jerome H Friedman. Greedy function approximation: a gradient boosting machine.

Annals of statistics, pages 1189–1232, 2001.

[25] Lean Yu, Rongtian Zhou, Rongda Chen, and Kin Keung Lai. Missing data prepro-

cessing in credit classification: One-hot encoding or imputation? Emerging Markets

Finance and Trade, 58(2):472–482, 2022.

[26] Santhanam Ramraj, Nishant Uzir, R Sunil, and Shatadeep Banerjee. Experimenting

xgboost algorithm for prediction and classification of different datasets. International

Journal of Control Theory and Applications, 9(40):651–662, 2016.

[27] Jiawei Han and Micheline Kamber. Data mining: Concept and techniques (s˜ ond

edition), 2006.

[28] Cristian Mateos, Alejandro Zunino, and Marcelo Campo. A survey on approaches

to gridification. Software: Practice and Experience, 38(5):523–556, 2008.

48

http://dx.doi.org/10.1145/2939672.2939785

	Introduction
	Main Features of the Proposed System
	Structure of Research
	Methodology and Objectives
	Thesis Outline

	Critical Analysis of Previous Work
	Domain Related Cybersecurity Threats
	Threat Model
	Assets
	Potential Adversaries

	Attack Vectors
	Conclusions

	Proposed Algorithms for Establishing Domain Reputation
	Data Collection and Verification
	Reputation Algorithm
	Machine Learning Algorithms
	Training Data Structure
	Model training
	Model evaluation

	Domain Reevaluation and its Effect on Current Score
	Conclusions

	Architecture for a Distributed Reputation System for Internet Domains
	Key Principles and Assumptions
	Proposed Architecture Components and their Interactions
	The Command & Control System - Nexus
	Web Service
	Domain Evaluation Scheduler
	Domain Evaluation Distributor
	Evaluation Results Consensus
	Domain Score Decay Applicator

	Storage System
	Distributed Computing Network
	Conclusions

	Evaluation of Proposed Architecture
	Design Objectives
	Technological Stack
	Proof of Concept Foundation

	Implementation Workflow
	Developing the ADDReS Nexus Web Service
	Setting up Nexus and BOINC Environments with Docker
	Worker Application Development
	BOINC Application Wrapper
	Remote Job Submission
	Job Processing on Android Devices
	Results Validation
	Assimilation

	System Evaluation
	CPU and Memory Impact
	Network Impact

	Case Study on .ro Internet Domains
	TLD Level Information Gathering
	Conclusions

	Conclusions
	Contributions
	List of Publications
	List of Projects
	Future Work
	Lessons Learned

	Bibliography

